JP7239400B2 - Determination method of skin antioxidant capacity - Google Patents

Determination method of skin antioxidant capacity Download PDF

Info

Publication number
JP7239400B2
JP7239400B2 JP2019117359A JP2019117359A JP7239400B2 JP 7239400 B2 JP7239400 B2 JP 7239400B2 JP 2019117359 A JP2019117359 A JP 2019117359A JP 2019117359 A JP2019117359 A JP 2019117359A JP 7239400 B2 JP7239400 B2 JP 7239400B2
Authority
JP
Japan
Prior art keywords
skin
irradiation
biophoton
antioxidant capacity
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019117359A
Other languages
Japanese (ja)
Other versions
JP2021004750A (en
Inventor
有 我部
恵 飛石
大樹 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2019117359A priority Critical patent/JP7239400B2/en
Publication of JP2021004750A publication Critical patent/JP2021004750A/en
Application granted granted Critical
Publication of JP7239400B2 publication Critical patent/JP7239400B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、バイオフォトンを利用した皮膚抗酸化能の判定方法に関する。 TECHNICAL FIELD The present invention relates to a method for determining skin antioxidant capacity using biophotons.

太陽光曝露により皮膚は様々なダメージを受けている。特に紫外線領域(290~400nm)の光は、皮膚に有害な作用を及ぼし、短期間の曝露により引き起こされる紅斑や色素沈着形成、さらには長期間の曝露で引き起こされる光老化や発癌などに深く関与していることが知られている(非特許文献1、2)。 Sun exposure causes various types of damage to the skin. In particular, light in the ultraviolet region (290-400 nm) has a harmful effect on the skin, and is deeply involved in erythema and pigmentation formation caused by short-term exposure, and photoaging and carcinogenesis caused by long-term exposure. It is known to do (Non-Patent Documents 1 and 2).

この紫外線による障害から皮膚を防御・改善する技術として、サンスクリーン剤などを塗布する方法がある。紫外線が遮断されると、皮膚初期応答に重要な照射直後に産生する活性酸素種(ROS)やROSとの反応により生成する生体酸化物の産生は抑制される。一方で、紫外線照射後のROSやROSとの反応により生成する生体酸化物を制御することで、紫外線障害から皮膚を制御する方法も示唆されている。抗酸化剤などの皮膚への塗布がそれに相当する。 As a technique for protecting and improving the skin from damage caused by ultraviolet rays, there is a method of applying a sunscreen agent or the like. When ultraviolet rays are blocked, the production of reactive oxygen species (ROS), which are important for the initial skin response immediately after irradiation, and biological oxides produced by reactions with ROS are suppressed. On the other hand, a method for controlling skin damage caused by ultraviolet rays has also been suggested by controlling ROS after ultraviolet irradiation and biological oxides produced by reactions with ROS. Application to the skin, such as antioxidants, corresponds to this.

これまでの培養細胞系での検討において、ROS産生を引き金にし、細胞外マトリックスの分解(光老化)、炎症の惹起、アポトーシスの誘導など様々な生体反応を誘発することは古くから知られているものの(非特許文献3)、ヒト皮膚に代表されるin vivoでのROSの詳細な役割や、時間軸に沿っておこるその後の皮膚障害との関連性は未だ不明な点が多い。その理由として、非侵襲的にROSや酸化ストレス、皮膚抗酸化能を評価する手法がほとんどないことが挙げられる。 It has been known for a long time that ROS production triggers various biological reactions such as degradation of extracellular matrix (photoaging), induction of inflammation, and induction of apoptosis. However (Non-Patent Document 3), there are still many unclear points about the detailed role of ROS in vivo, as represented by human skin, and the relevance to subsequent skin disorders that occur along the time axis. The reason for this is that there are almost no methods for noninvasively evaluating ROS, oxidative stress, and skin antioxidant capacity.

ヒト皮膚の酸化ストレス、抗酸化能を評価する方法としては、生検皮膚を用いた方法が存在するが侵襲的であるために汎用されるには至っていない。角層テープストリッピングによる酸化タンパク質や抗酸化物質の評価は低侵襲的ではあるが、角層のみの評価に留まり、皮膚内部の状態を反映しているとは言い難い(非特許文献4、5)。 As a method for evaluating the oxidative stress and antioxidant capacity of human skin, there is a method using biopsy skin, but it is not widely used because it is invasive. Although evaluation of oxidized proteins and antioxidants by stratum corneum tape stripping is minimally invasive, it only evaluates the stratum corneum and cannot be said to reflect the state inside the skin (Non-Patent Documents 4 and 5). .

非侵襲的な評価方法として、ラマン分光法による皮膚中カロテノイド測定の報告が存在するが、単一の抗酸化物質の評価であり、これもまた皮膚全体の応答を反映しているとは言い難い(非特許文献6)。 As a non-invasive evaluation method, there is a report of skin carotenoid measurement by Raman spectroscopy, but it is an evaluation of a single antioxidant substance, and it is difficult to say that this also reflects the response of the entire skin. (Non-Patent Document 6).

そのような中、非侵襲的に生体の酸化状態を評価できる技術として、生体微弱発光(バイオフォトン)の検出技術が注目されている。バイオフォトンとは、生物が生命活動に伴って放射している極めて弱い自発的発光である。その由来として、一重項酸素や励起カルボニル化合物類が推察されており、生体の酸化反応に起因した発光と考えられている。バイオフォトンは、植物、微生物、動物など様々な生物で観測され、ヒト皮膚においては、特に紫外線A波(UVA)を照射した後のバイオフォトンが計測されており、皮膚色の違いにより発光強度が異なること(非特許文献7)、抗酸化クリーム塗布により発光が低減されることが報告されている(非特許文献8)。 Under such circumstances, biophoton detection technology is attracting attention as a technology that can noninvasively evaluate the oxidation state of living organisms. A biophoton is an extremely weak spontaneous luminescence emitted by living organisms as part of their life activities. Singlet oxygen and excited carbonyl compounds are presumed to be the origin of the luminescence, and the luminescence is considered to be caused by the oxidation reaction of living organisms. Biophotons are observed in various living organisms such as plants, microorganisms, and animals.In human skin, biophotons are measured after irradiation with ultraviolet A (UVA) radiation, and the emission intensity varies depending on the skin color. Differently (Non-Patent Document 7), it has been reported that luminescence is reduced by applying antioxidant cream (Non-Patent Document 8).

しかしこれらの報告は、UVA照射直後から数分間の積算値で評価しており、刻々と変化する酸化ストレス応答の詳細を経時的に評価していない。紫外線照射直後に検出されるバイオフォトンはROSの生成量を表すことが示唆されているが、その発光強度の大きさから、その後に起こる脂質過酸化反応由来のシグナルを検出することはバイオフォトンの積算値からは困難である。また前述のとおりバイオフォトンは皮膚色に影響を受けるため、異なるヒト間や部位間での皮膚酸化ストレス、抗酸化能を積算値から正確に評価することは難しい。 However, in these reports, the evaluation is based on the integrated value for several minutes immediately after UVA irradiation, and details of the oxidative stress response that changes every moment are not evaluated over time. It has been suggested that the biophotons detected immediately after UV irradiation represent the amount of ROS produced. It is difficult from the integrated value. In addition, as mentioned above, biophotons are affected by skin color, so it is difficult to accurately evaluate skin oxidative stress and antioxidant capacity between different people and between different parts from the integrated values.

Photodermatol. Photoimmunol. Photomed. 18, 75-81 (2002)Photodermatol. Photoimmunol. Photomed. 18, 75-81 (2002) Toxicology 189, 21-39 (2003)Toxicology 189, 21-39 (2003) J. Invest. Dermatol. 126, 2565-75 (2006)J. Invest. Dermatol. 126, 2565-75 (2006) Skin Res. Technol. 13, 84-90 (2007)Skin Res. Technol. 13, 84-90 (2007) J. Invest. Dermatol. 110, 756-61 (1998)J. Invest. Dermatol. 110, 756-61 (1998) J. Invest. Dermatol. 115, 441-48 (2000)J. Invest. Dermatol. 115, 441-48 (2000) Photodermatol. Photoimmunol. Photomed. 25, 65-70 (2009)Photodermatol. Photoimmunol. Photomed. 25, 65-70 (2009) Skin Pharmacol. Physiol. 24, 300-4 (2011)Skin Pharmacol. Physiol. 24, 300-4 (2011)

本発明は、バイオフォトンを利用して、被験者の皮膚抗酸化能を非侵襲的に判定する技術を提供することに関する。 The present invention relates to providing a technique for noninvasively determining the skin antioxidant capacity of a subject using biophotons.

本発明者らは、ヒト皮膚に紫外線等の特定波長範囲内にある電磁波を照射してから検出されるバイオフォトンの減衰曲線から、皮膚抗酸化能に関わるパラメーターを算出し、それを指標として皮膚抗酸化能を高精度に評価できることを見出した。 The present inventors calculated parameters related to skin antioxidant capacity from the attenuation curve of biophotons detected after irradiating human skin with an electromagnetic wave within a specific wavelength range such as ultraviolet rays, and used the skin as an index. It was found that the antioxidant capacity can be evaluated with high accuracy.

すなわち、本発明は、被験者の皮膚に波長が285nm~1mmの電磁波を照射し、該照射後に検出されるバイオフォトンの量を測定する工程を含む被験者の皮膚抗酸化能の判定方法であって、バイオフォトンの減衰曲線からパラメーターを算出して皮膚抗酸化能を判定する、方法に係るものである。 That is, the present invention is a method for determining the skin antioxidant capacity of a subject, comprising the step of irradiating the subject's skin with an electromagnetic wave having a wavelength of 285 nm to 1 mm and measuring the amount of biophotons detected after the irradiation, It relates to a method for determining skin antioxidant capacity by calculating parameters from a biophoton decay curve.

本発明によれば、非侵襲的で簡便かつ早期に被験者の皮膚抗酸化能や光老化に対する防御能を判定することが可能である。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to determine a test subject's skin antioxidant ability and protective ability against photoaging in a noninvasive, simple, and early stage.

バイオフォトンの減衰曲線。Biophoton decay curve. 紫外線照射後のROS生成後の連鎖反応を示す図。The figure which shows the chain reaction after ROS generation after ultraviolet irradiation.

本発明の方法において皮膚に照射する、波長が285nm~1mmの電磁波としては、例えば紫外線、可視光線、赤外線を含む電磁波が挙げられ、好適には紫外領域に波長を有する光線が挙げられ、具体的には波長が285~320nmのUV-B波、または320~400nmのUV-A波が挙げられる。本発明ではA波とB波の混合紫外線が好ましく、光の強度の割合(A波/B波)が6~20であるのが好ましく、7~15であるのがより好ましく、8~12であるのが更に好ましい。 The electromagnetic wave having a wavelength of 285 nm to 1 mm, which is irradiated to the skin in the method of the present invention, includes, for example, electromagnetic waves including ultraviolet rays, visible rays, and infrared rays, preferably light rays having wavelengths in the ultraviolet region. include UV-B waves with wavelengths of 285-320 nm, or UV-A waves with wavelengths of 320-400 nm. In the present invention, mixed ultraviolet rays of A wave and B wave are preferable, and the light intensity ratio (A wave/B wave) is preferably 6 to 20, more preferably 7 to 15, and 8 to 12. More preferably.

照射する電磁波の強度は特に限定されないが、例えば、好ましくは10mW/cm以上、より好ましくは20mW/cm以上、より好ましくは30mW/cm以上であり、且つ好ましくは200mW/cm以下、より好ましくは170mW/cm以下、より好ましくは150mW/cm以下である。また、好ましくは10~200mW/cm、より好ましくは20~170mW/cm、より好ましくは30~150mW/cmである。なお、本発明において電磁波の強度とは、例えばUV-B波とUV-A波を合わせた波長領域(285~400nm)の紫外線の強度を意味する。
電磁波の強度は、市販されている計測器を用いて計測することが可能であり、Solarmeter Model 5.0 (UVA+B)(Solartech Inc.)、多目的分光放射計 MSR-7000N(オプトリサーチ社)などが挙げられる。
The intensity of the electromagnetic wave to be irradiated is not particularly limited. It is more preferably 170 mW/cm 2 or less, more preferably 150 mW/cm 2 or less. Also, it is preferably 10 to 200 mW/cm 2 , more preferably 20 to 170 mW/cm 2 , and more preferably 30 to 150 mW/cm 2 . In the present invention, the intensity of electromagnetic waves means, for example, the intensity of ultraviolet rays in a wavelength range (285 to 400 nm) combining UV-B waves and UV-A waves.
The intensity of electromagnetic waves can be measured using commercially available measuring instruments, such as Solarmeter Model 5.0 (UVA+B) (Solartech Inc.), multipurpose spectroradiometer MSR-7000N (Opto Research), etc. mentioned.

また、照射時間は、照射する電磁波の強度によって異なるが、例えば5~120秒間が挙げられ、好ましくは5~60秒間、更に好ましくは5~45秒間である。 The irradiation time varies depending on the intensity of the electromagnetic wave to be irradiated, but may be, for example, 5 to 120 seconds, preferably 5 to 60 seconds, more preferably 5 to 45 seconds.

照射電磁波強度と照射時間により決定される照射量(照射エネルギー)としては、好ましくは300~7000mJ/cmであり、より好ましくは500~6000mJ/cm、さらに好ましくは600~5000mJ/cmである。 The irradiation dose (irradiation energy) determined by the irradiation electromagnetic wave intensity and the irradiation time is preferably 300 to 7000 mJ/cm 2 , more preferably 500 to 6000 mJ/cm 2 , still more preferably 600 to 5000 mJ/cm 2 . be.

電磁波を照射するための照射装置は、上述した波長範囲の光を発することが可能な光源を備えていれば特に限定されず、光源としては、例えば、低圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノンランプ、メタルハライドランプ、ウッドランプ、蛍光検査灯等が挙げられ、好ましくはキセノンランプである。
斯かる光源に、必要に応じて、目的とする波長範囲の電磁波を選択的に透過させるフィルターを組み合わせることにより、照射波長が調節される。
The irradiation device for irradiating electromagnetic waves is not particularly limited as long as it has a light source capable of emitting light in the wavelength range described above. lamps, metal halide lamps, Wood lamps, fluorescent inspection lamps, etc., preferably xenon lamps.
The irradiation wavelength is adjusted by combining such a light source with a filter that selectively transmits electromagnetic waves in the target wavelength range, if necessary.

電磁波照射が行われる被験者の皮膚部位としては、例えば、上腕内側部、前腕外側部、前腕内側部、上腕外側部、頸部、背部等の皮膚が挙げられるが、電磁波照射やバイオフォトン測定が容易である点から、前腕外側部又は上腕内側部が好ましい。
電磁波照射が行われる面積としては、特に限定されないが、例えば1~13cmが挙げられ、好ましくは1~8cmである。
The skin part of the subject to which electromagnetic wave irradiation is performed includes, for example, the skin of the inner upper arm, outer forearm, inner forearm, outer upper arm, neck, back, etc. Electromagnetic irradiation and biophoton measurement are easy. Therefore, the outer forearm or the inner upper arm is preferable.
The area to be irradiated with the electromagnetic wave is not particularly limited, but is, for example, 1 to 13 cm 2 , preferably 1 to 8 cm 2 .

バイオフォトンの測定は、例えば照射直後から10分間、好ましくは照射直後から5分間、より好ましくは照射直後から4分間が挙げられる。 Biophoton measurement is performed, for example, for 10 minutes immediately after irradiation, preferably for 5 minutes immediately after irradiation, more preferably for 4 minutes immediately after irradiation.

バイオフォトンの検出は、極微弱なバイオフォトンの光エネルギーを電気エネルギーに変換して検出することが可能な高感度で低ノイズの光電子増倍管や高感度CCD等の検出部を備えた光学検出装置によって行われる。光学検出装置としては、例えば、光電子増倍管(シングルフォトンカウンティング用)を備えた微弱発光強度検出装置(例えばCLA-IDFsk、東北電子産業社製)や超高感度冷却CCDカメラを備えた検出装置(例えばCLA-IMG、東北電子産業社製)を挙げることができる。本発明では、光電子増倍管を備えた微弱発光強度検出装置が好ましく用いられる。検出される放射光の波長は検出装置の光電子増倍管により異なるが、前記装置では300~850nmのバイオフォトンが検出される。また、バイオフォトンの測定は、測定環境に由来する光の影響を極力抑えるため、可能な限り遮光された空間で実施されるのが好ましく、例えば暗室にて実施される。
すなわち、暗室にて、前記の電磁波照射装置を用いて測定部位に電磁波を照射し、次に微弱発光強度検出装置により電磁波照射部位から発するバイオフォトンを測定するのが好ましい。また、電磁波照射装置における電磁波放射部と微弱発光強度検出装置における検出部は別々であっても良いが、電磁波照射とバイオフォトンの検出が装置を付け替えることなく行えるという観点から、電磁波放射部(具体的には電磁波照射装置から伸びている光照射用のファイバー)と検出部を一体とし、光路の切り替えによって使用する装置が替えられる構造となっていることが好ましい。
Biophoton detection is performed by optical detection equipped with a detection unit such as a high-sensitivity, low-noise photomultiplier tube or a high-sensitivity CCD that can convert extremely weak light energy of biophotons into electrical energy and detect it. performed by the device. As the optical detection device, for example, a weak emission intensity detection device (for example, CLA-IDFsk, manufactured by Tohoku Denshi Sangyo Co., Ltd.) equipped with a photomultiplier tube (for single photon counting) or a detection device equipped with an ultra-sensitive cooled CCD camera. (eg, CLA-IMG, manufactured by Tohoku Denshi Sangyo Co., Ltd.). In the present invention, a weak emission intensity detector equipped with a photomultiplier tube is preferably used. Although the wavelength of the detected emitted light depends on the photomultiplier tube of the detector, the device detects biophotons between 300 and 850 nm. In order to minimize the influence of light originating from the measurement environment, the measurement of biophotons is preferably performed in a space shielded from light as much as possible, for example, in a darkroom.
That is, it is preferable to irradiate the site to be measured with an electromagnetic wave using the electromagnetic wave irradiation apparatus in a dark room, and then measure biophotons emitted from the site irradiated with the electromagnetic wave using a weak emission intensity detector. In addition, the electromagnetic wave emitting unit in the electromagnetic wave irradiation device and the detection unit in the weak emission intensity detection device may be separate, but from the viewpoint that electromagnetic wave irradiation and biophoton detection can be performed without changing the device, the electromagnetic wave emitting unit (specifically Specifically, it is preferable that the light irradiation fiber extending from the electromagnetic wave irradiation device and the detection unit are integrated so that the device to be used can be changed by switching the optical path.

電磁波照射により発生したバイオフォトンは、予め電磁波照射前の安静時の発光強度を測定しておき、続いて電磁波照射後の所定期間内における発光強度を測定し、その値から安静時発光強度を引いた値を発光増分として算出できる。 For biophotons generated by electromagnetic wave irradiation, the luminescence intensity at rest before electromagnetic wave irradiation is measured in advance, then the luminescence intensity within a predetermined period after electromagnetic wave irradiation is measured, and the luminescence intensity at rest is subtracted from that value. can be calculated as the luminescence increment.

皮膚に電磁波照射した場合に発生するバイオフォトンは、電磁波照射直後に最大の発光強度を示し、その後発光は経時的に減衰する。そこで、電磁波照射後に発生するバイオフォトン強度の測定データを時間に対してプロットし、それに対して以下の式(1)で示される減衰曲線をフィッティングさせることで(例えば図1)、4種類の係数(A、k、k、k)を算出できる。 Biophotons generated when the skin is irradiated with electromagnetic waves exhibit the maximum luminous intensity immediately after the electromagnetic wave irradiation, and then the luminescence attenuates over time. Therefore, by plotting the measured data of the biophoton intensity generated after electromagnetic wave irradiation against time and fitting the attenuation curve represented by the following formula (1) to it (for example, FIG. 1), four types of coefficients (A 0 , k 1 , k 2 , k 3 ) can be calculated.

Figure 0007239400000001
Figure 0007239400000001

〔式中、A:ROS初期濃度、k:脂質酸化一次生成物の生成速度定数、k:脂質酸化二次生成物の生成速度定数、k:他の酸化生成物の生成速度定数、を示す。〕 [In the formula, A 0 : initial concentration of ROS, k 1 : production rate constant of lipid oxidation primary products, k 2 : production rate constant of lipid oxidation secondary products, k 3 : production rate constant of other oxidation products , indicates. ]

式(1)の導入は、紫外線照射による生体酸化反応について述べられた文献(H. Masaki. J. Dermatol. Sci. 58, 85-90 (2010))を参考に立案した。具体的には、紫外線を浴びると、初めに活性酸素種やラジカル種が生成され、続いて脂質やタンパク質等の生体分子の酸化が進行することから(図2参照)、初期に生成する活性酸素種をA、脂質ヒドロペルオキシドに代表される脂質酸化の一次生成物をB、Bから生成される脂質酸化二次生成物をC、Aから生成されるタンパク質等の酸化生成物をDとみなし(下記反応式参照)、これらの反応を一次の反応速度定数(それぞれk、k、k)で規定し、濃度式は以下の通り算出される。 The introduction of formula (1) was made with reference to a document describing a biological oxidation reaction by ultraviolet irradiation (H. Masaki. J. Dermatol. Sci. 58, 85-90 (2010)). Specifically, when exposed to ultraviolet rays, reactive oxygen species and radical species are generated first, and then biomolecules such as lipids and proteins are oxidized (see Fig. 2). The species is A, the primary product of lipid oxidation represented by lipid hydroperoxide is B, the lipid oxidation secondary product generated from B is C, and the oxidation product such as protein generated from A is D ( See the reaction formula below), these reactions are defined by first-order reaction rate constants (k 1 , k 2 and k 3 , respectively), and the concentration formula is calculated as follows.

Figure 0007239400000002
Figure 0007239400000002

Figure 0007239400000003
Figure 0007239400000003

電磁波照射後のAとBの濃度をそれぞれA、A*k/(k+k-k)*e-k2tとし、バイオフォトン強度は反応過程で発光が生じるAとBの濃度に反映されると考えられることに基づき、A+Bの濃度式(式(1))をバイオフォトンの測定データにフィッティングさせる。 Let the concentrations of A and B after electromagnetic wave irradiation be A 0 , A 0 * k 1 / (k 1 + k 3 - k 2 ) * e - k2t, respectively, and the biophoton intensity is the concentration of A and B at which light emission occurs during the reaction process Based on what is thought to be reflected in , the concentration equation of A+B (equation (1)) is fitted to the biophoton measurement data.

そして、後述の実施例に示されるように、4種類の係数について部位差(上腕内側、前腕外側)及び年間平均光曝露時間に基づいて群分けした低曝露群と高曝露群との群間差を調べたところ、k/(A*k)が露光部で高く(表1)、高曝露群で高い傾向が認められ(表2)、上腕内側と前腕外側の両部位で、直近4週間の曝露時間との間に、統計学的有意な正相関が認められた(表3)。
/(A*k)値が高いことは、電磁波照射による生体酸化反応において、脂質酸化の一次生成物Bが生成しにくいこと、もしくは二次生成物Cへと変換されやすいこと、すなわち一次生成物Bが蓄積しにくい状態であることを意味する。一次生成物Bが蓄積しにくい状態とはBの質的変化を指し、反応性が高い物質の割合が相対的に増え、次の二次生成物Cへの酸化反応が進みやすい状態であることを意味し、すなわち抗酸化能の低下に関連している。
従って、該k/(A*k)値は、皮膚酸化ストレス消去応答、すなわち皮膚抗酸化能を判定するための指標として利用することが可能である。ここで、「皮膚抗酸化能」とは、皮膚における酸化ストレスからの防御能を指す。また、該k/(A*k)値は経皮水分蒸散量と正相関が認められ、皮膚バリア機能との関連性を示した。皮膚バリア機能の低下は紫外線感受性を高めることが報告されている(M. Mildner. J. Invest. Dermatol. 130, 2286-94 (2010))ことから、該k/(A*k)値は、光老化に対する防御能を判定するための指標にもなり得ると云える。ここで、「光老化」とは、慢性的な日光照射、特に紫外線への曝露によって皮膚の内的な老化プロセスが加速されて起こる皮膚の変化を意味する。
Then, as shown in the examples below, the difference between the low-exposure group and the high-exposure group grouped based on the site differences (inner arm, outer forearm) and annual average light exposure time for four types of coefficients was examined, k 2 / (A 0 * k 1 ) was high in the exposed area (Table 1) and tended to be high in the high exposure group (Table 2). A statistically significant positive correlation was observed with the 4-week exposure time (Table 3).
A high k 2 /(A 0 *k 1 ) value indicates that the primary product B of lipid oxidation is less likely to be generated or is easily converted to the secondary product C in the biooxidation reaction by electromagnetic irradiation. That is, it means that the primary product B is in a state where it is difficult to accumulate. The state in which the primary product B is difficult to accumulate refers to a qualitative change in B, in which the proportion of highly reactive substances relatively increases and the oxidation reaction to the next secondary product C easily proceeds. , i.e., associated with reduced antioxidant capacity.
Therefore, the k 2 /(A 0 *k 1 ) value can be used as an index for determining skin oxidative stress elimination response, that is, skin antioxidant capacity. Here, the term "skin antioxidant capacity" refers to the ability of the skin to protect against oxidative stress. In addition, the k 2 /(A 0 *k 1 ) value was found to have a positive correlation with the amount of transepidermal water loss, indicating a relationship with the skin barrier function. It has been reported that a decrease in skin barrier function increases UV sensitivity (M. Mildner. J. Invest. Dermatol. 130, 2286-94 (2010)), so the k 2 / (A 0 * k 1 ) It can be said that the value can also be an index for judging protective ability against photoaging. Here, "photoaging" means changes in the skin caused by accelerated internal aging processes of the skin due to chronic exposure to sunlight, particularly ultraviolet radiation.

具体的な判定方法としては、例えば、年齢若しくは年代毎、性別毎、インドア派/アウトドア派で、予め本発明における電磁波照射後に検出されるバイオフォトン強度を測定して、基礎データとして取得しておき、それらから算出されたk/(A*k)値の平均値と標準偏差から、被験者の年齢(年代)、性別、インドア派/アウトドア派における偏差値を計算して、これら各種数値に基づいて皮膚抗酸化能判定の基準値を適宜設定することができる。例えば平均値を基準値として設定した場合、被験者のバイオフォトン強度から算出されたk/(A*k)値が平均値より低い場合、皮膚抗酸化能が高いと判定することができる。
または、皮膚抗酸化能が高い、やや皮膚抗酸化能が高い、標準、やや皮膚抗酸化能が低い、皮膚抗酸化能が低い等の皮膚抗酸化能の評価指標に関し、それらと偏差値範囲を関係づける適当な判定基準を作成し、それに基づいて被験者の偏差値から紫外線に対する被験者の皮膚抗酸化能を判定することもできる。基準値の設定に偏差値を用いる場合、例えば偏差値40、45、55、60それぞれに相当するk/(A*k)の値を基準値に設定し、これら複数の基準値に基づく数値範囲と上記の皮膚抗酸化能の評価を関係づける判定基準を作成することができる。
As a specific determination method, for example, for each age or age group, for each gender, indoor group / outdoor group, biophoton intensity detected after electromagnetic wave irradiation in the present invention is measured in advance and acquired as basic data. , from the average value and standard deviation of the k 2 / (A 0 * k 1 ) values calculated from them, calculate the subject's age (age), gender, indoor / outdoor group, and calculate these various numerical values It is possible to appropriately set the reference value for skin antioxidant capacity determination based on. For example, when the average value is set as the reference value, if the k 2 / (A 0 * k 1 ) value calculated from the biophoton intensity of the subject is lower than the average value, it can be determined that the skin antioxidant capacity is high. .
Alternatively, regarding the evaluation index of skin antioxidant capacity, such as high skin antioxidant capacity, slightly high skin antioxidant capacity, standard, slightly low skin antioxidant capacity, and low skin antioxidant capacity, the range of deviation values from these Appropriate criteria for correlation can be created, and the subject's skin antioxidant capacity against UV rays can be determined based on the subject's deviation value. When the deviation value is used to set the reference value, for example, the value of k 2 / (A 0 * k 1 ) corresponding to each of the deviation values 40, 45, 55, and 60 is set as the reference value, and these multiple reference values Criteria can be developed that relate the numerical ranges based on the above evaluations of skin antioxidant capacity.

上記による皮膚抗酸化能の判定方法は、非常に短時間で判定可能で、被験者への負担も少ない。本発明の判定方法により得られた皮膚抗酸化能に関する情報は、紫外線に対する物理的な防御対策やサンスクリーン等の紫外線防御用皮膚外用剤の塗布による紫外線対策に、紫外線防御用皮膚外用剤の購入時における製品選択や紫外線防御用皮膚外用剤の推奨販売における製品推奨の指標として、役立てることができる。また、紫外線以外に近赤外線照射や大気汚染物質も光老化に関連することから、近赤外線防御剤や大気汚染物質の付着防止剤等の評価にも役立てることができる。
本発明の皮膚抗酸化能の判定方法は、所謂人間の身体の各器官の構造又は機能を計測する等して人体から各種の資料を収集するための方法に該当し、上記の目的で使用される。すなわち、医療目的で人間の病状や健康状態等の身体状態又は精神状態を判断するものではない。斯かる意味において、本発明の皮膚抗酸化能の判定方法は、皮膚抗酸化能の測定方法或いは皮膚抗酸化能の検査方法とも表記し得る。
The method for determining the skin antioxidant capacity described above can be determined in a very short period of time and places little burden on the subject. The information on the skin antioxidant capacity obtained by the determination method of the present invention can be used for physical protection measures against ultraviolet rays, for measures against ultraviolet rays such as sunscreens and the like, and for the purchase of ultraviolet protective skin preparations for external use. It can be used as an index for product recommendation in product selection and recommended sales of UV protection skin external preparations. In addition to ultraviolet rays, near-infrared radiation and air pollutants are also related to photoaging, so it can be used to evaluate near-infrared protective agents, air pollutant adhesion inhibitors, and the like.
The method for determining skin antioxidant capacity of the present invention corresponds to a method for collecting various materials from the human body by measuring the structure or function of each organ of the human body, and is used for the above purpose. be. In other words, it is not intended for medical purposes to determine the physical or mental condition of a person, such as a medical condition or health condition. In this sense, the method for determining skin antioxidant capacity of the present invention can also be referred to as a method for measuring skin antioxidant capacity or a method for testing skin antioxidant capacity.

以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれに限定されるものではない。 EXAMPLES The present invention will be described in more detail below based on examples, but the present invention is not limited to these.

被験者及び光曝露歴による群分け
被験者は20歳代健常女性43名とし、次のように群分けした。被験者が、一定の年齢範囲において太陽光に曝露されていた標準的な時間を、生活習慣や屋外レジャー活動に関するアンケート調査に基づいて推定し、実年齢を考慮して累積光曝露時間を計算した。なお、アンケートの質問項目は米国がんセンター公開の光曝露歴に関する質問票をもとに作成した(Arch. Dermatol. 144, 217-22 (2008))。次いで、被験者の年間平均光曝露時間を求め、その時間の長さに基づき、ほぼ均等となるよう低曝露群と高曝露群の2群に切り分けた。
また、直近4週間の標準的な平日/休日に太陽光に曝露している時間から、直近4週間の太陽光曝露時間を被験者ごとに算出した。
Grouping by subjects and light exposure history The subjects were 43 healthy women in their twenties, and were grouped as follows. Based on a questionnaire survey on lifestyle habits and outdoor leisure activities, we estimated the standard time that subjects were exposed to sunlight in a certain age range, and calculated the cumulative light exposure time by considering their chronological age. The question items of the questionnaire were created based on the questionnaire regarding light exposure history published by the American Cancer Center (Arch. Dermatol. 144, 217-22 (2008)). Next, the average annual light exposure time of the subjects was obtained, and the subjects were divided into two groups, a low exposure group and a high exposure group, based on the length of the time, so as to be approximately equal.
In addition, the sunlight exposure time for the most recent 4 weeks was calculated for each subject from the hours of exposure to sunlight on standard weekdays/holidays for the most recent 4 weeks.

試験方法
被験者は、上腕内側及び前腕外側を市販のメイク落としと洗顔料を用いて洗浄し、環境可変室(室温21±1℃、湿度50%RH)にて20分間馴化後、経皮水分蒸散量を測定した。次いで暗室にてバイオフォトン量の測定を行った。
Test method Subjects washed the inside of the upper arm and the outside of the forearm with a commercially available makeup remover and facial cleanser, and after acclimatization for 20 minutes in a variable environment room (room temperature 21 ± 1 ° C, humidity 50% RH), transepidermal water transpiration. amount was measured. Next, the amount of biophotons was measured in a dark room.

経皮水分蒸散量測定方法
経皮水分蒸散量は、MPA580(Courage+Khazaka社製)のTEWAメータープローブを用いて測定した。
Method for measuring transepidermal water loss The transepidermal water loss was measured using a TEWA meter probe MPA580 (manufactured by Courage + Khazaka).

光源
光源は300W型のキセノン光源(MAX-302、朝日分光)に、WG-320フィルター(厚さ1mm、渋谷光学)を取り付けて使用した(紫外線A波(UVA)/紫外線B波(UVB)比:10.8)。
The light source used was a 300W type xenon light source (MAX-302, Asahi Spectro) with a WG-320 filter (thickness 1 mm, Shibuya Optics) attached (ultraviolet A wave (UVA)/ultraviolet B wave (UVB) ratio : 10.8).

バイオフォトン量測定方法
微弱発光強度検出装置(CLA-IDFsk、東北電子産業)を用いて、暗室中にて測定を行った。被験者は、10分間の暗室順化後、安静座位にて装置の検出部アタッチメントと測定部位(上腕内側または前腕外側)とを密着させた。なお該検出部アタッチメントには光源からの光照射用ファイバーが繋がって一体となっており、光路を切り替えることで紫外線照射とバイオフォトン検出が替えられる構造となっている。紫外線照射前に、安静時の発光強度を2分間計測した。続いて、紫外線照射(47.6mW/cm、30秒間、照射面積1.8cm)を行い、直後からの発光強度を4分間計測した。データは0.1秒毎に取得した。
Biophoton amount measurement method Measurement was performed in a dark room using a weak luminescence intensity detector (CLA-IDFsk, Tohoku Denshi Sangyo Co., Ltd.). After 10 minutes of acclimation to the dark room, the subject was placed in a resting sitting position and brought the detection part attachment of the device into close contact with the measurement site (inside upper arm or outer forearm). A fiber for light irradiation from a light source is connected to the detection unit attachment and integrated, and has a structure in which ultraviolet irradiation and biophoton detection can be switched by switching the optical path. Before UV irradiation, the luminescence intensity at rest was measured for 2 minutes. Subsequently, ultraviolet irradiation (47.6 mW/cm 2 , 30 seconds, irradiation area 1.8 cm 2 ) was performed, and the emission intensity was measured for 4 minutes immediately after. Data were acquired every 0.1 seconds.

微弱発光の減衰曲線解析
得られた測定データを以下の式に、誤差の二乗が最小となるようにエクセル(マイクロソフト社製)を用いてフィッティングさせることにより、4種類の係数(A、k、k、k)を算出した。図1に測定データとそれにフィッテイングさせた減衰曲線の一例を示した。
By fitting the measurement data obtained by analysis of the decay curve of weak luminescence to the following formula using Excel (manufactured by Microsoft) so that the square of the error is minimized, four types of coefficients (A 0 , k 1 , k 2 , k 3 ) were calculated. FIG. 1 shows an example of measured data and an attenuation curve fitted to it.

Figure 0007239400000004
Figure 0007239400000004

〔式中、A:ROS初期濃度、k:脂質酸化一次生成物の生成速度定数、k:脂質酸化二次生成物の生成速度定数、k:他の酸化生成物の生成速度定数、を示す。〕 [In the formula, A 0 : initial concentration of ROS, k 1 : production rate constant of lipid oxidation primary products, k 2 : production rate constant of lipid oxidation secondary products, k 3 : production rate constant of other oxidation products , indicates. ]

光曝露と関連するパラメーターの探索
4種類の係数について部位差(上腕内側、前腕外側)及び低曝露群と高曝露群との群間差を調べたところ、Aは露光部である前腕外側で有意に低下していたが、群間での差は認められなかった。光曝露量が多い場合(夏季)に、皮膚の抗酸化酵素活性が低下することが報告されていることから(J. Invest. Dermatol. 120, 434-39 (2003))、光曝露に関連して変化するパラメーターを探索した。その結果、k/(A*k)は露光部で高く(表1)、高曝露群で高い傾向が認められ、光曝露に関連した指標であることが推察された(表2)。さらに直近4週間の曝露時間との相関係数(R)を算出したところ、直近4週間の曝露時間と統計学的有意な正相関が上腕内側(R=0.330)、前腕外側(R=0.329)の両部位に認められた(表3)。またk/(A*k)は、経皮水分蒸散量との統計学的有意な正相関が上腕内側に認められ(表4)、皮膚バリア機能との関連性が示された。
Exploration of parameters related to light exposure When examining the site differences (inner arm, outer forearm) and inter-group differences between the low-exposure group and the high-exposure group for 4 types of coefficients, A 0 is the exposed part, the outer forearm Although it was significantly decreased, no difference was observed between groups. It has been reported that skin antioxidant enzyme activity decreases when light exposure is high (summer) (J. Invest. Dermatol. 120, 434-39 (2003)). We searched for parameters that change with time. As a result, k 2 / (A 0 * k 1 ) was high in the exposed area (Table 1) and tended to be high in the high exposure group, suggesting that it is an index related to light exposure (Table 2). . Furthermore, when the correlation coefficient (R) with the exposure time in the last 4 weeks was calculated, the statistically significant positive correlation with the exposure time in the last 4 weeks was inside the upper arm (R = 0.330), outside the forearm (R = 0.329) were observed at both sites (Table 3). In addition, a statistically significant positive correlation between k 2 /(A 0 *k 1 ) and transepidermal water loss was observed on the inner side of the upper arm (Table 4), indicating a relationship with skin barrier function.

Figure 0007239400000005
Figure 0007239400000005

Figure 0007239400000006
Figure 0007239400000006

Figure 0007239400000007
Figure 0007239400000007

Figure 0007239400000008
Figure 0007239400000008

Claims (7)

被験者の皮膚に、波長が285nm~1mmの電磁波を照射し、該照射後に検出されるバイオフォトンの量を測定する工程を含む被験者の皮膚抗酸化能の判定方法であって、バイオフォトンの減衰曲線からパラメーターを算出して皮膚抗酸化能を判定する、方法。 A method for determining the skin antioxidant capacity of a subject, comprising the step of irradiating the subject's skin with an electromagnetic wave having a wavelength of 285 nm to 1 mm and measuring the amount of biophotons detected after the irradiation, wherein the biophoton decay curve determining skin antioxidant capacity by calculating parameters from バイオフォトンの発光強度によりバイオフォトンの減衰曲線を算出する請求項1記載の方法。 2. The method according to claim 1, wherein the biophoton decay curve is calculated from the biophoton emission intensity. バイオフォトンの減衰曲線が、下記式(1)で表される請求項1又は2記載の方法。
Figure 0007239400000009
〔式中、A:ROS初期濃度、k:脂質酸化一次生成物の生成速度定数、k:脂質酸化二次生成物の生成速度定数、k:他の酸化生成物の生成速度定数、を示す。〕
3. The method according to claim 1 or 2, wherein the biophoton attenuation curve is represented by the following formula (1).
Figure 0007239400000009
[In the formula, A 0 : initial concentration of ROS, k 1 : production rate constant of lipid oxidation primary products, k 2 : production rate constant of lipid oxidation secondary products, k 3 : production rate constant of other oxidation products , indicates. ]
式(1)から算出されるパラメーターが、k/(A*k)である請求項3記載の方法。 4. The method of claim 3, wherein the parameter calculated from equation (1) is k2 /( A0 * k1 ). 被験者のバイオフォトン強度から算出されたk/(A*k)を基準値と比較することにより皮膚抗酸化能を評価する、請求項4記載の方法。 The method according to claim 4, wherein the skin antioxidant capacity is evaluated by comparing k 2 /(A 0 *k 1 ) calculated from the subject's biophoton intensity with a reference value. 電磁波照射が、A波とB波の混合紫外線の照射である請求項1~5のいずれか1項記載の方法。 6. The method according to any one of claims 1 to 5, wherein the electromagnetic wave irradiation is irradiation of mixed ultraviolet rays of A wave and B wave. 皮膚抗酸化能が、光老化に対する防御能である請求項1~6のいずれか1項記載の方法。
The method according to any one of claims 1 to 6, wherein the skin antioxidant ability is the ability to protect against photoaging.
JP2019117359A 2019-06-25 2019-06-25 Determination method of skin antioxidant capacity Active JP7239400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019117359A JP7239400B2 (en) 2019-06-25 2019-06-25 Determination method of skin antioxidant capacity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019117359A JP7239400B2 (en) 2019-06-25 2019-06-25 Determination method of skin antioxidant capacity

Publications (2)

Publication Number Publication Date
JP2021004750A JP2021004750A (en) 2021-01-14
JP7239400B2 true JP7239400B2 (en) 2023-03-14

Family

ID=74099319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019117359A Active JP7239400B2 (en) 2019-06-25 2019-06-25 Determination method of skin antioxidant capacity

Country Status (1)

Country Link
JP (1) JP7239400B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7125341B2 (en) 2017-12-28 2022-08-24 花王株式会社 How to determine UV sensitivity

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005169124A (en) 2003-12-12 2005-06-30 Johnson & Johnson Consumer Co Inc Method of assessing individual skin and overall health
US20060270055A1 (en) 2003-04-25 2006-11-30 Bohler Gmbh Method for testing external influences on biological tissues
US20180350342A1 (en) 2017-05-31 2018-12-06 SAI Society for Advanced Scientific Research Method and system for thought-to-speech

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060270055A1 (en) 2003-04-25 2006-11-30 Bohler Gmbh Method for testing external influences on biological tissues
JP2005169124A (en) 2003-12-12 2005-06-30 Johnson & Johnson Consumer Co Inc Method of assessing individual skin and overall health
US20180350342A1 (en) 2017-05-31 2018-12-06 SAI Society for Advanced Scientific Research Method and system for thought-to-speech

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HAGENS, R., et al.,Non-invasive monitoring of oxidative skin stress by ultraweak photon emission measurement. II: biological validation on ultraviolet A-stressed skin,Skin Research and Technology,2008年02月,Vol.14, No.1,pp.112-120,<DOI: 10.1111/j.1600-0846.2007.00207.x>
OU-YANG,The application of ultra-weak photon emission in dermatology,Journal of Photochemistry and Photobiology B:Biology,2014年10月05日,Vol.139,pp.63-70,<DOI: 10.1016/j.jphotobiol.2013.10.003>
PRASAD, A., et al.,Ultraweak photon emission induced by visible light and ultraviolet A radiation via photoactivated skin chromophores: in vivo charge coupled device imaging,Journal of Biomedical Optics,2012年08月14日,Vol.17,No.8,085004,<DOI: 10.1117/1.JBO.17.8.085004>
岩佐 琥偉,小林 正樹,ヒト体表におけるバイオフォトン発光と遅延発光の分光的比較,2017年<第64回>応用物理学会春季学術講演会[講演予稿集] The 64th JSAP Spring Meeting, 2017 [Extended Abstracts],公益社団法人応用物理学会,2017年03月01日

Also Published As

Publication number Publication date
JP2021004750A (en) 2021-01-14

Similar Documents

Publication Publication Date Title
US11137347B2 (en) Optically ascertaining the sun protection factor of sunscreens or other radiation protection agents
Bashkatov et al. Optical properties of the subcutaneous adipose tissue in the spectral range 400–2500 nm
Vandersee et al. Blue-violet light irradiation dose dependently decreases carotenoids in human skin, which indicates the generation of free radicals
CA2489915C (en) Method of assessing skin and overall health of an individual
CA2526581C (en) Method of assessing skin and overall health of an individual
US5640957A (en) Ultraviolet radiation protection evaluator
US11397107B2 (en) System, apparatus and method for in situ polychromatic measurement of optical properties of topically applied sunscreen
Ou-Yang The application of ultra-weak photon emission in dermatology
US20140241994A1 (en) Method and system for calculating a quantification indicator for quantifying a dermal reaction on the skin of a living being
Chan et al. Multispectral cross-polarization reflectance measurements suggest high contrast of demineralization on tooth surfaces at wavelengths beyond 1300 nm due to reduced light scattering in sound enamel
JP3337832B2 (en) Method and apparatus for measuring ultraviolet protection effect
Damian et al. Measurement of ultraviolet radiation-induced suppression of recall contact and delayed-type hypersensitivity in humans
Nogueira et al. Characterization of teeth fluorescence properties due to coffee pigmentation: towards optimization of quantitative light-induced fluorescence for tooth color assessment
JP7239400B2 (en) Determination method of skin antioxidant capacity
JP7125341B2 (en) How to determine UV sensitivity
Narbutt et al. Suppression of contact hypersensitivity after repeated exposures of humans to low doses of solar simulated radiation
Karakullukcu et al. Clinical feasibility of monitoring m‐THPC mediated photodynamic therapy by means of fluorescence differential path‐length spectroscopy
JP7214679B2 (en) How to judge skin damage
Hegyi et al. An objective assessment of melanin in vitiligo skin treated with Balneo PUVA therapy
Diffey et al. Ultraviolet erythema: dose response and mediator diffusion
US20100280393A1 (en) Optical Reflectance Spectroscopy for Evaluation of Radiation Injury
RU2251963C2 (en) Method for detecting physico-biological characteristics of skin
Ilias et al. Visible hyperspectral imaging evaluating the cutaneous response to ultraviolet radiation
Papayan et al. Method of estimating the biological age of skin by means of a fluorescence multispectral video dermatoscope
Olivarius et al. Urocanic acid isomers and photosensitivity in healthy children

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230302

R151 Written notification of patent or utility model registration

Ref document number: 7239400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151