JP7230663B2 - Photocatalyst and method for producing hydrogen and oxygen using this photocatalyst - Google Patents

Photocatalyst and method for producing hydrogen and oxygen using this photocatalyst Download PDF

Info

Publication number
JP7230663B2
JP7230663B2 JP2019080217A JP2019080217A JP7230663B2 JP 7230663 B2 JP7230663 B2 JP 7230663B2 JP 2019080217 A JP2019080217 A JP 2019080217A JP 2019080217 A JP2019080217 A JP 2019080217A JP 7230663 B2 JP7230663 B2 JP 7230663B2
Authority
JP
Japan
Prior art keywords
photocatalyst
measurement
oxygen
xrd
ytos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019080217A
Other languages
Japanese (ja)
Other versions
JP2020138188A (en
Inventor
一成 堂免
謙 王
隆史 久富
ヨハン パク
振華 潘
誠治 秋山
紘章 吉田
友文 須▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Shinshu University NUC
University of Tokyo NUC
Japan Technological Research Association of Artificial Photosynthetic Chemical Process
Original Assignee
Mitsubishi Chemical Corp
Shinshu University NUC
University of Tokyo NUC
Japan Technological Research Association of Artificial Photosynthetic Chemical Process
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Shinshu University NUC, University of Tokyo NUC, Japan Technological Research Association of Artificial Photosynthetic Chemical Process filed Critical Mitsubishi Chemical Corp
Publication of JP2020138188A publication Critical patent/JP2020138188A/en
Application granted granted Critical
Publication of JP7230663B2 publication Critical patent/JP7230663B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Catalysts (AREA)

Description

本発明は、光触媒と、この光触媒を用いた水素及び酸素の製造方法に関する。 The present invention relates to a photocatalyst and a method for producing hydrogen and oxygen using this photocatalyst.

再生可能エネルギーとして太陽エネルギーを利用した高性能な光エネルギー変換システムの開発は、地球温暖化の抑制、および枯渇しつつある化石資源依存からの脱却を目指す観点から、近年になって急激にその重要性が増している。中でも、太陽エネルギーを用いて水を分解し水素を製造する技術は、現行の石油精製、アンモニア、メタノールの原料供給技術としてのみならず、燃料電池のエネルギーキャリアとして活用できる技術となり、その技術開発に対する社会的要請が益々高まっている。 In recent years, the development of high-performance light energy conversion systems that use solar energy as renewable energy has rapidly increased in importance from the perspective of curbing global warming and breaking away from dependence on fossil resources, which are being depleted. sexuality is increasing. In particular, the technology that uses solar energy to split water and produce hydrogen can be used not only as a raw material supply technology for petroleum refining, ammonia, and methanol, but also as an energy carrier for fuel cells. Social demands are increasing more and more.

光触媒による水分解反応は、古くから広く研究されている。
光触媒粒子上での酸性水溶液中における水の分解反応は、次のように推定されている。
O+2h→1/2O+2H (1)
2H+2e→H (2)
Photocatalytic water-splitting reactions have been extensively studied for a long time.
The decomposition reaction of water in the acidic aqueous solution on the photocatalyst particles is presumed as follows.
H2O +2h + →1/ 2O2 +2H + (1)
2H + +2e →H 2 (2)

光触媒としては、従来、TiOにCr、Vなどの遷移金属をドーピングしたものが提案されているが(例えば特許文献1~5)、いずれも触媒効率が低く、実用化には課題を残すものであった。 As a photocatalyst, TiO 2 doped with transition metals such as Cr and V has been conventionally proposed (for example, Patent Documents 1 to 5), but all of them have low catalytic efficiency, leaving problems for practical use. Met.

一方、本発明の光触媒であるYTiは、ナトリウムイオン電池用の活物質として活用されてきた(特許文献6)。しかしながら、従来法で製造されたYTiを光触媒として活用すると、その光触媒活性、具体的には反応速度が低いばかりか、水から水素と酸素とを発生させる全分解用の電極としては使用できず、犠牲試薬を共存させることにより水素又は酸素のどちらかを発生させる電極として使用できるものであった(非特許文献1、2)。 On the other hand, the photocatalyst of the present invention, Y 2 Ti 2 O 5 S 2 , has been utilized as an active material for sodium ion batteries (Patent Document 6). However, when Y 2 Ti 2 O 5 S 2 produced by the conventional method is used as a photocatalyst, its photocatalytic activity, specifically, the reaction rate is low, and the total decomposition for generating hydrogen and oxygen from water is low. It could not be used as an electrode, but could be used as an electrode for generating either hydrogen or oxygen by allowing a sacrificial reagent to coexist (Non-Patent Documents 1 and 2).

特開平9-262482号公報JP-A-9-262482 特開平11-197512号公報JP-A-11-197512 特開平11-255514号公報JP-A-11-255514 特開平11-279299号公報JP-A-11-279299 特開平11-33408号公報JP-A-11-33408 特開2013-62121号公報JP 2013-62121 A

大谷宙、石川明生、高田剛、堂免一成 第100触媒討論会予稿集(2007)、p343Hiroshi Otani, Akio Ishikawa, Tsuyoshi Takada, Kazunari Domen, Proceedings of the 100th Catalysis Symposium (2007), p343 大谷宙、鈴木孝宏、寺村謙太郎、堂免一成 日本化学会第87春季年会予稿集(2007)、p500Hiroshi Otani, Takahiro Suzuki, Kentaro Teramura, Kazunari Domen Proceedings of the 87th Annual Meeting of the Chemical Society of Japan (2007), p500

本発明は、光触媒活性に優れた新規光触媒と、この光触媒を用いた水素及び酸素の製造方法を提供することを課題とする。 An object of the present invention is to provide a novel photocatalyst with excellent photocatalytic activity and a method for producing hydrogen and oxygen using this photocatalyst.

本発明者らは上記課題を解決すべく鋭意検討を進めた結果、従来のナトリウムイオン電池用の活物質として適用してきたYTiにおいて、製造時により低い温度で焼成すると、組成は同一であっても、高温焼成の場合とはXRD測定において特定の結晶相が発達し、それに伴って特定のピーク形状が異なる新規物質が生成すること、また、このようなXRD上で特定のピークパターンを示す光触媒は、高い水分解触媒活性を示し、従来のYTi組成の触媒で最大の課題であった犠牲試薬を使用することなく酸素と水素とを発生させる触媒となること、すなわち、単一の光触媒により水の全分解反応による酸素と水素との発生が実現できることを見出した。
即ち、本発明は以下を要旨とする。
As a result of intensive studies by the present inventors to solve the above problems, when Y 2 Ti 2 O 5 S 2 , which has been applied as an active material for conventional sodium ion batteries, is fired at a lower temperature during production, Even if the composition is the same, a specific crystal phase develops in the XRD measurement compared to the case of high-temperature firing, and a new substance with a different specific peak shape is generated accordingly. The photocatalyst exhibiting a peak pattern of , exhibits high catalytic activity for water splitting, and generates oxygen and hydrogen without using a sacrificial reagent, which was the biggest problem with conventional catalysts with the composition Y 2 Ti 2 O 5 S 2 . It has been found that a single photocatalyst can be used as a catalyst to generate oxygen and hydrogen through the total decomposition reaction of water.
That is, the gist of the present invention is as follows.

[1] 下記一般式(I)で示される組成の光触媒であって、下記装置及び測定条件に従ったCu-Kα線によるXRD測定において、ピークトップが26.3±0.3にある回折ピークを有し、当該ピークトップが、XRDスペクトル上の最大ピーク強度を100として、20以上の強度であり、かつ30.6±0.5の回折ピーク半値幅(FWHM)が0.16~0.30の範囲にある光触媒。
Ti …(I)
(ただし、a=1.7~2.3、b=1.7~2.3、c=5、d=1.7~2.3の数である。)
<XRD測定>
メーカー;Rigaku
装置;SmartLab
測定条件;
100μm径以下に解砕した光触媒粉末を集中法により粉末X線回折測定を実施
・測定範囲:5~80°
・測定ステップ:0.01°
・スキャン速度:10°/分
モノクロメーター使用せず
解析;
FWHM:Kα1及びKα2の分離処理を経ずに、上記条件で得られたデータから直接計算を実施
[1] A photocatalyst having a composition represented by the following general formula (I), which is a diffraction peak with a peak top at 26.3 ± 0.3 in XRD measurement with Cu-Kα radiation according to the following equipment and measurement conditions: and the peak top has an intensity of 20 or more, with the maximum peak intensity on the XRD spectrum being 100, and the diffraction peak half width (FWHM) of 30.6 ± 0.5 is 0.16 to 0.16. Photocatalyst in the range of 30.
YaTibOcSd ( I )
(However, the numbers are a = 1.7 to 2.3, b = 1.7 to 2.3, c = 5, and d = 1.7 to 2.3.)
<XRD measurement>
Manufacturer: Rigaku
Apparatus; SmartLab
Measurement condition;
Photocatalyst powder pulverized to a diameter of 100 μm or less is subjected to powder X-ray diffraction measurement by the concentration method ・Measurement range: 5 to 80 °
・Measurement step: 0.01°
Scanning speed: 10°/min Analysis without monochromator;
FWHM: Calculated directly from the data obtained under the above conditions without separation of Kα1 and Kα2

[2] 下記一般式(I)で示される組成の光触媒であって、下記装置及び測定条件に従った紫外・可視拡散反射スペクトル測定により得られるλP.T.値(K-M変換後の拡散反射スペクトルが最大値を示す波長)が400nm以上495nm以下の範囲にあり、かつλH.S.値(K-M変換後の拡散反射スペクトルが中間値を示す波長)が520nm以上570nm以下の範囲である光触媒。
Ti …(I)
(ただし、a=1.7~2.3、b=1.7~2.3、c=5、d=1.7~2.3の数である。)
<紫外・可視拡散反射スペクトル測定>
メーカー;JASCO
型番;V-670 Spectrophotometer
測定条件;
・測定範囲:300nm~800nm
・データ間隔:0.2nm
・走査速度:200nm/分
・光源切換え:340.0nm
・データ解析ソフト:Spectra Manager version 2
解析;縦軸をクベルカ-ムンク(K.M.)変換
クベルカ-ムンク変換式
f(R)=(1-R)2/2R=K/S
ここで、f(R)はK.M.関数、Rは絶対反射率、Kは分子吸光係数、Sは散乱係数である。
なお、試料の絶対反射率Rを測定することは困難であり、実際には標準試料を用いた相対反射率rを用いることが一般的である。よって、
=r(測定試料)/r(標準試料)(標準試料としてBaSOを使用)
を用いて相対反射率rの測定を行い、
f(r)=(1-r)2/2r=K/S
より、導出した。
[2] A photocatalyst having a composition represented by the following general formula (I), and having a λP . T. value (the wavelength at which the diffuse reflectance spectrum after KM conversion shows the maximum value) is in the range of 400 nm or more and 495 nm or less, and λ H. S. A photocatalyst having a value (wavelength at which the diffuse reflectance spectrum after KM conversion shows an intermediate value) is in the range of 520 nm or more and 570 nm or less.
YaTibOcSd ( I )
(However, the numbers are a = 1.7 to 2.3, b = 1.7 to 2.3, c = 5, and d = 1.7 to 2.3.)
<Ultraviolet/visible diffuse reflectance spectrum measurement>
Manufacturer; JASCO
Model number: V-670 Spectrophotometer
Measurement condition;
・Measurement range: 300nm to 800nm
・Data interval: 0.2 nm
・Scanning speed: 200 nm/min ・Light source switching: 340.0 nm
・Data analysis software: Spectra Manager version 2
Analysis; Kubelka-Munk (K.M.) transformation Kubelka-Munk transformation formula f (R ) = (1-R ) 2/2R = K/S on the vertical axis
where f(R ) is K.K. M. function, R is the absolute reflectance, K is the molecular extinction coefficient, and S is the scattering coefficient.
It should be noted that it is difficult to measure the absolute reflectance R of a sample, and in practice it is common to use the relative reflectance r using a standard sample. Therefore,
r = r (measurement sample)/r (standard sample) (using BaSO 4 as standard sample)
to measure the relative reflectance r using
f(r )=(1−r )2/2r =K/S
derived from

[3] 水の全分解に使用される光触媒である[1]又は[2]に記載の光触媒。 [3] The photocatalyst according to [1] or [2], which is a photocatalyst used for total decomposition of water.

[4] [1]乃至[3]のいずれかに記載の光触媒を固定化した固定化物、又は、成形した成形体、を用いて水素と酸素を発生させる水素及び酸素の製造方法。 [4] A method for producing hydrogen and oxygen, wherein hydrogen and oxygen are generated using the photocatalyst-immobilized product or molded product according to any one of [1] to [3].

[5] [1]乃至[3]のいずれかに記載の光触媒を用いて作成した電極。 [5] An electrode produced using the photocatalyst according to any one of [1] to [3].

[6] [5]に記載の電極により水素及び/又は酸素を発生させる水素及び酸素の製造方法。 [6] A method for producing hydrogen and oxygen, comprising generating hydrogen and/or oxygen using the electrode according to [5].

本発明によれば、光触媒活性に優れた光触媒が提供される。
本発明の光触媒を用いて、水を効率的に全分解して水素と酸素を製造することができる。
ADVANTAGE OF THE INVENTION According to this invention, the photocatalyst excellent in photocatalytic activity is provided.
Using the photocatalyst of the present invention, water can be completely decomposed efficiently to produce hydrogen and oxygen.

図1は実施例1で650℃焼成し作製したサンプルの26.3°付近のXRDを示す図である。FIG. 1 is a diagram showing the XRD near 26.3° of the sample prepared by firing at 650° C. in Example 1. FIG. 図2は実施例1で650℃焼成し作製したサンプルの30.6°付近のXRDを示す図である。FIG. 2 is a diagram showing the XRD near 30.6° of the sample produced by firing at 650° C. in Example 1. FIG. 図3は実施例2で700℃焼成し作製したサンプルの26.3°付近のXRDを示す図である。FIG. 3 is a diagram showing the XRD near 26.3° of the sample produced by firing at 700° C. in Example 2. FIG. 図4は実施例2で700℃焼成し作製したサンプルの30.6°付近のXRDを示す図である。FIG. 4 is a diagram showing the XRD near 30.6° of the sample produced by firing at 700° C. in Example 2. FIG. 図5は実施例3で800℃焼成し作製したサンプルの26.3°付近のXRDを示す図である。FIG. 5 is a diagram showing the XRD near 26.3° of the sample produced by firing at 800° C. in Example 3. FIG. 図6は実施例3で800℃焼成し作製したサンプルの30.6°付近のXRDを示す図である。FIG. 6 is a diagram showing the XRD near 30.6° of the sample produced by firing at 800° C. in Example 3. FIG. 図7は実施例4で900℃焼成し作製したサンプルの26.3°付近のXRDを示す図である。FIG. 7 is a diagram showing the XRD near 26.3° of the sample produced by firing at 900° C. in Example 4. FIG. 図8は実施例4で900℃焼成し作製したサンプルの30.6°付近のXRDを示す図である。FIG. 8 is a diagram showing the XRD near 30.6° of the sample produced by firing at 900° C. in Example 4. FIG. 図9は比較例1で600℃焼成し作製したサンプルの26.3°付近のXRDを示す図である。FIG. 9 is a diagram showing the XRD near 26.3° of the sample produced by firing at 600° C. in Comparative Example 1. FIG. 図10は比較例1で600℃焼成し作製したサンプルの30.6°付近のXRDを示す図である。FIG. 10 is a diagram showing the XRD near 30.6° of the sample produced by firing at 600° C. in Comparative Example 1. FIG. 図11は比較例2で1000℃焼成し作製したサンプルの26.3°付近のXRDを示す図である。FIG. 11 is a diagram showing the XRD near 26.3° of the sample produced by firing at 1000° C. in Comparative Example 2. FIG. 図12は比較例2で1000℃焼成し作製したサンプルの30.6°付近のXRDを示す図である。FIG. 12 is a diagram showing the XRD near 30.6° of the sample produced by firing at 1000° C. in Comparative Example 2. FIG. 図13は、実施例10において、本発明のYTOSを用いて電気容量-電位特性測定(モット-ショットキープロット)を行った結果を示す図である。FIG. 13 is a diagram showing the results of measurement of capacitance-potential characteristics (Mott-Schottky plot) using the YTOS of the present invention in Example 10. FIG. 図14は、実施例11において、pH9における光照射(Light on)-中断(Light off)に対応する光アノード電流のシグナルを示す図である。FIG. 14 is a diagram showing the photoanode current signal corresponding to light irradiation (Light on)-interruption (Light off) at pH 9 in Example 11. FIG. 図15は、実施例11において、pH13における光照射(Light on)-中断(Light off)に対応する光アノード電流のシグナルを示す図である。FIG. 15 shows the photoanode current signal corresponding to light irradiation (Light on)-interruption (Light off) at pH 13 in Example 11. FIG.

以下に本発明の実施の形態を詳細に説明するが、本発明は以下の説明に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる。本明細書において、「~」を用いてその前後に数値又は物性値を挟んで表現する場合、その前後の値を含むものとして用いることとする。 Embodiments of the present invention will be described in detail below, but the present invention is not limited to the following description, and can be arbitrarily modified and implemented without departing from the scope of the present invention. In this specification, when a numerical value or a physical property value is sandwiched before and after the "~", it is used to include the values before and after it.

[メカニズム]
本発明の光触媒は、下記式(I)で示される組成の光触媒(以下、下記式(I)で表される物質を「YTOS」と略記する場合がある。)であって、下記装置及び測定条件に従ったCu-Kα線によるXRD測定において、ピークトップが26.3±0.3にある回折ピークを有し、当該ピークトップが、XRDスペクトル上の最大ピーク強度を100として、20以上の強度であり、かつ30.6±0.5の回折ピーク半値幅(FWHM)が0.16~0.30の範囲にあるか、或いは、下記装置及び測定条件に従った紫外・可視拡散反射スペクトル測定により得られるλP.T.値(K-M変換後の拡散反射スペクトルが最大値を示す波長)が400nm以上495nm以下の範囲にあり、かつλH.S.値(K-M変換後の拡散反射スペクトルが中間値を示す波長)が520nm以上570nm以下の範囲であることを特徴とする。
Ti …(I)
(ただし、a=1.7~2.3、b=1.7~2.3、c=5、d=1.7~2.3の数である。)
[mechanism]
The photocatalyst of the present invention is a photocatalyst having a composition represented by the following formula (I) (hereinafter, the substance represented by the following formula (I) may be abbreviated as "YTOS"), and the following apparatus and measurement In XRD measurement with Cu-Kα radiation according to the conditions, it has a diffraction peak with a peak top at 26.3 ± 0.3, and the peak top has a maximum peak intensity on the XRD spectrum of 20 or more. intensity and a diffraction peak half width (FWHM) of 30.6 ± 0.5 in the range of 0.16 to 0.30, or an ultraviolet/visible diffuse reflectance spectrum according to the following equipment and measurement conditions The λP obtained from the measurement. T. value (the wavelength at which the diffuse reflectance spectrum after KM conversion shows the maximum value) is in the range of 400 nm or more and 495 nm or less, and λ H. S. A value (wavelength at which the diffuse reflectance spectrum after KM conversion exhibits an intermediate value) is in the range of 520 nm or more and 570 nm or less.
YaTibOcSd ( I )
(However, the numbers are a = 1.7 to 2.3, b = 1.7 to 2.3, c = 5, and d = 1.7 to 2.3.)

<XRD測定>
メーカー;Rigaku
装置;SmartLab
測定条件;
100μm径以下に解砕した光触媒粉末を集中法により粉末X線回折測定を実施
・測定範囲:5~80°
・測定ステップ:0.01°
・スキャン速度:10°/分
モノクロメーター使用せず
解析;
FWHM:Kα1及びKα2の分離処理を経ずに、上記条件で得られたデータから直接計算を実施
<XRD measurement>
Manufacturer: Rigaku
Apparatus; SmartLab
Measurement condition;
Photocatalyst powder pulverized to a diameter of 100 μm or less is subjected to powder X-ray diffraction measurement by the concentration method ・Measurement range: 5 to 80 °
・Measurement step: 0.01°
Scanning speed: 10°/min Analysis without monochromator;
FWHM: Calculated directly from the data obtained under the above conditions without separation of Kα1 and Kα2

<紫外・可視拡散反射スペクトル(DRS)測定>
メーカー;JASCO
型番;V-670 Spectrophotometer
測定条件;
・測定範囲:300nm~800nm
・データ間隔:0.2nm
・走査速度:200nm/分
・光源切換え:340.0nm
・データ解析ソフト:Spectra Manager version 2
解析;縦軸をクベルカ-ムンク(K.M.)変換
クベルカ-ムンク変換式
f(R)=(1-R)2/2R=K/S
ここで、f(R)はK.M.関数、Rは絶対反射率、Kは分子吸光係数、Sは散乱係数である。
なお、試料の絶対反射率R∞を測定することは困難であり、実際には標準試料を用いた相対反射率rを用いることが一般的である。よって、
=r(測定試料)/r(標準試料)(標準試料としてBaSOを使用)
を用いて相対反射率rの測定を行い、
f(r)=(1-r)2/2r=K/S
より、導出した。
<Ultraviolet/visible diffuse reflectance spectrum (DRS) measurement>
Manufacturer; JASCO
Model number: V-670 Spectrophotometer
Measurement condition;
・Measurement range: 300nm to 800nm
・Data interval: 0.2 nm
・Scanning speed: 200 nm/min ・Light source switching: 340.0 nm
・Data analysis software: Spectra Manager version 2
Analysis; Kubelka-Munk (K.M.) transformation Kubelka-Munk transformation formula f (R ) = (1-R ) 2/2R = K/S on the vertical axis
where f(R ) is K.K. M. function, R is the absolute reflectance, K is the molecular extinction coefficient, and S is the scattering coefficient.
It should be noted that it is difficult to measure the absolute reflectance R∞ of a sample, and in practice it is common to use the relative reflectance r∞ using a standard sample. Therefore,
r = r (measurement sample)/r (standard sample) (using BaSO 4 as standard sample)
to measure the relative reflectance r using
f(r )=(1−r )2/2r =K/S
derived from

本発明の光触媒では、後述の通り、光触媒製造時の焼成温度を650℃以上1000℃未満という、前述の特許文献6に記載される温度よりも低温で焼成すると、1000℃以上で焼成した場合とは、バルクの組成は同じであっても特定の結晶相が発達し、それに伴って特定のピーク形状が異なるYTOSが得られ、この新規YTOSにより優れた光触媒活性が得られるようになる。
通常、金属複合酸化物の製造においては、一般に高温で焼成する方が結晶性が良好となり、諸物性に優れたものとなるため、前述の特許文献6でも焼成温度は1000~1200℃が好ましいとされ、特許文献6の実施例では1100℃で焼成が行われている。
しかしながら、従来のYTOSは、後掲の比較例2に示されるように、本発明のYTOSとはバルクの組成は同一であっても、光触媒活性向上において重要となる103面の結晶面の発達が十分でないばかりか、紫外・可視拡散反射スペクトル測定によっても明らかなように、同様に光触媒活性向上に重要なパラメータとなるλP.T.値もλH.S.値も本発明の要件を満たさない、本発明のYTOSとは異なる物質である。
In the photocatalyst of the present invention, as described later, the firing temperature at the time of photocatalyst production is 650 ° C. or more and less than 1000 ° C., which is lower than the temperature described in Patent Document 6 above. However, even if the bulk composition is the same, a specific crystal phase develops, resulting in YTOS with a different specific peak shape, and this new YTOS can provide excellent photocatalytic activity.
Generally, in the production of metal composite oxides, sintering at a high temperature generally results in better crystallinity and excellent physical properties. In the example of Patent Document 6, firing is performed at 1100°C.
However, as shown in Comparative Example 2 below, the conventional YTOS has the same bulk composition as the YTOS of the present invention, but the 103 crystal face, which is important for improving the photocatalytic activity, does not develop. Not only is it not sufficient, but also λ P. , which is also an important parameter for improving photocatalytic activity, as is clear from UV/visible diffuse reflectance spectroscopy. T. The value is also λH. S. It is a substance different from the YTOS of the present invention, whose value also does not meet the requirements of the present invention.

なお、XRD測定及び紫外・可視拡散反射スペクトル測定の具体的な方法は、後述の実施例の項に示す通りである。 Specific methods for the XRD measurement and the ultraviolet/visible diffuse reflectance spectrum measurement are as shown in Examples below.

[YTOS組成]
本発明の光触媒は、前記式(I)で表される。
式(I)において、a=1.7~2.3、b=1.7~2.3、c=5、d=1.7~2.3であるが、好ましくはa=1.9~2.1、b=1.9~2.1、c=5、d=1.9~2.1である。なお、本明細書においては、特に断りのない限り~は上端と下端の数値を含むものとする。
ここで、本発明の効果に支障の出ない範囲で、YがCa,Sr,Ag,In,La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luなどで置換されていてもよい。また、同様にTiはAl,Cr,Mn,Co,Ni,Rh,Ga,Zn,Ta,Nbで置換されていてもよく、その置換量は、上述の組成式のa又はbの値で0.3以下が好ましく、より好ましくは0.1以下である。
[YTOS composition]
The photocatalyst of the present invention is represented by the above formula (I).
In formula (I), a = 1.7 to 2.3, b = 1.7 to 2.3, c = 5, d = 1.7 to 2.3, preferably a = 1.9 ~2.1, b = 1.9-2.1, c = 5, d = 1.9-2.1. In the present specification, unless otherwise specified, the numbers ∼ include upper and lower numbers.
Here, Y is Ca, Sr, Ag, In, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm within a range that does not interfere with the effects of the present invention. , Yb, Lu, or the like. Similarly, Ti may be substituted with Al, Cr, Mn, Co, Ni, Rh, Ga, Zn, Ta, and Nb, and the amount of substitution is 0 as the value of a or b in the above composition formula. 0.3 or less, more preferably 0.1 or less.

[XRD測定における特徴]
本発明の光触媒は、Cu-Kα線によるXRD(X線回折)測定において、ピークトップが2θ=26.3±0.3(deg.)付近にある回折ピークを有し、当該ピークトップの強度が、XRDスペクトル上の最大ピーク強度を100として、通常、20以上好ましくは40以上、より好ましくは60以上、特に好ましくは100であり、かつ2θ=30.6±0.5(deg.)付近の回折ピークの半値幅(FWHM)の下限が、通常、0.16以上、好ましくは0.18以上であり、その上限が、通常0.50以下、好ましくは0.30以下、より好ましくは0、27以下の範囲にあることを特徴とする。
ここで、26.3±0.3付近のピークはYTiの103面のピークであり、30.6±0.5付近のピークは同105面のピークである。なお、以下において、103面のピークトップのXRDスペクトル上の最大ピーク強度100に対する強度を「103面ピーク強度比」と称す。
なお、本発明でいうピーク強度は、前述の記載や本発明の他の記載より明らかなように、ピークトップの高さを意味し、ピーク強度比は高さの比を意味している。
[Characteristics in XRD measurement]
The photocatalyst of the present invention has a diffraction peak with a peak top near 2θ = 26.3 ± 0.3 (deg.) in XRD (X-ray diffraction) measurement using Cu-Kα rays, and the intensity of the peak top is usually 20 or more, preferably 40 or more, more preferably 60 or more, particularly preferably 100, with the maximum peak intensity on the XRD spectrum being 100, and 2θ = around 30.6 ± 0.5 (deg.) The lower limit of the half-value width (FWHM) of the diffraction peak is usually 0.16 or more, preferably 0.18 or more, and the upper limit is usually 0.50 or less, preferably 0.30 or less, more preferably 0 , 27 or less.
Here, the peak near 26.3±0.3 is the peak of the 103 plane of Y 2 Ti 2 O 5 S 2 , and the peak near 30.6±0.5 is the peak of the same 105 plane. In addition, below, the intensity|strength with respect to the maximum peak intensity 100 on the XRD spectrum of the peak top of 103 planes is called "103 plane peak intensity ratio."
As is clear from the above description and other descriptions of the present invention, the peak intensity in the present invention means the height of the peak top, and the peak intensity ratio means the ratio of heights.

103面のピークは、通常YTOSのXRD回折パターンで観測されるピークであるため、目的とするYTOSと不純物相(YTi(以下、YTO)及びTiS,TiO、YOなど)への相転移の度合い(すなわち、YTOS純物質の純度)を把握することに有効である。例えば、103面ピーク強度比が小さなYTOSは、YTOSと不純物のYTOやYOとの共晶を形成した状態となっている場合が多く、このような物質は、結晶中に欠陥を有するため触媒活性を阻害してしまうことが多い。また、本発明を完成する過程において、YTOSの光触媒活性は、この103面ピーク強度比が高いほど、すなわち、YTOSの103面の結晶面が発達しているほど、高まることを見出した。このため、YTOS103面ピークトップの強度が、XRDスペクトル上の最大ピーク強度を100として、通常、20以上、好ましくは40以上、より好ましくは60以上、特に好ましくは100である。 Since the peak of the 103 plane is a peak normally observed in the XRD diffraction pattern of YTOS, the target YTOS and the impurity phase (Y 2 Ti 2 O 7 (hereinafter referred to as YTO) and TiS 2 , TiO 2 , Y 2 S 2 O, etc.) (ie, the purity of the YTOS pure substance). For example, YTOS with a small 103 plane peak intensity ratio often forms a eutectic with YTO or Y 2 S 2 O as an impurity, and such a substance has defects in the crystal. It often inhibits the catalytic activity due to the presence of Further, in the process of completing the present invention, it was found that the photocatalytic activity of YTOS increases as the 103 plane peak intensity ratio increases, that is, as the 103 plane crystal plane of YTOS develops. Therefore, the intensity of the YTOS 103-plane peak top is usually 20 or more, preferably 40 or more, more preferably 60 or more, and particularly preferably 100, where 100 is the maximum peak intensity on the XRD spectrum.

また、105面のピークにおいては、FWHMの制御が重要な設計因子となる。通常、多くの光触媒において結晶性の高さが触媒活性の高さと密接な関係があることが提唱されており、FWHMが十分に小さいことが望ましいとするのが一般的である。すなわち、本材料においても焼成温度を高温にあげればあげるほど、結晶規則性が向上し、触媒活性が向上すると考えられる。しかしながら、本材料では、驚くべきことに、焼成温度を上昇させるとある一定温度までは結晶規則性の向上により触媒活性の向上が確認されるものの、同時に結晶子の成長に伴い、特定方向への成長が促進され、これらの特定方位へ成長した結晶相を有する触媒では触媒活性の低下してしまうことを見出した。これは層状材料において積層方向への結晶構造成長が進行すると、Ti-Ti結合間の3d軌道の混成方位と異なる方位に結晶が成長してしまい、光照射に伴い励起した電子やホールが粒子表面まで伝導し、助触媒に伝達を行うという光触媒の反応機構においては非常に不利な状態となってしまう可能性があるためであると推察される。このことから、本発明のFWHM値が制御されたYTOSは、光触媒活性を向上させる上で重要な設計因子となるYTOSの結晶性と特有の特定方位への過度な成長とが制御されたYTOSとなる。これらの理由から、105面の回折ピークの半値幅(FWHM)の下限は、通常、0.16以上、好ましくは0.18以上であり、その上限が、通常0.50以下、好ましくは0.30以下、より好ましくは0、27以下の範囲にあることが好ましい。 Also, in the peak of the 105 plane, control of FWHM is an important design factor. In many photocatalysts, it is generally proposed that the degree of crystallinity is closely related to the degree of catalytic activity, and it is generally considered desirable that the FWHM be sufficiently small. That is, it is considered that the crystal regularity is improved and the catalytic activity is improved as the calcination temperature is raised to a higher temperature in this material as well. However, with this material, surprisingly, when the sintering temperature is increased, the crystal regularity is improved up to a certain temperature, and the catalytic activity is improved. It has been found that the growth is accelerated, and the catalytic activity of catalysts having crystal phases grown in these specific directions is lowered. This is because when the crystal structure growth progresses in the stacking direction in the layered material, the crystal grows in an orientation different from the hybrid orientation of the 3d orbital between Ti-Ti bonds, and electrons and holes excited by light irradiation are generated on the particle surface. It is presumed that this is because there is a possibility that the reaction mechanism of the photocatalyst, in which the light is conducted to the co-catalyst, will be in a very disadvantageous state. From this, the YTOS with controlled FWHM value of the present invention is YTOS in which the crystallinity of YTOS, which is an important design factor in improving the photocatalytic activity, and excessive growth in a specific specific orientation are controlled. Become. For these reasons, the lower limit of the full width at half maximum (FWHM) of the diffraction peak on the 105 plane is usually 0.16 or more, preferably 0.18 or more, and the upper limit is usually 0.50 or less, preferably 0.50. It is preferably in the range of 30 or less, more preferably 0.27 or less.

[紫外・可視拡散反射スペクトル測定における特徴]
本発明の光触媒は、紫外・可視拡散反射スペクトル測定により得られるλP.T.値(K-M変換(f(r)=(1-r)2/2r=K/S、ただし、rはK.M.関数、rは相対反射率、Kは分子吸光係数、Sは散乱係数)後の拡散反射スペクトルが最大値を示す波長)が400nm以上495nm以下の範囲にあり、かつλH.S.値(K-M変換後の拡散反射スペクトルが中間値を示す波長)が520nm以上570nm以下の範囲であることを特徴とする。
好ましくは、λP.T.値は430~493nmであり、λH.S.値は525~567nmである。
[Characteristics of UV/visible diffuse reflectance spectrum measurement]
The photocatalyst of the present invention has a λP obtained by ultraviolet/visible diffuse reflectance spectroscopy. T. value (KM transform (f(r )=(1−r )2/2r =K/S, where r is the KM function, r is the relative reflectance, K is the molecular absorption coefficient, S is the scattering coefficient) and the wavelength at which the diffuse reflectance spectrum shows the maximum value) is in the range of 400 nm or more and 495 nm or less, and λH. S. A value (wavelength at which the diffuse reflectance spectrum after KM conversion exhibits an intermediate value) is in the range of 520 nm or more and 570 nm or less.
Preferably, the λP. T. values are between 430 and 493 nm and the λ H. S. Values are between 525 and 567 nm.

本発明の試料は粉体であることが多く、この理由から、直接的に光の吸収スペクトルを測定できないことから、本発明のλP.T.値、λH.S.値は、拡散反射スペクトルを測定し、K.M.変換して吸光度モードに変換する手法により算出される値である。本発明においては、可視光領域にピークが観察されることが可視光応答型光触媒の第一条件となるが、本発明の材料では上記の条件に加えてλP.T.値が400nm以上495nm以下の範囲にありλH.S.値が520nm以上570nm以下の範囲である場合に、優れた触媒活性を示すことを見出した。 The sample of the present invention is often powder, and for this reason, the absorption spectrum of light cannot be measured directly . T. value, λ H. S. Values are obtained by measuring the diffuse reflectance spectrum, K.K. M. It is a value calculated by a method of converting into absorbance mode. In the present invention, the first condition for a visible light responsive photocatalyst is that a peak be observed in the visible light region . T. value is in the range of 400 nm or more and 495 nm or less, and λ H. S. It was found that excellent catalytic activity is exhibited when the value is in the range of 520 nm or more and 570 nm or less.

本発明においてλP.T.値はK-M変換後の拡散反射スペクトルが最大値を示す波長として定義しており、吸収スペクトルが左右対称だと仮定したとき、この値が可視光領域(一般的に360~830nm)の中心(約600nm)近くに位置するほど、より可視光領域の光を広範囲に吸収出来ることから、触媒活性が向上すると考えられる。さらに本発明においては試料中に不純物YTO相やYTO-YTOS中間相が存在する場合が多く、このような構造では電子やホールの伝導が阻害され、光触媒活性が制限されることが多い。この不純物YTO相やYTO-YTOS中間相はλP.T.値=300~390nmに確認され、これらの成分を制限する観点からλP.T.値は400nm以上であることが好ましい。このλP.T.値は焼成温度を上昇させるに従いより高い値となるが、前述の結晶子サイズの上昇により触媒性能の低減するため、適切な範囲が存在する。
また、本発明においてλH.S.値はK-M変換後の拡散反射スペクトルが中間値を示す波長として定義しており、この値が大きいほどλP.T.値を中心とした幅広い波長領域での光吸収が可能であることから、このλH.S.値が大きいほど光触媒活性も向上すると考えられる。しかし、本発明においてはλH.S.値を上昇させる要因として以下のTi3+含有相が存在する場合があり、触媒性能との比較の結果、最適な範囲があることを見出した。Ti3+含有相では電子やホールの伝導が阻害され、光触媒活性が制限されることが多い。このTi3+還元相は600nm以上の波長領域に非常になだらかなスロープとして観察され、この成分が多いほどλH.S.値は上昇することから、λH.S.値は光吸収波長の分布と触媒活性を低減するTi3+相含有量を把握するうえで有効である。
In the present invention, λP . T. The value is defined as the wavelength at which the diffuse reflectance spectrum after KM conversion shows the maximum value, and assuming that the absorption spectrum is symmetrical, this value is the center of the visible light region (generally 360 to 830 nm) (About 600 nm), the closer it is, the more light in the visible light region can be absorbed, so it is thought that the catalytic activity is improved. Furthermore, in the present invention, the sample often contains an impurity YTO phase or a YTO-YTOS intermediate phase, and in such structures, conduction of electrons and holes is inhibited, and photocatalytic activity is often limited. This impurity YTO phase and YTO-YTOS intermediate phase have a wavelength of λP. T. value = 300-390 nm, and from the point of view of limiting these components, λ P. T. The value is preferably 400 nm or greater. This λP. T. The value becomes higher as the calcination temperature is raised, but there is an appropriate range because the catalytic performance is reduced due to the aforementioned increase in crystallite size.
Also, in the present invention, λ H. S. The value is defined as the wavelength at which the diffuse reflectance spectrum after KM conversion exhibits an intermediate value. T. This λH. S. It is considered that the higher the value, the higher the photocatalytic activity. However, in the present invention, λH . S. As a factor for increasing the value, the following Ti3+-containing phase may be present, and as a result of comparison with the catalyst performance, it was found that there is an optimum range. Ti3+-containing phases often inhibit electron and hole conduction, limiting photocatalytic activity. This Ti3+ reduced phase is observed as a very gentle slope in the wavelength region of 600 nm or more, and the more this component, the more the λH. S. value increases, the λ H. S. The values are useful for understanding the distribution of light absorption wavelengths and the Ti3+ phase content that reduces catalytic activity.

以上から本発明におけるλP.T.値及びλH.S.値が制御されたYTOSは、光触媒活性を向上させる上で重要な設計因子となるYTOSの可視光吸収特性と触媒性能を低減するTi3+相含有量が制御されたYTOSとなる。これらの理由からλP.T.値が400nm以上495nm以下の範囲にあり、かつλH.S.値が520nm以上570nm以下の範囲であることでより高い活性を示し、より好ましくは、λP.T.値は430~493nmであり、λH.S.値は525~567nmにあることが好ましい。 From the above, the λP. T. value and λ H. S. YTOS with a controlled value is a YTOS with a controlled Ti3+ phase content that reduces the visible light absorption characteristics and catalytic performance of YTOS, which are important design factors in improving photocatalytic activity. For these reasons λ P. T. value is in the range of 400 nm or more and 495 nm or less, and λ H. S. A value in the range of 520 nm or more and 570 nm or less indicates higher activity, and more preferably λ P. T. values are between 430 and 493 nm and the λ H. S. Preferably the value lies between 525 and 567 nm.

[光触媒の製造方法]
本発明の光触媒は、Y源、Ti源、O源、S源となる原料を前記式(I)を満たすように秤量して十分混合し、得られた混合物を焼成することにより製造することができる。
[Method for producing photocatalyst]
The photocatalyst of the present invention can be produced by weighing and sufficiently mixing the raw materials for the Y source, Ti source, O source, and S source so as to satisfy the above formula (I), and calcining the resulting mixture. can.

Y源としては、Y、YS、Y、Y、YCl等の1種又は2種以上を用いることができる。ここで、Y、YSはO源ともなる。また、Y、YSはS源ともなる。 As the Y source, one or more of Y 2 O 3 , Y 2 O 2 S, Y 2 S 3 , Y, YCl 3 and the like can be used. Here, Y 2 O 3 and Y 2 O 2 S also serve as O sources. Y 2 S 3 and Y 2 O 2 S also serve as S sources.

Ti源としては、TiO、TiS、Ti等の1種又は2種以上を用いることができる。ここで、TiOはO源ともなる。また、TiSはS源ともなる。 As a Ti source, one or more of TiO 2 , TiS 2 , Ti and the like can be used. Here, TiO 2 also serves as an O source. TiS 2 also serves as an S source.

O源としては、上記の通り、Y源、Ti源を兼ねて用いることが好ましい。 As the O source, as described above, it is preferable to use both the Y source and the Ti source.

S源としては、S、HS等の1種又は2種以上を用いることができる。この際、H2Sなどをガスとして流通して反応させる手法は、本発明の光触媒を製造する上で好ましい態様の一つである。また、上記の通り、Y、YS、TiSもS源となる。 As the S source, one or more of S, H 2 S and the like can be used. At this time, the technique of allowing H2S or the like to flow as a gas for reaction is one of the preferred modes for producing the photocatalyst of the present invention. Moreover, as described above, Y 2 S 3 , Y 2 O 2 S, and TiS 2 also serve as S sources.

なお、これらの原料の混合は、空気や微量の水分が混入し、酸化物相などの不純物生成を引き起こすため窒素等の不活性ガス雰囲気下に、-20~50℃で行うことが好ましい。 The mixing of these raw materials is preferably carried out at −20 to 50° C. in an atmosphere of an inert gas such as nitrogen, since air and a small amount of moisture are mixed in and cause the formation of impurities such as oxide phases.

混合物の焼成温度は、焼成時間にも依存するために特に限定はされないが、650℃以上1000℃未満であることが好ましい。焼成温度が1000℃以上では、本発明の光触媒に特徴的な上記のXRD及び紫外・可視拡散反射スペクトル測定結果を示し、光触媒活性に優れたYTOSを得ることはできない場合が多い。また、焼成温度が低過ぎると、比較例1に示したように。固相反応が十分に進行せず、高純度のYTOSを得ることができない場合が多いため、焼成温度は、通常650℃以上、好ましくは670℃以上であり、通常1000℃未満、好ましくは930℃以下である。 Although the firing temperature of the mixture is not particularly limited because it depends on the firing time, it is preferably 650°C or more and less than 1000°C. If the calcination temperature is 1000° C. or higher, it is often impossible to obtain YTOS exhibiting the above-mentioned XRD and ultraviolet/visible diffuse reflectance spectrum measurement results characteristic of the photocatalyst of the present invention and having excellent photocatalytic activity. Also, if the firing temperature is too low, as shown in Comparative Example 1. In many cases, the solid-phase reaction does not proceed sufficiently and high-purity YTOS cannot be obtained. Therefore, the firing temperature is usually 650°C or higher, preferably 670°C or higher, and usually lower than 1000°C, preferably 930°C. It is below.

焼成雰囲気については特に制限はないが、副反応防止の観点から真空中で行うことが好ましい。
焼成時間は、焼成温度によっても異なるが、通常12~240時間、好ましくは48~120時間である。
Although there are no particular restrictions on the firing atmosphere, it is preferable to carry out the firing in a vacuum from the viewpoint of preventing side reactions.
The firing time varies depending on the firing temperature, but is usually 12 to 240 hours, preferably 48 to 120 hours.

焼成により得られたYTOSは、必要に応じて過剰硫黄分を酸化処理して除去するために、空気中にて100~300℃の温度で0.1~3時間程度加熱する熱処理を行ってもよい。この熱処理後は水洗して硫黄酸化物を除去し、YTOSを固液分離することが好ましい。 YTOS obtained by firing may be subjected to heat treatment in air at a temperature of 100 to 300° C. for about 0.1 to 3 hours in order to oxidize and remove excess sulfur content as necessary. good. After this heat treatment, it is preferable to remove sulfur oxides by washing with water and separate YTOS into solid and liquid.

また、得られたYTOSは、必要に応じて20~80質量%程度の硫酸、硝酸、王水等の酸に接触させる酸処理を行ってもよく、酸処理を行うことで、光触媒粒子表面の不純物を除去することができる。 In addition, the obtained YTOS may be subjected to an acid treatment in which it is brought into contact with an acid such as sulfuric acid, nitric acid, aqua regia, etc. of about 20 to 80% by mass, if necessary. Impurities can be removed.

また、得られたYTOSは、必要に応じて粉砕、分級等の整粒処理を行ってもよい。
粉砕後の粒径としては、特に限定されないが、1μm以上とすることにより取り扱いが容易になるために好ましい。一方、当該粒径を20μm以下とすることにより、触媒の表面積が増加し、触媒活性が向上するために好ましい。この粒径は、例えばSEMで写真を撮影し、無作為に粒子を50個程度選んで直径を測定し、その平均値から算出されるものである。粉砕後の粒子が球形から大きく外れている場合には、写真より粒子径を面積相当径で測定し、算出してもよい。
Moreover, the obtained YTOS may be subjected to granule regulating treatment such as pulverization and classification, if necessary.
The particle size after pulverization is not particularly limited, but is preferably 1 μm or more because it facilitates handling. On the other hand, by setting the particle size to 20 μm or less, the surface area of the catalyst is increased and the catalytic activity is improved, which is preferable. This particle size is calculated from the average value of the diameters of about 50 particles selected at random, for example, by taking a photograph with an SEM. When the particles after pulverization are largely out of a spherical shape, the particle diameter may be calculated by measuring the area equivalent diameter from a photograph.

更に、得られたYTOSは、必要に応じて助触媒含有溶液中に懸濁してMW(マイクロウェーブ)処理を行ってもよく、MW処理を行うことで後述の評価用光触媒を短時間で調製することができる場合がある。MW処理としては、例えばAnton Paar社製「Microwave synthesis Reactor Monowave 300」などを使用し、推奨条件を適宜選んで実施すればよい。 Furthermore, the obtained YTOS may be suspended in a cocatalyst-containing solution and subjected to MW (microwave) treatment as necessary. By performing MW treatment, the photocatalyst for evaluation described later can be prepared in a short time. sometimes it is possible. As the MW treatment, for example, "Microwave synthesis Reactor Monowave 300" manufactured by Anton Paar may be used, and recommended conditions may be appropriately selected.

[用途]
本発明の光触媒は、水分解用光触媒、として有効であり、特に高い光触媒活性を示し、単独の電極で、つまり対極が不要で水の全分解が可能な光触媒として水の全分解を行うことができる。
[Use]
The photocatalyst of the present invention is effective as a water-splitting photocatalyst, exhibits particularly high photocatalytic activity, and can completely decompose water with a single electrode, that is, as a photocatalyst capable of completely decomposing water without the need for a counter electrode. can.

[水素及び酸素の製造方法]
本発明の水素及び酸素の製造方法は、本発明の光触媒を用いて、犠牲試薬を用いることなく水素と酸素とを発生させることを特徴とする。また、本発明の光触媒を用いることにより、水素と酸素とを同一の電極上で発生させることもできる。尚、本発明においては、基材上に本発明の光触媒を含む光触媒層を設けた積層体、あるいは本発明の光触媒を含む複合体を電極と称する。
[Method for producing hydrogen and oxygen]
The method for producing hydrogen and oxygen of the present invention is characterized by using the photocatalyst of the present invention to generate hydrogen and oxygen without using a sacrificial reagent. Moreover, by using the photocatalyst of the present invention, hydrogen and oxygen can be generated on the same electrode. In the present invention, a laminate in which a photocatalyst layer containing the photocatalyst of the present invention is provided on a substrate, or a composite containing the photocatalyst of the present invention is referred to as an electrode.

本発明の光触媒は、それのみで十分な光触媒活性を示すが、好ましくは助触媒と共に使用される。 Although the photocatalyst of the present invention exhibits sufficient photocatalytic activity by itself, it is preferably used together with a co-catalyst.

助触媒としては、酸化反応助触媒(酸素発生側)および還元反応助触媒(水素発生側)があり、これらの一方又は双方をYTOSに担持して用いることが好ましい。酸化反応助触媒としては、周期表第2~14族の金属、該金属の金属間化合物、合金、または、これらの酸化物、複合酸化物、窒化物、酸窒化物、硫化物、酸硫化物、あるいは、これらの混合物のいずれかを用いることが好ましい。ここで、「金属間化合物」とは、2種以上の金属元素から形成される化合物であり、金属間化合物を構成する成分原子比は必ずしも化学量論比でなく、広い組成範囲をもつものをいう。「これらの酸化物、複合酸化物、窒化物、酸窒化物、硫化物、酸硫化物」とは、周期表第2~14族の金属、該金属の金属間化合物、または、合金の酸化物、複合酸化物、窒化物、酸窒化物、硫化物、酸硫化物をいう。「これらの混合物」とは、以上例示した化合物のいずれか二以上の混合物をいう。 As the co-catalyst, there are an oxidation reaction co-catalyst (oxygen generation side) and a reduction reaction co-catalyst (hydrogen generation side), and it is preferable to use one or both of these by supporting YTOS. As the oxidation reaction co-catalyst, metals of groups 2 to 14 of the periodic table, intermetallic compounds and alloys of these metals, or oxides, composite oxides, nitrides, oxynitrides, sulfides, and oxysulfides thereof , or mixtures thereof. Here, the "intermetallic compound" is a compound formed from two or more kinds of metal elements, and the atomic ratio of the components constituting the intermetallic compound is not necessarily a stoichiometric ratio, and it may have a wide composition range. say. "These oxides, composite oxides, nitrides, oxynitrides, sulfides, and oxysulfides" are metals of groups 2 to 14 of the periodic table, intermetallic compounds of these metals, or oxides of alloys , composite oxides, nitrides, oxynitrides, sulfides, and oxysulfides. "These mixtures" means a mixture of any two or more of the compounds exemplified above.

酸化反応助触媒としては、好ましくは、Mg,Ti,Mn,Fe,Co,Ni,Cu,Ga,Ru,Rh,Pd,Ag,Cd,In,Ce,Ta,W,Ir,PtまたはPbの金属、これらの酸化物または複合酸化物であり、より好ましくは、Mn,Co,Ni,Ru,Rh,Irの金属、これらの酸化物または複合酸化物であり、さらに好ましくは、Ir,MnO,MnO,Mn,Mn,CoO,Co,NiCo,RuO,Rh,IrOである。 The oxidation reaction promoter is preferably Mg, Ti, Mn, Fe, Co, Ni, Cu, Ga, Ru, Rh, Pd, Ag, Cd, In, Ce, Ta, W, Ir, Pt or Pb. Metals, their oxides or composite oxides, more preferably Mn, Co, Ni, Ru, Rh, Ir metals, their oxides or composite oxides, still more preferably Ir, MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4 , CoO, Co 3 O 4 , NiCo 2 O 4 , RuO 2 , Rh 2 O 3 and IrO 2 .

還元反応助触媒としては、周期表第3~13族の金属、該金属の金属間化合物、合金、または、これらの酸化物、複合酸化物、酸窒化物、硫化物、酸硫化物、炭化物、窒化物、あるいは、これらの混合物のいずれかを用いることが好ましい。ここで、「金属間化合物」は上記と同様であり、「これらの酸化物、複合酸化物、酸窒化物、硫化物、酸硫化物、炭化物、窒化物」とは、周期表第3~13族の金属、該金属の金属間化合物、合金の酸化物、複合酸化物、酸窒化物、硫化物、酸硫化物、炭化物または窒化物をいう。「これらの混合物」とは、以上例示した化合物のいずれか二以上の混合物をいう。 As the reduction reaction co-catalyst, metals of Groups 3 to 13 of the periodic table, intermetallic compounds and alloys of these metals, or oxides, composite oxides, oxynitrides, sulfides, oxysulfides, carbides thereof, It is preferred to use either nitrides or mixtures thereof. Here, the “intermetallic compound” is the same as above, and “these oxides, composite oxides, oxynitrides, sulfides, oxysulfides, carbides, and nitrides” refer to Periodic Table Nos. 3 to 13. group metals, intermetallic compounds of said metals, alloy oxides, composite oxides, oxynitrides, sulfides, oxysulfides, carbides or nitrides. "These mixtures" means a mixture of any two or more of the compounds exemplified above.

還元反応助触媒としては、好ましくは、Pt,Pd,Rh,Ru,Ni,Au,Fe,NiO,RuO,IrO,Rh,および、Cr-Rh複合酸化物,コアシェル型Rh/Cr,Pt/Cr等を挙げることができる。 Pt, Pd, Rh, Ru, Ni, Au, Fe, NiO, RuO 2 , IrO 2 , Rh 2 O 3 and Cr—Rh composite oxides, core-shell type Rh/ Cr 2 O 3 , Pt/Cr 2 O 3 and the like can be mentioned.

上記した助触媒の担持量としては、酸化反応助触媒の金属担持量は、特に限定されないが、YTOSを基準(100質量%)として、通常0.01質量%以上、1質量%以下、好ましくは上限が0.5質量%以下、より好ましくは上限が0.4質量%以下、下限が0.1質量%以上である。還元反応助触媒30の金属担持量は、特に限定されないが、YTOSを基準(100質量%)として、通常0.01質量%以上、20質量%以下、好ましくは上限が15質量%以下、より好ましくは上限が10質量%以下である。
ここでいう「金属担持量」とは、担持させた助触媒中の金属元素が占める量をいう。
The amount of the co-catalyst supported is not particularly limited, but is usually 0.01% by mass or more and 1% by mass or less, preferably 1% by mass or less, based on YTOS (100% by mass). The upper limit is 0.5 mass % or less, more preferably the upper limit is 0.4 mass % or less, and the lower limit is 0.1 mass % or more. The amount of metal supported by the reduction reaction cocatalyst 30 is not particularly limited, but based on YTOS (100% by mass), it is usually 0.01% by mass or more and 20% by mass or less, preferably the upper limit is 15% by mass or less, and more preferably. has an upper limit of 10% by mass or less.
As used herein, the term "amount of metal supported" refers to the amount of the metal element in the supported cocatalyst.

本発明の光触媒を実際に水の分解に使用する場合における光触媒の形態については特に限定されるものではなく、水中に光触媒粒子を分散させる形態、光触媒粒子を固めて成形体として当該成形体を水中に設置する形態、基材上に光触媒層を設けて積層体とし当該積層体を水中に設置する形態、集電体上に光触媒を固定化して光水分解反応用電極とし対極とともに水中に設置する形態等が挙げられる。特に、光水分解反応を大規模にて行う場合、バイアスを付与して水分解反応を促進できる観点から、光水分解反応用電極とするとよい。また、別の態様としては、本発明の光触媒が本触媒単独で水の全分解が可能であることを利用し、バイアスを付与することなく、基材上に本発明の光触媒を含む光触媒層を設けた積層体、あるいは本発明の光触媒を含む複合体を、水中に設置することもできる。この態様により、加工や取り扱いの容易さ、メンテナンスの容易さ、それに広い面積を使用する人工光合成装置などとして使用したときのコストを抑えることができ、工業的に優位な水分解装置、酸素発生装置、水素発生装置、あるいは人工光合成システムを得ることができる。 When the photocatalyst of the present invention is actually used for water decomposition, the form of the photocatalyst is not particularly limited. A mode in which a photocatalyst layer is provided on a base material to form a laminate and the laminate is placed in water. morphology and the like. In particular, when the photo-water splitting reaction is performed on a large scale, it is preferable to use the electrode for the photo-water splitting reaction from the viewpoint of promoting the water splitting reaction by applying a bias. In another aspect, a photocatalyst layer containing the photocatalyst of the present invention is formed on a substrate without applying a bias, utilizing the fact that the photocatalyst of the present invention can completely decompose water with the present catalyst alone. The provided laminate or composite containing the photocatalyst of the present invention can also be placed in water. Due to this aspect, it is possible to reduce the cost when used as an artificial photosynthesis device that uses a large area, such as ease of processing and handling, ease of maintenance, and industrially superior water decomposition device and oxygen generator. , a hydrogen generator, or an artificial photosynthesis system.

光水分解反応用電極は公知の方法により作製可能である。例えば、いわゆる粒子転写法(Chem. Sci., 2013,4, 1120-1124)によって容易に作製可能である。ここで粒子転写法においては、以下の手順で光水分解反応用電極を製造するのが一般的である。すなわち、ガラス等の第1の基材上に光触媒粒子を載せて、光触媒層と第1の基材層との積層体を得る。得られた積層体の光触媒層表面に蒸着等によって導電層(集電体)を設ける。ここで、光触媒層の導電層側表層にある光触媒粒子が導電層に固定化される。その後、導電層表面に第2の基材を接着し、第1の基材層から導電層及び光触媒層を剥がす。光触媒粒子の一部は導電層の表面に固定化されているので、導電層とともに剥がされ、結果として、光触媒層と導電層と第2の基材層とを有する光水分解反応用電極を得ることができる。
或いは、その他の手法として、光触媒粒子が分散されたスラリーを集電体の表面に塗布して乾燥させることで、光水分解反応用電極を得てもよいし、光触媒粒子と集電体とを加圧成形等して一体化することで光水分解反応用電極を得てもよい。また、光触媒粒子が分散されたスラリー中に集電体を浸漬し、電圧を印可して光触媒粒子を電気泳動により集電体上に集積してもよい。
或いは、助触媒の担持を後工程で行うような形態であってもよい。例えば、上記した粒子転写法において、光触媒粒子ではなく光半導体粒子を用いて、同様の方法で光半導体層と導電層と第2の基材層とを有する積層体を得て、その後、光半導体層の表面に助触媒としての酸化物粒子を担持させることで、光水分解反応用電極を得てもよい。
The photo-water splitting reaction electrode can be produced by a known method. For example, it can be easily produced by a so-called particle transfer method (Chem. Sci., 2013, 4, 1120-1124). Here, in the particle transfer method, it is common to manufacture an electrode for photo-water splitting reaction by the following procedure. That is, photocatalyst particles are placed on a first base material such as glass to obtain a laminate of a photocatalyst layer and a first base material layer. A conductive layer (current collector) is provided on the surface of the photocatalyst layer of the obtained laminate by vapor deposition or the like. Here, the photocatalyst particles on the conductive layer side surface layer of the photocatalyst layer are immobilized on the conductive layer. After that, a second base material is adhered to the surface of the conductive layer, and the conductive layer and the photocatalyst layer are peeled off from the first base material layer. Since some of the photocatalyst particles are immobilized on the surface of the conductive layer, they are peeled off together with the conductive layer, resulting in a photowater-splitting reaction electrode having a photocatalyst layer, a conductive layer, and a second substrate layer. be able to.
Alternatively, as another method, a slurry in which photocatalyst particles are dispersed may be applied to the surface of a current collector and dried to obtain an electrode for a photohydrolysis reaction, or photocatalyst particles and a current collector may be combined. The electrode for photo-water splitting reaction may be obtained by integrating by pressure molding or the like. Alternatively, a current collector may be immersed in a slurry in which photocatalyst particles are dispersed, and a voltage may be applied to collect the photocatalyst particles on the current collector by electrophoresis.
Alternatively, the supporting of the co-catalyst may be carried out in a post-process. For example, in the above-described particle transfer method, using photo-semiconductor particles instead of photocatalyst particles, a laminate having a photo-semiconductor layer, a conductive layer, and a second base layer is obtained in a similar manner, and then the photo-semiconductor An electrode for a photo-water splitting reaction may be obtained by supporting oxide particles as a co-catalyst on the surface of the layer.

本発明の光触媒、或いは、上記した光水分解反応用電極を、水又は電解質水溶液に浸漬し、当該光触媒又は光水分解反応用電極に光を照射して光水分解を行うことで、水素及び/又は酸素を製造することができる。 The photocatalyst of the present invention or the above-described electrode for photowater decomposition reaction is immersed in water or an aqueous electrolyte solution, and the photocatalyst or electrode for photowater decomposition reaction is irradiated with light to perform photowater decomposition, thereby hydrogen and /or oxygen can be produced.

例えば、上述のように導電体で構成される集電体上に光触媒を固定化して光水分解反応用電極を得る一方、対極として水素生成触媒を担持した導電体を使用し、液体状又は気体状の水を供給しながら光を照射し、水分解反応を進行させる。必要に応じて電極間に電位差を設けることで、水分解反応を促進することができる。或いは、対極として水素生成触媒を担持した光半導体を使用してもよい。この場合、光半導体としては水素生成反応を触媒する公知の光半導体を用いることができる。 For example, as described above, a photocatalyst is immobilized on a current collector composed of a conductor to obtain an electrode for a photowater splitting reaction, while a conductor supporting a hydrogen generation catalyst is used as a counter electrode, and a liquid or gaseous conductor is used. Light is irradiated while supplying water in the form of water, and the water-splitting reaction proceeds. The water-splitting reaction can be promoted by providing a potential difference between the electrodes as necessary. Alternatively, an optical semiconductor supporting a hydrogen generation catalyst may be used as the counter electrode. In this case, as the optical semiconductor, a known optical semiconductor that catalyzes the hydrogen generation reaction can be used.

一方、絶縁基材上に光触媒粒子を固定化した固定化物に、又は、光触媒粒子を加圧成形等した成形体に、水を供給しながら光を照射して水分解反応を進行させてもよい。或いは、光触媒粒子を水又は電解質水溶液に分散させて、ここに光を照射して水分解反応を進行させてもよい。この場合、必要に応じて攪拌することで、反応を促進することができる。
本発明の光触媒は、これ単独で水の全分解をすることができるため、酸素発生用電極と水素発生用電極をつなぐことは必要なく、光触媒を水中に載置し、そこに水を供給する手段と、水素及び/又は酸素を取り出す手段があれば水素と酸素を製造することができる。
これにより構造が簡易になると同時に、酸素発生電極と水素発生電極を並列に並べることに比べ、半分の面積で稼働させることも可能である。発生した水素と酸素は、例えばゼオライト膜等を用いて水素と酸素に分離することができる。
On the other hand, an immobilized product in which photocatalyst particles are immobilized on an insulating base material, or a molded body in which photocatalyst particles are pressure-molded, may be irradiated with light while supplying water to allow the water-splitting reaction to proceed. . Alternatively, the photocatalyst particles may be dispersed in water or an aqueous electrolyte solution, and then irradiated with light to promote the water-splitting reaction. In this case, the reaction can be promoted by stirring as necessary.
Since the photocatalyst of the present invention can completely decompose water by itself, it is not necessary to connect the oxygen generating electrode and the hydrogen generating electrode, and the photocatalyst is placed in water and water is supplied there. Hydrogen and oxygen can be produced if there are means and means for extracting hydrogen and/or oxygen.
This simplifies the structure, and at the same time, it is possible to operate in half the area compared to arranging the oxygen generating electrode and the hydrogen generating electrode in parallel. The generated hydrogen and oxygen can be separated into hydrogen and oxygen using, for example, a zeolite membrane.

水素及び/又は酸素の製造時の反応条件については特に限定されるものではないが、例えば反応温度を0℃以上200℃以下とし、反応圧力を2MPa(G)以下とする。
照射光は650nm以下の波長を有する可視光、又は紫外光である。照射光の光源としては太陽や、キセノンランプ、メタルハライドランプ等の太陽光近似光を照射可能なランプ、水銀ランプ、LED等が挙げられる。
Although the reaction conditions for producing hydrogen and/or oxygen are not particularly limited, for example, the reaction temperature is set at 0° C. or higher and 200° C. or lower, and the reaction pressure is set at 2 MPa (G) or lower.
The irradiation light is visible light having a wavelength of 650 nm or less, or ultraviolet light. Examples of the light source for the irradiation light include the sun, a lamp capable of irradiating near-sunlight light such as a xenon lamp and a metal halide lamp, a mercury lamp, and an LED.

以上のように、本発明によれば、本発明の光触媒を用いることで、光水分解反応により水素及び/又は酸素を効率的に製造することができる。 As described above, according to the present invention, by using the photocatalyst of the present invention, hydrogen and/or oxygen can be efficiently produced by a photo-water splitting reaction.

以下、本発明を実施例に基づいてより具体的に説明するが、本発明は以下の実施例により何ら限定されるものではない。なお、以下の実施例における各種の製造条件や評価結果の値は、本発明の実施態様における上限又は下限の好ましい値としての意味をもつものであり、好ましい範囲は前記した上限又は下限の値と、下記実施例の値又は実施例同士の値との組み合わせで規定される範囲であってもよい。 EXAMPLES Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited by the following examples. It should be noted that various production conditions and values of evaluation results in the following examples have the meaning of preferred values for the upper limit or lower limit in the embodiments of the present invention, and the preferred range is the above-described upper limit or lower limit value. , the range defined by the values in the following examples or a combination of the values in the examples.

[XRD測定・DRS測定]
以下の実施例及び比較例で合成した光触媒粉末のXRD測定及び紫外・可視拡散反射スペクトル(DRS)測定の条件、装置等は以下の通りである。
[XRD measurement/DRS measurement]
Conditions, devices, etc. for XRD measurement and ultraviolet/visible diffuse reflectance spectrum (DRS) measurement of the photocatalyst powders synthesized in the following Examples and Comparative Examples are as follows.

<XRD測定>
メーカー;Rigaku
装置;SmartLab
測定条件;
100μm径以下に解砕した光触媒粉末を集中法により粉末X線回折測定を実施
・測定範囲:5~80°
・測定ステップ:0.01°
・スキャン速度:10°/分
モノクロメーター使用せず
解析;
FWHM:Kα1及びKα2の分離処理を経ずに、上記条件で得られたデータから直接計算を実施
<XRD measurement>
Manufacturer: Rigaku
Apparatus; SmartLab
Measurement condition;
Photocatalyst powder pulverized to a diameter of 100 μm or less is subjected to powder X-ray diffraction measurement by the concentration method ・Measurement range: 5 to 80 °
・Measurement step: 0.01°
Scanning speed: 10°/min Analysis without monochromator;
FWHM: Calculated directly from the data obtained under the above conditions without separation of Kα1 and Kα2

<DRS測定>
メーカー;JASCO
型番;V-670 Spectrophotometer
測定条件;
・測定範囲:300nm~800nm
・データ間隔:0.2nm
・走査速度:200nm/分
・光源切換え:340.0nm
・データ解析ソフト:Spectra Manager version 2
解析;縦軸をクベルカ-ムンク(K.M.)変換
クベルカ-ムンク変換式
f(R)=(1-R)2/2R=K/S
ここで、f(R)はK.M.関数、Rは絶対反射率、Kは分子吸光係数、Sは散乱係数である。
なお、試料の絶対反射率Rを測定することは困難であり、実際には標準試料を用いた相対反射率rを用いることが一般的である。よって、
=r(測定試料)/r(標準試料)(標準試料としてBaSOを使用)
を用いて相対反射率rの測定を行い、
f(r)=(1-r)2/2r=K/S
より、導出した。
<DRS measurement>
Manufacturer; JASCO
Model number: V-670 Spectrophotometer
Measurement condition;
・Measurement range: 300nm to 800nm
・Data interval: 0.2 nm
・Scanning speed: 200 nm/min ・Light source switching: 340.0 nm
・Data analysis software: Spectra Manager version 2
Analysis; Kubelka-Munk (K.M.) transformation Kubelka-Munk transformation formula f (R ) = (1-R ) 2/2R = K/S on the vertical axis
where f(R ) is K.K. M. function, R is the absolute reflectance, K is the molecular extinction coefficient, and S is the scattering coefficient.
It should be noted that it is difficult to measure the absolute reflectance R of a sample, and in practice it is common to use the relative reflectance r using a standard sample. Therefore,
r = r (measurement sample)/r (standard sample) (using BaSO 4 as standard sample)
to measure the relative reflectance r using
f(r )=(1−r )2/2r =K/S
derived from

[評価用光触媒の調製と光触媒活性の評価]
以下の実施例及び比較例で合成した光触媒粉末は、以下の方法で評価用光触媒を調製して光触媒活性の評価を行った。
[Preparation of photocatalyst for evaluation and evaluation of photocatalytic activity]
Photocatalyst powders synthesized in the following examples and comparative examples were evaluated for photocatalytic activity by preparing photocatalysts for evaluation by the following method.

<IrOコロイド溶液の調製>
NaIrCl・n水和物をIr金属濃度が0.0548mg/mLになるように純水に溶解した後、1N水酸化ナトリウム水溶液にてpH=12に調整し、80℃で30分間攪拌した。その後、氷浴にて25℃まで冷却し、0.5N及び0.05N硝酸にてpH=9.0に調整した。調整後、再度80℃で30分間攪拌し、室温まで再冷却することでIrOコロイド溶液を調製した。
<Preparation of IrO 2 colloidal solution>
After dissolving Na 3 IrCl 6.n hydrate in pure water so that the Ir metal concentration becomes 0.0548 mg/mL, adjust the pH to 12 with 1N aqueous sodium hydroxide solution and stir at 80° C. for 30 minutes. bottom. Then, it was cooled to 25° C. in an ice bath and adjusted to pH=9.0 with 0.5N and 0.05N nitric acid. After the adjustment, the mixture was stirred again at 80° C. for 30 minutes and cooled again to room temperature to prepare an IrO 2 colloidal solution.

<全分解評価用光触媒CrO/Rh/IrO/YTiの調製>
光触媒粉末をIrOコロイド水溶液に懸濁し(光触媒粉末に対して0.3質量%Ir)、40分攪拌してIrOコロイドを光触媒粉末に吸着させた。IrOの吸着後、RhCl水溶液に懸濁し(光触媒粉末に対して2.0質量%Rh)、空気の非存在下で可視光(λ>420nm)を3時間照射しRh(III)を金属Rhに光還元した。Rhの析出後、得られたサンプルをKCrO水溶液に懸濁し(光触媒粉末に対して1.5質量%Cr)、紫外可視光(λ>300nm)を15時間照射し、KCrOをクロム酸化物CrOに還元した。光照射はカットオフフィルターを備えた300Wキセノンランプを使用した。光照射時には冷却水を使用し溶液温度を室温に保つようにした。生成物を蒸留水でよく洗浄し、減圧下、40℃で2時間乾燥させた。
< Preparation of photocatalyst CrOx /Rh/ IrO2 / Y2Ti2O5S2 for total decomposition evaluation>
The photocatalyst powder was suspended in an aqueous solution of IrO2 colloid (0.3 mass % Ir with respect to the photocatalyst powder) and stirred for 40 minutes to allow the IrO2 colloid to be adsorbed on the photocatalyst powder. After the adsorption of IrO2 , it was suspended in an aqueous RhCl3 solution (2.0 wt% Rh relative to the photocatalyst powder) and irradiated with visible light (λ>420 nm) for 3 hours in the absence of air to transform Rh(III) into metal. Photoreduced to Rh. After precipitation of Rh, the obtained sample was suspended in an aqueous K 2 CrO 4 solution (1.5% by mass of Cr with respect to the photocatalyst powder), and irradiated with UV-visible light (λ>300 nm) for 15 hours to form K 2 CrO 4 . was reduced to chromium oxide CrOx . A 300 W xenon lamp equipped with a cut-off filter was used for light irradiation. Cooling water was used during light irradiation to keep the temperature of the solution at room temperature. The product was washed thoroughly with distilled water and dried under reduced pressure at 40° C. for 2 hours.

<水素/酸素生成評価用光触媒IrO/YTiの調製>
光触媒粉末をIrOコロイド水溶液に懸濁し(光触媒粉末に対して0.3質量%Ir)、40分攪拌してIrOコロイドを光触媒粉末に吸着させた。生成物を蒸留水でよく洗浄し、減圧下、40℃で2時間乾燥させた。
< Preparation of photocatalyst IrO2 / Y2Ti2O5S2 for evaluation of hydrogen/oxygen generation>
The photocatalyst powder was suspended in an aqueous solution of IrO2 colloid (0.3 mass % Ir with respect to the photocatalyst powder) and stirred for 40 minutes to allow the IrO2 colloid to be adsorbed on the photocatalyst powder. The product was washed thoroughly with distilled water and dried under reduced pressure at 40° C. for 2 hours.

<水素/酸素生成評価用光触媒CoOx/YTiの調製>
光触媒粉末を硝酸コバルト六水和物を溶解した硝酸コバルト溶液に懸濁し、溶媒を除去したのち、300℃で1時間焼成を行った。
< Preparation of photocatalyst CoOx/ Y2Ti2O5S2 for evaluation of hydrogen /oxygen generation>
The photocatalyst powder was suspended in a cobalt nitrate solution in which cobalt nitrate hexahydrate was dissolved, and after removing the solvent, the suspension was calcined at 300° C. for 1 hour.

<全分解評価試験及び水素/酸素生成評価試験>
調製した全分解評価用光触媒または水素/酸素生成評価用光触媒を用いて光水分解反応性能の評価を行った。光水分解反応は、真空排気用ポンプ、循環ポンプ、光触媒固定化物を入れるセル、気体採取バルブ、及びガスクロマトグラフ分析装置(GC)を備えた閉鎖系の反応装置で行った。光源は300Wのキセノンランプ(λ>420nm)を使用し、温度上昇を避けるためランプとセルとの間にはウォーターフィルタを設け、さらにセルは冷却水を用いて外側から冷却した。評価の際は、あらかじめ反応装置内を数回脱気した後、空気が残っていないことを確認した。真空度は4×10Pa程度とした。その後に光照射を開始し、ガスの生成量を測定した。分析条件はカラム(モレキュラーシーブ5A)、キャリアガス(アルゴン)、温度(50~70℃)とした。
<Total decomposition evaluation test and hydrogen/oxygen generation evaluation test>
Using the prepared photocatalyst for evaluation of total decomposition or the photocatalyst for evaluation of hydrogen/oxygen generation, the photowater decomposition reaction performance was evaluated. The photowater splitting reaction was carried out in a closed-system reaction apparatus equipped with an evacuation pump, a circulation pump, a cell containing a photocatalyst immobilized substance, a gas sampling valve, and a gas chromatograph analyzer (GC). A 300 W xenon lamp (λ>420 nm) was used as the light source, a water filter was provided between the lamp and the cell to avoid temperature rise, and the cell was cooled from the outside using cooling water. During the evaluation, it was confirmed that no air remained after degassing the inside of the reactor several times in advance. The degree of vacuum was about 4×10 4 Pa. After that, light irradiation was started and the amount of gas produced was measured. Analysis conditions were column (molecular sieve 5A), carrier gas (argon), and temperature (50 to 70°C).

全分解評価試験においては、全分解評価用光触媒200mgに対して水150mLとpH調整剤のLa(pH=9)を100mg添加し、セルに封入して試験を実施した。
水素生成評価試験では、水素生成評価用光触媒200mgに対して0.02M NaS-NaSO水溶液150mLをセルに封入し試験を実施した。
酸素生成評価試験では、酸素生成評価用光触媒200mgに対して0.02M AgNO水溶液150mLをセルに封入し試験を実施した。
以下、全分解評価試験における水素及び酸素の生成速度(単位時間当たりの生成モル量)を全分解速度とし、水素生成速度を「VH2」、酸素生成速度を「VO2」と表記する。
また、水素生成評価試験における水素生成速度を半反応速度とし「VH2」と表記し、酸素生成評価試験における酸素生成速度を半反応速度とし「VO2」と表記する
In the total decomposition evaluation test, 150 mL of water and 100 mg of La 2 O 3 (pH=9) as a pH adjuster were added to 200 mg of the photocatalyst for total decomposition evaluation, and the mixture was sealed in a cell and tested.
In the hydrogen generation evaluation test, 150 mL of 0.02M Na 2 S—Na 2 SO 3 aqueous solution was sealed in a cell with respect to 200 mg of the photocatalyst for hydrogen generation evaluation.
In the oxygen generation evaluation test, 150 mL of 0.02 M AgNO 3 aqueous solution was sealed in a cell with respect to 200 mg of the photocatalyst for oxygen generation evaluation, and the test was conducted.
Hereinafter, the generation rate of hydrogen and oxygen (the amount of moles generated per unit time) in the total decomposition evaluation test is referred to as the total decomposition rate, and the hydrogen generation rate is referred to as "V H2 " and the oxygen generation rate as "V O2 ".
In addition, the hydrogen generation rate in the hydrogen generation evaluation test is defined as a half reaction rate and is indicated as "V H2 ", and the oxygen generation rate in the oxygen generation evaluation test is referred to as a half reaction rate and is indicated as "V O2 ".

[光触媒粉末の合成と分析・評価]
<実施例1>
、Y、TiO、Sを1:2:6:2.05のモル比で秤量し、Nグローブボックス(露点マイナス70℃以下)中で40分程度混合し、真空中で石英管に封入した後、650℃で96時間焼成を行った。その後、空気中、200℃にて1時間熱処理することで過剰硫黄分を酸化処理し、水洗処理した後、濾過することで光触媒粉末Aを得た。
得られた光触媒粉末AはXRD測定の結果、ほぼ全てのピークがYTiに帰属された。得られた光触媒粉末AのXRD測定結果と紫外・可視拡散反射スペクトル測定結果を表1に示す。
また、光触媒粉末Aの光触媒活性の評価結果を表1に示す。
また、図1に26.3°付近のXRDのピーク形状を、図2に30.6°付近のピーク形状を示す。
[Synthesis, analysis and evaluation of photocatalyst powder]
<Example 1>
Y 2 O 3 , Y 2 S 3 , TiO 2 and S were weighed at a molar ratio of 1:2:6:2.05 and mixed in a N 2 glove box (with a dew point of minus 70° C. or less) for about 40 minutes, After being sealed in a quartz tube in vacuum, it was fired at 650° C. for 96 hours. After that, the excess sulfur content was oxidized by heat treatment at 200° C. in the air for 1 hour, washed with water, and filtered to obtain a photocatalyst powder A.
As a result of XRD measurement of the obtained photocatalyst powder A, almost all peaks were attributed to Y 2 Ti 2 O 5 S 2 . Table 1 shows the XRD measurement results and the ultraviolet/visible diffuse reflectance spectrum measurement results of the obtained photocatalyst powder A.
Table 1 shows the evaluation results of the photocatalytic activity of the photocatalyst powder A.
Further, FIG. 1 shows the XRD peak shape around 26.3°, and FIG. 2 shows the peak shape around 30.6°.

<実施例2>
焼成温度を700℃としたこと以外は実施例1と同様にして光触媒粉末Bを得た。
得られた光触媒粉末BはXRD測定の結果、ほぼ全てのピークがYTiに帰属された。得られた光触媒粉末BのXRD測定結果と紫外・可視拡散反射スペクトル測定結果を表1に示す。
また、光触媒粉末Aの光触媒活性の評価結果を表1に示す。
また、図3に26.3°付近のXRDのピーク形状を、図4に30.6°付近のピーク形状を示す。
<Example 2>
Photocatalyst powder B was obtained in the same manner as in Example 1, except that the firing temperature was 700°C.
As a result of XRD measurement of the obtained photocatalyst powder B, almost all peaks were attributed to Y 2 Ti 2 O 5 S 2 . Table 1 shows the XRD measurement results and the ultraviolet/visible diffuse reflectance spectrum measurement results of the obtained photocatalyst powder B.
Table 1 shows the evaluation results of the photocatalytic activity of the photocatalyst powder A.
Further, FIG. 3 shows the XRD peak shape around 26.3°, and FIG. 4 shows the peak shape around 30.6°.

<実施例3>
焼成温度を800℃としたこと以外は実施例1と同様にして光触媒粉末Cを得た。
得られた光触媒粉末CはXRD測定の結果、ほぼ全てのピークがYTiに帰属された。得られた光触媒粉末CのXRD測定結果と紫外・可視拡散反射スペクトル測定結果を表1に示す。
また、光触媒粉末Cの光触媒活性の評価結果を表1に示す。
また、図5に26.3°付近のXRDのピーク形状を、図6に30.6°付近のピーク形状を示す。
<Example 3>
A photocatalyst powder C was obtained in the same manner as in Example 1, except that the firing temperature was 800°C.
As a result of XRD measurement of the obtained photocatalyst powder C, almost all peaks were attributed to Y 2 Ti 2 O 5 S 2 . Table 1 shows the XRD measurement results and the ultraviolet/visible diffuse reflectance spectrum measurement results of the obtained photocatalyst powder C.
Table 1 shows the evaluation results of the photocatalytic activity of the photocatalyst powder C.
Further, FIG. 5 shows the XRD peak shape near 26.3°, and FIG. 6 shows the peak shape near 30.6°.

<実施例4>
焼成温度を900℃としたこと以外は実施例1と同様にして光触媒粉末Dを得た。
得られた光触媒粉末DはXRD測定の結果、ほぼ全てのピークがYTiに帰属された。得られた光触媒粉末DのXRD測定結果と紫外・可視拡散反射スペクトル測定結果を表1に示す。
また、光触媒粉末Dの光触媒活性の評価結果を表1に示す。
また、図7に26.3°付近のXRDのピーク形状を、図8に30.6°付近のピーク形状を示す。
<Example 4>
A photocatalyst powder D was obtained in the same manner as in Example 1, except that the firing temperature was 900°C.
As a result of XRD measurement of the obtained photocatalyst powder D, almost all peaks were attributed to Y 2 Ti 2 O 5 S 2 . Table 1 shows the XRD measurement results and the ultraviolet/visible diffuse reflectance spectrum measurement results of the obtained photocatalyst powder D.
Table 1 shows the evaluation results of the photocatalytic activity of the photocatalyst powder D.
FIG. 7 shows the XRD peak shape near 26.3°, and FIG. 8 shows the peak shape near 30.6°.

<実施例5>
実施例3において合成した光触媒粉末Cを49質量%濃度の硫酸に浸漬し、2時間室温で攪拌した。酸処理後、水洗して濾過することで光触媒粉末Eを得た。
得られた光触媒粉末EはXRD測定の結果、ほぼ全てのピークがYTiに帰属された。得られた光触媒粉末EのXRD測定結果と紫外・可視拡散反射スペクトル測定結果を表1に示す。
また、光触媒粉末Eの光触媒活性の評価結果を表1に示す。
<Example 5>
The photocatalyst powder C synthesized in Example 3 was immersed in 49% by mass sulfuric acid and stirred at room temperature for 2 hours. After the acid treatment, the photocatalyst powder E was obtained by washing with water and filtering.
As a result of XRD measurement of the obtained photocatalyst powder E, almost all peaks were attributed to Y 2 Ti 2 O 5 S 2 . Table 1 shows the XRD measurement results and the ultraviolet/visible diffuse reflectance spectrum measurement results of the obtained photocatalyst powder E.
Table 1 shows the evaluation results of the photocatalytic activity of the photocatalyst powder E.

<実施例6>
実施例3において合成した光触媒粉末C0.5gをジルコニア製1mm径ビーズ12g、水3mLと共にバイアル瓶に封入し、容器ごと転動ミル(200rpm、30分)により粉砕を実施した。粉砕処理後に、ビーズの除去と濾過処理をすることで光触媒粉末Fを得た。
得られた光触媒粉末FはXRD測定の結果、ほぼ全てのピークがYTiに帰属された。得られた光触媒粉末FのXRD測定結果と紫外・可視拡散反射スペクトル測定結果を表1に示す。
また、光触媒粉末Fの光触媒活性の評価結果を表1に示す。
<Example 6>
0.5 g of the photocatalyst powder C synthesized in Example 3 was sealed in a vial along with 12 g of zirconia beads having a diameter of 1 mm and 3 mL of water, and the entire container was pulverized by a tumbling mill (200 rpm, 30 minutes). After the pulverization treatment, the photocatalyst powder F was obtained by removing the beads and performing filtration treatment.
As a result of XRD measurement of the obtained photocatalyst powder F, almost all peaks were attributed to Y 2 Ti 2 O 5 S 2 . Table 1 shows the XRD measurement results and the ultraviolet/visible diffuse reflectance spectrum measurement results of the obtained photocatalyst powder F.
Table 1 shows the evaluation results of the photocatalytic activity of the photocatalyst powder F.

<実施例7>
実施例3において合成した光触媒粉末Cを蒸留水及びIrOコロイド溶液と共にサンプル瓶に封入し、Anton Paar社製「Microwave synthesis
Reactor Monowave 300」にて、200℃にて10分間のMW(マイクロウェーブ)処理を行った。溶媒を除去した後、エチレングリコールに懸濁し、Na(RhCl)・nHO及びKCrOを加え、再度200℃にて10分間のMW処理を行った。この際、Ir金属、Rh金属、Cr金属濃度は、光触媒粉末に対してそれぞれ、0.15,0.1,0.1質量%とした。得られた懸濁液から溶媒を留去し光触媒粉末Gを得た。
得られた光触媒粉末GはXRD測定の結果、ほぼ全てのピークがYTiに帰属された。得られた光触媒粉末GのXRD測定結果と紫外・可視拡散反射スペクトル測定結果を表1に示す。
また、光触媒粉末Gの光触媒活性の評価結果を表1に示す。
<Example 7>
The photocatalyst powder C synthesized in Example 3 was sealed in a sample bottle together with distilled water and an IrO colloidal solution, and subjected to "Microwave synthesis" manufactured by Anton Paar.
MW (microwave) treatment was performed at 200° C. for 10 minutes in a Reactor Monowave 300. After removing the solvent, it was suspended in ethylene glycol, Na 3 (RhCl 6 ).nH 2 O and K 2 CrO 4 were added, and MW treatment was performed again at 200° C. for 10 minutes. At this time, the concentrations of Ir metal, Rh metal, and Cr metal were set to 0.15, 0.1, and 0.1% by mass, respectively, with respect to the photocatalyst powder. A photocatalyst powder G was obtained by distilling off the solvent from the resulting suspension.
As a result of XRD measurement of the obtained photocatalyst powder G, almost all peaks were attributed to Y 2 Ti 2 O 5 S 2 . Table 1 shows the XRD measurement results and the ultraviolet/visible diffuse reflectance spectrum measurement results of the obtained photocatalyst powder G.
Table 1 shows the evaluation results of the photocatalytic activity of the photocatalyst powder G.

<実施例8>
実施例3において合成した光触媒粉末Cを硝酸コバルト六水和物を溶解した硝酸コバルト溶液に分散したのち溶媒を除去した後、空気下300℃にて1時間焼成を行った。この際、Co金属濃度は、光触媒粉末に対して0.015質量%とした。得られた懸濁液から溶媒を留去し光触媒粉末Jを得た。
得られた光触媒粉末JはXRD測定の結果、ほぼ全てのピークがYTiに帰属された。得られた光触媒粉末JのXRD測定結果と紫外・可視拡散反射スペクトル測定結果を表1に示す。
また、光触媒粉末Jの光触媒活性の評価結果を表1に示す。
<Example 8>
The photocatalyst powder C synthesized in Example 3 was dispersed in a cobalt nitrate solution in which cobalt nitrate hexahydrate was dissolved, the solvent was removed, and the dispersion was calcined at 300° C. for 1 hour in the air. At this time, the Co metal concentration was set to 0.015% by mass with respect to the photocatalyst powder. A photocatalyst powder J was obtained by distilling off the solvent from the resulting suspension.
As a result of XRD measurement of the obtained photocatalyst powder J, almost all peaks were attributed to Y 2 Ti 2 O 5 S 2 . Table 1 shows the XRD measurement results and the ultraviolet/visible diffuse reflectance spectrum measurement results of the obtained photocatalyst powder J.
Table 1 shows the evaluation results of the photocatalytic activity of the photocatalyst powder J.

<実施例9>
実施例3において合成した光触媒粉末Cを硝酸コバルト六水和物を溶解した硝酸コバルト溶液に分散したのち溶媒を除去した後、空気下300℃にて1時間焼成を行った。この際、Co金属濃度は、光触媒粉末に対して0.15質量%とした。得られた懸濁液から溶媒を留去し光触媒粉末Kを得た。
得られた光触媒粉末KはXRD測定の結果、ほぼ全てのピークがYTiに帰属された。得られた光触媒粉末KのXRD測定結果と紫外・可視拡散反射スペクトル測定結果を表1に示す。
また、光触媒粉末Kの光触媒活性の評価結果を表1に示す。
<Example 9>
The photocatalyst powder C synthesized in Example 3 was dispersed in a cobalt nitrate solution in which cobalt nitrate hexahydrate was dissolved, the solvent was removed, and the dispersion was calcined at 300° C. for 1 hour in the air. At this time, the Co metal concentration was set to 0.15% by mass with respect to the photocatalyst powder. A photocatalyst powder K was obtained by distilling off the solvent from the resulting suspension.
As a result of XRD measurement of the obtained photocatalyst powder K, almost all peaks were attributed to Y 2 Ti 2 O 5 S 2 . Table 1 shows the XRD measurement results and the ultraviolet/visible diffuse reflectance spectrum measurement results of the obtained photocatalyst powder K.
Table 1 shows the evaluation results of the photocatalytic activity of the photocatalyst powder K.

<比較例1>
焼成温度を600℃としたこと以外は実施例1と同様にして光触媒粉末Hを得た。
得られた光触媒粉末HはXRD測定の結果、26.3°付近のピークが非常に弱く、最大ピークを100としたときに6の強度しかなく、主たる成分がYTiに帰属しないことが判った。得られた光触媒粉末HのXRD測定結果と紫外・可視拡散反射スペクトル測定結果を表1に示す。
また、光触媒粉末Hの光触媒活性の評価結果を表1に示す。
また、図9に26.3°付近のXRDの形状を、図10に30.6°付近のピーク形状を示す。
<Comparative Example 1>
Photocatalyst powder H was obtained in the same manner as in Example 1, except that the firing temperature was 600°C.
As a result of XRD measurement, the obtained photocatalyst powder H has a very weak peak near 26.3°, and has an intensity of only 6 when the maximum peak is taken as 100, and the main component is Y 2 Ti 2 O 5 S 2 It turned out not to belong. Table 1 shows the XRD measurement results and the ultraviolet/visible diffuse reflectance spectrum measurement results of the obtained photocatalyst powder H.
Table 1 shows the evaluation results of the photocatalytic activity of the photocatalyst powder H.
Further, FIG. 9 shows the XRD shape near 26.3°, and FIG. 10 shows the peak shape near 30.6°.

<比較例2>
焼成温度を1000℃としたこと以外は実施例1と同様にして光触媒粉末Iを得た。
得られた光触媒粉末IはXRD測定の結果、ほぼ全てのピークがYTiに帰属された。得られた光触媒粉末IのXRD測定結果と紫外・可視拡散反射スペクトル測定結果を表1に示す。26.3°付近のピーク強度は低く、YTOSであっても成長方向が実施例のYTOSとは異なることが判る。また、紫外・可視拡散反射スペクトル測定結果も、実施例のものとは異なる値となり、光触媒粉末の表面状態も異なっていると推定される。
また、光触媒粉末Iの光触媒活性の評価結果を表1に示す。
また、図11に26.3°付近のXRDのピーク形状を、図12に30.6°付近のピーク形状を示す。
<Comparative Example 2>
A photocatalyst powder I was obtained in the same manner as in Example 1, except that the sintering temperature was 1000°C.
As a result of XRD measurement of the obtained photocatalyst powder I, almost all peaks were attributed to Y 2 Ti 2 O 5 S 2 . Table 1 shows the XRD measurement results and the ultraviolet/visible diffuse reflectance spectrum measurement results of the obtained photocatalyst powder I. The peak intensity near 26.3° is low, and it can be seen that even with YTOS, the growth direction is different from that of YTOS of the example. In addition, the measurement results of the ultraviolet/visible diffuse reflectance spectrum are different from those of the examples, and it is presumed that the surface state of the photocatalyst powder is also different.
Table 1 shows the evaluation results of the photocatalytic activity of the photocatalyst powder I.
Further, FIG. 11 shows the XRD peak shape near 26.3°, and FIG. 12 shows the peak shape near 30.6°.

Figure 0007230663000001
Figure 0007230663000001

表1より、650~900℃の温度で焼成して得られた実施例1~9の光触媒粉末A~G,J,Kは、焼成温度600℃の光触媒粉末Hや焼成温度1000℃の光触媒粉末IとはXRD測定及び紫外・可視拡散反射スペクトル測定において異なる測定値を示し、組成は同一であっても異なる物質であることが分かる。
また、光触媒粉末H,Iでは、水分解に対する光触媒活性は殆ど得られないが、光触媒粉末A~G,J,Kでは良好な光触媒活性が得られた。
From Table 1, the photocatalyst powders A to G, J, and K of Examples 1 to 9 obtained by firing at a temperature of 650 to 900 ° C. are photocatalyst powder H with a firing temperature of 600 ° C. and photocatalyst powder with a firing temperature of 1000 ° C. I shows different measured values in the XRD measurement and the ultraviolet/visible diffuse reflectance spectrum measurement, and it can be seen that they are different substances even if the composition is the same.
The photocatalyst powders H and I showed almost no photocatalytic activity against water decomposition, but the photocatalyst powders A to G, J and K showed good photocatalytic activity.

以上の結果から明らかなように、本発明の光触媒は、特定の特徴を有するYTOSであることにより、高い光触媒活性を有し、しかもこの光触媒のみで水の全分解が可能となることが判る。この結果、水を分解し酸素を発生させるための光触媒と、水素を発生させるための光触媒を配線でつなぐようなことをせずとも、この光触媒を水中に配置し、太陽光の様な光を照射するだけで、水を高効率で水素と酸素に分解できることが判る。 As is clear from the above results, the photocatalyst of the present invention, which is YTOS having specific characteristics, has high photocatalytic activity and can completely decompose water with only this photocatalyst. As a result, without connecting the photocatalyst for decomposing water and generating oxygen and the photocatalyst for generating hydrogen by wiring, this photocatalyst can be placed in water and light like sunlight can be emitted. It can be seen that water can be decomposed into hydrogen and oxygen with high efficiency only by irradiation.

<実施例10>
本発明のYTOSは、電極として使用されたときに、環境に影響を受けにくく、広い範囲のpHで動作することを示す実験を行った。
<Example 10>
Experiments have been conducted to show that the YTOS of the present invention is environmentally insensitive and operates over a wide range of pH when used as an electrode.

<電極の作製>
実施例3に記載の方法により作製し、実施例3でのXRDデータと同等のXRDデータが得られたYTOS粉末を用い、公知の手法である粒子転写法によりYTOS電極を作製した。すなわち、YTOS粉末60mgをイソプロピルアルコール0.5mlに懸濁させ、3cm□のガラスの犠牲基板上にドロップキャストすることで薄膜状に塗布した。これを室温で乾固させた後、3μm厚のチタン薄膜をスパッタリング(アルバック社、MPSシリーズ)により堆積した。このチタン薄膜をガラスの犠牲基板から引きはがすことで、チタン薄膜上にごく薄く形成されたYTOS電極薄膜を得た。
<Fabrication of electrodes>
A YTOS electrode was produced by a well-known particle transfer method using the YTOS powder produced by the method described in Example 3 and having XRD data equivalent to the XRD data in Example 3. That is, 60 mg of YTOS powder was suspended in 0.5 ml of isopropyl alcohol and applied to a thin film by drop casting onto a 3 cm square glass sacrificial substrate. After drying this at room temperature, a 3 μm-thick titanium thin film was deposited by sputtering (ULVAC, MPS series). By peeling off this titanium thin film from the glass sacrificial substrate, a very thin YTOS electrode thin film formed on the titanium thin film was obtained.

<電気容量-電位特性の測定>
上記のYTOS電極を作用極、内部溶液を飽和KCl水溶液としたAg/AgCl参照電極を参照極、白金線を対極とした3端子法により、インピーダンス測定を行った。電解液として0.1MのNaSO水溶液を用い、測定中は溶液を撹拌し、容器のヘッドスペースはアルゴンガスでパージを行った。pHを調整する実験は、HSO水溶液とNaOH水溶液を加えることでpH調整を行った。インピーダンス測定の前にはスイープ速度10mV/sでサイクリックボルタンメトリ測定を行った。インピーダンス測定時に印加する交流信号の振幅は10mVとし、測定は暗所で実施した。
<Measurement of capacitance-potential characteristics>
Impedance was measured by a three-probe method using the above YTOS electrode as a working electrode, an Ag/AgCl reference electrode containing a saturated KCl aqueous solution as an internal solution as a reference electrode, and a platinum wire as a counter electrode. A 0.1 M Na 2 SO 4 aqueous solution was used as the electrolyte, the solution was stirred during the measurement, and the headspace of the container was purged with argon gas. Experiments to adjust the pH were carried out by adding an aqueous H 2 SO 4 solution and an aqueous NaOH solution. Cyclic voltammetry measurements were performed at a sweep rate of 10 mV/s before impedance measurements. The amplitude of the AC signal applied during impedance measurement was 10 mV, and the measurement was performed in a dark place.

<モット-ショットキープロット>
インピーダンス測定により得られたYTOS電極表面の単位面積あたりのキャパシタンス(C)から1/Cを求め、YTOS電極への印加電位(V)に対してプロットを行った(モット-ショットキープロット)。
この結果を図13に示す。図13中、●がpH13.0、■がpH6.8、▲がpH5.1のデータである。
一般に、半導体表面に空乏層が存在する時、この空乏層の幅は半導体に印加される電位により変化するため、1/Cの値も変化する。半導体表面の空乏層ではエネルギーバンドが傾いているため、バンドギャップに対応した光が吸収されて電子-正孔対が生成すると、電子、正孔はそれぞれ薄膜の表面側、裏面側へと逆方向に移動することになる。電子が薄膜表面側へ移動する半導体電極は光カソードであり、正孔が薄膜表面側へ移動する半導体電極は光アノードである。
<Mott-Schottky Plot>
1/ C2 was obtained from the capacitance (C) per unit area of the YTOS electrode surface obtained by impedance measurement, and plotted against the potential (V) applied to the YTOS electrode (Mott-Schottky plot).
The results are shown in FIG. In FIG. 13, ● is the data of pH 13.0, ▪ is the data of pH 6.8, and ▲ is the data of pH 5.1.
In general, when a depletion layer exists on the surface of a semiconductor, the width of this depletion layer changes depending on the potential applied to the semiconductor, so the value of 1/ C2 also changes. Since the energy band is tilted in the depletion layer on the surface of the semiconductor, when light corresponding to the band gap is absorbed and electron-hole pairs are generated, the electrons and holes move in opposite directions to the front and back sides of the thin film, respectively. will move to The semiconductor electrode from which electrons migrate to the thin film surface side is the photocathode, and the semiconductor electrode from which holes migrate to the thin film surface side is the photoanode.

YTOS電極のモット-ショットキープロットは、図13のように正の傾きを持つ直線となる。この正の傾きは、YTOS電極表面はn型半導体が空乏化して形成された空乏層を表面に持ち、光アノードとして動作することを表す。この結果の特徴は、直線的なプロットが、-1.0V vs Ag/AgClと相当な卑電位側まで実測されていることである。この結果から、pHに依存せず、すなわち、動作環境によらず、YTOS電極表面は光アノードとして動作し、その動作範囲の電位はきわめて広いことが分かる。このことは、YTOS電極と他のカソード電極を組み合わせて2電極式で水分解を実施する際、カソード電極の選択肢が多くなり、したがって高活性なカソードと組み合わせやすいために、高効率な水分解に有利である。 The Mott-Schottky plot of the YTOS electrode becomes a straight line with a positive slope as shown in FIG. This positive slope indicates that the YTOS electrode surface has a depletion layer formed by depletion of the n-type semiconductor on the surface and operates as a photoanode. A feature of this result is that the linear plot is measured up to a fairly negative potential side of -1.0 V vs Ag/AgCl. From this result, it can be seen that the YTOS electrode surface operates as a photoanode independent of the pH, that is, regardless of the operating environment, and the potential of the operating range is extremely wide. This means that when the YTOS electrode and another cathode electrode are combined to perform water splitting in a two-electrode system, there are many choices for the cathode electrode, and therefore it is easy to combine with a highly active cathode, which leads to highly efficient water splitting. Advantageous.

<実施例11>
<電極の作製>
実施例3に記載の方法により作製し、実施例3でのXRDデータと同等のXRDデータが得られたYTOS粉末を用い、公知の手法である粒子転写法によりYTOS電極を作製した。すなわち、ガラス犠牲基板上に塗布したYTOS粒子薄膜上に、まずチタンを1μm、その上に金を3μm蒸着により堆積させ、犠牲基板から引きはがすことでチタン/金積層膜上に形成されたYTOS電極薄膜を作製した。
<Example 11>
<Fabrication of electrodes>
A YTOS electrode was produced by a well-known particle transfer method using the YTOS powder produced by the method described in Example 3 and having XRD data equivalent to the XRD data in Example 3. That is, on a YTOS particle thin film coated on a glass sacrificial substrate, titanium was first deposited to a thickness of 1 μm, and gold was deposited thereon to a thickness of 3 μm by vapor deposition. A thin film was produced.

<光電流-電位特性の測定>
上記のYTOS電極を作用極、内部溶液を飽和KCl水溶液としたAg/AgCl参照電極を参照極、白金線を対極とした3端子法により、光電流-電位特性を測定した。水溶液はpH=9もしくは13のリン酸水溶液(いずれの場合もリン酸塩濃度が0.5Mとなるよう調製した。)を用いた。測定中は溶液の撹拌とアルゴンガスによるバブリングを実施した。正電位から負電位側にYTOS電極の電位をスイープさせてアノード電流を測定し、このスイープ中に疑似太陽光の照射と中断を繰り返すことで光アノード電流を観測した。
<Measurement of photocurrent-potential characteristics>
Photocurrent-potential characteristics were measured by a three-probe method using the above YTOS electrode as a working electrode, an Ag/AgCl reference electrode containing a saturated KCl aqueous solution as an internal solution as a reference electrode, and a platinum wire as a counter electrode. The aqueous solution used was a phosphoric acid aqueous solution with a pH of 9 or 13 (prepared so that the phosphate concentration was 0.5M in either case). Stirring of the solution and bubbling with argon gas were carried out during the measurement. The anode current was measured by sweeping the potential of the YTOS electrode from the positive potential to the negative potential side, and the photoanode current was observed by repeating irradiation and interruption of simulated sunlight during this sweep.

測定結果を、図14(pH9)、図15(pH13)に示す。光照射(Light on)-中断(Light off)に対応するノコギリ状のシグナルは、0.1V vs RHE(RHE:可逆水素電位)程度まで見えている。0V vs RHEにおいても光応答が存在する場合、このYTOS電極を理想的な水素生成電極に繋ぐと、YTOS電極に太陽光を照射するだけで水分解が進行することになり、きわめて意義深い。また、光応答のオンセット電位が0V vs RHEに達しない場合も、そのオンセット電位を超える電位を外部から与えると、YTOS電極に太陽光が照射される際に水分解が進行することになるため、YTOS電極の低オンセット電位は応用上有用である。 The measurement results are shown in FIG. 14 (pH 9) and FIG. 15 (pH 13). A sawtooth-like signal corresponding to light irradiation (Light on)-interruption (Light off) is visible up to about 0.1 V vs RHE (RHE: reversible hydrogen potential). If the photoresponse exists even at 0 V vs RHE, if this YTOS electrode is connected to an ideal hydrogen-producing electrode, water splitting will proceed simply by irradiating the YTOS electrode with sunlight, which is extremely significant. Further, even when the onset potential of the photoresponse does not reach 0 V vs RHE, if a potential exceeding the onset potential is applied from the outside, water decomposition proceeds when the YTOS electrode is irradiated with sunlight. Therefore, the low onset potential of the YTOS electrode is useful in applications.

本発明のYTOSに近いバンドギャップを有するTaにおいては、同様の実験を行うと0.5V程度で光応答が消失することが知られており、この点からも本発明の、YTOSの有用性は優れていることが判る。 In Ta 3 N 5 having a bandgap close to that of YTOS of the present invention, it is known that photoresponse disappears at about 0.5 V in a similar experiment. It can be seen that the usefulness is excellent.

Claims (5)

下記一般式(I)で示される組成の光触媒であって、下記装置及び測定条件に従ったCu-Kα線によるXRD測定において、ピークトップが26.3±0.3にある回折ピークを有し、当該ピークトップが、XRDスペクトル上の最大ピーク強度を100として、20以上の強度であり、かつ30.6±0.5の回折ピーク半値幅(FWHM)が0.16~0.30の範囲にある、水の全分解に使用される光触媒。
Ti …(I)
(ただし、a=1.7~2.3、b=1.7~2.3、c=5、d=1.7~2.3の数である。)
<XRD測定>
メーカー;Rigaku
装置;SmartLab
測定条件;
100μm径以下に解砕した光触媒粉末を集中法により粉末X線回折測定を実施
・測定範囲:5~80°
・測定ステップ:0.01°
・スキャン速度:10°/分
モノクロメーター使用せず
解析;
FWHM:Kα1及びKα2の分離処理を経ずに、上記条件で得られたデータから直接計算を実施
A photocatalyst having a composition represented by the following general formula (I) and having a diffraction peak with a peak top at 26.3 ± 0.3 in XRD measurement with Cu-Kα radiation according to the following equipment and measurement conditions , The peak top has an intensity of 20 or more, with the maximum peak intensity on the XRD spectrum being 100, and a diffraction peak half width (FWHM) of 30.6 ± 0.5 in the range of 0.16 to 0.30 A photocatalyst used for the total decomposition of water in
YaTibOcSd ( I )
(However, the numbers are a = 1.7 to 2.3, b = 1.7 to 2.3, c = 5, and d = 1.7 to 2.3.)
<XRD measurement>
Manufacturer: Rigaku
Apparatus; SmartLab
Measurement condition;
Photocatalyst powder pulverized to a diameter of 100 μm or less is subjected to powder X-ray diffraction measurement by the concentration method ・Measurement range: 5 to 80 °
・Measurement step: 0.01°
Scanning speed: 10°/min Analysis without monochromator;
FWHM: Calculated directly from the data obtained under the above conditions without separation of Kα1 and Kα2
下記一般式(I)で示される組成の光触媒であって、下記装置及び測定条件に従った紫外・可視拡散反射スペクトル測定により得られるλP.T.値(K-M変換後の拡散反射スペクトルが最大値を示す波長)が400nm以上495nm以下の範囲にあり、かつλH.S.値(K-M変換後の拡散反射スペクトルが中間値を示す波長)が520nm以上570nm以下の範囲である、水の全分解に使用される光触媒。
Ti …(I)
(ただし、a=1.7~2.3、b=1.7~2.3、c=5、d=1.7~2.3の数である。)
<紫外・可視拡散反射スペクトル測定>
メーカー;JASCO
型番;V-670 Spectrophotometer
測定条件;
・測定範囲:300nm~800nm
・データ間隔:0.2nm
・走査速度:200nm/分
・光源切換え:340.0nm
・データ解析ソフト:Spectra Manager version 2
解析;縦軸をクベルカ-ムンク(K.M.)変換
クベルカ-ムンク変換式
f(R)=(1-R)2/2R=K/S
ここで、f(R)はK.M.関数、Rは絶対反射率、Kは分子吸光係数、Sは散乱係数である。
なお、試料の絶対反射率Rを測定することは困難であり、実際には標準試料を用いた相対反射率rを用いることが一般的である。よって、
=r(測定試料)/r(標準試料)(標準試料としてBaSOを使用)
を用いて相対反射率rの測定を行い、
f(r)=(1-r)2/2r=K/Sより、導出した。
A photocatalyst having a composition represented by the following general formula (I) and having a λP.P. T. value (the wavelength at which the diffuse reflectance spectrum after KM conversion shows the maximum value) is in the range of 400 nm or more and 495 nm or less, and λ H. S. A photocatalyst used for total decomposition of water having a value (wavelength at which the diffuse reflectance spectrum after KM conversion exhibits an intermediate value) is in the range of 520 nm or more and 570 nm or less.
YaTibOcSd ( I )
(However, the numbers are a = 1.7 to 2.3, b = 1.7 to 2.3, c = 5, and d = 1.7 to 2.3.)
<Ultraviolet/visible diffuse reflectance spectrum measurement>
Manufacturer; JASCO
Model number: V-670 Spectrophotometer
Measurement condition;
・Measurement range: 300nm to 800nm
・Data interval: 0.2 nm
・Scanning speed: 200 nm/min ・Light source switching: 340.0 nm
・Data analysis software: Spectra Manager version 2
Analysis; Kubelka-Munk (K.M.) transformation Kubelka-Munk transformation formula f (R ) = (1-R ) 2/2R = K/S on the vertical axis
where f(R ) is K.K. M. function, R is the absolute reflectance, K is the molecular extinction coefficient, and S is the scattering coefficient.
It should be noted that it is difficult to measure the absolute reflectance R of a sample, and in practice it is common to use the relative reflectance r using a standard sample. Therefore,
r = r (measurement sample)/r (standard sample) (using BaSO 4 as standard sample)
to measure the relative reflectance r using
It was derived from f(r )=(1−r )2/2r =K/S.
請求項1又は2に記載の光触媒を固定化した固定化物、又は、成形した成形体、を用いて水素と酸素を発生させる水素及び酸素の製造方法。 3. A method for producing hydrogen and oxygen, wherein hydrogen and oxygen are generated using the photocatalyst-immobilized immobilized article or molded article according to claim 1 or 2 . 請求項1又は2に記載の光触媒を用いて作成した電極。 An electrode produced using the photocatalyst according to claim 1 or 2 . 請求項に記載の電極により水素及び/又は酸素を発生させる水素及び酸素の製造方法。 A method for producing hydrogen and oxygen, wherein the electrode according to claim 4 generates hydrogen and/or oxygen.
JP2019080217A 2018-09-18 2019-04-19 Photocatalyst and method for producing hydrogen and oxygen using this photocatalyst Active JP7230663B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018173350 2018-09-18
JP2018173350 2018-09-18
JP2019031783 2019-02-25
JP2019031783 2019-02-25

Publications (2)

Publication Number Publication Date
JP2020138188A JP2020138188A (en) 2020-09-03
JP7230663B2 true JP7230663B2 (en) 2023-03-01

Family

ID=72264182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019080217A Active JP7230663B2 (en) 2018-09-18 2019-04-19 Photocatalyst and method for producing hydrogen and oxygen using this photocatalyst

Country Status (1)

Country Link
JP (1) JP7230663B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023113019A1 (en) * 2021-12-16 2023-06-22 三菱ケミカル株式会社 Photocatalyst production method, and hydrogen and oxygen production method using said photocatalyst

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011518094A (en) 2007-12-19 2011-06-23 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ Co-doped titanium oxide foam and water sterilizer
JP2013062121A (en) 2011-09-13 2013-04-04 Toyota Motor Corp Active material for sodium ion battery and sodium ion battery
JP2014110172A (en) 2012-12-03 2014-06-12 Toyota Motor Corp PROCESS OF MANUFACTURING ACTIVE MATERIAL FOR BATTERY M2Ti2O5S2
JP2016005998A (en) 2013-09-10 2016-01-14 国立大学法人 東京大学 Novel oxysulfide, method of producing oxysulfide, and photocatalyst, electrode for water photolysis reaction, and method of producing hydrogen, using the same
JP2017039115A (en) 2014-11-21 2017-02-23 三菱化学株式会社 Method for producing composite photocatalyst and composite photocatalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011518094A (en) 2007-12-19 2011-06-23 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ Co-doped titanium oxide foam and water sterilizer
JP2013062121A (en) 2011-09-13 2013-04-04 Toyota Motor Corp Active material for sodium ion battery and sodium ion battery
JP2014110172A (en) 2012-12-03 2014-06-12 Toyota Motor Corp PROCESS OF MANUFACTURING ACTIVE MATERIAL FOR BATTERY M2Ti2O5S2
JP2016005998A (en) 2013-09-10 2016-01-14 国立大学法人 東京大学 Novel oxysulfide, method of producing oxysulfide, and photocatalyst, electrode for water photolysis reaction, and method of producing hydrogen, using the same
JP2017039115A (en) 2014-11-21 2017-02-23 三菱化学株式会社 Method for producing composite photocatalyst and composite photocatalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
大谷宙 他,光触媒活性向上を目指したY2Ti2S2O5の研究開発,第100回触媒討論会討論会A予稿集,日本,一般社団法人触媒学会,2007年09月17日,p. 343

Also Published As

Publication number Publication date
JP2020138188A (en) 2020-09-03

Similar Documents

Publication Publication Date Title
Zeng et al. A review on photocatalytic CO2 reduction using perovskite oxide nanomaterials
Acharya et al. The enhanced photocatalytic activity of gC 3 N 4-LaFeO 3 for the water reduction reaction through a mediator free Z-scheme mechanism
Edalati et al. High-entropy oxynitride as a low-bandgap and stable photocatalyst for hydrogen production
Wang et al. Hierarchical metastable γ-TaON hollow structures for efficient visible-light water splitting
Maegli et al. Enhancement of photocatalytic water oxidation by the morphological control of LaTiO2N and cobalt oxide catalysts
Chen et al. A novel Z-scheme Bi-Bi 2 O 3/KTa 0.5 Nb 0.5 O 3 heterojunction for efficient photocatalytic conversion of N 2 to NH 3
Zhang et al. A simple cation exchange approach to Bi-doped ZnS hollow spheres with enhanced UV and visible-light photocatalytic H 2-production activity
Yuan et al. Preparations and photocatalytic hydrogen evolution of N-doped TiO2 from urea and titanium tetrachloride
Zhan et al. Rationally designed Ta3N5/ZnIn2S4 1D/2D heterojunctions for boosting Visible-Light-driven hydrogen evolution
Kandiel et al. Tailored titanium dioxide nanomaterials: anatase nanoparticles and brookite nanorods as highly active photocatalysts
Jin et al. SrTiO3 nanoparticle/SnNb2O6 nanosheet 0D/2D heterojunctions with enhanced interfacial charge separation and photocatalytic hydrogen evolution activity
Kanhere et al. Visible light driven photocatalytic hydrogen evolution and photophysical properties of Bi3+ doped NaTaO3
Yoshinaga et al. Boosting photocatalytic overall water splitting by Co doping into Mn 3 O 4 nanoparticles as oxygen evolution cocatalysts
Kawashima et al. NH3-assisted flux-mediated direct growth of LaTiO2N crystallites for visible-light-induced water splitting
US10332690B2 (en) Method of producing composite photocatalyst and composite photocatalyst
EP3006402A1 (en) Method for producing metal oxide particles
Do et al. Dramatic CO2 photoreduction with H2O vapors for CH4 production using the TiO2 (bottom)/Fe–TiO2 (top) double-layered films
JP7028393B2 (en) An co-catalyst for an oxygen-generating photocatalyst, an oxygen-generating photocatalyst carrying the co-catalyst, and a complex and a method for producing the complex.
Wu et al. Actualizing efficient photocatalytic water oxidation over SrTaO 2 N by Na modification
JP6320249B2 (en) Novel oxysulfide, method for producing oxysulfide, photocatalyst using the same, electrode for photohydrolysis reaction, and method for producing hydrogen
Lim et al. Expanded solar absorption spectrum to improve photoelectrochemical oxygen evolution reaction: Synergistic effect of upconversion nanoparticles and ZnFe2O4/TiO2
Parida et al. Facile fabrication of hierarchical N-doped GaZn mixed oxides for water splitting reactions
Borse et al. Photocatalytic hydrogen generation from water-methanol mixtures using nanocrystalline ZnFe2O4 under visible light irradiation
Hu et al. Facile synthesis of NaNbxTa1-xO3 with abundant oxygen vacancies for photocatalytic hydrogen evolution without co-catalyst
Hojamberdiev et al. Distinguishing the effects of altered morphology and size on the visible light-induced water oxidation activity and photoelectrochemical performance of BaTaO 2 N crystal structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230130

R150 Certificate of patent or registration of utility model

Ref document number: 7230663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150