JP7230630B2 - weld joint - Google Patents

weld joint Download PDF

Info

Publication number
JP7230630B2
JP7230630B2 JP2019057900A JP2019057900A JP7230630B2 JP 7230630 B2 JP7230630 B2 JP 7230630B2 JP 2019057900 A JP2019057900 A JP 2019057900A JP 2019057900 A JP2019057900 A JP 2019057900A JP 7230630 B2 JP7230630 B2 JP 7230630B2
Authority
JP
Japan
Prior art keywords
young
modulus
plate
stress
web
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019057900A
Other languages
Japanese (ja)
Other versions
JP2020157329A (en
Inventor
耕一 横関
知徳 冨永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019057900A priority Critical patent/JP7230630B2/en
Publication of JP2020157329A publication Critical patent/JP2020157329A/en
Application granted granted Critical
Publication of JP7230630B2 publication Critical patent/JP7230630B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、溶接継手に関する。 The present invention relates to welded joints.

一般的に、鋼構造物は多くの溶接継手部を含む。溶接継手部は形状の急変に伴う応力集中が生じやすく、かつ溶接熱による引張残留応力の導入や材料組織の劣化も生じるため、変動荷重が作用する場合には疲労き裂の起点になる場合がある。特に、溶接継手部において板状部材を接合面の面外方向に変形させるような荷重がかかる場合は、同様に面内方向に荷重がかかる場合に比べて変形量および発生応力が著大になる場合が多く、疲労き裂発生の可能性も高くなる。この課題に対し、例えば特許文献1に記載されたように溶接部の表面を切削して応力集中を緩和する技術や、特許文献2に記載されたように打撃処理によって引張残留応力を取り除き圧縮残留応力を導入する技術などが提案されてきた。 Generally, steel structures contain many welded joints. Welded joints are prone to stress concentration due to sudden changes in shape, and the introduction of tensile residual stress and deterioration of the material structure due to welding heat can also cause fatigue cracks to start when fluctuating loads are applied. be. In particular, when a load that deforms the plate-shaped member in the out-of-plane direction of the joint surface is applied to the welded joint, the amount of deformation and the generated stress are significantly larger than when the load is similarly applied in the in-plane direction. In many cases, the possibility of fatigue crack initiation also increases. For this problem, for example, as described in Patent Document 1, the surface of the weld is cut to reduce stress concentration, and as described in Patent Document 2, the tensile residual stress is removed by impact treatment, and the compressive residual stress is removed. Techniques for introducing stress have been proposed.

特開平5-69128号公報JP-A-5-69128 特開2013-71140号公報JP 2013-71140 A

しかしながら、例えば特許文献1および特許文献2に記載されたような技術はき裂発生防止に有効であるものの、鋼構造物の製作工程が増えること、き裂起点が表面からアクセスできない個所(溶接ルート部や閉断面内部など)の場合には適用できないことが問題であった。 However, although the techniques described in, for example, Patent Documents 1 and 2 are effective in preventing the occurrence of cracks, they increase the number of manufacturing processes for steel structures, and the locations where crack initiation points cannot be accessed from the surface (welding roots) The problem was that it could not be applied to cases such as inside a closed cross section, etc.).

そこで、本発明は、付加的な工程を要することなく、接合面の面外方向の荷重が作用する溶接継手における局所的な応力を低減することが可能な、新規かつ改良された溶接継手を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, the present invention provides a new and improved welded joint capable of reducing localized stress in a welded joint subjected to an out-of-plane load on the joint surface without requiring an additional process. intended to

本発明のある観点によれば、互いに直交する第1の方向および第2の方向を面内方向とする接合面を有し、第1の方向における第1のヤング率が第2の方向における第2のヤング率よりも小さい第1の部材と、接合面に接合され、接合面の面外方向の荷重を伝達する第2の部材とを備える溶接継手が提供される。第2の部材は、第1の方向の寸法が第2の方向の寸法よりも大きい部材であってもよい。また、第1のヤング率は、第2のヤング率よりも10%以上小さくてもよい。
面内の第1の方向と第2の方向との間でヤング率が異なる異方性鋼板で第1の部材を形成することによって、相対的にヤング率が小さい方向における局所的な応力を低減し、面外方向の荷重が作用する場合の亀裂の発生を防止することができる。
According to one aspect of the present invention, the joint surface has a first direction and a second direction perpendicular to each other as in-plane directions, and the first Young's modulus in the first direction is the second direction in the second direction. A welded joint is provided comprising a first member having a Young's modulus of less than 2 and a second member joined to the faying surfaces and transmitting loads in an out-of-plane direction of the faying surfaces. The second member may be a member having a dimension in the first direction that is greater than a dimension in the second direction. Also, the first Young's modulus may be 10% or more smaller than the second Young's modulus.
Forming the first member from an anisotropic steel sheet that has different Young's moduli between first and second in-plane directions to reduce localized stress in directions of relatively low Young's modulus In addition, it is possible to prevent the occurrence of cracks when a load in the out-of-plane direction acts.

上記の溶接継手において、第1の部材は、第1の方向の両端、および第2の方向の両端でそれぞれ変位を拘束される矩形の板状部材であり、板状部材の第1の方向の寸法および第2の方向の寸法のうち、長い方は短い方の2倍以上であってもよい。より具体的には、第1の部材は、ウェブおよびフランジを有し、長手方向の両端で他の部材に接合されるH形断面部材のウェブであってもよい。また、第1の部材は、ウェブおよびフランジを有し、溶接継手を挟む長手方向の2箇所でウェブおよびフランジがリブに接合されるH形断面部材のウェブであってもよい。あるいは、第1の部材は、3つ以上の側面を有し長手方向の両端で他の部材に接合される多角形鋼管の1つの側面であってもよい。
第1の部材が上記のような条件を満たす場合、板状部材の2方向の寸法比(アスペクト比)と異方性鋼板におけるヤング率の変化率との関係を解析して、適切な設計をすることが容易である。なお、このような場合以外でも、接合面の面内の2つの方向の間でヤング率が異なる場合にヤング率がより小さい方向で応力が低減されるという効果は同様であるため、本発明の適用範囲が上記のような条件を満たす溶接継手に限定されることはない。
In the welded joint described above, the first member is a rectangular plate-like member whose displacement is constrained at both ends in the first direction and at both ends in the second direction. Of the dimension and the dimension in the second direction, the longer dimension may be at least twice the shorter dimension. More specifically, the first member may be a web of H-section members having webs and flanges and joined at longitudinal ends to other members. Alternatively, the first member may be a web of H-section members having a web and a flange where the web and flange are joined to the rib at two longitudinal locations across the weld joint. Alternatively, the first member may be one side of a polygonal steel tube having three or more sides and joined to other members at both ends in the longitudinal direction.
When the first member satisfies the above conditions, the relationship between the dimensional ratio (aspect ratio) of the plate-like member in two directions and the rate of change of Young's modulus in the anisotropic steel sheet is analyzed to determine an appropriate design. It is easy to Note that even in cases other than such cases, when the Young's modulus is different between the two directions in the plane of the joint surface, the effect of reducing the stress in the direction with the smaller Young's modulus is the same. The scope of application is not limited to welded joints satisfying the above conditions.

以上で説明したように、本発明によれば、付加的な工程を要することなく、接合面の面外方向の荷重が作用する溶接継手における局所的な応力を低減することができる。 As described above, according to the present invention, it is possible to reduce the local stress in a welded joint on which a load acts in the out-of-plane direction of the joint surface without requiring an additional process.

本発明の一実施形態に係る溶接継手における荷重の方向と潜在的な疲労き裂の発生箇所との関係について説明するための図である。FIG. 4 is a diagram for explaining the relationship between the direction of a load and potential fatigue crack initiation sites in a welded joint according to an embodiment of the present invention; 図1のII-II線断面図である。FIG. 2 is a sectional view taken along line II-II of FIG. 1; 接合部において面外方向の荷重を受ける板状部材のモデルを示す図である。FIG. 4 is a diagram showing a model of a plate-like member that receives an out-of-plane load at a joint. 図1および図2で説明した溶接継手を図3の例と同様にモデル化した図である。FIG. 4 is a diagram modeling the welded joint described in FIGS. 1 and 2 in the same manner as the example of FIG. 3 ; 溶接継手の他の例を示す図である。FIG. 10 is a diagram showing another example of a welded joint; 溶接継手の他の例を示す図である。FIG. 10 is a diagram showing another example of a welded joint; 解析結果に基づいて応力低減効果と板状部材のアスペクト比との関係を示すグラフである。7 is a graph showing the relationship between the stress reduction effect and the aspect ratio of the plate member based on analysis results. 解析結果に基づいて応力低減効果と板状部材のアスペクト比との関係を示すグラフである。7 is a graph showing the relationship between the stress reduction effect and the aspect ratio of the plate member based on analysis results. 解析結果に基づいて応力低減効果とヤング率の変化率との関係を示すグラフである。It is a graph which shows the relationship between the stress reduction effect and change rate of a Young's modulus based on an analysis result.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. In the present specification and drawings, constituent elements having substantially the same functional configuration are denoted by the same reference numerals, thereby omitting redundant description.

図1は、本発明の一実施形態に係る溶接継手における荷重の方向と潜在的な疲労き裂の発生箇所との関係について説明するための図である。図2は、図1のII-II線断面図である。図1および図2に示された例において、溶接継手1は、ウェブ2Wおよびフランジ2Fを有するH形断面部材2のウェブ2W(第1の部材)と、ウェブ2Wに対して垂直な方向に延びるT形断面部材3に接合されるガセット板4(第2の部材)との間に形成される。ガセット板4がウェブ2Wに接合される面(接合面)の面内方向として、互いに直交する第1の方向(図中のx方向)および第2の方向(図中のy方向)を定義する。 FIG. 1 is a diagram for explaining the relationship between the direction of load and the location of potential fatigue crack initiation in a welded joint according to an embodiment of the present invention. FIG. 2 is a sectional view taken along line II--II of FIG. In the example shown in FIGS. 1 and 2, the welded joint 1 extends in a direction perpendicular to the web 2W (first member) of an H-section member 2 having a web 2W and a flange 2F. It is formed between the gusset plate 4 (second member) joined to the T-section member 3 . A first direction (x-direction in the drawing) and a second direction (y-direction in the drawing) that are orthogonal to each other are defined as the in-plane directions of the surface (joint surface) where the gusset plate 4 is joined to the web 2W. .

ここで、T形断面部材3の長手方向に荷重Pがかかる場合、ガセット板4はウェブ2Wの接合面の面外方向の荷重を伝達することになる。この場合、特に図2に示されるように、ウェブ2Wにおいてガセット板4の板面に平行な方向(x方向)の局所応力Sによる疲労き裂Cが発生する可能性がある。より一般化していえば、第1の部材の接合面に接合された部材が、第1の方向(x方向)の寸法が第2の方向(y方向)の寸法よりも大きい部材である場合、寸法が相対的に大きい方の方向(図示された例ではx方向)に沿う局所応力Sによる疲労き裂Cが発生する可能性がある。 Here, when the load P is applied in the longitudinal direction of the T-shaped cross-section member 3, the gusset plate 4 transmits the load in the out-of-plane direction of the joint surface of the web 2W. In this case, as particularly shown in FIG. 2, fatigue cracks C may occur in the web 2W due to the local stress S in the direction parallel to the plate surface of the gusset plate 4 (x direction). More generally speaking, if the member bonded to the bonding surface of the first member is a member whose dimension in the first direction (x direction) is greater than its dimension in the second direction (y direction), the dimension Fatigue cracks C can occur due to local stress S along the direction in which is relatively large (the x-direction in the example shown).

本発明の一実施形態では、上記で図1および図2を参照して説明したような溶接継手1において、ウェブ2Wを異方性鋼板で形成することによって局所応力Sを低減し、疲労き裂Cの発生を防止する。本明細書において、異方性鋼板は、面内の第1の方向におけるヤング率が通常の鋼板(等方性鋼板)よりも低く、面内で第1の方向に直交する第2の方向のヤング率が通常の鋼板よりも高い鋼板である。つまり、異方性鋼板において、面内の第1の方向における第1のヤング率は、面内で第1の方向に直交する第2の方向における第2のヤング率よりも小さい。 In one embodiment of the present invention, in the welded joint 1 as described above with reference to FIGS. 1 and 2, the web 2W is formed of anisotropic steel to reduce the local stress S and fatigue cracks. Prevents the generation of C. In this specification, an anisotropic steel sheet has a lower Young's modulus in a first in-plane direction than a normal steel sheet (isotropic steel sheet), and a second direction perpendicular to the first direction in the plane. A steel sheet with a higher Young's modulus than ordinary steel sheets. That is, in the anisotropic steel sheet, the first Young's modulus in the in-plane first direction is smaller than the second Young's modulus in the second in-plane direction perpendicular to the first direction.

より具体的には、図1および図2に示された例の場合、接合面の面内方向のうち、ガセット板4の寸法が相対的に大きい方の方向(x方向)のヤング率がそれに直交する方向(y方向)のヤング率よりも小さい異方性鋼板で形成することによって、付加的な工程を要することなく局所応力Sを低減させることができる。このような手法による局所応力Sの低減は、接合面に接合される部材(第2の部材)がガセット板4のような板状断面である場合に限られず、例えば長方形断面や楕円形断面、長円形断面など、接合面の面内の2つの方向でそれぞれ寸法が異なる形状である場合に可能である。 More specifically, in the case of the examples shown in FIGS. 1 and 2, the Young's modulus in the direction (x direction) in which the dimension of the gusset plate 4 is relatively larger among the in-plane directions of the joint surfaces is By using an anisotropic steel sheet having a Young's modulus smaller than that in the orthogonal direction (y direction), the local stress S can be reduced without requiring an additional process. The reduction of the local stress S by such a method is not limited to the case where the member (second member) to be joined to the joint surface has a plate-like cross section such as the gusset plate 4, for example, a rectangular cross section, an elliptical cross section, This is possible in the case of a shape such as an elliptical cross-section, which has different dimensions in two directions in the plane of the joint surface.

図3は、接合部において面外方向の荷重を受ける板状部材のモデルを示す図である。図3には、第1の方向(x方向)の長さa、y方向(第2の方向)の長さbであり、x方向の両端およびy方向の両端でそれぞれ変位を拘束される矩形の板状部材が示されている。この板状部材の場合、x方向およびy方向を含むx-y平面内の方向が面内方向であり、x-y平面に垂直な方向が面外方向である。 FIG. 3 is a diagram showing a model of a plate member that receives an out-of-plane load at a joint. FIG. 3 shows a rectangle having a length a in the first direction (x-direction) and a length b in the y-direction (second direction), and whose displacement is constrained at both ends in the x-direction and y-direction, respectively. is shown. In the case of this plate member, the direction within the xy plane including the x direction and the y direction is the in-plane direction, and the direction perpendicular to the xy plane is the out-of-plane direction.

上記のモデルにおいて、板状部材の面外方向に作用する荷重Pが一定である場合、x方向、y方向のそれぞれについて、板状部材の変形は支持長さaまたは支持長さbの曲げたわみ変形として考えることができる。この場合、x方向およびy方向のそれぞれで発生する応力σ,σは、板状部材のx方向およびy方向のヤング率E,Eに影響を受ける。従って、例えばE<Eである場合、ヤング率の大きい方向に力が流れることによって、E=Eである場合に比べて応力σはより小さく、応力σはより大きくなる。この場合、板状部材のヤング率が変化することで、板状部材の面外方向の変形量も変化することになる。 In the above model, when the load P acting in the out-of-plane direction of the plate-like member is constant, the deformation of the plate-like member is the bending deflection of the support length a or the support length b in each of the x and y directions. It can be thought of as a variant. In this case, the stresses σ x and σ y generated in the x and y directions are affected by the Young's moduli E x and E y in the x and y directions of the plate member. Thus, for example, if E x <E y , the force flowing in the direction of higher Young's modulus will result in a lower stress σ x and a higher stress σ y than if E x =E y . In this case, when the Young's modulus of the plate member changes, the amount of deformation of the plate member in the out-of-plane direction also changes.

一方、上記のモデルにおいて、荷重Pによって生じる面外方向の変形量δが一定である場合、板状部材のヤング率が変化しても板状部材に生じるひずみεの大きさは変化しないと考えることができる。この場合、x方向およびy方向のそれぞれで発生する応力σ,σについて、板状部材のx方向およびy方向のヤング率E,Eとの間にσ=εE、σ=εEの関係が成り立つ。従って、例えばE<E<Eである場合、E=E=Eである場合に比べて応力σはより小さく、応力σはより大きくなる。ここでEは通常の鋼板(等方性鋼板)のヤング率である。この場合、板状部材のヤング率が変化することで、荷重Pの大きさも変化することになる。 On the other hand, in the above model, if the amount of deformation δ in the out-of-plane direction caused by the load P is constant, even if the Young's modulus of the plate-like member changes, it is considered that the magnitude of the strain ε in the plate-like member does not change. be able to. In this case, between the stresses σ x and σ y generated in the x and y directions and the Young's moduli E x and E y of the plate member in the x and y directions, σ x =εE x and σ y =εE y holds. Thus, for example, if E x <E 0 <E y , the stress σ x will be lower and the stress σ y will be higher than if E x =E y =E 0 . Here, E0 is the Young's modulus of a normal steel plate (isotropic steel plate). In this case, as the Young's modulus of the plate member changes, the magnitude of the load P also changes.

図4は、図1および図2で説明した溶接継手を図3の例と同様にモデル化した図である。H形断面部材2の長手方向をx方向、高さ方向をy方向とした場合、ウェブ2Wの接合面はx-y平面に沿って広がる。つまり、x方向およびy方向を含むx-y平面内の方向が接合面の面内方向であり、x-y平面に垂直な方向が接合面の面外方向である。H形断面部材2が長手方向の両端で柱などの他の部材に接合されているものとすると、ウェブ2Wは、図3のモデルと同様に、x方向の両端の変位が接合される他の部材によって拘束され、y方向の両端の変位がフランジ2Fによって拘束される矩形の板状部材になる。ガセット板4は、板面がx方向に平行になるように接合されている。 FIG. 4 is a diagram of the welded joint described in FIGS. 1 and 2 modeled in the same manner as the example of FIG. Assuming that the longitudinal direction of the H-shaped cross-sectional member 2 is the x direction and the height direction is the y direction, the joint surface of the web 2W extends along the xy plane. That is, the direction in the xy plane including the x direction and the y direction is the in-plane direction of the bonding surface, and the direction perpendicular to the xy plane is the out-of-plane direction of the bonding surface. Assuming that the H-section member 2 is joined to other members such as pillars at both ends in the longitudinal direction, the web 2W is displaced at both ends in the x-direction to be joined to other members, similar to the model of FIG. It becomes a rectangular plate-shaped member that is restrained by the member and whose displacement at both ends in the y direction is restrained by the flanges 2F. The gusset plate 4 is joined so that the plate surface is parallel to the x direction.

上記で図4の例でも、図3の例と同様に、ウェブ2Wのx方向およびy方向のヤング率を例えばE<Eとすることによって、E=Eである場合に比べてx方向の応力σをより小さく、y方向の応力σをより大きくすることができる。従って、例えばガセット板4の板面に平行なx方向の応力σを低減したい場合、ヤング率がE<Eとなる異方性鋼板でウェブ2Wを形成することによって、切削や打撃処理といった付加的な工程を要することなく、応力σを低減することができる。 In the example of FIG . 4 above, similarly to the example of FIG. The stress σ x in the x direction can be smaller and the stress σ y in the y direction can be larger. Therefore, for example, when it is desired to reduce the stress σ x in the x direction parallel to the plate surface of the gusset plate 4, the web 2W is formed of an anisotropic steel plate having a Young's modulus of E x <E y , so that cutting or impact treatment is performed. The stress σ x can be reduced without requiring additional steps such as

図5および図6は、溶接継手の他の例を示す図である。図5に示された例では、図1の例と同様にH形断面部材2のウェブ2Wとガセット板4との間に溶接継手1Aが形成されているが、図1の例との違いとして、図5の例では、溶接継手1Aを挟む長手方向の2箇所で、H形断面部材2のウェブ2Wおよびフランジ2Fがリブ5に接合されている。この場合、ウェブ2Wは、H形断面部材2の長手方向(x方向)の両端の変位がリブ5によって拘束され、H形断面部材の高さ方向(y方向)の両端の変位がフランジ2Fによって拘束される矩形の板状部材になり、図4の例と同様にモデル化することが可能である。 5 and 6 are diagrams showing other examples of welded joints. In the example shown in FIG. 5, a welded joint 1A is formed between the web 2W of the H-section member 2 and the gusset plate 4 as in the example of FIG. 5, the web 2W and the flange 2F of the H-section member 2 are joined to the rib 5 at two locations in the longitudinal direction sandwiching the welded joint 1A. In this case, the web 2W is restrained by the ribs 5 against displacement at both ends in the longitudinal direction (x direction) of the H-shaped cross-section member 2, and is constrained by the flanges 2F at both ends in the height direction (y-direction) of the H-shaped cross-section member. It becomes a constrained rectangular plate-like member, and can be modeled in the same way as the example in FIG.

図6に示された例では、4つの側面を有し長手方向の両端で他の部材に接合される角形鋼管6の1つの側面6Sとガセット板4との間に溶接継手1Bが形成される。この場合、側面6Sは、角形鋼管6の長手方向(x方向)の両端の変位が接合される他の部材によって拘束され、角形鋼管6の断面方向(y方向)の両端の変位が隣接する他の側面によって拘束される矩形の板状部材になり、図4の例と同様にモデル化することが可能である。 In the example shown in FIG. 6, a welded joint 1B is formed between one side 6S of a square steel pipe 6 having four sides and joined to other members at both ends in the longitudinal direction and the gusset plate 4. . In this case, the displacement of both ends in the longitudinal direction (x direction) of the square steel pipe 6 is constrained by other members to be joined, and the displacement of both ends in the cross-sectional direction (y direction) of the square steel pipe 6 is adjacent to the other member. , and can be modeled in the same way as the example in FIG.

上記で図3を参照して説明したモデルを用いて、本発明の実施形態に係る溶接継手の応力低減効果について解析を行った。荷重Pは、板状部材の接合面の図心、すなわち(x,y)=(a/2,b/2)の位置に加えられるものとし、応力参照点も図心とした。通常の鋼板(等方性鋼板)のヤング率をE=200GPaとし、異方性鋼板ではx方向およびy方向のヤング率E,EがそれぞれE=E×(1-k)、E=E/(1-k)になるものとした。ここで、kはヤング率の変化率である。解析では、ヤング率の変化率k、および板状部材のアスペクト比a/bを変化させながら、直交異方性板の面外曲げたわみの解析解を利用して、板状部材を異方性鋼板で形成したときのx方向応力の変化率を算出した。 Using the model described above with reference to FIG. 3, the stress reduction effect of the welded joint according to the embodiment of the present invention was analyzed. The load P was applied to the centroid of the joining surfaces of the plate members, that is, the position of (x, y)=(a/2, b/2), and the stress reference point was also the centroid. The Young's modulus of a normal steel sheet (isotropic steel sheet) is E 0 =200 GPa, and the Young's modulus E x and E y in the x and y directions of an anisotropic steel sheet are E x =E 0 ×(1−k), respectively. , E y =E 0 /(1−k). where k is the rate of change in Young's modulus. In the analysis, while changing the rate of change k of Young's modulus and the aspect ratio a/b of the plate-like member, the analytical solution of the out-of-plane bending deflection of the orthotropic plate was used to convert the plate-like member into anisotropic The rate of change in the x-direction stress when formed with a steel plate was calculated.

図7および図8は、解析結果に基づいて応力低減効果と板状部材のアスペクト比との関係を示すグラフである。グラフに示されるように、荷重Pを一定にすると、ヤング率の変化率kが同じ場合、アスペクト比a/bが大きい、すなわち板状部材がx方向に長いほど、x方向応力および変形量δの低減幅が大きい。x方向応力については、アスペクト比a/bが小さくなると徐々に低減幅は縮小し、0.5<a/b<2.0の範囲で縮小が相対的に顕著であるが、アスペクト比a/bが1よりも小さくなり、板状部材がy方向に長くなっても、等方性鋼板の場合の値(縦軸で1)に達することはない。変形量δについては、アスペクト比a/bが1よりも小さくなると、異方性鋼板の場合の値が等方性鋼板の場合の値を超える。これは、長方形の短い辺の方向のヤング率が長い辺の方向のヤング率よりも変形量δに与える影響が大きいためである。以上の解析結果より、荷重Pが一定の場合、例えばアスペクト比a/b≧2.0を応力低減効果がより高い領域として特定することができる。 7 and 8 are graphs showing the relationship between the stress reduction effect and the aspect ratio of the plate member based on the analysis results. As shown in the graph, when the load P is constant and the Young's modulus change rate k is the same, the larger the aspect ratio a/b, that is, the longer the plate-shaped member in the x direction, the more the x-direction stress and the amount of deformation δ is greatly reduced. As for the x-direction stress, as the aspect ratio a/b decreases, the width of reduction gradually decreases. Even if b becomes smaller than 1 and the plate-shaped member becomes longer in the y direction, it does not reach the value (1 on the vertical axis) for the isotropic steel plate. Regarding the amount of deformation δ, when the aspect ratio a/b is less than 1, the value for the anisotropic steel plate exceeds the value for the isotropic steel plate. This is because the Young's modulus in the direction of the short side of the rectangle has a greater effect on the deformation amount δ than the Young's modulus in the direction of the long side. From the above analysis results, when the load P is constant, for example, the aspect ratio a/b≧2.0 can be specified as a region with a higher stress reduction effect.

一方、変形量δを一定にすると、ヤング率の変化率kが同じ場合、アスペクト比a/bが小さい、すなわち板状部材がy方向に長い場合の方が、x方向応力および荷重Pの低減幅が大きい。x方向応力については、0.5<a/b<2.0の範囲で低減幅が大きく変化するが、アスペクト比a/bが1を超えて、板状部材がx方向に長くなっても、等方性鋼板の場合の値(縦軸で1)に達することはない。荷重Pについては、アスペクト比a/bが1を超えると、異方性鋼板の場合の値が等方性鋼板の場合の値を超える。これは、荷重Pが一定の場合について説明したのと同様に、長方形の短い辺の方向のヤング率が長い辺の方向のヤング率よりも荷重Pに与える影響が大きいためである。以上の解析結果より、変形量δが一定である場合、例えばアスペクト比a/b≦0.5を応力低減効果がより高い領域として特定することができる。 On the other hand, when the deformation amount δ is constant, the x-direction stress and the load P are reduced when the aspect ratio a/b is small, that is, when the plate-like member is long in the y-direction, when the Young's modulus change rate k is the same. Wide. Regarding the x-direction stress, the width of reduction changes greatly in the range of 0.5<a/b<2.0, but even if the aspect ratio a/b exceeds 1 and the plate-like member is elongated in the x-direction, , does not reach the value for isotropic steel (1 on the vertical axis). Regarding the load P, when the aspect ratio a/b exceeds 1, the value for the anisotropic steel plate exceeds the value for the isotropic steel plate. This is because the Young's modulus in the direction of the short sides of the rectangle has a greater effect on the load P than the Young's modulus in the direction of the long sides, as in the case where the load P is constant. From the above analysis results, when the deformation amount δ is constant, for example, the aspect ratio a/b≦0.5 can be specified as a region with a higher stress reduction effect.

上記で図7に示した荷重Pが一定の場合の解析結果ではアスペクト比a/b≧2.0の領域が、図8に示した変形量δが一定の場合の解析結果ではアスペクト比a/b≦0.5の範囲が、それぞれ応力低減効果がより高い領域として特定された。これらの範囲は、a,bのうち長い方の寸法が短い方の寸法の2倍以上である、という点で共通する。つまり、接合面の寸法a,bのうち長い方が短い方の2倍以上である場合、x方向およびy方向のうちヤング率E,Eをより小さくする方向を適切に選択すれば、異方性鋼板を用いることによって大きな応力低減効果を得ることができる。 In the analysis results for the case where the load P shown in FIG. 7 is constant, the area with the aspect ratio a/b≧2.0 is shown in FIG. A range of b≦0.5 was identified as a region with a higher stress reduction effect. These ranges have in common that the longer dimension of a and b is at least twice the shorter dimension. In other words, when the longer dimension of the joint surfaces a and b is at least twice the shorter dimension, if the direction in which the Young's moduli E x and E y are smaller is selected appropriately from the x direction and the y direction, A large stress reduction effect can be obtained by using an anisotropic steel sheet.

図9は、解析結果に基づいて応力低減効果とヤング率の変化率との関係を示すグラフである。グラフに示されるように、板状部材のアスペクト比a/bを10に固定すると、応力Pが一定の場合、および変形量δが一定の場合の両方について、ヤング率の変化率kとy方向応力との関係はほぼ線形になる。従って、例えば図7および図8に示した解析結果から、任意のヤング率の変化率kの場合の結果を線形補間によって予測することができる。 FIG. 9 is a graph showing the relationship between the stress reduction effect and the rate of change of Young's modulus based on the analysis results. As shown in the graph, when the aspect ratio a/b of the plate member is fixed to 10, the rate of change of Young's modulus k and the y-direction The relationship with stress becomes almost linear. Therefore, for example, from the analysis results shown in FIGS. 7 and 8, the results for an arbitrary change rate k of Young's modulus can be predicted by linear interpolation.

ここで、例えば、溶接継手について、疲労寿命を20%程度改善したい場合、局所応力を6%程度低減できればよい。この場合、板状部材のアスペクト比a/bに対してx方向応力の低減率が6%(縦軸の値で0.94)以上になるように、異方性鋼板におけるヤング率の変化率kを決定することができる。例えば、図7のグラフを参照すると、アスペクト比a/b≦0.5の範囲で、変形量δが一定であり、k=0.05の場合に、x方向の応力の低減率は6%以上になる。このとき、x方向のヤング率E(E×(1-k)=0.95E)は、y方向のヤング率E(E/(1-k)≒1.05E)よりも約10%小さい。ヤング率の差を大きくすれば、応力の低減率も大きくなるため、この例では、(アスペクト比a/bにもよるが)EがEよりも10%以上小さい場合に応力の低減率が6%以上になるといえる。より好ましい範囲として、EがEよりも20%以上小さくてもよいし、EがEよりも30%以上小さくてもよい。 Here, for example, when it is desired to improve the fatigue life of a welded joint by about 20%, it is sufficient to reduce the local stress by about 6%. In this case, the change rate of the Young's modulus in the anisotropic steel sheet is adjusted so that the x-direction stress reduction rate is 6% (0.94 on the vertical axis) or more with respect to the aspect ratio a/b of the plate member. k can be determined. For example, referring to the graph in FIG. 7, the deformation amount δ is constant in the range of aspect ratio a / b ≤ 0.5, and when k = 0.05, the reduction rate of stress in the x direction is 6% That's it. At this time, the Young's modulus E x (E 0 ×(1−k)=0.95E 0 ) in the x direction is given by the Young's modulus E y (E 0 /(1−k)≈1.05E 0 ) in the y direction. is also about 10% smaller. If the difference in Young's modulus is increased, the stress reduction rate is also increased, so in this example (depending on the aspect ratio a/ b ), the stress reduction rate is 6% or more. As a more preferable range, E x may be smaller than E y by 20% or more, or E x may be smaller than E y by 30% or more.

なお、上記の解析は、板状部材が矩形板状であり、かつx方向の両端およびy方向の両端でそれぞれ変位を拘束される場合について実施した。この場合、上述したように、板状部材のアスペクト比a/bとヤング率の変化率kとの関係を解析して適切な設計をすることが容易である。このような例は、具体的には、上記で図1を参照して説明した長手方向の両端が他の部材に接合されるH形断面部材のウェブの例、図5を参照して説明したリブが接合されるH形断面部材のウェブの例、および図6を参照して説明した角形鋼管の側面の例を含む。図6に示された角形鋼管は、断面が多角形の鋼管のうち4つの側面を有する多角形鋼管の例である。側面の数は3つ以上であれば特に制限されない。これ以外でも、同様の条件が成立する場合には上述のようなモデル化による解析および設計が可能である。 The above analysis was performed for the case where the plate-like member is rectangular plate-like and the displacement is constrained at both ends in the x direction and the both ends in the y direction. In this case, as described above, it is easy to analyze the relationship between the aspect ratio a/b of the plate-shaped member and the rate of change k of Young's modulus to make an appropriate design. Such an example is specifically described with reference to FIG. 5, the example of a web of H-section members whose longitudinal ends are joined to other members as described above with reference to FIG. Examples include a web of H-section members to which ribs are joined, and an example of a square steel tube profile as described with reference to FIG. The square steel pipe shown in FIG. 6 is an example of a steel pipe having a polygonal cross section and having four sides. The number of sides is not particularly limited as long as it is three or more. Other than this, analysis and design by modeling as described above are possible when similar conditions are established.

また、本発明の適用範囲は、図3および図4に示したようなモデル化が可能な溶接継手に限定されるものではない。接合面の面内の2つの方向の間でヤング率が異なる場合にヤング率がより小さい方向で応力が低減されるという効果は、部材の形状、および部材の各辺の拘束状態に限らず発揮される。従って、本発明の実施形態に係る溶接継手は、例えばH形断面部材のフランジや、円形鋼管の周面に他の部材を溶接によって接合する場合にも適用することができる。円形鋼管の場合、接合面の面内の第1および第2の方向は、それぞれ鋼管の長手方向および周方向に相当する。 Also, the scope of application of the present invention is not limited to welded joints that can be modeled as shown in FIGS. When the Young's modulus is different between the two directions in the plane of the joint surface, the stress is reduced in the direction with the smaller Young's modulus. be done. Therefore, the welded joint according to the embodiment of the present invention can be applied, for example, to the flange of an H-shaped cross-section member or the case of joining other members to the peripheral surface of a circular steel pipe by welding. In the case of a circular steel pipe, the first and second in-plane directions of the joining surfaces correspond to the longitudinal direction and circumferential direction of the steel pipe, respectively.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範囲内において、各種の変形例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention belongs can conceive of various modifications or modifications within the scope of the technical idea described in the claims. It is understood that these also naturally belong to the technical scope of the present invention.

1,1A,1B…溶接継手、2…H形断面部材、2F…フランジ、2W…ウェブ、3…T形断面部材、4…ガセット板、5…リブ、6…角形鋼管、6S…側面。 DESCRIPTION OF SYMBOLS 1, 1A, 1B... Weld joint, 2... H-shaped cross-section member, 2F... Flange, 2W... Web, 3... T-shaped cross-section member, 4... Gusset plate, 5... Rib, 6... Square steel pipe, 6S... Side.

Claims (6)

互いに直交する第1の方向および第2の方向を面内方向とする接合面を有し、前記第1の方向における第1のヤング率が前記第2の方向における第2のヤング率よりも小さい第1の部材と、
前記接合面に接合され、前記接合面の面外方向の荷重を伝達する第2の部材と
を備え
前記第2の部材は、前記第1の方向の寸法が前記第2の方向の寸法よりも大きい部材である、溶接継手。
A joint surface having a first direction and a second direction perpendicular to each other as in-plane directions, wherein the first Young's modulus in the first direction is smaller than the second Young's modulus in the second direction a first member;
a second member that is joined to the joint surface and transmits a load in the out-of-plane direction of the joint surface ,
The welded joint, wherein the second member is a member whose dimension in the first direction is greater than the dimension in the second direction .
前記第1のヤング率は、前記第2のヤング率よりも10%以上小さい、請求項1に記載の溶接継手。 2. The welded joint of claim 1, wherein said first Young's modulus is 10% or more less than said second Young's modulus. 前記第1の部材は、前記第1の方向の両端、および前記第2の方向の両端でそれぞれ変位を拘束される矩形の板状部材であり、
前記板状部材の前記第1の方向の寸法および前記第2の方向の寸法のうち、長い方は短い方の2倍以上である、請求項1または請求項2に記載の溶接継手。
The first member is a rectangular plate-shaped member whose displacement is constrained at both ends in the first direction and at both ends in the second direction,
The welded joint according to claim 1 or 2 , wherein the longer dimension of the plate member in the first direction and the dimension in the second direction is at least twice the shorter dimension.
前記第1の部材は、ウェブおよびフランジを有し、長手方向の両端で他の部材に接合されるH形断面部材のウェブである、請求項1から請求項のいずれか1項に記載の溶接継手。 4. Any one of claims 1 to 3 , wherein the first member is a web of H-section members having webs and flanges and joined to other members at both longitudinal ends. welded joints. 前記第1の部材は、ウェブおよびフランジを有し、前記溶接継手を挟む長手方向の2箇所で前記ウェブおよび前記フランジがリブに接合されるH形断面部材のウェブである、請求項1から請求項のいずれか1項に記載の溶接継手。 3. The first member is a web of H-section member having a web and a flange, wherein the web and the flange are joined to the rib at two longitudinal locations across the welded joint. Item 4. The welded joint according to any one of Item 3 . 前記第1の部材は、3つ以上の側面を有し長手方向の両端で他の部材に接合される多角形鋼管の1つの側面である、請求項1から請求項のいずれか1項に記載の溶接継手。 4. The first member according to any one of claims 1 to 3, wherein the first member is one side of a polygonal steel pipe having three or more sides and joined to other members at both ends in the longitudinal direction. Welded joints as described.
JP2019057900A 2019-03-26 2019-03-26 weld joint Active JP7230630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019057900A JP7230630B2 (en) 2019-03-26 2019-03-26 weld joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019057900A JP7230630B2 (en) 2019-03-26 2019-03-26 weld joint

Publications (2)

Publication Number Publication Date
JP2020157329A JP2020157329A (en) 2020-10-01
JP7230630B2 true JP7230630B2 (en) 2023-03-01

Family

ID=72640997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019057900A Active JP7230630B2 (en) 2019-03-26 2019-03-26 weld joint

Country Status (1)

Country Link
JP (1) JP7230630B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022051065A (en) 2020-09-18 2022-03-31 株式会社Screenホールディングス Printer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050233128A1 (en) 2003-12-01 2005-10-20 Touchstone Research Laboratory, Ltd. Intermittently connected metal matrix composite bars
JP2018161677A (en) 2017-03-27 2018-10-18 新日鐵住金株式会社 Steel plate joint structure
JP2018172888A (en) 2017-03-31 2018-11-08 株式会社フジタ Frame structure of building

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6349647B2 (en) * 2013-08-08 2018-07-04 株式会社大林組 Joining method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050233128A1 (en) 2003-12-01 2005-10-20 Touchstone Research Laboratory, Ltd. Intermittently connected metal matrix composite bars
JP2018161677A (en) 2017-03-27 2018-10-18 新日鐵住金株式会社 Steel plate joint structure
JP2018172888A (en) 2017-03-31 2018-11-08 株式会社フジタ Frame structure of building

Also Published As

Publication number Publication date
JP2020157329A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
JP4842755B2 (en) Seismic walls using corrugated steel plates made of ultra high strength steel
JP5833378B2 (en) Buckling restraint brace
JP5176855B2 (en) Folded panel structure and building structure
JP7230630B2 (en) weld joint
JP2016121475A (en) Local buckling prevention structure of iron frame member and structure framework applied with the structure
JP2009047193A (en) Damper device and structure
JP6680005B2 (en) Steel beam and beam-column joint structure
US8615969B2 (en) Reinforcement structure of rectangular flat metal plate
JP6128058B2 (en) Beam end joint structure
JP4395419B2 (en) Vibration control pillar
JP5934325B2 (en) Shear damper
JP6445862B2 (en) Buckling restraint brace
JP2017214771A (en) Connection load bearing capacity evaluation method for column-beam connection structure, design method for column-beam connection structure, and column-beam connection structure
JP5654060B2 (en) Damper brace and damping structure
JP5271164B2 (en) Floor slab structure
JP6682903B2 (en) Buckling stiffening structure and steel structure of H-shaped cross-section member
TWI418689B (en) Anisotropic metallic plate
JP2016216905A (en) Column-beam frame
KR102329508B1 (en) Connecting sturcture between column and beam
JP6807787B2 (en) Steel beam reinforcement structure
JP6979787B2 (en) Brace damper
KR102426247B1 (en) Connecting sturcture between column and beam
KR102307939B1 (en) Connecting sturcture between column and beam
JP6517052B2 (en) Shear damper
JP2022157936A (en) steel beam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230130

R151 Written notification of patent or utility model registration

Ref document number: 7230630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151