JP7238537B2 - Concentration measuring device - Google Patents

Concentration measuring device Download PDF

Info

Publication number
JP7238537B2
JP7238537B2 JP2019060981A JP2019060981A JP7238537B2 JP 7238537 B2 JP7238537 B2 JP 7238537B2 JP 2019060981 A JP2019060981 A JP 2019060981A JP 2019060981 A JP2019060981 A JP 2019060981A JP 7238537 B2 JP7238537 B2 JP 7238537B2
Authority
JP
Japan
Prior art keywords
light
substance
acoustic wave
concentration
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019060981A
Other languages
Japanese (ja)
Other versions
JP2020156866A (en
Inventor
純一 星野
裕志 東條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2019060981A priority Critical patent/JP7238537B2/en
Publication of JP2020156866A publication Critical patent/JP2020156866A/en
Application granted granted Critical
Publication of JP7238537B2 publication Critical patent/JP7238537B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

本発明は、光音響波を用いた濃度測定装置に関する。 The present invention relates to a concentration measuring device using photoacoustic waves.

生体を構成する様々な物質の濃度(血糖値等)を非侵襲的に測定する方法として、光音響法が知られている。光音響法は、測定対象物に光を照射し、その光を吸収した測定対象物が変形することによって、発生する音響波を解析するものである。音響波は光よりも生体内の伝搬効率が高いため、光の拡散吸収に伴う光学的情報を高感度で検出することができる。しかしながら、音響波から検出される情報は、測定装置や生体由来の種々のノイズの影響を受けやすく、高い精度で得られないことが課題とされており、その解決手段が検討されている。 A photoacoustic method is known as a method for noninvasively measuring concentrations of various substances (blood sugar level, etc.) that constitute a living body. The photoacoustic method analyzes acoustic waves generated by irradiating a measurement target with light and deforming the measurement target after absorbing the light. Acoustic waves have higher propagation efficiency in the living body than light, so optical information associated with diffuse absorption of light can be detected with high sensitivity. However, information detected from acoustic waves is susceptible to various noises derived from measuring devices and living organisms, and cannot be obtained with high accuracy.

特許文献1では、装置由来のノイズへの対策として、光音響法に用いる光照射部の出力光量の経時的変化を補正する技術が開示されている。また、特許文献2では、異なる波長における被測定物と非測定物の吸光度差を利用して、生体由来のノイズをキャンセルする技術が開示されている。また、特許文献3では、被測定物から発生した音響波について、類似の波長を有する音響波から得られる情報を参照することにより、音響波を補正する技術が開示されている。また、非特許文献1では、生体由来のノイズへの対策として、被測定物の非吸収波長帯の光によって発生した音響波を参照情報とする技術が開示されている。しかしながら、上記のような技術を用いたとしても、生体内の情報を十分な精度で得ることは難しく、非侵襲的に血糖値を測定する方法は、いまだ実現していない。 Japanese Patent Application Laid-Open No. 2002-200000 discloses a technique for correcting temporal changes in the amount of output light from a light irradiation unit used in a photoacoustic method as a countermeasure against apparatus-derived noise. In addition, Patent Literature 2 discloses a technique of canceling biological noise by utilizing the difference in absorbance between an object to be measured and a non-measured object at different wavelengths. Further, Patent Document 3 discloses a technique of correcting an acoustic wave generated from an object to be measured by referring to information obtained from an acoustic wave having a similar wavelength. In addition, Non-Patent Document 1 discloses a technique of using acoustic waves generated by light in a non-absorbing wavelength band of an object to be measured as reference information as a countermeasure against biological noise. However, even if the above techniques are used, it is difficult to obtain in vivo information with sufficient accuracy, and a method for noninvasively measuring blood sugar levels has not yet been realized.

国際公開第2011/052061号WO2011/052061 特許第5947761号公報Japanese Patent No. 5947761 特許第3667321号公報Japanese Patent No. 3667321

IEEE Transactions on Instrumentation and Measurement(Volume:67,Issue:1,Jan.2018)IEEE Transactions on Instrumentation and Measurement (Volume: 67, Issue: 1, Jan. 2018)

本発明は上記事情に鑑みてなされたものであり、生体内に含まれる所定の物質の濃度を、高い精度で得ることが可能な、濃度測定装置を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a concentration measuring apparatus capable of obtaining with high accuracy the concentration of a predetermined substance contained in a living body.

本発明は、上記課題を解決するため、以下の手段を提供する。 In order to solve the above problems, the present invention provides the following means.

(1)本発明の一態様に係る濃度測定装置は、測定対象となる第一物質、前記第一物質の周囲に前記第一物質より多く分布する第二物質に対し、それぞれ第一光、第二光を照射する光照射部と、光照射された前記第一物質、前記第二物質から、それぞれ発生する第一音響波、第二音響波を検出する音響波検出部と、音響波に基づく信号と、音響波を発生させる物質の濃度との関係が記録されたデータベース、前記第二音響波に基づく第二信号を用い、前記第一音響波に基づく第一信号に対応する前記第一物質の濃度を推定する信号処理部と、を有する。 (1) A concentration measuring device according to an aspect of the present invention is a method for measuring a first substance to be measured and a second substance distributed around the first substance in a larger amount than the first substance. a light irradiation unit that irradiates two lights; an acoustic wave detection unit that detects a first acoustic wave and a second acoustic wave generated respectively from the first substance and the second substance irradiated with light; The first substance corresponding to the first signal based on the first acoustic wave, using a database in which the relationship between the signal and the concentration of the substance that generates the acoustic wave is recorded, and the second signal based on the second acoustic wave and a signal processor for estimating the concentration of

(2)上記(1)に記載の濃度測定装置において、前記第二信号を用いて、前記音響波検出部から前記第二物質までの距離を算出し、算出された前記距離に基づいて、前記第一信号の強度を補正する補正部をさらに有することが好ましい。 (2) In the concentration measuring device according to (1) above, the distance from the acoustic wave detection unit to the second substance is calculated using the second signal, and based on the calculated distance, the It is preferable to further have a corrector that corrects the intensity of the first signal.

(3)上記(1)または(2)のいずれかに記載の濃度測定装置において、前記光照射部が、前記第一光を照射する第一光照射器と、前記第二光を照射する第二光照射器と、を有することが好ましい。 (3) In the concentration measuring device according to any one of (1) and (2) above, the light irradiator includes a first light irradiator that irradiates the first light and a second light irradiator that irradiates the second light. It is preferred to have a dual light illuminator.

(4)上記(1)~(3)のいずれか一つに記載の濃度測定装置において、前記第一光の光量を測定する第一光量測定部を、さらに有することが好ましい。 (4) The density measuring device according to any one of (1) to (3) above preferably further includes a first light amount measuring section for measuring the light amount of the first light.

(5)上記(1)~(4)のいずれか一つに記載の濃度測定装置において、前記第二光の光量を測定する第二光量測定部を、さらに有することが好ましい。 (5) The density measuring device according to any one of (1) to (4) above preferably further includes a second light amount measuring section for measuring the light amount of the second light.

(6)上記(1)~(5)のいずれか一つに記載の濃度測定装置において、前記第一音響波と同じ周波数を有する第三音響波を発生させる音響波発生部を、さらに有することが好ましい。 (6) The concentration measuring device according to any one of (1) to (5) above, further comprising an acoustic wave generator for generating a third acoustic wave having the same frequency as the first acoustic wave. is preferred.

(7)上記(1)~(6)のいずれか一つに記載の濃度測定装置において、前記第一光と前記第二光とを合成する合成部を、さらに有することが好ましい。 (7) The density measuring apparatus according to any one of (1) to (6) above preferably further includes a synthesizing section for synthesizing the first light and the second light.

(8)上記(1)~(7)のいずれか一つに記載の濃度測定装置において、前記第一物質の温度を検出する温度検出部を、さらに有することが好ましい。 (8) The concentration measuring device according to any one of (1) to (7) above preferably further includes a temperature detection unit that detects the temperature of the first substance.

(9)上記(2)~(8)のいずれか一つに記載の濃度測定装置において、前記信号処理部が、前記補正部と、補正された前記第一信号に基づいて、前記第一物質の濃度を算出する算出部とを含むことが好ましい。 (9) In the concentration measuring device according to any one of (2) to (8) above, the signal processing unit, based on the correction unit and the corrected first signal, determines the first substance and a calculating unit for calculating the concentration of

(10)上記(1)~(9)のいずれか一つに記載の濃度測定装置において、前記第一光が、互いに異なる周波数もしくは異なる波長を有する二つの光を合成したものであることが好ましい。 (10) In the concentration measuring apparatus according to any one of (1) to (9) above, it is preferable that the first light is a combination of two lights having different frequencies or different wavelengths. .

本発明の一態様に係る濃度測定装置では、測定対象となる第一物質だけでなく、第一物質の周囲に多く分布する第二物質に対しても光を照射し、第一物質、第二物質のそれぞれから発生する音響波の信号を得られるように構成されている。そのため、例えば、音響波の信号に基づいて算出される第二物質の位置から、第一物質の位置を推定し、その位置に対応する音響波の減衰量から、第一物質の濃度を測定することができる。さらに、第一物質に照射する光に対しては、距離等を算出するための変調を行う必要がないため、第一物質から発生する音響波の減衰量に関して、感度を高めた変調手段を選択することができ、その結果として第一物質の濃度を高精度で測定することができる。 In the concentration measuring device according to one aspect of the present invention, not only the first substance to be measured but also the second substance widely distributed around the first substance is irradiated with light, It is configured to obtain an acoustic wave signal generated from each of the substances. Therefore, for example, the position of the first substance is estimated from the position of the second substance calculated based on the acoustic wave signal, and the concentration of the first substance is measured from the attenuation of the acoustic wave corresponding to that position. be able to. Furthermore, since there is no need to modulate the light that irradiates the first substance in order to calculate the distance, etc., a modulation method with increased sensitivity regarding the attenuation of the acoustic wave generated from the first substance is selected. and, as a result, the concentration of the first substance can be measured with high accuracy.

本発明の第一実施形態に係る、濃度測定装置の構成を模式的に示す図である。1 is a diagram schematically showing the configuration of a concentration measuring device according to a first embodiment of the present invention; FIG. 本発明の第二実施形態に係る、濃度測定装置の構成を模式的に示す図である。FIG. 4 is a diagram schematically showing the configuration of a concentration measuring device according to a second embodiment of the present invention; 本発明の第三実施形態に係る、濃度測定装置の構成を模式的に示す図である。FIG. 10 is a diagram schematically showing the configuration of a concentration measuring device according to a third embodiment of the present invention; 本発明の第四実施形態に係る、濃度測定装置の構成を模式的に示す図である。FIG. 10 is a diagram schematically showing the configuration of a concentration measuring device according to a fourth embodiment of the present invention; 本発明の第五実施形態に係る、濃度測定装置の構成を模式的に示す図である。FIG. 10 is a diagram schematically showing the configuration of a concentration measuring device according to a fifth embodiment of the present invention; 本発明の第六実施形態に係る、濃度測定装置の構成を模式的に示す図である。FIG. 10 is a diagram schematically showing the configuration of a concentration measuring device according to a sixth embodiment of the present invention;

以下、本発明を適用した実施形態に係る濃度測定装置について、図面を用いて詳細に説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。また、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。 Hereinafter, a concentration measuring device according to an embodiment to which the present invention is applied will be described in detail with reference to the drawings. In addition, in the drawings used in the following explanation, in order to make the features easier to understand, the characteristic portions may be enlarged for convenience, and the dimensional ratios of each component may not necessarily be the same as the actual ones. do not have. Also, the materials, dimensions, and the like exemplified in the following description are examples, and the present invention is not limited to them, and can be implemented with appropriate modifications within the scope of the invention.

<第一実施形態>
図1は、本発明の第一実施形態に係る、濃度測定装置100の構成を模式的に示す図である。濃度測定装置100は、生体等の物体Mに含まれる所定の物質の濃度を測定するものであり、主に、光照射部101と、音響波検出部102と、信号処理部103と、を備えている。
<First embodiment>
FIG. 1 is a diagram schematically showing the configuration of a concentration measuring device 100 according to the first embodiment of the invention. The concentration measurement device 100 measures the concentration of a predetermined substance contained in an object M such as a living body, and mainly includes a light irradiation unit 101, an acoustic wave detection unit 102, and a signal processing unit 103. ing.

光照射部101は、一つ以上の光源を含み、物体Mに含まれる第一物質M1、第二物質M2に対し、それぞれ第一光P1、第二光P2を照射するように構成されている。ここでは、第一物質M1が測定対象となる物質であり、第二物質M2が第一物質M1の周囲に第一物質M1より多く分布する物質であるとする。生体内であれば、例えば、グルコースやコレステロールが第一物質M1に該当し、ヘモグロビンが第二物質M2に該当する。第二物質M2の濃度は、第一物質M1の濃度の50倍~300倍程度であることが好ましい。物体Mには、第一物質M1、第二物質M2以外の物質が含まれていてもよい。 The light irradiation unit 101 includes one or more light sources, and is configured to irradiate the first substance M1 and the second substance M2 contained in the object M with the first light P1 and the second light P2, respectively. . Here, it is assumed that the first substance M1 is a substance to be measured, and the second substance M2 is a substance distributed more than the first substance M1 around the first substance M1. In vivo, for example, glucose and cholesterol correspond to the first substance M1, and hemoglobin corresponds to the second substance M2. The concentration of the second substance M2 is preferably about 50 to 300 times the concentration of the first substance M1. The object M may contain substances other than the first substance M1 and the second substance M2.

光照射部101に含まれる光源としては、レーザダイオード(LD)、発光素子(LED)、レーザ、黒体放射体及びランプ等が挙げられ、プリズムや回折格子等の分散素子を利用して所定の波長を取り出すようにしてもよい。また、波長の変更を可能とする、例えば、DFB(Distributerd Feedback)半導体レーザ等を用いることができる。波長可変レーザを用いる場合、温度調整により発振周波数を変化させる方法や外部共振器を用いる方法等がある。 The light source included in the light irradiation unit 101 includes a laser diode (LD), a light emitting device (LED), a laser, a black body radiator, a lamp, and the like. A wavelength may be extracted. Also, for example, a DFB (Distributed Feedback) semiconductor laser or the like, which enables change of wavelength, can be used. When using a tunable laser, there are a method of changing the oscillation frequency by temperature adjustment, a method of using an external resonator, and the like.

第一光P1、第二光P2は、それぞれ、第一物質M1、第二物質M2に吸収されやすい波長帯の光であり、振幅が断続的に変化する非連続光であるとする。これにより、第一物質M1には第一光P1のみを吸収させ、第二物質M2は第二光のみを吸収させることができる。例えば、第一光P1の波長は、グルコースやコレステロールによって最も良く吸収される波長であり、1600nm近傍又は2100nm近傍であることが好ましい。また、第二光P2の波長は、ヘモグロビンによって最も良く吸収される波長であり、700nm近傍又は1100nm近傍であることが好ましい。 The first light P1 and the second light P2 are light in wavelength bands that are easily absorbed by the first substance M1 and the second substance M2, respectively, and are discontinuous light whose amplitude changes intermittently. This allows the first substance M1 to absorb only the first light P1 and the second substance M2 to absorb only the second light. For example, the wavelength of the first light P1 is the wavelength that is best absorbed by glucose and cholesterol, and is preferably around 1600 nm or around 2100 nm. Moreover, the wavelength of the second light P2 is a wavelength that is best absorbed by hemoglobin, and is preferably around 700 nm or around 1100 nm.

光照射部101の照射面の一部に対し、所定の蛍光部材を塗布することにより、その一部から照射される光の波長を変換することができる。この場合には、後述の第二実施形態のように二つの光照射器を備えた構成としなくても、第一光P1と第二光P2の同時照射を行うことができる。 By applying a predetermined fluorescent member to a portion of the irradiation surface of the light irradiation section 101, the wavelength of the light irradiated from that portion can be converted. In this case, simultaneous irradiation of the first light P1 and the second light P2 can be performed without using two light irradiators as in the second embodiment described later.

光を照射された第一物質M1、第二物質M2は、それぞれ光音響波(以下では、音響波と呼ぶことがある)W1、W2を発生させる。光音響波とは、光を照射された部分が、その光を吸収して膨張する際に発生する弾性波である。 The first substance M1 and the second substance M2 irradiated with light generate photoacoustic waves (hereinafter sometimes referred to as acoustic waves) W1 and W2, respectively. A photoacoustic wave is an elastic wave generated when a portion irradiated with light absorbs the light and expands.

音響波検出部102は、第一物質M1において発生した第一音響波W1、第二物質M2において発生した第二音響波W2を、それぞれ別々に検出し、さらに、第一音響波W1、第二音響波W2に基づく信号を、信号処理部103に送るように構成されている。音響波検出器102は、光照射部101から一定距離の位置に配置され、光照射部101から出射された光により物体Mの内部で発生する音響波を検出し、その音響波の大きさ(振幅)に比例した電気信号に変換して光音響信号として出力する。例えば、マイクロフォンや、圧電素子や、半導体技術を用いて作製されたCMUT(Capacitive Micromachined Ultrasonic Transducer)、もしくはPMUT(Piezoelectric Micromachined Ultrasonic Transducer)を用いることができる。 The acoustic wave detection unit 102 separately detects the first acoustic wave W1 generated in the first material M1 and the second acoustic wave W2 generated in the second material M2, and further detects the first acoustic wave W1 and the second acoustic wave W1. It is configured to send a signal based on the acoustic wave W2 to the signal processing unit 103 . The acoustic wave detector 102 is arranged at a certain distance from the light irradiation unit 101, detects an acoustic wave generated inside the object M by the light emitted from the light irradiation unit 101, and detects the magnitude of the acoustic wave ( (amplitude), and output as a photoacoustic signal. For example, a microphone, a piezoelectric element, a CMUT (Capacitive Micromachined Ultrasonic Transducer) or a PMUT (Piezoelectric Micromachined Ultrasonic Transducer) manufactured using semiconductor technology can be used.

信号処理部103は、第一信号S1を補正する補正部103Aと、補正された第一信号S1に基づいて、第一物質M1の濃度を算出する算出部103Bと、を含む。 The signal processing unit 103 includes a correction unit 103A that corrects the first signal S1, and a calculation unit 103B that calculates the concentration of the first substance M1 based on the corrected first signal S1.

信号処理部103では、次の手順で第一物質M1の濃度が求められる。まず、第一信号S1から、第一光P1に対する第一音響波W1の減衰量(振幅)を算出する。ただし、音響波の減衰量は、音響波の伝搬距離に比例して変化するため、音響波の発生源である第一物質M1の位置、すなわち、第一物質M1から音響波検出器102までの距離D1が分からないと、正しく評価することができない。この距離D1は、例えば、第一物質M1に音響波を照射し、それが反射して戻ってくるまでの時間に、照射する音響波の速さを掛け合わせることによって、求めることができる。信号処理部103としては、例えば、メモリやCPUを備えたコンピュータ等を用いることができる。 The signal processing unit 103 obtains the concentration of the first substance M1 by the following procedure. First, the attenuation (amplitude) of the first acoustic wave W1 with respect to the first light P1 is calculated from the first signal S1. However, since the attenuation of the acoustic wave changes in proportion to the propagation distance of the acoustic wave, the position of the first substance M1, which is the source of the acoustic wave, that is, the distance from the first substance M1 to the acoustic wave detector 102 If the distance D1 is unknown, it cannot be evaluated correctly. This distance D1 can be obtained, for example, by multiplying the speed of the radiated acoustic wave by the time it takes for the first substance M1 to be irradiated with the acoustic wave and reflected back. As the signal processing unit 103, for example, a computer having a memory and a CPU can be used.

ただし、第一物質M1の濃度が著しく低い場合には、音響波を第一物質M1に当てることが難しく、距離D1を直接測定することは難しい。そこで、この場合には、第二物質M2から発生する第二音響波W2(第二信号S2)を用いて、音響波検出部102から第二物質M2までの距離D2を算出し、算出された距離D2に基づいて、第一信号の強度を補正する。具体的には、距離D1を測定するための音響波を、第一物質M1対してではなく、第一物質M1の周囲に、第一物質M1より多く分布する第二物質M2に対して行う。第一信号の強度を補正する補正部は、信号処理部に内蔵されていてもよいし、併設されていてもよい。補正部としては、例えば、メモリやCPUを備えたコンピュータ等を用いることができる。 However, when the concentration of the first substance M1 is extremely low, it is difficult to apply acoustic waves to the first substance M1, and it is difficult to directly measure the distance D1. Therefore, in this case, the second acoustic wave W2 (second signal S2) generated from the second substance M2 is used to calculate the distance D2 from the acoustic wave detection unit 102 to the second substance M2, and the calculated The intensity of the first signal is corrected based on the distance D2. Specifically, the acoustic wave for measuring the distance D1 is applied not to the first substance M1, but to the second substance M2, which is more distributed around the first substance M1 than the first substance M1. The correction unit that corrects the intensity of the first signal may be built in the signal processing unit, or may be provided side by side. For example, a computer having a memory and a CPU can be used as the correction unit.

第二物質M2は、第一物質M1より多く分布している分、音響波を当てやすいため、第二物質M2から音響波検出器102までの距離D2を容易かつ正確に測定することができる。第二物質M2は、第一物質M1の近傍に分布しており、距離D2は、距離D1とほぼ等しいと見なすことができるため、距離D2を知ることによって、間接的に距離D1を知ることができる。 Since the second material M2 is more distributed than the first material M1, it is easier to apply the acoustic wave, so the distance D2 from the second material M2 to the acoustic wave detector 102 can be measured easily and accurately. The second substance M2 is distributed in the vicinity of the first substance M1, and the distance D2 can be regarded as approximately equal to the distance D1. Therefore, by knowing the distance D2, the distance D1 can be known indirectly. can.

第一物質M1から発生する第一音響波W1の減衰量を、距離D1で補正し(割り)、単位長さ当たりの音響波W1の減衰量、すなわち減衰率を求める。その上で、音響波に基づく信号と、音響波を発生させる物質の濃度との関係が記録されたデータベースを参照し、第一音響波W1に基づく第一信号S1(具体的には、求めた減衰率)に対応する、第一物質M1の濃度が求まる。 The attenuation of the first acoustic wave W1 generated from the first material M1 is corrected (divided) by the distance D1 to obtain the attenuation of the acoustic wave W1 per unit length, that is, the attenuation rate. Then, referring to a database in which the relationship between the signal based on the acoustic wave and the concentration of the substance that generates the acoustic wave is recorded, the first signal S1 based on the first acoustic wave W1 (specifically, the obtained Attenuation rate), the concentration of the first substance M1 is obtained.

なお、第一光P1は、互いに異なる波長を有する、二つの光を合成したものであってもよい。この場合、二つの光が互いに強度変調することにより、吸光度に関する誤差の影響を含まない、二つの光の差分を検出する既知の精度向上手段(特許文献2)を適用することができるため、第一物質M1の濃度を高い精度で測定することができる。 Note that the first light P1 may be a combination of two lights having different wavelengths. In this case, since the two lights are intensity-modulated with each other, it is possible to apply a known accuracy improvement means (Patent Document 2) for detecting the difference between the two lights, which does not include the influence of the error related to absorbance. The concentration of one substance M1 can be measured with high accuracy.

以上のように、本実施形態に係る濃度測定装置100では、測定対象となる第一物質M1だけでなく、第一物質M1の周囲に多く分布する第二物質M2に対しても光を照射し、第一物質M1、第二物質M2のそれぞれから発生す音響波の信号を得られるように構成されている。そのため、例えば、音響波の信号に基づいて算出される第二物質M2の位置から、第一物質M1の位置を推定し、その位置に対応する音響波の減衰量から、第一物質M1の濃度を測定することができる。 As described above, the concentration measuring apparatus 100 according to the present embodiment irradiates light not only on the first substance M1 to be measured, but also on the second substance M2 distributed widely around the first substance M1. , the first material M1, and the second material M2. Therefore, for example, the position of the first substance M1 is estimated from the position of the second substance M2 calculated based on the acoustic wave signal, and the concentration of the first substance M1 is calculated from the attenuation of the acoustic wave corresponding to that position. can be measured.

さらに、第一物質M1に照射する光に対しては、距離等を算出するための変調を行う必要がないため、第一物質M1から発生する音響波の減衰量に関して、感度を高めた変調手段を選択することができ、その結果として第一物質M1の濃度を高精度で測定することができる。 Furthermore, since there is no need to perform modulation for calculating the distance, etc., of the light that irradiates the first substance M1, the modulation means with increased sensitivity for the attenuation of the acoustic wave generated from the first substance M1 can be selected, and as a result, the concentration of the first substance M1 can be measured with high accuracy.

<第二実施形態>
図2は、本発明の第二実施形態に係る濃度測定装置200の構成を模式的に示す図である。濃度測定装置200では、光照射部101が、第一光P1のみを照射する第一光照射器101A、第二照射光101Bのみを照射する第二光照射器101Bを備えている。第一光照射器101A及び第二光照射器101Bは、それぞれ光源であって、第一実施形態で列挙したものと同様のものを利用できる。その他の構成については、第一実施形態の濃度測定装置100と同様であり、対応する箇所については、形状の違いによらず、同じ符号で示している。
<Second embodiment>
FIG. 2 is a diagram schematically showing the configuration of a concentration measuring device 200 according to the second embodiment of the invention. In the density measurement device 200, the light irradiation unit 101 includes a first light irradiation device 101A that emits only the first light P1 and a second light irradiation device 101B that emits only the second irradiation light 101B. The first light irradiator 101A and the second light irradiator 101B are light sources, and the same light sources as listed in the first embodiment can be used. Other configurations are the same as those of the concentration measuring apparatus 100 of the first embodiment, and corresponding portions are indicated by the same reference numerals regardless of the difference in shape.

第一物質M1と第二物質M2の両方に対し、光照射を同時に行うことができる。これにより、例えば、第一物質M1と第二物質M2のうち、一方に光照射した直後に他方が動いてしまい、正確な距離測定が妨げられてしまうような問題を回避することができる。したがって、第一物質M1の距離の補正を、第一実施形態の同度測定装置100より高い精度で行うことができ、ひいては、第一物質M1の濃度測定の精度をさらに向上させることができる。 Both the first substance M1 and the second substance M2 can be irradiated with light at the same time. As a result, for example, it is possible to avoid a problem in which one of the first substance M1 and the second substance M2 moves immediately after the other is irradiated with light, hindering accurate distance measurement. Therefore, the distance of the first substance M1 can be corrected with higher accuracy than the same degree measuring device 100 of the first embodiment, and the accuracy of concentration measurement of the first substance M1 can be further improved.

<第三実施形態>
図3は、本発明の第三実施形態に係る濃度測定装置300の構成を模式的に示す図である。濃度測定装置300は、第一光P1と第二光P2の光量を測定する光量測定部104を備えている。図3に示すように、光量測定部104は、第一光P1の光量を測定する第一光量測定部104Aと、第二光P2の光量を測定する第二光量測定部104Bとを、それぞれ備えていることが好ましい。これにより、第一光P1、第二光P2の光量を同時に測定することができる。その他の構成については、第一実施形態の濃度測定装置100と同様であり、対応する箇所については、形状の違いによらず、同じ符号で示している。光照射部101については、第二実施形態での構成に置き換えてもよい。
<Third Embodiment>
FIG. 3 is a diagram schematically showing the configuration of a concentration measuring device 300 according to the third embodiment of the invention. The density measuring device 300 includes a light intensity measuring section 104 that measures the light intensity of the first light P1 and the second light P2. As shown in FIG. 3, the light amount measurement unit 104 includes a first light amount measurement unit 104A that measures the light amount of the first light P1 and a second light amount measurement unit 104B that measures the light amount of the second light P2. preferably. This makes it possible to simultaneously measure the light intensities of the first light P1 and the second light P2. Other configurations are the same as those of the concentration measuring apparatus 100 of the first embodiment, and corresponding portions are indicated by the same reference numerals regardless of the difference in shape. The light irradiation unit 101 may be replaced with the configuration in the second embodiment.

光量測定部104は、信号処理部103と接続されており、光量測定部104で測定された光量の情報が、信号処理部103に送られるように構成されている。信号処理部103では、検出部102から送られる音響波の信号に対し、光照射部における照射光の光量から推定される信号の変化分を補正する。これにより、測定される第一物質M1の濃度は、照射光量の影響を低く抑えたものとなり、高い精度を有するものとなる。光量測定部104としては、例えば、フォトダイオード(PD)等の受光素子を用いることができる。 The light intensity measurement unit 104 is connected to the signal processing unit 103 and configured to send information on the light intensity measured by the light intensity measurement unit 104 to the signal processing unit 103 . The signal processing unit 103 corrects the signal of the acoustic wave sent from the detection unit 102 by the amount of change in the signal estimated from the amount of light emitted from the light irradiation unit. As a result, the measured concentration of the first substance M1 is less affected by the amount of irradiation light, and has high accuracy. As the light amount measuring unit 104, for example, a light receiving element such as a photodiode (PD) can be used.

<第四実施形態>
図4は、本発明の第四実施形態に係る濃度測定装置400の構成を模式的に示す図である。濃度測定装置400は、第一音響波W1と同じ周波数を有する第三音響波W3を発生させ、物体Mの媒質に当てる(作用させる)音響波発生部105を備えている。その他の構成については、第一実施形態の濃度測定装置100と同様であり、対応する箇所については、形状の違いによらず、同じ符号で示している。光照射部101については、第二実施形態での構成に置き換えてもよい。また、第三実施形態のように、光量測定部を備えていてもよい。音響波発生部105としては、光照射部101から一定距離の位置に配置され、物体Mの内部に第一音響波W1と同じ周波数を有する音響波を発生させるために、例えば、圧電素子や、半導体技術を用いて作製されたCMUT(Capacitive Micromachined Ultrasonic Transducer)もしくはPMUT(Piezoelectric Micromachined Ultrasonic Transducer)を用いることができる。
<Fourth embodiment>
FIG. 4 is a diagram schematically showing the configuration of a concentration measuring device 400 according to the fourth embodiment of the invention. The concentration measuring apparatus 400 includes an acoustic wave generator 105 that generates a third acoustic wave W3 having the same frequency as the first acoustic wave W1 and hits (acts on) the medium of the object M. FIG. Other configurations are the same as those of the concentration measuring apparatus 100 of the first embodiment, and corresponding portions are indicated by the same reference numerals regardless of the difference in shape. The light irradiation unit 101 may be replaced with the configuration in the second embodiment. Moreover, you may provide the light quantity measurement part like 3rd embodiment. The acoustic wave generating unit 105 is arranged at a certain distance from the light irradiating unit 101. In order to generate an acoustic wave having the same frequency as the first acoustic wave W1 inside the object M, a piezoelectric element, A CMUT (Capacitive Micromachined Ultrasonic Transducer) or a PMUT (Piezoelectric Micromachined Ultrasonic Transducer) manufactured using semiconductor technology can be used.

濃度測定装置400では、第三音響波W3が物体Mの媒質に当たった後に物体Mから発生する第四音響波W4を、音響波検出部102で検出し、検出した信号S3を、信号処理部103で解析することができるように構成されている。信号処理部103においては、検出した第一音響波W1の信号S1に対し、第三音響波W3から第四音響波W4への変調から推定される、信号の変化分の補正が行われる。これにより、測定される第一物質M1の濃度は、物体Mの媒質の影響を低く抑えたものとなり、高い精度を有するものとなる。 In the concentration measuring device 400, the acoustic wave detection unit 102 detects the fourth acoustic wave W4 generated from the object M after the third acoustic wave W3 hits the medium of the object M, and the detected signal S3 is processed by the signal processing unit. 103 can be analyzed. In the signal processing unit 103, the detected signal S1 of the first acoustic wave W1 is corrected for the signal change estimated from the modulation from the third acoustic wave W3 to the fourth acoustic wave W4. As a result, the measured concentration of the first substance M1 is less affected by the medium of the object M, and has high accuracy.

<第五実施形態>
図5は、本発明の第五実施形態に係る濃度測定装置500の構成を模式的に示す図である。濃度測定装置500は、物体M(第一物質M1)の温度Tを検出する温度検出部106を備えている。その他の構成については、第一実施形態の濃度測定装置100と同様であり、対応する箇所については、形状の違いによらず、同じ符号で示している。光照射部101については、第二実施形態での構成に置き換えてもよい。また、第三実施形態のように光量測定部を備えてもよいし、第四実施形態のように音響波発生部を備えてもよい。
<Fifth Embodiment>
FIG. 5 is a diagram schematically showing the configuration of a concentration measuring device 500 according to the fifth embodiment of the invention. The concentration measuring device 500 includes a temperature detection section 106 that detects the temperature T of the object M (first substance M1). Other configurations are the same as those of the concentration measuring apparatus 100 of the first embodiment, and corresponding portions are indicated by the same reference numerals regardless of the difference in shape. The light irradiation unit 101 may be replaced with the configuration in the second embodiment. Moreover, a light amount measuring unit may be provided as in the third embodiment, or an acoustic wave generation unit may be provided as in the fourth embodiment.

濃度測定装置500では、温度検出部106で検出した物体Mの温度Tによる信号S4を、信号処理部103で解析することができるように構成されている。信号処理部103においては、検出した第一音響波W1の信号S1に対し、物体Mの温度変調から推定される、信号の変化分の補正が行われる。これにより、測定される第一物質M1の濃度は、物体Mの温度の影響を低く抑えたものとなり、高い精度を有するものとなる。温度検出部106としては、例えば、サーミスタや熱電対等を用いることができる。 The concentration measuring apparatus 500 is configured such that the signal S4 based on the temperature T of the object M detected by the temperature detection unit 106 can be analyzed by the signal processing unit 103 . In the signal processing unit 103, the detected signal S1 of the first acoustic wave W1 is corrected for the signal change estimated from the temperature modulation of the object M. FIG. As a result, the measured concentration of the first substance M1 is less affected by the temperature of the object M, and has high accuracy. A thermistor, a thermocouple, or the like, for example, can be used as the temperature detection unit 106 .

<第六実施形態>
図6は、本発明の第六実施形態に係る濃度測定装置600の構成を模式的に示す図である。濃度測定装置600は、第一光P1、第二光P2を合成する合成部107を備えている。その他の構成については、第一実施形態の濃度測定装置100と同様であり、対応する箇所については、形状の違いによらず、同じ符号で示している。光照射部101については、第二実施形態での構成に置き換えてもよい。また、第三実施形態のように光量測定部を備えてもよいし、第四実施形態のように音響波発生部を備えてもよいし、第五実施形態のように温度検出部を備えていても良い。
<Sixth Embodiment>
FIG. 6 is a diagram schematically showing the configuration of a concentration measuring device 600 according to the sixth embodiment of the invention. The density measuring device 600 includes a synthesizing unit 107 that synthesizes the first light P1 and the second light P2. Other configurations are the same as those of the concentration measuring apparatus 100 of the first embodiment, and corresponding portions are indicated by the same reference numerals regardless of the difference in shape. The light irradiation unit 101 may be replaced with the configuration in the second embodiment. Further, it may be provided with a light amount measuring section as in the third embodiment, an acoustic wave generation section as in the fourth embodiment, or a temperature detection section as in the fifth embodiment. can be

濃度測定装置600では、第一光P1、第二光P2を合成し、その合成光P1+P2を出射できるように構成されている。これにより、光源から光照射口までの光導波路が共通化されることで、濃度測定装置の小型化が可能となる。また、第一光P1、第二光P2の光照射口が同一であることで、第一光P1、第二光P2の測定対象までの光路が等しくなるため、光路の違いによって生じる誤差発生を抑制することが可能となり、測定精度が向上する。 The density measuring device 600 is configured to combine the first light P1 and the second light P2 and emit the combined light P1+P2. As a result, the optical waveguide from the light source to the light irradiation port is shared, and the size of the concentration measuring apparatus can be reduced. In addition, since the light irradiation openings of the first light P1 and the second light P2 are the same, the optical paths of the first light P1 and the second light P2 to the measurement target are the same, so errors due to differences in the optical paths can be eliminated. It becomes possible to suppress it, and the measurement accuracy is improved.

合成部としては、例えば、光ファイバ等を用いることができる。光ファイバを合成部として用いることで、第一光P1、第二光P2を合成し、合成された光または合成されていない一方の光のみを光照射口まで導いて物体Mに照射する。なお、物体Mの表面形状に合わせて、合成部の光照射側に、直角プリズム、光ファイバコリメータ、フィルール等を接着してもよい。 For example, an optical fiber or the like can be used as the synthesizing section. By using an optical fiber as a synthesizing unit, the first light P1 and the second light P2 are synthesized, and only one of the synthesized light and the non-synthesized light is guided to the light irradiation port and irradiated to the object M. In addition, according to the surface shape of the object M, a rectangular prism, an optical fiber collimator, a fill rule, or the like may be adhered to the light irradiation side of the synthesizing portion.

100、200、300、400、500・・・濃度測定装置
101・・・光照射部
101A・・・第一光照射器
101B・・・第二光照射器
102・・・音響波検出部
103・・・信号処理部
103A・・・補正部
103B・・・算出部
104・・・光量測定部
104A・・・第一光量測定部
104B・・・第二光量測定部
105・・・音響波発生部
106・・・温度検出部
107・・・合成部
D1、D2・・・距離
M・・・物体
M1・・・第一物質
M2・・・第二物質
P1・・・第一光
P2・・・第二光
S1・・・第一信号
S2・・・第二信号
S3・・・第三信号
S4・・・第四信号
T・・・温度
W1・・・第一音響波
W2・・・第二音響波
W3・・・第三音響波
W4・・・第四音響波
100, 200, 300, 400, 500 Concentration measuring device 101 Light irradiator 101A First light irradiator 101B Second light irradiator 102 Acoustic wave detector 103 Signal processing unit 103A Correction unit 103B Calculation unit 104 Light amount measurement unit 104A First light amount measurement unit 104B Second light amount measurement unit 105 Acoustic wave generation unit 106 Temperature detection unit 107 Synthesis unit D1, D2 Distance M Object M1 First substance M2 Second substance P1 First light P2 Second light S1 First signal S2 Second signal S3 Third signal S4 Fourth signal T Temperature W1 First acoustic wave W2 Second Acoustic wave W3... Third acoustic wave W4... Fourth acoustic wave

Claims (9)

測定対象となる第一物質、前記第一物質の周囲に前記第一物質より多く分布する第二物質に対し、それぞれ第一光、第二光を照射する光照射部と、
光照射された前記第一物質、前記第二物質から、それぞれ発生する第一音響波、第二音響波を検出する音響波検出部と、
音響波に基づく信号と、音響波を発生させる物質の濃度との関係が記録されたデータベース、前記第二音響波に基づく第二信号を用い、前記第一音響波に基づく第一信号に対応する前記第一物質の濃度を推定する信号処理部と、を有し、
前記第二信号を用いて、前記音響波検出部から前記第二物質までの距離を算出し、算出された前記距離に基づいて、前記第一信号の強度を補正する補正部をさらに有することを特徴とする濃度測定装置。
a light irradiation unit that irradiates a first light and a second light to a first substance to be measured and a second substance distributed around the first substance in a larger amount than the first substance, respectively;
an acoustic wave detection unit that detects a first acoustic wave and a second acoustic wave respectively generated from the first substance and the second substance irradiated with light;
Using a database in which the relationship between a signal based on an acoustic wave and the concentration of a substance that generates the acoustic wave is recorded, and a second signal based on the second acoustic wave, corresponding to the first signal based on the first acoustic wave a signal processing unit that estimates the concentration of the first substance ,
further comprising a correction unit that calculates the distance from the acoustic wave detection unit to the second substance using the second signal, and corrects the intensity of the first signal based on the calculated distance. A concentration measuring device characterized by:
前記光照射部が、前記第一光を照射する第一光照射器と、前記第二光を照射する第二光照射器と、を有することを特徴とする請求項1に記載の濃度測定装置。 2. The density measuring apparatus according to claim 1 , wherein said light irradiation unit has a first light irradiation device for irradiation of said first light and a second light irradiation device for irradiation of said second light. . 前記第一光の光量を測定する第一光量測定部を、さらに有することを特徴とする請求項1または2のいずれかに記載の濃度測定装置。 3. The density measuring apparatus according to claim 1, further comprising a first light amount measuring section for measuring the light amount of said first light. 前記第二光の光量を測定する第二光量測定部を、さらに有することを特徴とする請求項1~のいずれか一項に記載の濃度測定装置。 4. The density measuring apparatus according to claim 1, further comprising a second light amount measuring section for measuring the light amount of said second light. 前記第一音響波と同じ周波数を有する第三音響波を発生させる音響波発生部を、さらに有することを特徴とする請求項1~のいずれか一項に記載の濃度測定装置。 5. The concentration measuring apparatus according to claim 1, further comprising an acoustic wave generator for generating a third acoustic wave having the same frequency as said first acoustic wave. 前記第一光と前記第二光とを合成する合成部を、さらに有することを特徴とする請求項1~のいずれか一項に記載の濃度測定装置。 6. The concentration measuring device according to claim 1, further comprising a synthesizing unit for synthesizing the first light and the second light. 前記第一物質の温度を検出する温度検出部を、さらに有することを特徴とする請求項1~のいずれか一項に記載の濃度測定装置。 The concentration measuring device according to any one of claims 1 to 6 , further comprising a temperature detection unit that detects the temperature of the first substance. 前記信号処理部が、前記補正部と、補正された前記第一信号に基づいて、前記第一物質の濃度を算出する算出部とを含むことを特徴とする請求項のいずれか一項に記載の濃度測定装置。 8. The signal processing unit according to any one of claims 1 to 7 , wherein the signal processing unit includes the correction unit and a calculation unit that calculates the concentration of the first substance based on the corrected first signal. The concentration measuring device according to the item. 前記第一光が、互いに異なる周波数もしくは異なる波長を有する二つの光を合成したものであることを特徴とする請求項1~のいずれか一項に記載の濃度測定装置。 9. The concentration measuring apparatus according to any one of claims 1 to 8 , wherein said first light is a combination of two lights having different frequencies or different wavelengths.
JP2019060981A 2019-03-27 2019-03-27 Concentration measuring device Active JP7238537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019060981A JP7238537B2 (en) 2019-03-27 2019-03-27 Concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019060981A JP7238537B2 (en) 2019-03-27 2019-03-27 Concentration measuring device

Publications (2)

Publication Number Publication Date
JP2020156866A JP2020156866A (en) 2020-10-01
JP7238537B2 true JP7238537B2 (en) 2023-03-14

Family

ID=72640638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019060981A Active JP7238537B2 (en) 2019-03-27 2019-03-27 Concentration measuring device

Country Status (1)

Country Link
JP (1) JP7238537B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003265477A (en) 2002-03-20 2003-09-24 Samsung Electronics Co Ltd Noninvasive bio-component measuring device using optical acoustic spectroscopy and measuring method therefor
JP2007089662A (en) 2005-09-27 2007-04-12 Nippon Telegr & Teleph Corp <Ntt> Component concentration measuring apparatus
JP2008073341A (en) 2006-09-22 2008-04-03 Toshiba Corp Bio-optical measurement system
JP2008125542A (en) 2006-11-16 2008-06-05 Nippon Telegr & Teleph Corp <Ntt> Constituent concentration measuring apparatus and method for controlling constituent concentration measuring apparatus
WO2011052061A1 (en) 2009-10-29 2011-05-05 キヤノン株式会社 Photo-acoustic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003265477A (en) 2002-03-20 2003-09-24 Samsung Electronics Co Ltd Noninvasive bio-component measuring device using optical acoustic spectroscopy and measuring method therefor
JP2007089662A (en) 2005-09-27 2007-04-12 Nippon Telegr & Teleph Corp <Ntt> Component concentration measuring apparatus
JP2008073341A (en) 2006-09-22 2008-04-03 Toshiba Corp Bio-optical measurement system
JP2008125542A (en) 2006-11-16 2008-06-05 Nippon Telegr & Teleph Corp <Ntt> Constituent concentration measuring apparatus and method for controlling constituent concentration measuring apparatus
WO2011052061A1 (en) 2009-10-29 2011-05-05 キヤノン株式会社 Photo-acoustic device

Also Published As

Publication number Publication date
JP2020156866A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
US11357407B2 (en) Photoacoustic apparatus
US8396534B2 (en) Intravital-information imaging apparatus
US8364414B2 (en) Apparatus and method for processing biological information
US6921366B2 (en) Apparatus and method for non-invasively measuring bio-fluid concentrations using photoacoustic spectroscopy
JP4469903B2 (en) Biological information imaging device
US10034611B2 (en) Subject information obtaining apparatus and subject information obtaining method
WO2012114730A1 (en) Photoacoustic measurement device and photoacoustic signal detection method
JP6461288B2 (en) Biological information imaging apparatus, biological information analysis method, and biological information imaging method
US9566006B2 (en) Object information acquisition apparatus
JP6049780B2 (en) Photoacoustic device
JP2008125542A (en) Constituent concentration measuring apparatus and method for controlling constituent concentration measuring apparatus
JP7238537B2 (en) Concentration measuring device
JP4477568B2 (en) Component concentration measuring apparatus and component concentration measuring apparatus control method
JP4902508B2 (en) Component concentration measuring apparatus and component concentration measuring apparatus control method
JP4945415B2 (en) Component concentration measuring apparatus and component concentration measuring apparatus control method
JP2007089662A (en) Component concentration measuring apparatus
JP4966837B2 (en) Component concentration measuring apparatus and component concentration measuring apparatus control method
JP6730963B2 (en) Component concentration measuring device and analysis method
JP2008125543A (en) Constituent concentration measuring apparatus
JP6686066B2 (en) Photoacoustic device
JP2008237655A (en) Component concentration measuring apparatus
WO2019244559A1 (en) Component concentration measurement device
US20160183806A1 (en) Photoacoustic apparatus
JP2018079125A (en) Constituent density measurement device
JP2010017375A (en) Ultrasonically modulated light tomography apparatus and ultrasonically modulated light tomography method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230213

R150 Certificate of patent or registration of utility model

Ref document number: 7238537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150