JP7240128B2 - Ca2Si5N8 single crystal - Google Patents

Ca2Si5N8 single crystal Download PDF

Info

Publication number
JP7240128B2
JP7240128B2 JP2018191952A JP2018191952A JP7240128B2 JP 7240128 B2 JP7240128 B2 JP 7240128B2 JP 2018191952 A JP2018191952 A JP 2018191952A JP 2018191952 A JP2018191952 A JP 2018191952A JP 7240128 B2 JP7240128 B2 JP 7240128B2
Authority
JP
Japan
Prior art keywords
ray diffraction
single crystal
mineral
oxygen
half width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018191952A
Other languages
Japanese (ja)
Other versions
JP2020059625A (en
Inventor
美育 高野
将治 鈴木
賢太 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2018191952A priority Critical patent/JP7240128B2/en
Publication of JP2020059625A publication Critical patent/JP2020059625A/en
Application granted granted Critical
Publication of JP7240128B2 publication Critical patent/JP7240128B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、Ca2Si58単晶に関する。 The present invention relates to Ca2Si5N8 single crystals.

Ca2Si58単晶は、蛍光体原料として用いられている。例えば、Ca2Si58単晶とユーロピウム化合物とを混合し、高温加熱炉の炉内を窒素ガスなどで加圧して炉内圧力を維持しながら、1600℃以上で焼成することにより、蛍光体を製造することができる(特許文献1~3)。 Ca 2 Si 5 N 8 single crystal is used as a phosphor material. For example, a single crystal of Ca 2 Si 5 N 8 and a europium compound are mixed, and the inside of a high-temperature heating furnace is pressurized with nitrogen gas or the like to maintain the pressure in the furnace, and is fired at 1600° C. or higher to obtain fluorescence. body can be manufactured (Patent Documents 1 to 3).

特開2012-207143号公報JP 2012-207143 A 特開2016-44306号公報JP 2016-44306 A 特開2017-88800号公報Japanese Patent Application Laid-Open No. 2017-88800

Ca2Si58単晶は、大気中の僅かな水分で酸化してしまう。酸化したCa2Si58単晶は、蛍光体用原料として適さないうえ、厳密な割合で原料調合を行うことが困難になる。そのため、当該技術分野では酸素が忌避物質として認識されており、蛍光体を製造する際には、大気との接触を完全に遮断した環境下で行うことが必要となる。
本発明の課題は、大気中の酸素や水分に対する安定性が高いCa2Si58単晶を提供することにある。
A single crystal of Ca 2 Si 5 N 8 is oxidized by a small amount of moisture in the air. Oxidized Ca 2 Si 5 N 8 single crystal is not suitable as a raw material for phosphors, and it becomes difficult to mix the raw materials in strict proportions. Therefore, in the technical field, oxygen is recognized as a repellent substance, and when producing phosphors, it is necessary to carry out in an environment in which contact with the atmosphere is completely cut off.
An object of the present invention is to provide a Ca 2 Si 5 N 8 single crystal that is highly stable against atmospheric oxygen and moisture.

本発明者らは、X線回折スペクトルにおいて特定の回折角2θに位置するピークの半値幅が特定値以下であるCa2Si58単晶が、大気中の酸素や水分に対する安定性が高いことを見出した。 The present inventors have found that a Ca 2 Si 5 N 8 single crystal in which the half width of the peak located at a specific diffraction angle 2θ in the X-ray diffraction spectrum is a specific value or less has high stability against oxygen and moisture in the atmosphere. I found out.

すなわち、本発明は、次の〔1〕~〔3〕を提供するものである。
〔1〕X線回折スペクトルにおいて2θ=36.0°に位置するピークの半値幅が0.195°以下である、Ca2Si58単晶。
〔2〕平均粒子径が5~50μmであるSi34を原料として含む、〔1〕記載のCa2Si58単晶。
〔3〕大気暴露1時間後の酸素増加率が10%以下である、〔1〕又は〔2〕記載のCa2Si58単晶。
That is, the present invention provides the following [1] to [3].
[1] A Ca 2 Si 5 N 8 single crystal in which the half width of the peak located at 2θ=36.0° in the X-ray diffraction spectrum is 0.195° or less.
[2] The Ca 2 Si 5 N 8 single crystal according to [1], containing Si 3 N 4 having an average particle size of 5 to 50 μm as a raw material.
[3] The Ca 2 Si 5 N 8 single crystal according to [1] or [2], which has an oxygen increase rate of 10% or less after one hour exposure to the atmosphere.

本発明によれば、大気中の酸素や水分に対する安定性が高いCa2Si58単晶を提供することができる。 According to the present invention, it is possible to provide a Ca 2 Si 5 N 8 single crystal that is highly stable against atmospheric oxygen and moisture.

実施例1で得られたCa2Si58単晶のX線回折パターンを示す図である。1 is a diagram showing an X-ray diffraction pattern of a Ca 2 Si 5 N 8 single crystal obtained in Example 1. FIG. 比較例1で得られたCa2Si58とCaSiN2との混晶のX線回折パターンを示す図である。2 is a diagram showing an X-ray diffraction pattern of a mixed crystal of Ca 2 Si 5 N 8 and CaSiN 2 obtained in Comparative Example 1. FIG.

本発明のCa2Si58単晶は、X線回折スペクトルにおいて2θ=36.0°に位置するピークの半値幅が0.195°以下であることを特徴とするものである。
ここで、本明細書において、X線回折スペクトルは、粉末X線回折測定法に準拠し、以下の条件により測定することができる。なお、X線回折測定装置として、例えば、D8 ADVANCE(Bruker社製)を使用することができる。
The Ca 2 Si 5 N 8 single crystal of the present invention is characterized in that the half width of the peak located at 2θ=36.0° in the X-ray diffraction spectrum is 0.195° or less.
Here, in this specification, the X-ray diffraction spectrum can be measured according to the powder X-ray diffraction measurement method under the following conditions. As an X-ray diffraction measurement device, for example, D8 ADVANCE (manufactured by Bruker) can be used.

X線源 Cukα
測定範囲 2θ=5~65°
測定間隔 0.0234°
走査速度 7.8°/min
測定電圧 35kV
測定電流 350mA
X-ray source Cukα
Measuring range 2θ=5~65°
Measurement interval 0.0234°
Scanning speed 7.8°/min
Measuring voltage 35kV
Measurement current 350mA

粉末X線回折測定法により得られたX線回折スペクトルに基づいて、2θ=36.0°に位置するピークの半値幅(FWHM)を読み取る。ここで、2θ=36.0°に位置するピークは、図1に示すように、X線回折スペクトルの中で相対強度が高く、かつ他のピークと重ならないため、Ca2Si58単晶に特異的なものである。 Based on the X-ray diffraction spectrum obtained by powder X-ray diffractometry, the half width (FWHM) of the peak located at 2θ=36.0° is read. Here, as shown in FIG . 1, the peak located at 2θ=36.0° has a high relative intensity in the X - ray diffraction spectrum and does not overlap with other peaks. It is crystal-specific.

X線回折スペクトルにおいて2θ=36.0°に位置するピークの半値幅は0.195°以下であるが、大気中の酸素や水分に対する安定性(以下、単に「安定性」とも称する)のより一層の向上の観点から、0.190°以下が好ましく、0.185°以下が更に好ましい。 The half width of the peak located at 2θ = 36.0° in the X-ray diffraction spectrum is 0.195° or less, but the stability against oxygen and moisture in the atmosphere (hereinafter simply referred to as “stability”) From the viewpoint of further improvement, it is preferably 0.190° or less, more preferably 0.185° or less.

また、本発明のCa2Si58単晶は、安定性向上の観点から、平均粒子径が5~50μmであるSi34を原料として含むことが好ましい。Si34の平均粒子径は、より一層の安定性向上の観点から、5~40μmが好ましく、5~30μmが更に好ましい。ここで、本明細書において「平均粒子径」とは、JIS R 1629「ファインセラミックス原料のレーザ回折・散乱法による粒子径分布測定方法」に準拠して試料の粒度分布を体積基準で作成したときに積算分布曲線の50%に相当する粒子径(d50)を意味する。なお、レーザ回折・散乱法による粒子径分布測定装置として、例えば、マイクロトラックMT3300EX II(マイクロトラック・ベル社製)を使用することができる。 From the viewpoint of improving stability, the Ca 2 Si 5 N 8 single crystal of the present invention preferably contains Si 3 N 4 having an average particle size of 5 to 50 μm as a raw material. The average particle size of Si 3 N 4 is preferably 5 to 40 μm, more preferably 5 to 30 μm, from the viewpoint of further improving stability. Here, the "average particle size" in this specification refers to the particle size distribution of a sample in accordance with JIS R 1629 "Method for measuring particle size distribution of fine ceramic raw materials by laser diffraction/scattering method". means the particle diameter (d 50 ) corresponding to 50% of the cumulative distribution curve. For example, Microtrac MT3300EX II (manufactured by Microtrac Bell) can be used as a particle size distribution measuring device using a laser diffraction/scattering method.

本発明のCa2Si58単晶は、このような特性を具備するため、大気中の酸素や水分に対する安定性に優れている。例えば、本発明のCa2Si58単晶を、室温(20~25℃)、相対湿度30~40%の環境下で、1時間大気暴露したときの酸素増加率を通常10%以下、好ましくは8%以下、より好ましくは7%以下、更に好ましくは6.5%以下に抑えることができる。なお、下限値は特に限定されず、0%であっても構わない。具体的な評価方法は、後掲の実施例に記載に方法により行うことができる。 Since the Ca 2 Si 5 N 8 single crystal of the present invention has such characteristics, it has excellent stability against oxygen and moisture in the atmosphere. For example, when the Ca 2 Si 5 N 8 single crystal of the present invention is exposed to the atmosphere for 1 hour at room temperature (20 to 25° C.) and relative humidity of 30 to 40%, the oxygen increase rate is usually 10% or less, It can be suppressed to preferably 8% or less, more preferably 7% or less, still more preferably 6.5% or less. The lower limit is not particularly limited, and may be 0%. A specific evaluation method can be carried out according to the method described in Examples below.

このように、本発明のCa2Si58単晶は、大気中の酸素や水分に対する安定性に優れるため、例えば、蛍光体の原料として極めて有用である。 As described above, the Ca 2 Si 5 N 8 single crystal of the present invention has excellent stability against oxygen and moisture in the air, and is therefore extremely useful as a raw material for phosphors, for example.

本発明のCa2Si58単晶は、粉末X線回折測定において上記特性を具備すれば、適宜の方法により製造することが可能であり、特に限定されない。例えば、炉内で窒化ケイ素と、窒化カルシウムとの混合物を、酸素非含有雰囲気下、1300~1500℃で焼成することにより製造することができる。 The Ca 2 Si 5 N 8 single crystal of the present invention is not particularly limited, and can be produced by an appropriate method as long as it has the above characteristics in powder X-ray diffraction measurement. For example, it can be produced by firing a mixture of silicon nitride and calcium nitride in a furnace at 1300 to 1500° C. in an oxygen-free atmosphere.

窒化ケイ素としては、窒化ケイ素の安定性や取り扱い性等の観点から、Si34を用いることが好ましい。Si34には、α型とβ型の結晶形が存在するが、より一層の安定性向上の観点から、β型が好ましい。
窒化ケイ素としてSi34を用いる場合、Si34の平均粒子径は、より一層の安定性向上の観点から、5~50μmが好ましく、5~40μmがより好ましく、5~30μmが更に好ましい。
As the silicon nitride, it is preferable to use Si 3 N 4 from the viewpoint of the stability and handleability of silicon nitride. Si 3 N 4 has α-type and β-type crystal forms, and the β-type is preferred from the viewpoint of further improving stability.
When Si 3 N 4 is used as silicon nitride, the average particle size of Si 3 N 4 is preferably 5 to 50 μm, more preferably 5 to 40 μm, even more preferably 5 to 30 μm, from the viewpoint of further improving stability. .

窒化カルシウムとしては、例えば、Ca32、CaN、Ca2Nが挙げられ、1種又は2種以上を使用することができる。中でも、より一層の安定性向上の観点から、Ca32好ましい。 Calcium nitride includes, for example, Ca 3 N 2 , CaN, and Ca 2 N, and one or more of them can be used. Among them, Ca 3 N 2 is preferable from the viewpoint of further improving stability.

窒化ケイ素及び窒化カルシウムは、Ca2Si58となる量を混合すればよく、窒化ケイ素と窒化カルシウムの種類に応じて化学量論組成を満たすように使用量を適宜決定することができる。
Si34と、窒化カルシウムとの混合は、乳鉢、ボールミル等を用いることができる。
Silicon nitride and calcium nitride may be mixed in amounts to form Ca 2 Si 5 N 8 , and the amount used can be appropriately determined so as to satisfy the stoichiometric composition according to the types of silicon nitride and calcium nitride.
A mortar, a ball mill, or the like can be used to mix Si 3 N 4 and calcium nitride.

焼成炉は、炉内の雰囲気を調整できる炉であればよく、高温加熱炉のような特殊な焼成炉でなくてもよい。炉内圧は、常圧でよく、高圧にする必要がない。 The firing furnace may be any furnace capable of adjusting the atmosphere in the furnace, and does not have to be a special firing furnace such as a high-temperature heating furnace. The furnace internal pressure may be normal pressure, and does not need to be high pressure.

炉内の雰囲気としては、酸素非含有雰囲気下であれば特に限定されず、例えば、不活性ガス雰囲気下であればよい。より具体的には、窒素ガス雰囲気下、アルゴンガス雰囲気下、窒素水素混合ガス雰囲気下、アルゴン水素混合ガス雰囲気下を挙げることができる。中でも、アルゴンガス雰囲気下、窒素ガス雰囲気下が好ましい。なお、窒素水素混合ガス又はアルゴン水素混合ガスを用いる場合は、水素を3~5体積%とすることが好ましい。 The atmosphere in the furnace is not particularly limited as long as it is an oxygen-free atmosphere, and may be, for example, an inert gas atmosphere. More specifically, a nitrogen gas atmosphere, an argon gas atmosphere, a nitrogen-hydrogen mixed gas atmosphere, and an argon-hydrogen mixed gas atmosphere can be mentioned. Among them, an argon gas atmosphere and a nitrogen gas atmosphere are preferable. When using a nitrogen-hydrogen mixed gas or an argon-hydrogen mixed gas, it is preferable that the hydrogen content is 3 to 5% by volume.

焼成温度は1300~1500℃であり、かかる範囲内とすることで、Ca2Si58を単晶として得ることができる。焼成温度は、より一層の安定性向上の観点から、1350~1500℃が好ましく、1400~1500℃が更に好ましい。
焼成時間は、より一層の安定性向上の観点から、0.5~12時間が好ましく、2~10時間がより好ましく、4~8時間が更に好ましい。
The sintering temperature is 1300 to 1500° C. By setting the temperature within this range, Ca 2 Si 5 N 8 can be obtained as a single crystal. The firing temperature is preferably 1,350 to 1,500° C., more preferably 1,400 to 1,500° C., from the viewpoint of further improving stability.
The firing time is preferably 0.5 to 12 hours, more preferably 2 to 10 hours, and even more preferably 4 to 8 hours, from the viewpoint of further improving stability.

以下、実施例を挙げて、本発明の実施の形態を更に具体的に説明する。但し、本発明は、下記の実施例に限定されるものではない。 EXAMPLES The embodiments of the present invention will now be described more specifically with reference to Examples. However, the present invention is not limited to the following examples.

1.平均粒子径の測定
原料として使用したSi34の粒度分布を、JIS R 1629「ファインセラミックス原料のレーザ回折・散乱法による粒子径分布測定方法」に準拠して体積基準で作成した。そして、積算分布曲線の50%に相当する粒子径(d50)を求めた。なお、レーザ回折・散乱法による粒子径分布測定装置として、マイクロトラックMT3300EX II(マイクロトラック・ベル社製)を使用した。
1. Measurement of Average Particle Size The particle size distribution of Si 3 N 4 used as a raw material was prepared on a volume basis in accordance with JIS R 1629 “Method for measuring particle size distribution of fine ceramic raw materials by laser diffraction/scattering method”. Then, the particle diameter (d 50 ) corresponding to 50% of the integrated distribution curve was obtained. Microtrac MT3300EX II (manufactured by Microtrac Bell) was used as a particle size distribution measuring device by a laser diffraction/scattering method.

2.半値幅の測定
X線回折装置(D8 ADVANCE、Bruker社製)を用いてX線回折スペクトルを測定し、X線回折パターンから鉱物相の同定を行った。Ca2Si58単晶と判断した場合には、2θ=36.0°(Cukα)の半値幅を読み取った。なお、X線回折測定装置として、D8 ADVANCE(Bruker社製)を使用し、測定条件は上記において説明したとおりである。
2. Measurement of half-value width An X-ray diffraction spectrum was measured using an X-ray diffractometer (D8 ADVANCE, manufactured by Bruker), and mineral phases were identified from the X-ray diffraction pattern. When it was judged to be a Ca 2 Si 5 N 8 single crystal, the half width of 2θ=36.0° (Cukα) was read. D8 ADVANCE (manufactured by Bruker) was used as an X-ray diffraction measurement device, and the measurement conditions were as described above.

3.大気暴露試験
各実施例及び比較例で得られたCa2Si58単晶について、グローブボックス内で、試料カプセルに充填して、酸素窒素同時分析装置(TCH-600、LECOジャパン社製)を用いて酸素濃度を測定した。次いで、グローブボックス内でCa2Si58単晶0.3gをスクリュー管に量り取り、密栓し大気中に取り出した。次いで、温度20℃、相対湿度40%の大気下でスクリュー管を開放状態で1時間静置した後、密栓し再びグローブボックス内に戻し、試料カプセルに充填して、酸素窒素同時分析装置により酸素濃度を測定した。次いで、大気暴露試験後における酸素増加率を下記式(1)により算出した。そして、酸素増加率が10質量%以下であるものを「〇」、酸素増加率が10質量%超であるものを「×」として評価した。
3. Atmospheric exposure test Ca 2 Si 5 N 8 single crystals obtained in each example and comparative example were filled in a sample capsule in a glove box and analyzed by an oxygen and nitrogen simultaneous analyzer (TCH-600, manufactured by LECO Japan). was used to measure the oxygen concentration. Next, 0.3 g of Ca 2 Si 5 N 8 single crystal was weighed into a screw tube in a glove box, sealed tightly, and taken out into the atmosphere. Then, after leaving the screw tube in an open state for 1 hour in an atmosphere with a temperature of 20° C. and a relative humidity of 40%, it is sealed and returned to the glove box, filled into a sample capsule, and oxygen is analyzed by an oxygen-nitrogen simultaneous analyzer. Concentration was measured. Next, the oxygen increase rate after the atmospheric exposure test was calculated by the following formula (1). A sample with an oxygen increase rate of 10% by mass or less was evaluated as "O", and a sample with an oxygen increase rate of more than 10% by mass was evaluated as "x".

酸素増加率(%)=(X-Y)/Y×100 (1) Oxygen increase rate (%) = (XY)/Y x 100 (1)

〔式中、Xは大気暴露試験後のCa2Si58単晶の酸素濃度(質量%)を示し、Yは大気暴露試験前のCa2Si58単晶の酸素濃度(質量%)を示す。〕 [In the formula, X represents the oxygen concentration (% by mass) of the Ca 2 Si 5 N 8 single crystal after the atmospheric exposure test, and Y represents the oxygen concentration (% by mass) of the Ca 2 Si 5 N 8 single crystal before the atmospheric exposure test. ). ]

実施例1
原料の取扱いは、露点を-90℃以下に保っているグローブボックス内で行った。先ず、平均粒子径が28.2μmであるSi34(信越化学社製)と、Ca32(太平洋セメント社製)とをCa:Siのモル比で2:5になるように秤量した。秤量後、メノウ乳鉢と乳棒を用いて10分間混合した。混合した原料を管状炉に仕込み、N2ガスを1L/minの速度で流通させ、1450℃まで5℃/minで昇温し、6時間保持して焼成を行った。焼成後、管状炉から取り出し、鉱物を得た。得られた鉱物について、X線回折装置によりX線回折スベクトルを測定し、X線回折パターンから鉱物相の同定を行い、2θ=36.0°(Cukα)の半値幅を読み取った。次いで、大気暴露試験を行い、評価した。その結果を表1に示す。
Example 1
Raw materials were handled in a glove box with a dew point kept below -90°C. First, Si 3 N 4 (manufactured by Shin-Etsu Chemical Co., Ltd.) having an average particle size of 28.2 μm and Ca 3 N 2 (manufactured by Taiheiyo Cement Co., Ltd.) were weighed so that the Ca:Si molar ratio was 2:5. bottom. After weighing, they were mixed for 10 minutes using an agate mortar and pestle. The mixed raw material was put into a tubular furnace, N 2 gas was passed at a rate of 1 L/min, the temperature was raised to 1450° C. at a rate of 5° C./min, and the mixture was held for 6 hours for firing. After firing, it was removed from the tubular furnace to obtain minerals. The X-ray diffraction spectrum of the obtained mineral was measured with an X-ray diffraction device, the mineral phase was identified from the X-ray diffraction pattern, and the half width at 2θ=36.0° (Cukα) was read. An atmospheric exposure test was then performed and evaluated. Table 1 shows the results.

実施例2
焼成温度を1500℃に変更したこと以外は、実施例1と同様の操作により鉱物を得た。得られた鉱物について、実施例1と同様にX線回折装置によりX線回折スベクトルを測定し、X線回折パターンから鉱物相の同定を行い、2θ=36.0°(Cukα)の半値幅を読み取った。次いで、大気暴露試験を行い、評価した。その結果を表1に示す。
Example 2
A mineral was obtained by the same operation as in Example 1, except that the sintering temperature was changed to 1500°C. Regarding the obtained mineral, the X-ray diffraction spectrum was measured with an X-ray diffraction device in the same manner as in Example 1, the mineral phase was identified from the X-ray diffraction pattern, and the half width of 2θ = 36.0 ° (Cukα) read. An atmospheric exposure test was then performed and evaluated. Table 1 shows the results.

実施例3
平均粒子径が15.3μmであるSi34(信越化学社製)を用い、焼成温度を1300℃に変更したこと以外は、実施例1と同様の操作により鉱物を得た。得られた鉱物について、実施例1と同様にX線回折装置によりX線回折スベクトルを測定し、X線回折パターンから鉱物相の同定を行い、2θ=36.0°(Cukα)の半値幅を読み取った。次いで、大気暴露試験を行い、評価した。その結果を表1に示す。
Example 3
A mineral was obtained in the same manner as in Example 1 except that Si 3 N 4 (manufactured by Shin-Etsu Chemical Co., Ltd.) having an average particle size of 15.3 μm was used and the firing temperature was changed to 1300°C. Regarding the obtained mineral, the X-ray diffraction spectrum was measured with an X-ray diffraction device in the same manner as in Example 1, the mineral phase was identified from the X-ray diffraction pattern, and the half width of 2θ = 36.0 ° (Cukα) read. An atmospheric exposure test was then performed and evaluated. Table 1 shows the results.

実施例4
焼成温度を1450℃に変更したこと以外は、実施例3と同様の操作により鉱物を得た。得られた鉱物について、実施例1と同様にX線回折装置によりX線回折スベクトルを測定し、X線回折パターンから鉱物相の同定を行い、2θ=36.0°(Cukα)の半値幅を読み取った。次いで、大気暴露試験を行い、評価した。その結果を表1に示す。
Example 4
A mineral was obtained by the same operation as in Example 3, except that the firing temperature was changed to 1450°C. Regarding the obtained mineral, the X-ray diffraction spectrum was measured with an X-ray diffraction device in the same manner as in Example 1, the mineral phase was identified from the X-ray diffraction pattern, and the half width of 2θ = 36.0 ° (Cukα) read. An atmospheric exposure test was then performed and evaluated. Table 1 shows the results.

実施例5
焼成温度を1500℃に変更したこと以外は、実施例3と同様の操作により鉱物を得た。得られた鉱物について、実施例1と同様にX線回折装置によりX線回折スベクトルを測定し、X線回折パターンから鉱物相の同定を行い、2θ=36.0°(Cukα)の半値幅を読み取った。次いで、大気暴露試験を行い、評価した。その結果を表1に示す。
Example 5
A mineral was obtained by the same operation as in Example 3, except that the firing temperature was changed to 1500°C. Regarding the obtained mineral, the X-ray diffraction spectrum was measured with an X-ray diffraction device in the same manner as in Example 1, the mineral phase was identified from the X-ray diffraction pattern, and the half width of 2θ = 36.0 ° (Cukα) read. An atmospheric exposure test was then performed and evaluated. Table 1 shows the results.

実施例6
平均粒子径が6.6μmであるSi34(信越化学社製)を用い、焼成温度を1450℃に変更したこと以外は、実施例1と同様の操作により鉱物を得た。得られた鉱物について、実施例1と同様にX線回折装置によりX線回折スベクトルを測定し、X線回折パターンから鉱物相の同定を行い、2θ=36.0°(Cukα)の半値幅を読み取った。次いで、大気暴露試験を行い、評価した。その結果を表1に示す。
Example 6
A mineral was obtained in the same manner as in Example 1, except that Si 3 N 4 (manufactured by Shin-Etsu Chemical Co., Ltd.) having an average particle size of 6.6 μm was used and the firing temperature was changed to 1450°C. Regarding the obtained mineral, the X-ray diffraction spectrum was measured with an X-ray diffraction device in the same manner as in Example 1, the mineral phase was identified from the X-ray diffraction pattern, and the half width of 2θ = 36.0 ° (Cukα) read. An atmospheric exposure test was then performed and evaluated. Table 1 shows the results.

実施例7
焼成温度を1500℃に変更したこと以外は、実施例6と同様の操作により鉱物を得た。得られた鉱物について、実施例1と同様にX線回折装置によりX線回折スベクトルを測定し、X線回折パターンから鉱物相の同定を行い、2θ=36.0°(Cukα)の半値幅を読み取った。次いで、大気暴露試験を行い、評価した。その結果を表1に示す。
Example 7
A mineral was obtained by the same operation as in Example 6, except that the sintering temperature was changed to 1500°C. Regarding the obtained mineral, the X-ray diffraction spectrum was measured with an X-ray diffraction device in the same manner as in Example 1, the mineral phase was identified from the X-ray diffraction pattern, and the half width of 2θ = 36.0 ° (Cukα) read. An atmospheric exposure test was then performed and evaluated. Table 1 shows the results.

比較例1
平均粒子径が54.2μmであるSi34(信越化学社製)を用い、焼成温度を1500℃に変更したこと以外は、実施例1と同様の操作により鉱物を得た。得られた鉱物について、実施例1と同様にX線回折装置によりX線回折スベクトルを測定し、X線回折パターンから鉱物相を同定したところ、Ca2Si58とCaSiN2との混晶であることが確認された。そのため、2θ=36.0°(Cukα)の半値幅の測定及び大気暴露試験を断念した。
Comparative example 1
A mineral was obtained in the same manner as in Example 1 except that Si 3 N 4 (manufactured by Shin-Etsu Chemical Co., Ltd.) having an average particle size of 54.2 μm was used and the firing temperature was changed to 1500°C. The X-ray diffraction spectrum of the obtained mineral was measured with an X-ray diffraction device in the same manner as in Example 1, and the mineral phase was identified from the X -ray diffraction pattern. It was confirmed to be crystal. Therefore, the measurement of the half width at 2θ=36.0° (Cukα) and the atmospheric exposure test were abandoned.

比較例2
焼成温度を1300℃に変更したこと以外は、実施例6と同様の操作により鉱物を得た。得られた鉱物について、実施例1と同様にX線回折装置によりX線回折スベクトルを測定し、X線回折パターンから鉱物相の同定を行い、2θ=36.0°(Cukα)の半値幅を読み取った。次いで、大気暴露試験を行い、評価した。その結果を表1に示す。
Comparative example 2
A mineral was obtained by the same operation as in Example 6, except that the firing temperature was changed to 1300°C. Regarding the obtained mineral, the X-ray diffraction spectrum was measured with an X-ray diffraction device in the same manner as in Example 1, the mineral phase was identified from the X-ray diffraction pattern, and the half width of 2θ = 36.0 ° (Cukα) read. An atmospheric exposure test was then performed and evaluated. Table 1 shows the results.

比較例3
平均粒子径が3.8μmであるSi34(信越化学社製)を用い、焼成温度を1500℃に変更した以外は、実施例1と同様の操作により鉱物を得た。得られた鉱物について、実施例1と同様にX線回折装置によりX線回折スベクトルを測定し、X線回折パターンから鉱物相の同定を行い、2θ=36.0°(Cukα)の半値幅を読み取った。次いで、大気暴露試験を行い、評価した。その結果を表1に示す。
Comparative example 3
A mineral was obtained in the same manner as in Example 1 except that Si 3 N 4 (manufactured by Shin-Etsu Chemical Co., Ltd.) having an average particle size of 3.8 μm was used and the firing temperature was changed to 1500°C. Regarding the obtained mineral, the X-ray diffraction spectrum was measured with an X-ray diffraction device in the same manner as in Example 1, the mineral phase was identified from the X-ray diffraction pattern, and the half width of 2θ = 36.0 ° (Cukα) read. An atmospheric exposure test was then performed and evaluated. Table 1 shows the results.

比較例4
焼成温度を1450℃に変更したこと以外は、比較例3と同様の操作により鉱物を得た。得られた鉱物について、実施例1と同様にX線回折装置によりX線回折スベクトルを測定し、X線回折パターンから鉱物相の同定を行い、2θ=36.0°(Cukα)の半値幅を読み取った。次いで、大気暴露試験を行い、評価した。その結果を表1に示す。
Comparative example 4
A mineral was obtained in the same manner as in Comparative Example 3, except that the firing temperature was changed to 1450°C. Regarding the obtained mineral, the X-ray diffraction spectrum was measured with an X-ray diffraction device in the same manner as in Example 1, the mineral phase was identified from the X-ray diffraction pattern, and the half width of 2θ = 36.0 ° (Cukα) read. An atmospheric exposure test was then performed and evaluated. Table 1 shows the results.

Figure 0007240128000001
Figure 0007240128000001

表1から、X線回折スペクトルにおいて2θ=36.0°に位置するピークの半値幅が0.195°以下であるCa2Si58単晶は、大気暴露試験後の酸素増加率が10%以下に抑えられており、大気中の酸素や水分に対する安定性が高いことがわかる。 From Table 1, the Ca 2 Si 5 N 8 single crystal having a half width of 0.195° or less of the peak located at 2θ = 36.0° in the X-ray diffraction spectrum has an oxygen increase rate of 10 after the atmospheric exposure test. % or less, indicating high stability against atmospheric oxygen and moisture.

Claims (2)

X線回折スペクトルにおいて2θ=36.0°に位置するピークの半値幅が0.195°以下である、Ca2Si58多結晶。 A Ca 2 Si 5 N 8 polycrystal in which the half width of the peak located at 2θ=36.0° in an X-ray diffraction spectrum is 0.195° or less. 大気暴露1時間後の酸素増加率が10%以下である、請求項1記載のCa2Si58多結晶。 2. The Ca2Si5N8 polycrystal according to claim 1 , having an oxygen increase rate of 10% or less after being exposed to the air for 1 hour.
JP2018191952A 2018-10-10 2018-10-10 Ca2Si5N8 single crystal Active JP7240128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018191952A JP7240128B2 (en) 2018-10-10 2018-10-10 Ca2Si5N8 single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018191952A JP7240128B2 (en) 2018-10-10 2018-10-10 Ca2Si5N8 single crystal

Publications (2)

Publication Number Publication Date
JP2020059625A JP2020059625A (en) 2020-04-16
JP7240128B2 true JP7240128B2 (en) 2023-03-15

Family

ID=70218760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018191952A Active JP7240128B2 (en) 2018-10-10 2018-10-10 Ca2Si5N8 single crystal

Country Status (1)

Country Link
JP (1) JP7240128B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093913A (en) 2003-09-19 2005-04-07 Nichia Chem Ind Ltd Light-emitting device
JP2008019407A (en) 2006-06-12 2008-01-31 Sharp Corp Method for producing phosphor material, phosphor material, semiconductor light-emitting device and image-displaying device
JP2018109123A (en) 2017-01-05 2018-07-12 太平洋セメント株式会社 Method for producing phosphor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093913A (en) 2003-09-19 2005-04-07 Nichia Chem Ind Ltd Light-emitting device
JP2008019407A (en) 2006-06-12 2008-01-31 Sharp Corp Method for producing phosphor material, phosphor material, semiconductor light-emitting device and image-displaying device
JP2018109123A (en) 2017-01-05 2018-07-12 太平洋セメント株式会社 Method for producing phosphor

Also Published As

Publication number Publication date
JP2020059625A (en) 2020-04-16

Similar Documents

Publication Publication Date Title
RU2470980C2 (en) Rare-earth doped phosphor based on alkali-earth element and silicon nitride, method for production thereof and radiation converting device containing said phosphor
JP4422653B2 (en) Phosphor, production method thereof, and light source
JP4975269B2 (en) Phosphor and method for producing the same, and light emitting device using the phosphor
JP4894048B2 (en) Phosphor and production method thereof
Hueller et al. Hydration of calcium aluminates at 60° C–Development paths of C2AHx in dependence on the content of free water
US11905175B2 (en) Negative thermal expansion material and production method thereof
US20140171288A1 (en) Cordierite sintered body and member for semiconductor device composed of cordierite sintered body
EP0238338B1 (en) Process for producing alpha-sialon powder
CN101831294B (en) Blue light-emitting phosphor
JP7240128B2 (en) Ca2Si5N8 single crystal
Pfaff A novel reaction path to barium zirconates by the decomposition of peroxide precursors
JP6920962B2 (en) Al4SiC4 powder and antioxidant
Jisha et al. MN and DY doped strontium aluminate’soptical properties-a comparative study
JP4604247B2 (en) Electrically conductive material comprising terbium, bismuth, tungsten oxide solid solution and method for producing the same
JP7352450B2 (en) alkaline earth metal silicon nitride
Madej Synthesis and hydraulic activity of novel Sr2+-doped Ca7ZrAl6O18 cement at 50° C
JP5136547B2 (en) α-type silicon nitride phosphor and method for producing the same
Hermoneit et al. Single crystal growth and some properties of the new compound Ca3Si2O7· 13CaCl2
Zhao et al. Oxygen nonstoichiometry in copper iron oxide [CuFeO2+ δ] single crystals
Agus et al. Effect of sintering temperature on crystal structure and surface morphology of NdFeO3 oxide alloy materials prepared by solid reaction method
Bernardo et al. Novel synthesis of Eu-doped SiAlON luminescent materials from a preceramic polymer and nano-sized fillers
Crisan et al. Sol-gel poly-component nano-sized oxide powders
Ndzila et al. Structural analysis and phase transformation of doped strontium sulfoaluminate
Oyama Solid Solution in the System Si3N4-Ga2O3-Al2O3
KR101374076B1 (en) Stabilization of raw powders for manufacturing alpha sialon phosphors, powder composition therefrom and manufacturing methods for alpha sialon phosphors using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230303

R150 Certificate of patent or registration of utility model

Ref document number: 7240128

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150