JP7245017B2 - Fiber-reinforced composite material and manufacturing method thereof - Google Patents

Fiber-reinforced composite material and manufacturing method thereof Download PDF

Info

Publication number
JP7245017B2
JP7245017B2 JP2018183167A JP2018183167A JP7245017B2 JP 7245017 B2 JP7245017 B2 JP 7245017B2 JP 2018183167 A JP2018183167 A JP 2018183167A JP 2018183167 A JP2018183167 A JP 2018183167A JP 7245017 B2 JP7245017 B2 JP 7245017B2
Authority
JP
Japan
Prior art keywords
fiber
composite material
reinforced composite
urethane resin
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018183167A
Other languages
Japanese (ja)
Other versions
JP2020050802A (en
Inventor
勝也 田中
美智代 新前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2018183167A priority Critical patent/JP7245017B2/en
Publication of JP2020050802A publication Critical patent/JP2020050802A/en
Application granted granted Critical
Publication of JP7245017B2 publication Critical patent/JP7245017B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は繊維強化複合材料およびその製造方法に関する。 The present invention relates to a fiber reinforced composite material and a method for producing the same.

繊維強化複合材料として、従来より、ウレタン樹脂液を長繊維に含浸させて、発泡させるとともに硬化させた長繊維強化ウレタン樹脂発泡体が知られている(特許文献1)。
非特許文献1には、硬質ウレタン樹脂発泡体をガラス長繊維で強化し、木材と同程度の比重および強度を実現した繊維強化複合材料が開示されている。この複合材料は吸水しにくいため、水中に設置される木製の建築資材の代替品として好適であり、例えば角落しに用いられる。
As a fiber-reinforced composite material, a long-fiber-reinforced urethane resin foam, which is obtained by impregnating long fibers with a urethane resin liquid, foaming, and curing, has been known (Patent Document 1).
Non-Patent Document 1 discloses a fiber-reinforced composite material in which a hard urethane resin foam is reinforced with long glass fibers to achieve a specific gravity and strength comparable to those of wood. Since this composite material does not easily absorb water, it is suitable as a substitute for wooden building materials installed in water, and is used, for example, as a corner drop.

角落しは、水路の堰き止めに用いられる板状の部材であり、次の2種類に大別される。(1)水路に水が無い状態で設置される角落し。(2)水路に水が満たされている状態で設置される角落し。(1)としては、比重0.5または0.74の合成木材からなる角落しが上市されている。(2)は水に浮きにくいことが要求されるため、比重0.74の合成木材の外面にステンレス製の比重調整板を一体的に取り付けて総比重を1.00に調整した角落しが上市されている(非特許文献1)。 Kakuotoshi is a plate-like member used for damming water channels, and is broadly classified into the following two types. (1) Kakuotoshi installed when there is no water in the waterway. (2) Kakuotoshi installed in a water channel filled with water. As for (1), corner scrapers made of synthetic wood with a specific gravity of 0.5 or 0.74 are on the market. Since (2) is required to be difficult to float on water, a square drop with a specific gravity adjustment plate made of stainless steel attached integrally to the outer surface of synthetic wood with a specific gravity of 0.74 to adjust the total specific gravity to 1.00 is on the market. (Non-Patent Document 1).

特公昭58-25095号公報Japanese Patent Publication No. 58-25095

「エスロン(登録商標)ネオランバーFFU(登録商標) 水処理施設カタログ」、積水化学工業株式会社 上下水道事業部発行、2015年2月、改訂9版、第3頁、第11~13頁"Eslon (registered trademark) Neo Lumber FFU (registered trademark) Water Treatment Facility Catalog", Published by Sekisui Chemical Co., Ltd. Waterworks and Sewerage Division, February 2015, Revised 9th Edition, pp. 3, pp. 11-13

前記(2)の角落しは、ステンレス製の比重調整板が露出しているため、錆が発生する可能性がある。
本発明は、水に浮きにくく、錆の発生を防止できる繊維強化複合材料の提供を目的とする。
In the case of (2) above, since the specific gravity adjusting plate made of stainless steel is exposed, rust may occur.
An object of the present invention is to provide a fiber-reinforced composite material that is less likely to float in water and that can prevent the occurrence of rust.

本発明は以下の態様を有する。
[1] 硬質ウレタン樹脂組成物の硬化物を含むマトリックスと、比重が2~3のガラス長繊維とからなり、繊維体積含有率が15~35体積%、比重が1~2である、繊維強化複合材料。
[2] 前記マトリックスが発泡体である、[1]の繊維強化複合材料。
[3] 空隙率が0~50%である、[2]の繊維強化複合材料。
[4] 水中に設置される建築資材用である、[1]~[3]のいずれかの繊維強化複合材料。
[5] 角落し用である、[1]~[3]のいずれかの繊維強化複合材料。
[6] [1]の繊維強化複合材料を製造する方法であって、一方向に引きそろえたガラス長繊維に、硬質ウレタン樹脂組成物を含むマトリックス組成物を含浸させた未硬化物を、加熱して、前記硬質ウレタン樹脂組成物を硬化させる硬化工程を有する、繊維強化複合材料の製造方法。
[7] [2]の繊維強化複合材料を製造する方法であって、一方向に引きそろえたガラス長繊維に、硬質ウレタン樹脂組成物及び発泡剤を含むマトリックス組成物を含浸させた未硬化物を、加熱して、前記硬質ウレタン樹脂組成物中で発泡させるとともに前記硬質ウレタン樹脂組成物を硬化させる硬化工程を有する、繊維強化複合材料の製造方法。
[8] 前記繊維強化複合材料の発泡倍率が2以下である、[7]の繊維強化複合材料の製造方法。
The present invention has the following aspects.
[1] A fiber reinforcement comprising a matrix containing a cured product of a rigid urethane resin composition and long glass fibers having a specific gravity of 2 to 3, and having a fiber volume content of 15 to 35% by volume and a specific gravity of 1 to 2. Composite material.
[2] The fiber-reinforced composite material of [1], wherein the matrix is a foam.
[3] The fiber-reinforced composite material of [2], which has a porosity of 0 to 50%.
[4] The fiber-reinforced composite material according to any one of [1] to [3], which is used as a building material installed underwater.
[5] The fiber-reinforced composite material according to any one of [1] to [3], which is used for removing corners.
[6] A method for producing a fiber-reinforced composite material according to [1], wherein an uncured product obtained by impregnating long glass fibers aligned in one direction with a matrix composition containing a hard urethane resin composition is heated. and a curing step of curing the hard urethane resin composition.
[7] A method for producing the fiber-reinforced composite material of [2], wherein the uncured product is obtained by impregnating long glass fibers aligned in one direction with a matrix composition containing a hard urethane resin composition and a foaming agent. is heated to cause foaming in the rigid urethane resin composition, and a curing step of curing the rigid urethane resin composition.
[8] The method for producing a fiber-reinforced composite material according to [7], wherein the fiber-reinforced composite material has an expansion ratio of 2 or less.

本発明によれば、水に浮きにくく、錆の発生を防止できる繊維強化複合材料が得られる。 According to the present invention, it is possible to obtain a fiber-reinforced composite material that is less likely to float in water and that can prevent the occurrence of rust.

<繊維強化複合材料>
本実施形態の繊維強化複合材料は、ガラス長繊維とマトリックスとからなる複合材料である。
マトリックスは、繊維強化複合材料を構成するガラス長繊維以外の部分である。マトリックスは、硬質ウレタン樹脂組成物の硬化物を含む。マトリックスは硬質ウレタン樹脂組成物の硬化物と、発泡剤に由来する空隙とからなる発泡体が好ましい。マトリックスが、空隙を含まず、硬質ウレタン樹脂組成物の硬化物のみからなっていてもよい。
<Fiber reinforced composite material>
The fiber-reinforced composite material of this embodiment is a composite material composed of long glass fibers and a matrix.
The matrix is the portion other than the long glass fibers that constitute the fiber-reinforced composite material. The matrix contains a cured product of a rigid urethane resin composition. The matrix is preferably a foam composed of a cured product of a rigid urethane resin composition and voids derived from a foaming agent. The matrix may contain no voids and may consist only of a cured product of a rigid urethane resin composition.

ガラス長繊維は、特に限定されず、繊維強化複合材料の分野で公知のガラス長繊維を使用できる。例えばガラスロービングが好適である。
ガラス長繊維の比重は2~3が好ましく、2.5~2.7がより好ましい。ガラス長繊維の比重の測定方法は後述する。
The long glass fibers are not particularly limited, and long glass fibers known in the field of fiber-reinforced composite materials can be used. For example, glass rovings are suitable.
The specific gravity of the long glass fiber is preferably 2 to 3, more preferably 2.5 to 2.7. A method for measuring the specific gravity of the long glass fiber will be described later.

硬質ウレタン樹脂組成物は、特に限定されず、繊維強化複合材料の分野で公知の硬質ウレタン樹脂組成物を使用できる。
硬質ウレタン樹脂組成物は、ポリオール、触媒、ポリイソシアネート、整泡剤を少なくとも含む。その他の添加剤を含んでもよい。
硬質ウレタン樹脂組成物の比重は1.0~1.3が好ましく、1.15~1.2がより好ましい。
The hard urethane resin composition is not particularly limited, and any hard urethane resin composition known in the field of fiber-reinforced composite materials can be used.
The hard urethane resin composition contains at least a polyol, a catalyst, a polyisocyanate and a foam stabilizer. Other additives may also be included.
The specific gravity of the hard urethane resin composition is preferably 1.0 to 1.3, more preferably 1.15 to 1.2.

発泡剤は、特に限定されず、繊維強化複合材料の分野で公知のものを使用できる。
例えば水を用いることができる。
The foaming agent is not particularly limited, and those known in the field of fiber-reinforced composite materials can be used.
For example water can be used.

繊維強化複合材料の比重は1以上であり、1.1以上が好ましい。繊維強化複合材料の比重が大きいほど水に沈みやすい。
マトリックスが空隙を含まないときに、繊維強化複合材料の比重は最大となる。したがって、繊維強化複合材料の比重の上限値は材料の比重によるが、現実的には、2以下が好ましく、1.6以下がより好ましい。繊維強化複合材料の比重の測定方法は後述する。
The specific gravity of the fiber-reinforced composite material is 1 or more, preferably 1.1 or more. The greater the specific gravity of the fiber-reinforced composite material, the more likely it is to sink in water.
The specific gravity of the fiber-reinforced composite material is highest when the matrix contains no voids. Therefore, although the upper limit of the specific gravity of the fiber-reinforced composite material depends on the specific gravity of the material, in reality, it is preferably 2 or less, more preferably 1.6 or less. A method for measuring the specific gravity of the fiber-reinforced composite material will be described later.

繊維強化複合材料の繊維体積含有率は15~35体積%であり、20~30体積%が好ましい。
繊維強化複合材料の繊維体積含有率が上記範囲内であると、空隙率が低く、比重が高く、曲げ強度および曲げ弾性率に優れた繊維強化複合材料が得られやすい。繊維強化複合材料の繊維体積含有率の測定方法は後述する。
The fiber volume content of the fiber-reinforced composite material is 15-35% by volume, preferably 20-30% by volume.
When the fiber volume content of the fiber-reinforced composite material is within the above range, it is easy to obtain a fiber-reinforced composite material having a low porosity, a high specific gravity, and excellent bending strength and bending elastic modulus. A method for measuring the fiber volume content of the fiber-reinforced composite material will be described later.

繊維強化複合材料の空隙率は0~40%が好ましく、0~30%がより好ましい。
繊維強化複合材料の空隙率が小さいほど水に沈みやすい。
繊維強化複合材料の空隙率の測定方法は後述する。
The porosity of the fiber-reinforced composite material is preferably 0-40%, more preferably 0-30%.
The smaller the porosity of the fiber-reinforced composite material, the easier it is to sink in water.
A method for measuring the porosity of the fiber-reinforced composite material will be described later.

本実施形態の繊維強化複合材料は、比重が1~2、好ましくは1.1~1.6であり水に浮きにくいため、水中に設置される建築資材用の材料として好適である。
水中に設置される建築資材としては、水路に水が満たされている状態で設置される角落し等が挙げられる。
本実施形態の繊維強化複合材料は、水路に水が無い状態で設置される角落し用の材料としても使用できる。
本実施形態の繊維強化複合材料を用いた建築資材は、所望の形状に成形された繊維強化複合材料そのものであってもよく、さらに表面材、塗膜、把手等の任意の付属部材を設けたものでもよい。
The fiber-reinforced composite material of the present embodiment has a specific gravity of 1 to 2, preferably 1.1 to 1.6, and is difficult to float on water, so it is suitable as a material for building materials installed in water.
Construction materials that are installed underwater include a corner drop that is installed in a state in which a waterway is filled with water.
The fiber-reinforced composite material of the present embodiment can also be used as a material for removing corners installed in a waterway without water.
The building material using the fiber-reinforced composite material of the present embodiment may be the fiber-reinforced composite material itself molded into a desired shape, and may be provided with optional attached members such as a surface material, a coating film, and a handle. Anything is fine.

<繊維強化複合材料の製造方法>
本実施形態の繊維強化複合材料は、一方向に引きそろえたガラス長繊維に、硬質ウレタン樹脂組成物を含むマトリックス組成物を含浸させた未硬化物を、加熱して硬質ウレタン樹脂組成物を硬化させる硬化工程を有する方法で製造できる。
マトリックスが発泡体である繊維強化複合材料は、マトリックス組成物に、硬質ウレタン樹脂組成物と発泡剤を含有させ、前記硬化工程において、硬質ウレタン樹脂組成物中で発泡させるとともに硬質ウレタン樹脂組成物を硬化させる方法で製造できる。
<Method for producing fiber-reinforced composite material>
The fiber-reinforced composite material of the present embodiment is obtained by heating an uncured material obtained by impregnating a matrix composition containing a hard urethane resin composition into long glass fibers aligned in one direction to cure the hard urethane resin composition. It can be produced by a method having a curing step that allows the
A fiber-reinforced composite material whose matrix is a foam contains a hard urethane resin composition and a foaming agent in the matrix composition, and in the curing step, foams in the hard urethane resin composition and expands the hard urethane resin composition. It can be produced by a curing method.

マトリックス組成物は、硬質ウレタン樹脂組成物の原料と、必要に応じて発泡剤を混合して調製できる。
ガラス長繊維にマトリックス組成物を含浸させる方法は、公知の方法で実施できる。例えば、ガラス長繊維にマトリックス組成物をふりかけ、2枚の板の間で揉んで含浸させる方法を用いることができる。
硬化工程は公知の方法で実施できる。例えば、加熱手段を備えた成形用通路に、ガラス長繊維にマトリックス組成物を含浸させた未硬化物を連続的に導入し、成形用通路内で加熱して硬化させる方法が好ましい。成形用通路において、加熱手段の後段に冷却手段を設けてもよい。成形用通路は筒状であり、成形用通路内の空間は、得ようとする繊維強化複合材料の断面形状に対応する形状の内面で囲まれている。成形用通路内に導入された未硬化物は、成形用通路の内面に沿う形状に賦形され、硬化物となって成形用通路の出口から連続的に排出される。得られた硬化物を所定の長さに切断して、繊維強化複合材料を得る。
The matrix composition can be prepared by mixing raw materials for the rigid urethane resin composition and, if necessary, a foaming agent.
A known method can be used to impregnate the long glass fiber with the matrix composition. For example, a method of sprinkling the matrix composition on long glass fibers and rubbing them between two plates for impregnation can be used.
A hardening process can be implemented by a well-known method. For example, it is preferable to introduce continuously an uncured material obtained by impregnating long glass fibers with a matrix composition into a molding passage equipped with a heating means, and heat and harden it in the molding passage. Cooling means may be provided after the heating means in the molding passage. The molding passage is cylindrical, and the space within the molding passage is surrounded by an inner surface having a shape corresponding to the cross-sectional shape of the fiber-reinforced composite material to be obtained. The uncured material introduced into the molding passageway is formed into a shape along the inner surface of the molding passageway, becomes a cured product, and is continuously discharged from the outlet of the molding passageway. The obtained cured product is cut into a predetermined length to obtain a fiber-reinforced composite material.

未硬化物に配合するガラス長繊維の量は、得ようとする繊維強化複合材料の繊維体積含有率が前記範囲となるように設計する。繊維強化複合材料の体積は、前記成形用通路の内面の形状と、前記硬化物を切断する長さによって決まる。 The amount of long glass fibers to be blended in the uncured material is designed so that the fiber volume content of the fiber-reinforced composite material to be obtained is within the above range. The volume of the fiber-reinforced composite material is determined by the shape of the inner surface of the molding passage and the length of cutting the cured product.

未硬化物において、マトリックス組成物/ガラス長繊維の体積比は60/40~80/20が好ましく、65/35~75/25がより好ましい。マトリックス組成物の体積の比率が上記範囲の下限値以上であるとガラス繊維への樹脂の含浸性が良好となやすく、上限値以下であると繊維強化複合材料の繊維体積含有率を高めやすい。 In the uncured product, the matrix composition/long glass fiber volume ratio is preferably 60/40 to 80/20, more preferably 65/35 to 75/25. When the volume ratio of the matrix composition is at least the lower limit of the above range, the impregnation of the resin into the glass fibers tends to be good, and when it is at most the upper limit, the fiber volume content of the fiber-reinforced composite material tends to be increased.

発泡剤の使用量は、少なすぎるとガラス繊維への樹脂の含浸性が不充分となりやすく、多すぎると空隙率が高くなり維強化複合材料の高比重化が不充分となる。発泡剤の含有量は、かかる不都合が生じない範囲に設定するのが好ましい。例えば、マトリックス組成物の総質量に対して、発泡剤の含有量は0.1~0.5質量%が好ましく、0.1~0.3質量%がより好ましい。 If the amount of the foaming agent used is too small, the impregnation of the resin into the glass fibers tends to be insufficient. The content of the foaming agent is preferably set within a range that does not cause such inconvenience. For example, the content of the foaming agent is preferably 0.1 to 0.5% by mass, more preferably 0.1 to 0.3% by mass, relative to the total mass of the matrix composition.

繊維強化複合材料の発泡倍率は、2以下が好ましく、1.8以下がより好ましく、1.59以下がさらに好ましい。発泡倍率の下限は1である。上記範囲の上限値以下であると、比重が1以上である繊維強化複合材料が得られやすい。
発泡倍率は未硬化物の組成によって調整できる。例えば、未硬化物中の発泡剤の含有量が少ないほど発泡倍率は低くなる。また発泡剤の含有量が同じであっても、繊維強化複合材料の単位体積当たりの、未硬化物の使用量(マトリックス組成物とガラス長繊維の合計量)を多くすれば、発泡剤に由来する空隙(気泡)が圧縮されて発泡倍率は低くなる。
発泡倍率の測定方法は後述する。
The expansion ratio of the fiber-reinforced composite material is preferably 2 or less, more preferably 1.8 or less, and even more preferably 1.59 or less. The lower limit of the expansion ratio is 1. When it is at most the upper limit of the above range, a fiber-reinforced composite material having a specific gravity of 1 or more can be easily obtained.
The expansion ratio can be adjusted by adjusting the composition of the uncured material. For example, the lower the foaming agent content in the uncured product, the lower the expansion ratio. In addition, even if the content of the foaming agent is the same, if the amount of uncured material used per unit volume of the fiber-reinforced composite material (the total amount of the matrix composition and the long glass fibers) is increased, the The voids (bubbles) are compressed and the foaming ratio is lowered.
A method for measuring the expansion ratio will be described later.

本実施形態によれば、後述する実施例に示すように、繊維強化複合材料中のガラス長繊維及び硬質ウレタン樹脂組成物を増量し、発泡倍率を抑えることによって、繊維強化複合材料を高比重化できる。本実施形態の繊維強化複合材料を、水中に設置される建築資材に適用すれば、ステンレス製の比重調整板を取り付けなくても、総比重1.00以上を達成できるため、水に浮きにくく、錆の発生を防止できる。 According to the present embodiment, as shown in the examples described later, the amount of the long glass fiber and the rigid urethane resin composition in the fiber-reinforced composite material is increased, and the foaming ratio is suppressed, thereby increasing the specific gravity of the fiber-reinforced composite material. can. If the fiber-reinforced composite material of the present embodiment is applied to building materials installed in water, a total specific gravity of 1.00 or more can be achieved without attaching a stainless steel specific gravity adjustment plate. Rust generation can be prevented.

また、繊維強化複合材料中のガラス長繊維を増量することで、繊維強化複合材料が高比重化するとともに、曲げ強度及び曲げ弾性率も向上する。水中に設置される建築資材の厚さは、耐水圧のために要求される曲げ応力及びたわみ率を満たすように設計するが、曲げ強度及び曲げ弾性率が向上すれば薄肉化を図ることができる。 Further, by increasing the amount of long glass fibers in the fiber-reinforced composite material, the specific gravity of the fiber-reinforced composite material is increased, and the flexural strength and flexural modulus are also improved. The thickness of building materials installed underwater is designed to satisfy the bending stress and deflection rate required for water pressure resistance, but if the bending strength and bending elastic modulus are improved, the thickness can be reduced. .

また、繊維強化複合材料の発泡倍率を抑えることで、繊維強化複合材料が高比重化するとともに、繊維強化複合材料の表面の巣穴を抑制できる。前記巣穴は、発泡によって生じた気体が表面から外部へ抜ける際に形成される穴を意味する。水中に設置される建築資材においては、表面に巣穴があると、泥、汚れ、水中生物(コケなど)等が付着しやすいため、目止めをして巣穴を埋める作業が必要となる。本実施形態によれば、後述する実施例に示されるように、繊維強化複合材料の巣穴が抑制されるため、目止め作業が軽減される、または不要となる。外観も向上する。 In addition, by suppressing the foaming ratio of the fiber-reinforced composite material, the specific gravity of the fiber-reinforced composite material can be increased and the formation of pores on the surface of the fiber-reinforced composite material can be suppressed. The porosity means a hole formed when gas generated by foaming escapes from the surface to the outside. In building materials installed in water, if there are burrows on the surface, mud, dirt, and aquatic organisms (moss, etc.) tend to stick to them, so it is necessary to fill the burrows by sealing them. According to the present embodiment, as will be shown in the examples described later, the fiber-reinforced composite material is suppressed from having porosity, so the filling work is reduced or eliminated. Appearance is also improved.

以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
<測定方法・評価方法>
繊維強化複合材料の物性は以下の方法で測定した。
[発泡倍率]
測定対象の繊維強化複合材料の比重をx、非発泡の繊維強化複合材料の比重をyとし、発泡倍率=y/xで求めた。
非発泡の繊維強化複合材料は、発泡剤を含まない以外は、測定対象の繊維強化複合材料と同じ条件で製造した繊維強化複合材料である。非発泡の繊維強化複合材料の比重は、測定対象の繊維強化複合材料を溶融したものからも測定できる。
EXAMPLES The present invention will be described in more detail below using examples, but the present invention is not limited to these examples.
<Measurement method/evaluation method>
The physical properties of fiber-reinforced composite materials were measured by the following methods.
[Expansion ratio]
The specific gravity of the fiber-reinforced composite material to be measured is x, and the specific gravity of the non-foamed fiber-reinforced composite material is y.
A non-foamed fiber-reinforced composite material is a fiber-reinforced composite material manufactured under the same conditions as the fiber-reinforced composite material to be measured, except that it does not contain a foaming agent. The specific gravity of a non-foamed fiber-reinforced composite material can also be measured from a melted fiber-reinforced composite material to be measured.

[空隙率] 繊維強化複合材料の空隙率は、下記の計算式により算出した。
空隙率(単位:%)={(発泡後の繊維強化複合材料の体積-発泡前の繊維強化複合材料の体積)/繊維強化複合材料の体積}×100
[繊維体積含有率] 繊維強化複合材料の繊維体積含有率は下記の計算式により算出した。
繊維体積含有率(単位:体積%)=(単位体積あたりの繊維体積/単位体積あたりの繊維強化複合材料の体積)×100
[比重] 繊維強化複合材料の比重はJIS Z 2101(2009年)に準じて測定した。
[曲げ強度] 繊維強化複合材料の曲げ強度はJIS Z 2101(2009年)に準じて測定した。
[曲げ弾性率] 繊維強化複合材料の曲げ弾性率はJIS K 7017(1999年)に準じて測定した。
[Porosity] The porosity of the fiber-reinforced composite material was calculated by the following formula.
Porosity (unit: %) = {(volume of fiber reinforced composite material after foaming - volume of fiber reinforced composite material before foaming) / volume of fiber reinforced composite material} x 100
[Fiber volume content] The fiber volume content of the fiber-reinforced composite material was calculated by the following formula.
Fiber volume content (unit: volume%) = (fiber volume per unit volume/volume of fiber reinforced composite material per unit volume) x 100
[Specific Gravity] The specific gravity of the fiber-reinforced composite material was measured according to JIS Z 2101 (2009).
[Bending strength] The bending strength of the fiber-reinforced composite material was measured according to JIS Z 2101 (2009).
[Flexural modulus] The flexural modulus of the fiber-reinforced composite material was measured according to JIS K 7017 (1999).

[外観(巣穴)の評価]
繊維強化複合材料の外観は以下の方法で評価した。
繊維強化複合材料の表面を目視で観察し、任意の領域(縦、横いずれも10cmの領域)に存在する孔の数を計測し、以下の基準で評価した。
×:直径5mm以上の孔が5個以上存在する。
△:直径5mm以上の孔が1個以上5個未満存在する。
〇:直径5mm以上の孔は存在しない。直径5mm未満の孔が1個以上存在する。
◎:直径5mm以上の孔、直径5mm未満の孔のいずれも存在しない。
[Evaluation of Appearance (Hole)]
The appearance of the fiber-reinforced composite material was evaluated by the following method.
The surface of the fiber-reinforced composite material was visually observed, and the number of holes present in an arbitrary area (10 cm in both length and width) was counted and evaluated according to the following criteria.
x: Five or more holes with a diameter of 5 mm or more are present.
Δ: One or more but less than five holes with a diameter of 5 mm or more are present.
Good: No holes with a diameter of 5 mm or more are present. There is at least one pore with a diameter of less than 5 mm.
A: Neither holes with a diameter of 5 mm or more nor holes with a diameter of less than 5 mm are present.

<マトリックス組成物の原料>
ポリオール(比重1.100)、触媒(比重1.050)、整泡剤(比重1.052)、ポリイソシアネート(比重1.230)、発泡剤(水、比重1.000)。
<ガラス長繊維>
ガラスロービング(比重2.600)。
<Raw material of matrix composition>
Polyol (specific gravity 1.100), catalyst (specific gravity 1.050), foam stabilizer (specific gravity 1.052), polyisocyanate (specific gravity 1.230), blowing agent (water, specific gravity 1.000).
<Long glass fiber>
Glass roving (specific gravity 2.600).

<角落し(繊維強化複合材料)の製造方法>
所定量のガラス長繊維に、所定量のマトリックス組成物を含浸させた未硬化物を、加熱および冷却して角落しを製造した。角落しの、繊維の長さ方向に垂直な断面形状は幅が240mmの矩形とし、厚みは30mm、40mm、50mmの3通りとした。
具体的には、一方向に引きそろえたガラス長繊維にマトリックス組成物をふりかけ、2枚の板の間で揉んで含浸させて未硬化物を得た。未硬化物を成形用通路に連続的に導入し、成形用通路内で加熱して、マトリックス組成物中の発泡剤を発泡させるともに硬質ウレタン樹脂組成物を硬化させた。その後冷却して長尺の硬化物を得た。成形用通路の内面形状は、目的の角落しの断面形状に対応させた。成形用通路の出口から排出される長尺の硬化物を、所定の長さに切断して角落しを得た。
<Method for producing corner drop (fiber reinforced composite material)>
An uncured product obtained by impregnating a predetermined amount of long glass fiber with a predetermined amount of matrix composition was heated and cooled to produce a cut corner. The cross-sectional shape of the cut corners perpendicular to the length direction of the fibers was a rectangle with a width of 240 mm, and the thicknesses were 30 mm, 40 mm, and 50 mm.
Specifically, the matrix composition was sprinkled on long glass fibers aligned in one direction, and impregnated by rubbing between two plates to obtain an uncured product. The uncured material was continuously introduced into the molding passage and heated in the molding passage to foam the foaming agent in the matrix composition and to cure the hard urethane resin composition. After that, it was cooled to obtain a long cured product. The shape of the inner surface of the molding passage was made to correspond to the desired cross-sectional shape of the cut corners. A long hardened product discharged from the exit of the molding passage was cut into a predetermined length to obtain a cut corner.

(実施例1~6、比較例1)
表1に示す原料を混合してマトリックス組成物を得た。
表2に示す条件で未硬化物を作製し、上記の方法で角落しを製造した。
製造した角落しのうち、断面形状が40mm×240mmである角落しについて、表2に示す項目を上記の方法で測定又は評価した。結果を表2に示す(以下、同様)。
(Examples 1 to 6, Comparative Example 1)
A matrix composition was obtained by mixing raw materials shown in Table 1.
An uncured product was produced under the conditions shown in Table 2, and a cut corner was produced by the method described above.
Among the manufactured cut corners, the cut corners having a cross-sectional shape of 40 mm×240 mm were measured or evaluated for the items shown in Table 2 by the above methods. The results are shown in Table 2 (same below).

Figure 0007245017000001
Figure 0007245017000001

Figure 0007245017000002
Figure 0007245017000002

表2の結果に示されるように、実施例1~6の角落しは、従来品に相当する比較例1よりも発泡倍率が低く、空隙率が低く、繊維体積含有率が高く、比重が高い。
実施例1~6の角落しは、ステンレス製の比重調整板を取り付けなくても、総比重1.00以上を達成できるため、水に浮きにくく、錆の発生を防止できる。
また、実施例1~6の角落しは、比較例1に比べて曲げ強度、曲げ弾性率、及び外観(巣穴抑制)が向上した。
As shown in the results of Table 2, the cut corners of Examples 1 to 6 have a lower expansion ratio, a lower porosity, a higher fiber volume content, and a higher specific gravity than Comparative Example 1, which corresponds to the conventional product. .
The cut corners of Examples 1 to 6 can achieve a total specific gravity of 1.00 or more without attaching a stainless steel specific gravity adjusting plate, so they are less likely to float in water and can prevent rust.
In addition, the cut corners of Examples 1 to 6 had improved flexural strength, flexural modulus, and appearance (porosity suppression) compared to Comparative Example 1.

Claims (9)

硬質ウレタン樹脂組成物の硬化物を含むマトリックスと、比重が2~3の一方向に引きそろえられたガラス長繊維とからなり、繊維体積含有率が15~35体積%、比重が1~2である、繊維強化複合材料。 It consists of a matrix containing a cured product of a rigid urethane resin composition and long glass fibers with a specific gravity of 2 to 3 and aligned in one direction, with a fiber volume content of 15 to 35% by volume and a specific gravity of 1 to 2. A fiber-reinforced composite material. 前記マトリックスが発泡体である、請求項1に記載の繊維強化複合材料。 A fiber reinforced composite material according to claim 1, wherein said matrix is a foam. 空隙率が050%以下である、請求項2に記載の繊維強化複合材料。 3. The fiber-reinforced composite material according to claim 2, wherein the porosity is more than 0 and not more than 50 %. 水中に設置される建築資材用である、請求項1~3のいずれか一項に記載の繊維強化複合材料。 The fiber-reinforced composite material according to any one of claims 1 to 3, which is used as a building material installed in water. 角落し用である、請求項1~3のいずれか一項に記載の繊維強化複合材料。 The fiber-reinforced composite material according to any one of claims 1 to 3, which is used for shaving corners. 請求項1に記載の繊維強化複合材料を製造する方法であって、
一方向に引きそろえたガラス長繊維に、硬質ウレタン樹脂組成物を含むマトリックス組成物を含浸させた未硬化物を、加熱して、前記硬質ウレタン樹脂組成物を硬化させる硬化工程を有する、繊維強化複合材料の製造方法。
A method of manufacturing a fiber-reinforced composite material according to claim 1, comprising:
A fiber reinforcement comprising a curing step of heating an uncured material obtained by impregnating a matrix composition containing a hard urethane resin composition into long glass fibers aligned in one direction to cure the hard urethane resin composition. A method of manufacturing a composite material.
請求項2に記載の繊維強化複合材料を製造する方法であって、
一方向に引きそろえたガラス長繊維に、硬質ウレタン樹脂組成物及び発泡剤を含むマトリックス組成物を含浸させた未硬化物を、加熱して、前記硬質ウレタン樹脂組成物中で発泡させるとともに前記硬質ウレタン樹脂組成物を硬化させる硬化工程を有する、繊維強化複合材料の製造方法。
A method for producing a fiber-reinforced composite material according to claim 2,
An uncured product obtained by impregnating a matrix composition containing a hard urethane resin composition and a foaming agent into long glass fibers aligned in one direction is heated to cause foaming in the hard urethane resin composition and the hard urethane resin composition. A method for producing a fiber-reinforced composite material, comprising a curing step of curing a urethane resin composition.
前記繊維強化複合材料の発泡倍率が2以下である、請求項7に記載の繊維強化複合材料の製造方法。 The method for producing a fiber-reinforced composite material according to claim 7, wherein the fiber-reinforced composite material has an expansion ratio of 2 or less. 前記マトリックス組成物の総質量に対して、前記発泡剤の含有量が0.1~0.5質量%である、請求項7又は8に記載の繊維強化複合材料の製造方法。 The method for producing a fiber-reinforced composite material according to claim 7 or 8, wherein the content of said foaming agent is 0.1 to 0.5% by mass with respect to the total mass of said matrix composition.
JP2018183167A 2018-09-28 2018-09-28 Fiber-reinforced composite material and manufacturing method thereof Active JP7245017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018183167A JP7245017B2 (en) 2018-09-28 2018-09-28 Fiber-reinforced composite material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018183167A JP7245017B2 (en) 2018-09-28 2018-09-28 Fiber-reinforced composite material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2020050802A JP2020050802A (en) 2020-04-02
JP7245017B2 true JP7245017B2 (en) 2023-03-23

Family

ID=69995944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018183167A Active JP7245017B2 (en) 2018-09-28 2018-09-28 Fiber-reinforced composite material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP7245017B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003041013A (en) 2001-07-25 2003-02-13 Sekisui Chem Co Ltd Fiber-reinforced resin molded article and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5784826A (en) * 1980-11-17 1982-05-27 Nisshinbo Ind Inc Light frp and manufacture thereof
JP3478926B2 (en) * 1996-06-11 2003-12-15 積水化学工業株式会社 Channel block
JPH10296863A (en) * 1997-04-22 1998-11-10 Sekisui Chem Co Ltd Fiber-reinforced resin molded item

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003041013A (en) 2001-07-25 2003-02-13 Sekisui Chem Co Ltd Fiber-reinforced resin molded article and method for producing the same

Also Published As

Publication number Publication date
JP2020050802A (en) 2020-04-02

Similar Documents

Publication Publication Date Title
US7901762B2 (en) Pultruded component
US7875675B2 (en) Resin for composite structures
US3269887A (en) Settable, flexible, foamed resins
KR101434338B1 (en) Method of producing composite members having increased strength
CA2628938A1 (en) System for producing pultruded components
DE4421012A1 (en) Acoustically effective plastisols
JP7245017B2 (en) Fiber-reinforced composite material and manufacturing method thereof
JP2012207525A (en) Manufacturing method of construction/civil engineering panel
KR100580892B1 (en) A device and method for removing air-pocket in forming gfrp components
US11478691B2 (en) Snow sliding device incorporating material having shear-rate dependent shear resistance, and methods for its manufacture
US20160138267A1 (en) Polyurethane foam building members for residential and/or commercial buildings
US20110052904A1 (en) Pultrusion process and related article
US11673308B2 (en) WPC extrusion profile and apparatus and method for manufacturing the same
CA1070464A (en) Fiber foam and process
JPH0462044A (en) Fiber reinforced phenolic resin foam and manufacture thereof
JP7101329B2 (en) Concrete formwork
RU2584166C1 (en) Method of making reinforced foam polystyrene heat insulator, foam polystyrene-reinforced heat insulator and reinforced heat insulation panel using same
KR102618709B1 (en) glass fiber reinforced composite rebar manufacturing method and glass fiber reinforced composite rebar using the same
JP2562850B2 (en) Large ALC panel manufacturing method
DE4004780A1 (en) Ecologically good loudspeaker housings - are made up of hollow fibre-reinforced concrete components, have favourable acoustic properties and are free from standing waves
JPH10296863A (en) Fiber-reinforced resin molded item
JPS5831717A (en) Draw molding method for fiber reinforced synthetic resin
JP2001246632A (en) Fiber reinforced resin molded article and method of manufacturing the same
JPH11207843A (en) Manufacture of honeycomb composite body
DE102019215665A1 (en) Plastic fiber composite components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230310

R151 Written notification of patent or utility model registration

Ref document number: 7245017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151