JP7230401B2 - TRANSMISSION SYSTEM, TRANSMISSION DEVICE, AND TRANSMISSION METHOD - Google Patents

TRANSMISSION SYSTEM, TRANSMISSION DEVICE, AND TRANSMISSION METHOD Download PDF

Info

Publication number
JP7230401B2
JP7230401B2 JP2018181785A JP2018181785A JP7230401B2 JP 7230401 B2 JP7230401 B2 JP 7230401B2 JP 2018181785 A JP2018181785 A JP 2018181785A JP 2018181785 A JP2018181785 A JP 2018181785A JP 7230401 B2 JP7230401 B2 JP 7230401B2
Authority
JP
Japan
Prior art keywords
signal light
transmission device
supervisory signal
transmission
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018181785A
Other languages
Japanese (ja)
Other versions
JP2020053858A (en
Inventor
祥人 歩行田
貴 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2018181785A priority Critical patent/JP7230401B2/en
Priority to US16/560,176 priority patent/US11228375B2/en
Publication of JP2020053858A publication Critical patent/JP2020053858A/en
Application granted granted Critical
Publication of JP7230401B2 publication Critical patent/JP7230401B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/67Optical arrangements in the receiver
    • H04B10/671Optical arrangements in the receiver for controlling the input optical signal
    • H04B10/672Optical arrangements in the receiver for controlling the input optical signal for controlling the power of the input optical signal
    • H04B10/674Optical arrangements in the receiver for controlling the input optical signal for controlling the power of the input optical signal using a variable optical attenuator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0272Transmission of OAMP information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/564Power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/07Monitoring an optical transmission system using a supervisory signal

Description

本件は、伝送システム、伝送装置、及び伝送方法に関する。 The present invention relates to a transmission system, a transmission device, and a transmission method.

例えば、複数の波長光が波長多重された主信号光に伝送システムの監視信号光が合波されて伝送される場合、受信側の光伝送装置において監視信号光が確実に受信されるように、送信側の伝送装置には主信号光の増幅手段から独立した監視信号光の増幅手段が設けられる(例えば特許文献1参照)。 For example, when a supervisory signal light of a transmission system is multiplexed with a main signal light obtained by wavelength-multiplexing a plurality of wavelengths of light, so that the supervisory signal light is reliably received by the optical transmission device on the receiving side. A transmission device on the transmission side is provided with an amplifier for supervisory signal light that is independent of an amplifier for main signal light (see, for example, Patent Document 1).

特開2009-159290号公報JP 2009-159290 A

上記の場合、監視信号光の送信パワーが増幅により高くなると、伝送路中で主信号光と監視信号光に相互位相変調などの非線形光学効果が生じることにより主信号光の伝送品質が低下するおそれがある。これに対し監視信号光のパワーを低下させれば非線形光学効果を抑制し得るが、監視信号光のパワーが不足することにより監視信号光が正常に受信されず、伝送装置の監視制御機能が低下するおそれがある。 In the above case, if the transmission power of the supervisory signal light increases due to amplification, nonlinear optical effects such as cross-phase modulation may occur between the main signal light and the supervisory signal light in the transmission line, and the transmission quality of the main signal light may deteriorate. There is On the other hand, if the power of the supervisory signal light is reduced, the nonlinear optical effect can be suppressed. There is a risk of

そこで本件は、監視制御機能を低下させずに非線形光学効果を抑制することができる伝送システム、伝送装置、及び伝送方法を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a transmission system, a transmission apparatus, and a transmission method capable of suppressing the nonlinear optical effect without deteriorating the monitoring control function.

1つの態様では、伝送システムは、主信号光を伝送路に送信する第1伝送装置と、前記第1伝送装置から前記伝送路を介して前記主信号光を受信する第2伝送装置とを有し、前記第1伝送装置は、前記第1伝送装置及び前記第2伝送装置の監視制御に関する情報を含む監視信号光を出力する出力部と、前記監視信号光を減衰させる減衰部と、前記監視信号光を前記主信号光に合波する合波部と、前記減衰部の減衰量を制御する制御部とを有し、前記第2伝送装置は、前記伝送路から入力された前記主信号光及び前記監視信号光を分波する分波部と、前記監視信号光のパワーを検出する第1検出部と、前記監視信号光を受信する受信部と、前記第1検出部が検出した前記監視信号光のパワーを前記第1伝送装置に通知する通知部とを有し、前記制御部は、前記通知部から通知された前記監視信号光のパワーと、前記受信部の受光特性の仕様に規定された最小受光感度との差分が第1閾値より大きい場合、前記通知部から通知された前記監視信号光のパワーが前記最小受光感度に近づくように前記減衰部の減衰量を制御することにより、前記監視信号光のパワーを低下させ、前記第1伝送装置及び前記第2伝送装置の監視制御機能を低下させずに前記伝送路中の前記主信号光及び前記監視信号光の非線形光学効果を抑圧する
In one aspect, a transmission system includes a first transmission device that transmits main signal light to a transmission line, and a second transmission device that receives the main signal light from the first transmission device via the transmission line. and the first transmission device includes an output unit for outputting supervisory signal light containing information on supervisory control of the first transmission device and the second transmission device, an attenuation unit for attenuating the supervisory signal light, and the supervisory signal light. The second transmission device has a multiplexing unit that multiplexes the signal light with the main signal light, and a control unit that controls the attenuation amount of the attenuation unit. and a demultiplexer for demultiplexing the supervisory signal light, a first detector for detecting power of the supervisory signal light, a receiver for receiving the supervisory signal light, and the monitor detected by the first detector. a notification unit that notifies the first transmission device of the power of the signal light, and the control unit is defined in the specifications of the power of the supervisory signal light notified from the notification unit and the light reception characteristics of the reception unit. by controlling the attenuation of the attenuator so that the power of the supervisory signal light notified from the notification unit approaches the minimum light sensitivity when the difference from the minimum light sensitivity is greater than a first threshold, The power of the supervisory signal light is reduced to suppress nonlinear optical effects of the main signal light and the supervisory signal light in the transmission line without degrading the supervisory control functions of the first transmission device and the second transmission device. do .

1つの態様では、伝送装置は、主信号光を、伝送路を介して他の伝送装置に伝送する伝送装置において、前記伝送装置及び前記他の伝送装置の監視制御に関する情報を含む監視信号光を出力する出力部と、前記監視信号光を減衰させる減衰部と、前記監視信号光を前記主信号光に合波する合波部と、前記他の伝送装置の受信部が受信した前記監視信号光のパワーと、前記受信部の受光特性の仕様に規定された最小受光感度との差分が第1閾値より大きい場合、前記受信部が受信した前記監視信号光のパワーが前記最小受光感度に近づくように前記減衰部の減衰量を制御することにより、前記監視信号光のパワーを低下させ、前記伝送装置及び前記他の伝送装置の監視制御機能を低下させずに前記伝送路中の前記主信号光及び前記監視信号光の非線形光学効果を抑圧する制御部とを有する。
In one aspect, a transmission apparatus transmits a main signal light to another transmission apparatus via a transmission line, and transmits supervisory signal light including information on supervisory control of the transmission apparatus and the other transmission apparatus. an output unit for outputting, an attenuating unit for attenuating the supervisory signal light, a combining unit for combining the supervisory signal light with the main signal light, and the supervisory signal light received by the receiving unit of the other transmission device and the minimum photosensitivity defined in the specifications of the photodetection characteristics of the receiver unit is greater than a first threshold, the power of the supervisory signal light received by the receiver unit approaches the minimum photosensitivity. by controlling the attenuation of the attenuator, the power of the supervisory signal light is reduced, and the main signal light in the transmission path is maintained without lowering the supervisory control functions of the transmission device and the other transmission device. and a controller for suppressing the nonlinear optical effect of the supervisory signal light .

1つの態様では、伝送方法は、第1伝送装置から伝送路を介して第2伝送装置に主信号光を伝送する伝送方法において、前記第1伝送装置は、前記第1伝送装置及び前記第2伝送装置の監視制御に関する情報を含む監視信号光を出力し、前記監視信号光を減衰部により減衰させ、前記監視信号光を前記主信号光に合波し、前記第2伝送装置は、前記伝送路から入力された前記主信号光及び前記監視信号光を分波し、前記監視信号光のパワーを第1検出部により検出し、前記監視信号光を受信部により受信し、前記第1検出部が検出した前記監視信号光のパワーを前記第1伝送装置に通知し、前記第1伝送装置は、前記第2伝送装置から通知された前記監視信号光のパワーと、前記受信部の受光特性の仕様に規定された最小受光感度との差分が第1閾値より大きい場合、前記第2伝送装置から通知された前記監視信号光のパワーが前記最小受光感度に近づくように前記減衰部の減衰量を制御することにより、前記監視信号光のパワーを低下させ、前記第1伝送装置及び前記第2伝送装置の監視制御機能を低下させずに前記伝送路中の前記主信号光及び前記監視信号光の非線形光学効果を抑圧する方法である。 In one aspect, the transmission method is a transmission method for transmitting main signal light from a first transmission device to a second transmission device via a transmission line, wherein the first transmission device comprises the first transmission device and the second transmission device. The second transmission device outputs supervisory signal light containing information about supervisory control of a transmission device, attenuates the supervisory signal light by an attenuator, multiplexes the supervisory signal light with the main signal light, and demultiplexing the main signal light and the supervisory signal light input from a path, detecting the power of the supervisory signal light by a first detector, receiving the supervisory signal light by a receiver, and notifies the first transmission device of the power of the supervisory signal light detected by the first transmission device, and the first transmission device receives the power of the supervisory signal light notified from the second transmission device and the light reception characteristic of the receiver. when the difference from the minimum light sensitivity specified in the specifications is greater than a first threshold, the attenuation of the attenuator is adjusted so that the power of the supervisory signal light notified from the second transmission device approaches the minimum light sensitivity. By controlling, the power of the supervisory signal light is reduced, and the power of the main signal light and the supervisory signal light in the transmission line is reduced without lowering the supervisory control functions of the first transmission device and the second transmission device. This is a method of suppressing nonlinear optical effects .

1つの側面として、伝送装置の監視制御機能を低下させずに非線形光学効果を抑制することができる。 As one aspect, nonlinear optical effects can be suppressed without degrading the monitoring control function of the transmission device.

第1実施例の伝送システムを示す構成図である。1 is a configuration diagram showing a transmission system of a first embodiment; FIG. 受信側の伝送装置における監視信号光の処理の一例を示すフローチャートである。3 is a flow chart showing an example of supervisory signal light processing in a transmission device on the receiving side; 送信側の伝送装置における監視信号光の送信処理の一例を示すフローチャートである。4 is a flow chart showing an example of processing for transmitting supervisory signal light in a transmission device on the transmission side; 送信側の伝送装置における減衰量の制御処理の一例を示すフローチャートである。7 is a flowchart illustrating an example of attenuation control processing in a transmission device on the transmission side; 第2実施例の伝送システムを示す構成図である。FIG. 11 is a configuration diagram showing a transmission system of a second embodiment; 受信側の伝送装置における監視信号光及び主信号光の処理の一例を示すフローチャートである。3 is a flow chart showing an example of processing of supervisory signal light and main signal light in a transmission device on the receiving side; 送信側の伝送装置における監視信号光及び主信号光の送信処理の一例を示すフローチャートである。5 is a flow chart showing an example of transmission processing of supervisory signal light and main signal light in a transmitting-side transmission device; 送信側の伝送装置における減衰量の制御処理の他の例を示すフローチャートである。FIG. 11 is a flowchart showing another example of attenuation amount control processing in the transmission device on the transmission side; FIG.

(第1実施例)
図1は、第1実施例の伝送システムを示す構成図である。伝送システムは、光ファイバなどの伝送路90,91を介して接続された一組の伝送装置1a,1bを有する。
(First embodiment)
FIG. 1 is a block diagram showing the transmission system of the first embodiment. The transmission system has a set of transmission devices 1a, 1b connected via transmission lines 90, 91 such as optical fibers.

伝送装置1a,1bは、例えばROADM(Reconfigurable Optical Add-and-Drop Multiplexer)などの波長多重伝送装置である。伝送装置1a,1bは、波長が相違する複数の波長光を波長多重した主信号光Sm,Sm’を他方の伝送装置1b,1aに伝送する。後述の例では伝送装置1aから伝送路90を介して伝送装置1bに主信号光Smを伝送する処理を挙げるが、伝送装置1bから伝送路91を介して伝送装置1aに主信号光Sm’を伝送する処理もこれと同様に行われる。 The transmission devices 1a and 1b are, for example, wavelength multiplexing transmission devices such as ROADMs (Reconfigurable Optical Add-and-Drop Multiplexers). The transmission apparatuses 1a and 1b transmit main signal lights Sm and Sm' obtained by wavelength-multiplexing a plurality of wavelength lights with different wavelengths to the other transmission apparatuses 1b and 1a. In the example described later, a process of transmitting the main signal light Sm from the transmission device 1a to the transmission device 1b via the transmission line 90 will be described. Transmission processing is also performed in the same manner.

伝送装置1aは、第1伝送装置の一例であり、主信号光Smを伝送路90に送信する。主信号光Smには、イーサネット(登録商標、以下同様)フレームなどのユーザデータを含む複数の波長光が波長多重されている。伝送装置1bは、第2伝送装置の一例であり、伝送装置1aから伝送路90を介して主信号光Sm’を受信する。符号Raは、伝送装置1aから伝送装置1bに伝送される主信号光Smの経路を示し、符号Rdは、伝送装置1bから伝送装置1aに伝送される主信号光Sm’の経路を示す。 The transmission device 1 a is an example of a first transmission device and transmits main signal light Sm to the transmission line 90 . The main signal light Sm is wavelength-multiplexed with a plurality of wavelength lights including user data such as Ethernet (registered trademark, hereinafter the same) frames. The transmission device 1b is an example of a second transmission device, and receives the main signal light Sm' from the transmission device 1a via the transmission line 90. FIG. Reference Ra indicates the path of the main signal light Sm transmitted from the transmission device 1a to the transmission device 1b, and reference Rd indicates the route of the main signal light Sm' transmitted from the transmission device 1b to the transmission device 1a.

また、伝送装置1a,1bは、伝送装置1a,1bの監視制御に関する情報(警報など。以下、「監視制御情報」と表記。)を含む監視信号光Scを主信号光Sm,Sm’に合波して他方の伝送装置1b,1aに伝送する。監視信号光Sc,Sc’は、主信号光Sm,Sm’に含まれる波長光の波長帯とは所定の波長帯域分だけ離れた波長を有する。符号Rbは、伝送装置1aから伝送装置1bに伝送される監視信号光Scの経路を示し、符号Rcは、伝送装置1bから伝送装置1aに伝送される監視信号光Sc’の経路を示す。 In addition, the transmission devices 1a and 1b combine the supervisory signal light Sc containing information (alarms, etc., hereinafter referred to as "supervisory control information") regarding the supervisory control of the transmission devices 1a and 1b into the main signal lights Sm and Sm'. and transmits it to the other transmission device 1b, 1a. The supervisory signal lights Sc and Sc' have wavelengths separated by a predetermined wavelength band from the wavelength band of the wavelength light included in the main signal lights Sm and Sm'. Symbol Rb indicates the path of supervisory signal light Sc transmitted from transmission device 1a to transmission device 1b, and symbol Rc indicates the route of supervisory signal light Sc' transmitted from transmission device 1b to transmission device 1a.

監視信号光Scの送信パワーが強すぎると、伝送路90中で主信号光Smと監視信号光Scに相互位相変調などの非線形光学効果が生じることにより主信号光Smの伝送品質が低下するおそれがある。 If the transmission power of the supervisory signal light Sc is too strong, the main signal light Sm and the supervisory signal light Sc may undergo nonlinear optical effects such as cross-phase modulation in the transmission path 90, resulting in deterioration of the transmission quality of the main signal light Sm. There is

そこで、伝送装置1aは、他方の伝送装置1bが受信した監視信号光Scのパワーが所定の目標値に近づくようにVOA21aの減衰量を制御する。このため、伝送装置1aは、目標値を適切に設定することにより、監視信号光Scの伝送品質の要求を満たしつつ、監視信号光Scの送信パワーを低下させることができる。したがって、伝送装置1aは、監視制御機能を低下させずに非線形光学効果を抑制することができる。以下に伝送装置1a,1bの構成を述べる。 Therefore, the transmission device 1a controls the attenuation of the VOA 21a so that the power of the supervisory signal light Sc received by the other transmission device 1b approaches a predetermined target value. Therefore, by appropriately setting the target value, the transmission device 1a can reduce the transmission power of the supervisory signal light Sc while satisfying the transmission quality requirements of the supervisory signal light Sc. Therefore, the transmission device 1a can suppress the nonlinear optical effect without deteriorating the monitoring control function. The configuration of the transmission devices 1a and 1b will be described below.

伝送装置1aは、FPGA(Field Programmable Gate Array)10aと、メモリ12aと、SFP(Small Form-factor Pluggable)20aと、光アンプ30a,31aと、可変光減衰器(VOA: Variable Optical Attenuator)21a,32aとを有する。伝送装置1aは、さらに光スプリッタ22a,23aと、フィルタ33a,34aと、PD(Photo Diode)24a,25aとを有する。また、伝送装置1bは、伝送装置1aと同様に、FPGA10bと、メモリ12bと、SFP20bと、光アンプ30b,31bと、VOA21b,32bと、光スプリッタ22b,23bと、フィルタ33b,34bと、PD24b,25bとを有する。 The transmission device 1a includes an FPGA (Field Programmable Gate Array) 10a, a memory 12a, an SFP (Small Form-factor Pluggable) 20a, optical amplifiers 30a and 31a, a variable optical attenuator (VOA) 21a, 32a. The transmission device 1a further includes optical splitters 22a, 23a, filters 33a, 34a, and PDs (Photo Diodes) 24a, 25a. The transmission device 1b, like the transmission device 1a, includes an FPGA 10b, a memory 12b, an SFP 20b, optical amplifiers 30b and 31b, VOAs 21b and 32b, optical splitters 22b and 23b, filters 33b and 34b, and a PD 24b. , 25b.

光アンプ30a,30bは、隣接ノードから入力された主信号光Sm,Sm’をそれぞれ増幅する。FPGA10a,10bは光アンプ30a,30bの利得をそれぞれ制御する。主信号光Smは光アンプ30aからVOA32aに入力され、主信号光Sm’は光アンプ30bからVOA32bに入力される。VOA32a,32bは主信号光Sm,Sm’をそれぞれ減衰させる。FPGA10a,10bはVOA32a,32bの減衰量をそれぞれ制御する。主信号光SmはVOA32aからフィルタ33aに入力され、主信号光Sm’はVOA32bからフィルタ33bに入力される。 The optical amplifiers 30a and 30b respectively amplify main signal lights Sm and Sm' input from adjacent nodes. FPGAs 10a and 10b control gains of optical amplifiers 30a and 30b, respectively. The main signal light Sm is input from the optical amplifier 30a to the VOA 32a, and the main signal light Sm' is input from the optical amplifier 30b to the VOA 32b. The VOAs 32a, 32b attenuate the main signal lights Sm, Sm', respectively. FPGAs 10a and 10b control the attenuation of VOAs 32a and 32b, respectively. The main signal light Sm is input from the VOA 32a to the filter 33a, and the main signal light Sm' is input from the VOA 32b to the filter 33b.

SFP20a,20bは、それぞれ、伝送装置1a,1bに着脱自在な光モジュールである。SFP20a,20bは監視信号光Sc,Sc’をそれぞれ送受信する。本例において、伝送装置1aのSFP20aは、出力部の一例であり、監視信号光Scを出力する。また、伝送装置1bのSFP20bは、受信部の一例であり、監視信号光Scを受信する。 The SFPs 20a and 20b are optical modules detachable from the transmission devices 1a and 1b, respectively. The SFPs 20a and 20b transmit and receive supervisory signal lights Sc and Sc', respectively. In this example, the SFP 20a of the transmission device 1a is an example of an output unit, and outputs the supervisory signal light Sc. Also, the SFP 20b of the transmission device 1b is an example of a receiver, and receives the supervisory signal light Sc.

監視信号光ScはSFP20aからVOA21aに入力される。VOA21aは、減衰部の一例であり、監視信号光Scを減衰させる。FPGA10aは、制御部の一例であり、VOA21aの減衰量を制御する。監視信号光ScはVOA21aから光スプリッタ22aを通ってフィルタ33aに入力される。 The supervisory signal light Sc is input from the SFP 20a to the VOA 21a. The VOA 21a is an example of an attenuator and attenuates the supervisory signal light Sc. The FPGA 10a is an example of a control section, and controls the attenuation of the VOA 21a. The supervisory signal light Sc is input from the VOA 21a to the filter 33a through the optical splitter 22a.

また、監視信号光Sc’はSFP20bからVOA21bに入力される。VOA21bは監視信号光Sc’を減衰させる。FPGA10bはVOA21bの減衰量を制御する。監視信号光Sc’はVOA21bから光スプリッタ22bを通ってフィルタ33bに入力される。 Also, the supervisory signal light Sc' is input from the SFP 20b to the VOA 21b. The VOA 21b attenuates the supervisory signal light Sc'. The FPGA 10b controls the attenuation of the VOA 21b. The supervisory signal light Sc' is input from the VOA 21b through the optical splitter 22b to the filter 33b.

光スプリッタ22a,22bは、監視信号光Sc,Sc’を分岐させてフィルタ33a,33bとPD24a,24bに導く。PD24a,24bは、監視信号光Sc,Sc’を光-電気変換することによりそのパワーを検出する。FPGA10a,10bは、例えばPD24a,24bが検出したパワーに基づき監視信号光Sc,Sc’の送信状態を監視する。 The optical splitters 22a, 22b split the supervisory signal lights Sc, Sc' and guide them to filters 33a, 33b and PDs 24a, 24b. The PDs 24a and 24b detect the power of the supervisory signal lights Sc and Sc' by optical-electrical conversion. The FPGAs 10a and 10b monitor the transmission states of the supervisory signal lights Sc and Sc' based on the powers detected by the PDs 24a and 24b, for example.

フィルタ33aは、合波部の一例であり、監視信号光Scを主信号光Smに合波する。フィルタ33bは、監視信号光Sc’を主信号光Sm’に合波する。フィルタ33a,33bとしては、例えば波長多重機能を備えるフィルタが挙げられるが、これに限定されない。監視信号光Sc及び主信号光Smの合波光はフィルタ33aから伝送路90に出力され、監視信号光Sc’及び主信号光Sm’の合波光はフィルタ33bから伝送路91に出力される。 The filter 33a is an example of a multiplexer, and multiplexes the supervisory signal light Sc with the main signal light Sm. The filter 33b multiplexes the supervisory signal light Sc' with the main signal light Sm'. Examples of the filters 33a and 33b include, but are not limited to, filters having a wavelength multiplexing function. The combined light of the supervisory signal light Sc and the main signal light Sm is output from the filter 33a to the transmission line 90, and the combined light of the supervisory signal light Sc' and the main signal light Sm' is output from the filter 33b to the transmission line 91.

監視信号光Sc及び主信号光Smの合波光は、伝送路90からフィルタ34bに入力される。フィルタ34bは、分波部の一例であり、伝送路90から入力された合波光から主信号光Sm及び監視信号光Scを分波する。 The combined light of the supervisory signal light Sc and the main signal light Sm is input from the transmission line 90 to the filter 34b. The filter 34b is an example of a demultiplexing unit, and demultiplexes the main signal light Sm and the supervisory signal light Sc from the multiplexed light input from the transmission line 90. FIG.

また、監視信号光Sc’及び主信号光Sm’の合波光は伝送路91からフィルタ34aに入力される。フィルタ34aは伝送路91から入力された合波光から主信号光及び監視信号光Sc’を分波する。 Also, the combined light of the supervisory signal light Sc' and the main signal light Sm' is input from the transmission path 91 to the filter 34a. The filter 34a demultiplexes the combined light input from the transmission line 91 into the main signal light and the supervisory signal light Sc'.

主信号光Sm,Sm’はフィルタ34a,34bから光アンプ31a,31bにそれぞれ入力される。光アンプ31a,31bは主信号光Smをそれぞれ増幅する。FPGA10a,10bは光アンプ31a,31bの利得をそれぞれ制御する。主信号光Sm,Sm’は光アンプ31a,31bから隣接ノードにそれぞれ出力される。 Main signal lights Sm and Sm' are input from filters 34a and 34b to optical amplifiers 31a and 31b, respectively. The optical amplifiers 31a and 31b each amplify the main signal light Sm. FPGAs 10a and 10b control gains of optical amplifiers 31a and 31b, respectively. The main signal lights Sm and Sm' are output from the optical amplifiers 31a and 31b to adjacent nodes, respectively.

監視信号光Scはフィルタ34bから光スプリッタ23bに入力され、監視信号光Sc’はフィルタ34aから光スプリッタ23aに入力される。光スプリッタ23bは、監視信号光Scを分岐させてSFP20bとPD25bに導き、光スプリッタ23aは、監視信号光Sc’を分岐させてSFP20aとPD25aに導く。 The supervisory signal light Sc is input from the filter 34b to the optical splitter 23b, and the supervisory signal light Sc' is input from the filter 34a to the optical splitter 23a. The optical splitter 23b splits the supervisory signal light Sc and guides it to the SFP 20b and the PD 25b, and the optical splitter 23a splits the supervisory signal light Sc' and guides it to the SFP 20a and the PD 25a.

SFP20a,20bは、監視信号光Sc,Sc’を受信してFPGA10a,10bにそれぞれ出力する。FPGA10a,10bは監視信号光Scのペイロードデータから監視制御情報を抽出する。FPGA10aは、例えば監視制御情報に基づき光アンプ30a,31aの利得やVOA21a,32aの減衰量を制御する。FPGA10bは、例えば監視制御情報に基づき光アンプ30b,31bの利得やVOA21b,32bの減衰量を制御する。 The SFPs 20a and 20b receive the supervisory signal lights Sc and Sc' and output them to the FPGAs 10a and 10b, respectively. The FPGAs 10a and 10b extract supervisory control information from the payload data of the supervisory signal light Sc. The FPGA 10a controls the gains of the optical amplifiers 30a and 31a and the attenuation amounts of the VOAs 21a and 32a based on, for example, monitor control information. The FPGA 10b controls the gains of the optical amplifiers 30b and 31b and the attenuation amounts of the VOAs 21b and 32b, for example, based on the supervisory control information.

PD25bは、第1検出部の一例であり、監視信号光Scを光-電気変換することによりそのパワーを検出する。監視信号光Scのパワーの情報(以下、「パワー情報」と表記)はPD25bからFPGA10bに入力される。FPGA10bは、パワー情報を監視信号のペイロードデータに挿入してSFP20a,20bに出力する。また、PD25aは、監視信号光Sc’を光-電気変換することによりそのパワーを検出してFPGA10aに通知する。 The PD 25b is an example of a first detector, and detects the power of the supervisory signal light Sc by optical-electrical conversion. Information on the power of the supervisory signal light Sc (hereinafter referred to as "power information") is input from the PD 25b to the FPGA 10b. The FPGA 10b inserts the power information into the payload data of the supervisory signal and outputs it to the SFPs 20a and 20b. Further, the PD 25a detects the power of the supervisory signal light Sc' by optical-electrical conversion, and notifies the FPGA 10a of the detected power.

SFP20bは監視信号を電気-光変換することにより監視信号光Sc’を生成して出力する。これにより、パワー情報は、監視信号光Scを受信した受信側の伝送装置1bから、監視信号光Scを送信した送信側の伝送装置1aに通知される。なお、受信側の伝送装置1bのFPGA10bは、PD25bが検出した監視信号光Scのパワーを送信側の伝送装置1aに通知する通知部の一例である。 The SFP 20b electro-optically converts the supervisory signal to generate and output supervisory signal light Sc'. As a result, the power information is sent from the transmission device 1b on the reception side that has received the optical supervisory signal Sc to the transmission device 1a on the transmission side that has transmitted the optical supervisory signal Sc. Note that the FPGA 10b of the transmission device 1b on the reception side is an example of a notification unit that notifies the transmission device 1a on the transmission side of the power of the supervisory signal light Sc detected by the PD 25b.

送信側の伝送装置1aのSFP20aは、受信側の伝送装置1bから監視信号光Sc’を受信する。SFP20aは、監視信号光Sc’を光-電気変換することにより監視信号を再生してFPGA10aに出力する。FPGA10aは、監視信号のペイロードデータからパワー情報を抽出する。 The SFP 20a of the transmission device 1a on the transmission side receives the supervisory signal light Sc' from the transmission device 1b on the reception side. The SFP 20a reproduces the supervisory signal by optical-electrical conversion of the supervisory signal light Sc' and outputs it to the FPGA 10a. The FPGA 10a extracts power information from the payload data of the supervisory signal.

FPGA10aは、パワー情報に基づきVOA21aの減衰量を制御する。これにより、監視信号光ScがVOA21aにより適切な減衰量で減衰する。 The FPGA 10a controls the attenuation of the VOA 21a based on the power information. As a result, the supervisory signal light Sc is attenuated by the VOA 21a with an appropriate amount of attenuation.

また、メモリ12a,12bにはFPGA10a,10bの処理に用いられる各種のパラメータなどがそれぞれ記憶される。FPGA10a,10bは、それぞれ、メモリ12a,12bに情報を書き込み、メモリ12a,12bから情報を読み出す。 The memories 12a and 12b store various parameters used for processing of the FPGAs 10a and 10b, respectively. The FPGAs 10a and 10b write information to memories 12a and 12b and read information from the memories 12a and 12b, respectively.

例えば監視信号光Scは、経路Rbに沿って送信側の伝送装置1aから受信側の伝送装置1bに送信される。受信側の伝送装置1bは、送信側の伝送装置1aから受信した監視信号光ScのパワーをPD25bにより検出して、FPGA10bによりパワー情報を経路Rcに沿って送信側の伝送装置1aに通知する。送信側の伝送装置1aは、通知されたパワー情報に基づきVOA21aの減衰量をFPGA10aにより制御する。この場合の伝送装置1a,1bの動作を以下に述べる。 For example, the supervisory signal light Sc is transmitted along the route Rb from the transmission device 1a on the transmission side to the transmission device 1b on the reception side. The transmission device 1b on the reception side detects the power of the supervisory signal light Sc received from the transmission device 1a on the transmission side by the PD 25b, and notifies the transmission device 1a on the transmission side of the power information along the route Rc by means of the FPGA 10b. The transmission device 1a on the transmission side controls the attenuation amount of the VOA 21a using the FPGA 10a based on the notified power information. The operation of the transmission devices 1a and 1b in this case will be described below.

図2は、受信側の伝送装置1bにおける監視信号光Scの処理の一例を示すフローチャートである。図2において、ステップSt2の処理と、ステップSt3,St4の各処理とは同時並行で行われる。なお、本処理は繰り返し実行される。 FIG. 2 is a flow chart showing an example of processing of the supervisory signal light Sc in the transmission device 1b on the receiving side. In FIG. 2, the process of step St2 and the processes of steps St3 and St4 are performed concurrently. Note that this process is repeatedly executed.

フィルタ34bは、送信側の伝送装置1aから伝送路90を介して入力された合波光から主信号光Smと監視信号光Scを分波する(ステップSt1)。SFP20bは、分波された監視信号光Scを受信する(ステップSt2)。なお、主信号光Smは光アンプ31bに入力されて増幅される。 The filter 34b demultiplexes the main signal light Sm and the supervisory signal light Sc from the multiplexed light input via the transmission line 90 from the transmission device 1a on the transmission side (step St1). The SFP 20b receives the demultiplexed supervisory signal light Sc (step St2). The main signal light Sm is input to the optical amplifier 31b and amplified.

また、PD25bは、分波された監視信号光Scのパワーを検出する(ステップSt3)。次にFPGA10bは、パワー情報を反対方向の監視信号光Sc’のペイロードデータに挿入して送信側の伝送装置1aに通知する(ステップSt4)。このようにして、受信側の伝送装置1bは監視信号光Sc及び主信号光Smを処理する。 The PD 25b also detects the power of the demultiplexed supervisory signal light Sc (step St3). Next, the FPGA 10b inserts the power information into the payload data of the supervisory signal light Sc' in the opposite direction and notifies it to the transmission device 1a on the transmission side (step St4). In this manner, the transmission device 1b on the receiving side processes the supervisory signal light Sc and the main signal light Sm.

図3は、送信側の伝送装置1aにおける監視信号光Scの送信処理の一例を示すフローチャートである。なお、本処理は繰り返し実行される。 FIG. 3 is a flow chart showing an example of transmission processing of the supervisory signal light Sc in the transmission device 1a on the transmission side. Note that this process is repeatedly executed.

送信側の伝送装置1aのSFP20aは監視信号光Scを出力する(ステップSt11)。次にVOA21aは、FPGA10aから設定された減衰量で監視信号光Scを減衰させる(ステップSt12)。 The SFP 20a of the transmission device 1a on the transmission side outputs the supervisory signal light Sc (step St11). Next, the VOA 21a attenuates the supervisory signal light Sc by the amount of attenuation set by the FPGA 10a (step St12).

次にフィルタ33aは主信号光Smと監視信号光Scを合波する(ステップSt13)。このとき、合波光は伝送路90に出力される。このようにして、送信側の伝送装置1aは監視信号光Scの送信処理を実行する。 Next, the filter 33a multiplexes the main signal light Sm and the supervisory signal light Sc (step St13). At this time, the multiplexed light is output to the transmission line 90 . In this manner, the transmission device 1a on the transmission side executes the transmission processing of the supervisory signal light Sc.

図4は、送信側の伝送装置1aにおける減衰量の制御処理の一例を示すフローチャートである。なお、本処理に先立ってVOA21aの減衰量は下限値に設定されている。 FIG. 4 is a flowchart showing an example of attenuation control processing in the transmission device 1a on the transmission side. Prior to this process, the attenuation amount of the VOA 21a is set to the lower limit.

送信側の伝送装置1aにおいて、FPGA10aは、受信側の伝送装置1bのPD25bで検出された監視信号光ScのパワーPcを、SFP20aで受信した監視信号光Sc’のペイロードデータからパワー情報として取得する(ステップSt21)。 In the transmission device 1a on the transmission side, the FPGA 10a acquires the power Pc of the supervisory signal light Sc detected by the PD 25b of the transmission device 1b on the reception side as power information from the payload data of the supervisory signal light Sc' received by the SFP 20a. (Step St21).

次にFPGA10aは、VOA21aの現在の減衰量とVOA21aの減衰量の上限値Amの差分を閾値THaと比較する(ステップSt22)。ここで、上限値Amは伝送装置1aのVOA21aの減衰性能に従って決定される。また、現在の減衰量は例えばメモリ12aに記憶されている。 Next, the FPGA 10a compares the difference between the current attenuation amount of the VOA 21a and the upper limit value Am of the attenuation amount of the VOA 21a with the threshold value THa (step St22). Here, the upper limit value Am is determined according to the attenuation performance of the VOA 21a of the transmission device 1a. Further, the current attenuation amount is stored in the memory 12a, for example.

FPGA10aは、減衰量と上限値Amの差分が閾値THa以下である場合(ステップSt22のYes)、伝送装置1aのVOA21aの減衰量を現在の設定値より大きくすることができないと判断して制御処理を終了する。なお、閾値THaは、第2閾値の一例であり、減衰量が実質的に上限値Amに等しいとみなせる程度に十分に小さい値である。 When the difference between the attenuation amount and the upper limit value Am is equal to or less than the threshold value THa (Yes in step St22), the FPGA 10a determines that the attenuation amount of the VOA 21a of the transmission device 1a cannot be made larger than the current set value, and performs control processing. exit. Note that the threshold THa is an example of a second threshold, and is a sufficiently small value so that the attenuation amount can be considered substantially equal to the upper limit value Am.

FPGA10aは、減衰量と上限値Amの差分が閾値THaより大きい場合(ステップSt22のNo)、監視信号光ScのパワーPcと受信側の伝送装置1bのSFP20bの最小受信パワーPcoの差分を閾値THcと比較する(ステップSt23)。最小受信パワーPcoは監視信号光ScのパワーPcの目標値の一例である。 If the difference between the attenuation amount and the upper limit value Am is greater than the threshold value THa (No in step St22), the FPGA 10a sets the difference between the power Pc of the supervisory signal light Sc and the minimum received power Pco of the SFP 20b of the transmission device 1b on the receiving side to the threshold value THc. (step St23). The minimum received power Pco is an example of a target value for the power Pc of the supervisory signal light Sc.

FPGA10aは、パワーPcと最小受信パワーPcoの差分が閾値THc以下である場合(ステップSt23のYes)、パワーPcが実質的に最小受信パワーPcoと等しいと判断して制御処理を終了する。なお、閾値THcは、第1閾値の一例であり、パワーPcが実質的に最小受信パワーPcoと等しいとみなせる程度に十分に小さい値である。 When the difference between the power Pc and the minimum received power Pco is equal to or less than the threshold THc (Yes in step St23), the FPGA 10a determines that the power Pc is substantially equal to the minimum received power Pco, and terminates the control process. Note that the threshold THc is an example of a first threshold, and is a sufficiently small value so that the power Pc can be considered substantially equal to the minimum received power Pco.

また、FPGA10aは、パワーPcと最小受信パワーPcoの差分が閾値THcより大きい場合(ステップSt23のNo)、VOA21aの減衰量にΔAを加算する(ステップSt24)。このとき、FPGA10aは、VOA21aにΔAだけ増加した減衰量を設定する。このため、送信側の伝送装置1aから送信される監視信号光Scのパワー(送信パワー)は、減衰量の増加分のΔAに応じて減少する。 If the difference between the power Pc and the minimum received power Pco is greater than the threshold THc (No in step St23), the FPGA 10a adds ΔA to the attenuation of the VOA 21a (step St24). At this time, the FPGA 10a sets the attenuation amount increased by ΔA to the VOA 21a. Therefore, the power (transmission power) of the supervisory signal light Sc transmitted from the transmission device 1a on the transmission side decreases in accordance with the increment ΔA of the attenuation amount.

その後、ステップSt21以降の各処理が再び実行される。これにより、減衰量はステップSt24の処理が実行されるたびにΔAだけ増加するため、監視信号光Scのパワーは徐々に減少して目標値の最小受信パワーPcoに近づく。このようにして、減衰量の制御処理は実行される。 After that, each process after step St21 is executed again. As a result, the attenuation amount increases by ΔA each time the process of step St24 is executed, so the power of the supervisory signal light Sc gradually decreases and approaches the target value of the minimum received power Pco. In this manner, the attenuation control process is executed.

このように、送信側の伝送装置1aのFPGA10aは、受信側の伝送装置1bのFPGA10bから通知された監視信号光ScのパワーPcが、所定の最小受信パワーPcoに近づくようにVOA21aの減衰量を制御する。このため、伝送装置1aは、最小受信パワーPcoを、監視信号光Scの伝送品質の要求を満たす範囲内で十分に小さい値に設定することにより、監視制御機能を低下させずに非線形光学効果を抑制することができる。 In this way, the FPGA 10a of the transmission device 1a on the transmission side adjusts the attenuation of the VOA 21a so that the power Pc of the supervisory signal light Sc notified from the FPGA 10b of the transmission device 1b on the reception side approaches the predetermined minimum received power Pco. Control. For this reason, the transmission apparatus 1a sets the minimum received power Pco to a sufficiently small value within a range that satisfies the transmission quality requirements of the supervisory signal light Sc, thereby suppressing the nonlinear optical effect without degrading the supervisory control function. can be suppressed.

最小受信パワーPcoは、例えばSFP20bにより受信することが可能な光のパワーの最小値に設定される。したがって、伝送装置1aは、受信側の伝送装置1bのSFP20bが受信する監視信号光ScのパワーPcを限界まで低下させることができるため、非線形光学効果をより効果的に抑制することができる。 The minimum received power Pco is set to the minimum power of light that can be received by the SFP 20b, for example. Therefore, since the transmission device 1a can reduce the power Pc of the supervisory signal light Sc received by the SFP 20b of the transmission device 1b on the receiving side to the limit, the nonlinear optical effect can be suppressed more effectively.

また、最小受信パワーPcoは、例えばSFP20bの受光特性の仕様の範囲内で受信することが可能な光のパワーの最小値に設定される。この最小値としては、例えばSFP20bの受光特性の仕様に規定される最小受信感度が挙げられる。最小受信感度は、伝送システムに要求される伝送品質を達成するために必要な受信パワーの最小値であって、市場においてSFP20bの受信性能を製品の型番ごとに示すパラメータの1つである。 The minimum received power Pco is set to the minimum value of light power that can be received within the specification of the light receiving characteristics of the SFP 20b, for example. This minimum value is, for example, the minimum reception sensitivity defined in the specifications of the light receiving characteristics of the SFP 20b. The minimum reception sensitivity is the minimum value of reception power required to achieve the transmission quality required for the transmission system, and is one of the parameters that indicate the reception performance of the SFP 20b in the market for each product model number.

伝送品質の指標値としては、例えばビットエラーレートが挙げられ、最小受信感度は、一例として監視信号光Scのビットエラーレートが、伝送システムに要求される規定値以下となる条件を満たす受信パワーの最小値として規定される。 An example of the index value of transmission quality is the bit error rate, and the minimum reception sensitivity is, for example, the amount of reception power that satisfies the condition that the bit error rate of supervisory signal light Sc is equal to or less than a specified value required for the transmission system. Specified as a minimum value.

したがって、伝送装置1bは、最小受光感度を目標値としてVOA21aの減衰量を制御することにより、SFP20bの受光特性の仕様に基づいて監視信号光Scの伝送品質をより確実に保証することができる。なお、最小受信パワーPcoは、予めメモリ12aに記憶されている。 Therefore, the transmission device 1b can more reliably guarantee the transmission quality of the supervisory signal light Sc based on the specifications of the light receiving characteristics of the SFP 20b by controlling the attenuation of the VOA 21a with the minimum light receiving sensitivity as a target value. Note that the minimum received power Pco is stored in advance in the memory 12a.

また、FPGA10aは、監視信号光ScのパワーPcと受信側の伝送装置1bのSFP20bの最小受信パワーPcoの差分が閾値THc以下である場合、またはVOA21aの減衰量と上限値Amの差分が閾値THa以下である場合、減衰量の制御を停止する。 In addition, the FPGA 10a sets the difference between the power Pc of the supervisory signal light Sc and the minimum received power Pco of the SFP 20b of the transmission device 1b on the receiving side to be equal to or less than the threshold THc, or the difference between the attenuation amount of the VOA 21a and the upper limit Am to the threshold THa. Attenuation control is stopped if:

このため、FPGA10aは、監視信号光ScのパワーPcが最小受信パワーPcoに達するより先に、減衰量が上限値Amに達した場合、減衰量の制御を停止することができる。したがって、FPGA10aは誤って上限値Amを超える減衰量をVOA21aに設定することがない。 Therefore, the FPGA 10a can stop controlling the attenuation amount when the attenuation amount reaches the upper limit value Am before the power Pc of the supervisory signal light Sc reaches the minimum received power Pco. Therefore, the FPGA 10a does not erroneously set an attenuation amount exceeding the upper limit value Am to the VOA 21a.

また、VOA21aは、フィルタ33aに入力される監視信号光Scを減衰させる。このため、VOA21aは、監視信号光Sc及び主信号光Smのうち、監視信号光Scだけを減衰させる。したがって、監視信号光Scの減衰による主信号光Smのパワーへの影響が抑制される。 Also, the VOA 21a attenuates the supervisory signal light Sc input to the filter 33a. Therefore, the VOA 21a attenuates only the supervisory signal light Sc out of the supervisory signal light Sc and the main signal light Sm. Therefore, the influence of the attenuation of the supervisory signal light Sc on the power of the main signal light Sm is suppressed.

(第2実施例)
VOA21aは、上記のように監視信号光Scだけを減衰させるが、以下のように監視信号光Sc及び主信号光Smを減衰させてもよい。
(Second embodiment)
The VOA 21a attenuates only the supervisory signal light Sc as described above, but may attenuate the supervisory signal light Sc and the main signal light Sm as follows.

図5は、第2実施例の伝送システムを示す構成図である。図5において、図1と共通する構成には同一の符号を付し、その説明は省略する。 FIG. 5 is a block diagram showing the transmission system of the second embodiment. In FIG. 5, the same reference numerals are assigned to the same components as in FIG. 1, and the description thereof will be omitted.

伝送装置1aは、第1実施例のVOA21a及びVOA32aに代え、フィルタ33aと伝送路90の間にVOA26aを有する。また、伝送装置1bは、第1実施例のVOA21b及びVOA32bに代え、フィルタ33bと伝送路91の間にVOA26bを有する。VOA26aは、フィルタ33aから出力された監視信号光Sc及び主信号光Smを減衰させる。VOA26bは、フィルタ33bから出力された監視信号光Sc’及び主信号光Sm’を減衰させる。なお、VOA26aは減衰部の一例である。 The transmission device 1a has a VOA 26a between the filter 33a and the transmission line 90 instead of the VOA 21a and the VOA 32a of the first embodiment. Further, the transmission device 1b has a VOA 26b between the filter 33b and the transmission line 91 instead of the VOA 21b and the VOA 32b of the first embodiment. The VOA 26a attenuates the supervisory signal light Sc and the main signal light Sm output from the filter 33a. The VOA 26b attenuates the supervisory signal light Sc' and the main signal light Sm' output from the filter 33b. Note that the VOA 26a is an example of an attenuation section.

伝送装置1aは、監視信号光Sc及び主信号光Smを1個のVOA26aにより減衰するため、第1実施例のような2個のVOA21a,32aを必要としない。このため、伝送装置1aのコストや規模が低減される。なお、伝送装置1bも監視信号光Sc’及び主信号光Sm’を1個のVOA26bにより減衰させるため、コストや規模が低減される。 Since the transmission apparatus 1a attenuates the supervisory signal light Sc and the main signal light Sm by one VOA 26a, it does not require two VOAs 21a and 32a as in the first embodiment. Therefore, the cost and scale of the transmission device 1a are reduced. Since the transmission device 1b also attenuates the supervisory signal light Sc' and the main signal light Sm' by one VOA 26b, the cost and scale are reduced.

また、伝送装置1bは、伝送路90から入力された主信号光Smのパワーを検出するために光スプリッタ35b及びPD27bを有する。光スプリッタ35bは、フィルタ34bと光アンプ31bの間に設けられている。光スプリッタ35bは、主信号光Smを分岐させて光アンプ31aとPD27bに導く。 The transmission device 1b also has an optical splitter 35b and a PD 27b for detecting the power of the main signal light Sm input from the transmission line 90. FIG. The optical splitter 35b is provided between the filter 34b and the optical amplifier 31b. The optical splitter 35b splits the main signal light Sm and guides it to the optical amplifier 31a and the PD 27b.

PD27bは主信号光Smを光-電気変換することにより主信号光Smのパワーを検出する。主信号光Smのパワーの情報(パワー情報)はPD25bからFPGA10bに通知される。なお、PD27bは第2検出部の一例である。 The PD 27b detects the power of the main signal light Sm by optical-electrical conversion of the main signal light Sm. Information on the power of the main signal light Sm (power information) is notified from the PD 25b to the FPGA 10b. In addition, PD27b is an example of a 2nd detection part.

FPGA10bは、監視信号光Sc及び主信号光Smの各パワー情報を反対方向の監視信号光Sc’のペイロードデータに挿入してSFP20bに出力する。これにより、監視信号光Sc及び主信号光Smのパワーが受信側の伝送装置1bから経路Rcに沿って送信側の伝送装置1aに通知される。 The FPGA 10b inserts the respective power information of the supervisory signal light Sc and the main signal light Sm into the payload data of the supervisory signal light Sc' in the opposite direction, and outputs the payload data to the SFP 20b. As a result, the powers of the supervisory signal light Sc and the main signal light Sm are notified from the transmission device 1b on the reception side to the transmission device 1a on the transmission side along the route Rc.

また、伝送装置1aは、伝送装置1bと同様に、伝送路91から入力された主信号光Sm’のパワーを検出するために光スプリッタ35a及びPD27aを有する。PD27aは、光スプリッタ35aにより分岐された主信号光Sm’のパワーを検出してFPGA10aに通知する。 Further, the transmission device 1a has an optical splitter 35a and a PD 27a for detecting the power of the main signal light Sm' inputted from the transmission line 91, like the transmission device 1b. The PD 27a detects the power of the main signal light Sm' split by the optical splitter 35a and notifies it to the FPGA 10a.

送信側の伝送装置1aのFPGA10aは、上記の制御処理において主信号光Smのパワーがその下限値を下回らないようにVOA26aの減衰量を制御する。 The FPGA 10a of the transmission device 1a on the transmission side controls the attenuation amount of the VOA 26a so that the power of the main signal light Sm does not fall below the lower limit in the above control processing.

図6は、受信側の伝送装置1bにおける監視信号光Sc及び主信号光Smの処理の一例を示すフローチャートである。図6において、図2と共通する処理には同一の符号を付し、その説明は省略する。図6において、ステップSt2の処理と、ステップSt3,St4の各処理と、ステップSt5,St6の各処理とは同時並行で行われる。なお、本処理は繰り返し実行される。 FIG. 6 is a flow chart showing an example of processing of the supervisory signal light Sc and the main signal light Sm in the transmission device 1b on the receiving side. In FIG. 6, the same reference numerals are assigned to the same processes as in FIG. 2, and the description thereof will be omitted. In FIG. 6, the process of step St2, the processes of steps St3 and St4, and the processes of steps St5 and St6 are performed in parallel. Note that this process is repeatedly executed.

フィルタ34bが主信号光Smと監視信号光Scを分波した後(ステップSt1)、PD27bは主信号光Smのパワーを検出する(ステップSt5)。次にFPGA10bは主信号光Smのパワー情報を送信側の伝送装置1aに通知する(ステップSt6)。このようにして、受信側の伝送装置1bは監視信号光Sc及び主信号光Smを処理する。 After the filter 34b demultiplexes the main signal light Sm and the supervisory signal light Sc (step St1), the PD 27b detects the power of the main signal light Sm (step St5). Next, the FPGA 10b notifies the transmission device 1a on the transmission side of the power information of the main signal light Sm (step St6). In this manner, the transmission device 1b on the receiving side processes the supervisory signal light Sc and the main signal light Sm.

図7は、送信側の伝送装置1aにおける監視信号光Sc及び主信号光Smの送信処理の一例を示すフローチャートである。なお、本処理は繰り返し実行される。 FIG. 7 is a flowchart showing an example of transmission processing of the supervisory signal light Sc and the main signal light Sm in the transmission device 1a on the transmission side. Note that this process is repeatedly executed.

監視信号光Scの出力後(ステップSt11)、フィルタ33aは、監視信号光Scと主信号光Smを合波する(ステップSt12a)。次に、VOA26aは、FPGA10aから設定された減衰量で監視信号光Sc及び主信号光Smを減衰させる(ステップSt13a)。このため、監視信号光Sc及び主信号光Smの減衰量は同一である。このようにして、送信側の伝送装置1aは監視信号光Sc及び主信号光Smの送信処理を実行する。 After outputting the supervisory signal light Sc (step St11), the filter 33a multiplexes the supervisory signal light Sc and the main signal light Sm (step St12a). Next, the VOA 26a attenuates the supervisory signal light Sc and the main signal light Sm by the attenuation amount set by the FPGA 10a (step St13a). Therefore, the attenuation amounts of the supervisory signal light Sc and the main signal light Sm are the same. In this manner, the transmission device 1a on the transmission side executes transmission processing of the supervisory signal light Sc and the main signal light Sm.

図8は、送信側の伝送装置1aにおける減衰量の制御処理の他の例を示すフローチャートである。図8において、図4と共通する構成には同一の符号を付し、その説明は省略する。なお、本処理に先立ってVOA26aの減衰量は下限値に設定されている。 FIG. 8 is a flow chart showing another example of the attenuation amount control processing in the transmission device 1a on the transmission side. In FIG. 8, the same reference numerals are given to the same components as in FIG. 4, and the description thereof will be omitted. Prior to this process, the attenuation amount of the VOA 26a is set to the lower limit.

FPGA10aは、監視信号光ScのパワーPcの取得後(ステップSt21)、パワー情報が示す主信号光SmのパワーPsを取得する(ステップSt21a)。なお、ステップSt21aの処理は、ステップSt21の処理より先に実行されてもよい。 After obtaining the power Pc of the supervisory signal light Sc (step St21), the FPGA 10a obtains the power Ps of the main signal light Sm indicated by the power information (step St21a). Note that the process of step St21a may be executed prior to the process of step St21.

次に、FPGA10aは、VOA26aの現在の減衰量についてステップSt22の判定処理を行う。FPGA10aは、上限値Amと減衰量の差分が閾値THa以下である場合(ステップSt22のYes)、処理を終了する。 Next, the FPGA 10a performs determination processing of step St22 for the current attenuation amount of the VOA 26a. If the difference between the upper limit value Am and the attenuation amount is equal to or less than the threshold value THa (Yes in step St22), the FPGA 10a ends the process.

また、FPGA10aは、上限値Amと減衰量の差分が閾値THaより大きい場合(ステップSt22のNo)、主信号光SmのパワーPsとその下限値Psoの差分を閾値THsと比較する(ステップSt22a)。下限値Psoは、例えば主信号光Smを隣接ノードに伝送するために必要なパワーの最小値であり、隣接ノードまでの伝送路の距離などの条件により決定される。 When the difference between the upper limit value Am and the attenuation amount is greater than the threshold value THa (No in step St22), the FPGA 10a compares the difference between the power Ps of the main signal light Sm and its lower limit value Pso with the threshold value THs (step St22a). . The lower limit value Pso is, for example, the minimum value of power required to transmit the main signal light Sm to the adjacent node, and is determined by conditions such as the distance of the transmission path to the adjacent node.

FPGA10aは、パワーPsと下限値Psoの差分が閾値THs以下である場合(ステップSt22aのYes)、パワーPsが現在の値より小さくなって伝送品質が低下しないように制御処理を終了する。なお、閾値THsは、第3閾値の一例であり、パワーPsが実質的に下限値Psoに等しいとみなせる程度に十分に小さい値である。 When the difference between the power Ps and the lower limit value Pso is equal to or less than the threshold value THs (Yes in step St22a), the FPGA 10a ends the control process so that the power Ps does not become smaller than the current value and the transmission quality does not deteriorate. Note that the threshold THs is an example of a third threshold, and is a sufficiently small value so that the power Ps can be considered substantially equal to the lower limit value Pso.

FPGA10aは、パワーPsと下限値Psoの差分が閾値THsより大きい場合(ステップSt22aのNo)、ステップSt23の判定処理を実行する。また、FPGA10aは、VOA26aの減衰量にΔAを加算する(ステップSt24)。このとき、FPGA10aは、VOA26aにΔAだけ増加した減衰量を設定する。このため、送信側の伝送装置1aから送信される監視信号光Sc及び主信号光Smのパワーは、減衰量の増加分のΔAに応じて減少する。このようにして、減衰量の制御処理は実行される。 When the difference between the power Ps and the lower limit value Pso is greater than the threshold THs (No in step St22a), the FPGA 10a executes the determination process in step St23. Also, the FPGA 10a adds ΔA to the attenuation amount of the VOA 26a (step St24). At this time, the FPGA 10a sets the attenuation amount increased by ΔA to the VOA 26a. Therefore, the powers of the supervisory signal light Sc and the main signal light Sm transmitted from the transmission device 1a on the transmitting side decrease according to the increment ΔA of the attenuation amount. In this manner, the attenuation control process is executed.

このように、FPGA10aは、監視信号光ScのパワーPcと受信側の伝送装置1bのSFP20bの最小受信パワーPcoの差分が閾値THc以下である場合、VOA26aの減衰量と上限値Amの差分が閾値THa以下である場合、または主信号光SmのパワーPsと下限値Psoの差分が閾値THs以下である場合、減衰量の制御を停止する。 In this way, when the difference between the power Pc of the supervisory signal light Sc and the minimum received power Pco of the SFP 20b of the transmission device 1b on the receiving side is equal to or less than the threshold THc, the FPGA 10a sets the difference between the attenuation amount of the VOA 26a and the upper limit Am to the threshold. If it is equal to or less than THa, or if the difference between the power Ps of the main signal light Sm and the lower limit value Pso is equal to or less than the threshold THs, control of the attenuation amount is stopped.

このため、FPGA10aは、監視信号光ScのパワーPcが最小受信パワーPcoに達するより先に、減衰量が上限値Amに達した場合、減衰量の制御を停止することができる。また、FPGA10aは、監視信号光ScのパワーPcが最小受信パワーPcoに達するより先に、主信号光SmのパワーPsが下限値Psoに達した場合、減衰量の制御を停止することができる。したがって、主信号光SmのパワーPsが下限値Psoを下回ることにより伝送品質が低下することが抑制される。 Therefore, the FPGA 10a can stop controlling the attenuation amount when the attenuation amount reaches the upper limit value Am before the power Pc of the supervisory signal light Sc reaches the minimum received power Pco. Further, the FPGA 10a can stop the attenuation amount control when the power Ps of the main signal light Sm reaches the lower limit value Pso before the power Pc of the supervisory signal light Sc reaches the minimum received power Pco. Therefore, the deterioration of transmission quality due to the power Ps of the main signal light Sm falling below the lower limit Pso is suppressed.

また、上述した各実施例において、主信号光Smまたは監視信号光Scのパワー情報は、受信側の伝送装置1bから伝送路91を経由する経路Rcで送信側の伝送装置1aに通知されたが、これに限定されない。受信側の伝送装置1bのFPGA10bは、例えば各伝送装置1a,1bを制御するNE-OpS(Network Element Operation System)(不図示)を経由して送信側の伝送装置1aにパワー情報を通知してもよい。 In each of the above-described embodiments, the power information of the main signal light Sm or the supervisory signal light Sc is sent from the transmission device 1b on the reception side to the transmission device 1a on the transmission side over the route Rc via the transmission line 91. , but not limited to. The FPGA 10b of the transmission device 1b on the reception side notifies power information to the transmission device 1a on the transmission side via, for example, a NE-OpS (Network Element Operation System) (not shown) that controls the transmission devices 1a and 1b. good too.

また、上述した各実施例において、VOA21a,26aの減衰量はFPGA10aにより制御されるが、これに限定されない。例えばCPU(Central Processing Unit)などのプロセッサがソフトウェアに従って動作することにより減衰量を制御してもよい。 Further, although the attenuation amounts of the VOAs 21a and 26a are controlled by the FPGA 10a in each of the above-described embodiments, the present invention is not limited to this. For example, the attenuation may be controlled by a processor such as a CPU (Central Processing Unit) operating according to software.

また、上述した各実施例において、伝送装置1aを送信側とし、伝送装置1bを受信側とする例を挙げたが、伝送装置1bを送信側とし、伝送装置1aを受信側とした場合も上記と同様の処理により監視信号光Sc’のパワーを適切に制御することができる。 In each of the above-described embodiments, an example was given in which the transmission device 1a was on the transmission side and the transmission device 1b was on the reception side. The power of the supervisory signal light Sc' can be appropriately controlled by the same processing.

上述した実施形態は本発明の好適な実施の例である。但し、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変形して実施可能である。 The embodiments described above are examples of preferred implementations of the present invention. However, the present invention is not limited to this, and various modifications can be made without departing from the scope of the present invention.

なお、以上の説明に関して更に以下の付記を開示する。
(付記1) 主信号光を伝送路に送信する第1伝送装置と、
前記第1伝送装置から前記伝送路を介して前記主信号光を受信する第2伝送装置とを有し、
前記第1伝送装置は、
前記第1伝送装置及び前記第2伝送装置の監視制御に関する情報を含む監視信号光を出力する出力部と、
前記監視信号光を減衰させる減衰部と、
前記監視信号光を前記主信号光に合波する合波部と、
前記減衰部の減衰量を制御する制御部とを有し、
前記第2伝送装置は、
前記伝送路から入力された前記主信号光及び前記監視信号光を分波する分波部と、
前記監視信号光のパワーを検出する第1検出部と、
前記監視信号光を受信する受信部と、
前記第1検出部が検出した前記監視信号光のパワーを前記第1伝送装置に通知する通知部とを有し、
前記制御部は、前記通知部から通知された前記監視信号光のパワーが所定の目標値に近づくように前記減衰部の減衰量を制御することを特徴とする伝送システム。
(付記2) 前記制御部は、前記通知部から通知された前記監視信号光のパワーが、前記受信部により受信することが可能な光のパワーの最小値に近づくように前記減衰部の減衰量を制御することを特徴とする付記1に記載の伝送システム。
(付記3) 前記制御部は、前記通知部から通知された前記監視信号光のパワーが、前記受信部の受光特性の仕様の範囲内で受信することが可能な光のパワーの最小値に近づくように前記減衰部の減衰量を制御することを特徴とする付記1に記載の伝送システム。
(付記4) 前記減衰部は、前記合波部に入力される前記監視信号光を減衰させることを特徴とする付記1乃至3の何れかに記載の伝送システム。
(付記5) 前記制御部は、前記通知部から通知された前記監視信号光のパワーと前記目標値の差分が第1閾値以下である場合、または前記減衰量と前記減衰量の上限値の差分が第2閾値以下である場合、前記減衰部の減衰量の制御を停止することを特徴とする付記4に記載の伝送システム。
(付記6) 前記減衰部は、前記合波部から出力された前記監視信号光及び前記主信号光を減衰させることを特徴とする付記1乃至3の何れかに記載の伝送システム。
(付記7) 前記第2伝送装置は、前記主信号光のパワーを検出する第2検出部を有し、
前記通知部は、前記第1検出部が検出した前記監視信号光のパワーと、前記第2検出部が検出した前記主信号光のパワーとを前記第1伝送装置に通知し、
前記制御部は、前記通知部から通知された前記監視信号光のパワーと前記目標値の差分が第1閾値以下である場合、前記減衰量と前記減衰量の上限値の差分が第2閾値以下である場合、または前記通知部から通知された前記主信号光のパワーと前記主信号光のパワーの下限値の差分が第3閾値以下である場合、前記減衰部の減衰量の制御を停止することを特徴とする付記6に記載の伝送システム。
(付記8) 主信号光を、伝送路を介して他の伝送装置に伝送する伝送装置において、
前記伝送装置及び前記他の伝送装置の監視制御に関する情報を含む監視信号光を出力する出力部と、
前記監視信号光を減衰させる減衰部と、
前記監視信号光を前記主信号光に合波する合波部と、
前記他の伝送装置が受信した前記監視信号光のパワーが所定の目標値に近づくように前記減衰部の減衰量を制御する制御部とを有することを特徴とする伝送装置。
(付記9) 前記制御部は、前記他の伝送装置が受信した前記監視信号光のパワーが、前記受信部により受信することが可能な光のパワーの最小値に近づくように前記減衰部の減衰量を制御することを特徴とする付記8に記載の伝送装置。
(付記10) 前記制御部は、前記他の伝送装置が受信した前記監視信号光のパワーが、前記受信部の受光特性の仕様の範囲内で受信することが可能な光のパワーの最小値に近づくように前記減衰部の減衰量を制御することを特徴とする付記8に記載の伝送装置。
(付記11) 前記減衰部は、前記合波部に入力される前記監視信号光を減衰させることを特徴とする付記8乃至10の何れかに記載の伝送装置。
(付記12) 前記制御部は、前記他の伝送装置が受信した前記監視信号光のパワーと前記目標値の差分が第1閾値以下である場合、または前記減衰量と前記減衰量の上限値の差分が第2閾値以下である場合、前記減衰部の減衰量の制御を停止することを特徴とする付記11に記載の伝送装置。
(付記13) 前記減衰部は、前記合波部から出力された前記監視信号光及び前記主信号光を減衰させることを特徴とする付記8乃至10の何れかに記載の伝送装置。
(付記14) 前記制御部は、前記他の伝送装置が受信した前記監視信号光のパワーと前記目標値の差分が第1閾値以下である場合、前記減衰量と前記減衰量の上限値の差分が第2閾値以下である場合、または前記他の伝送装置が受信した前記主信号光のパワーと前記主信号光のパワーの下限値の差分が第3閾値以下である場合、前記減衰部の減衰量の制御を停止することを特徴とする付記13に記載の伝送装置。
(付記15) 第1伝送装置から伝送路を介して第2伝送装置に主信号光を伝送する伝送方法において、
前記第1伝送装置は、
前記第1伝送装置及び前記第2伝送装置の監視制御に関する情報を含む監視信号光を出力し、
前記監視信号光を減衰部により減衰させ、
前記監視信号光を前記主信号光に合波し、
前記第2伝送装置は、
前記伝送路から入力された前記主信号光及び前記監視信号光を分波し、
前記監視信号光のパワーを第1検出部により検出し、
前記監視信号光を受信部により受信し、
前記第1検出部が検出した前記監視信号光のパワーを前記第1伝送装置に通知し、
前記第1伝送装置は、前記第2伝送装置から通知された前記監視信号光のパワーが所定の目標値に近づくように前記減衰部の減衰量を制御することを特徴とする伝送方法。
(付記16) 前記第2伝送装置から通知された前記監視信号光のパワーが、前記受信部により受信することが可能な光のパワーの最小値に近づくように前記減衰部の減衰量を制御することを特徴とする付記15に記載の伝送方法。
(付記17) 前記第2伝送装置から通知された前記監視信号光のパワーが、前記受信部の受光特性の仕様の範囲内で受信することが可能な光のパワーの最小値に近づくように前記減衰部の減衰量を制御することを特徴とする付記15に記載の伝送方法。
(付記18) 前記減衰部は、前記主信号光に合波される前記監視信号光を減衰させることを特徴とする付記15乃至17の何れかに記載の伝送方法。
(付記19) 前記第2伝送装置から通知された前記監視信号光のパワーと前記目標値の差分が第1閾値以下である場合、または前記減衰量と前記減衰量の上限値の差分が第2閾値以下である場合、前記減衰部の減衰量の制御を停止することを特徴とする付記18に記載の伝送方法。
(付記20) 前記減衰部は、合波された前記監視信号光及び前記主信号光を減衰させることを特徴とする付記15乃至17の何れかに記載の伝送方法。
Note that the following notes are further disclosed with respect to the above description.
(Appendix 1) a first transmission device that transmits main signal light to a transmission line;
a second transmission device that receives the main signal light from the first transmission device via the transmission line,
The first transmission device,
an output unit that outputs supervisory signal light containing information on supervisory control of the first transmission device and the second transmission device;
an attenuation unit that attenuates the supervisory signal light;
a multiplexing unit that multiplexes the supervisory signal light with the main signal light;
a control unit that controls the attenuation amount of the attenuation unit;
The second transmission device,
a demultiplexer for demultiplexing the main signal light and the supervisory signal light input from the transmission line;
a first detector that detects the power of the supervisory signal light;
a receiver that receives the supervisory signal light;
a notification unit that notifies the first transmission device of the power of the supervisory signal light detected by the first detection unit;
The transmission system according to claim 1, wherein the control section controls the attenuation amount of the attenuation section so that the power of the supervisory signal light notified from the notification section approaches a predetermined target value.
(Supplementary Note 2) The controller controls the amount of attenuation of the attenuator so that the power of the supervisory signal light notified from the notification unit approaches the minimum power of light that can be received by the receiver. The transmission system according to appendix 1, characterized in that it controls the
(Supplementary Note 3) The control unit causes the power of the supervisory signal light notified from the notification unit to approach the minimum power of light that can be received within the range of specifications of the light receiving characteristics of the reception unit. The transmission system according to appendix 1, wherein the attenuation amount of the attenuation unit is controlled as follows.
(Appendix 4) The transmission system according to any one of Appendices 1 to 3, wherein the attenuator attenuates the supervisory signal light input to the multiplexer.
(Additional Note 5) When the difference between the power of the supervisory signal light notified from the notification unit and the target value is equal to or less than a first threshold, or when the difference between the attenuation amount and the upper limit value of the attenuation amount is is equal to or less than a second threshold, the transmission system according to appendix 4, wherein control of the attenuation amount of the attenuation unit is stopped.
(Appendix 6) The transmission system according to any one of Appendices 1 to 3, wherein the attenuator attenuates the supervisory signal light and the main signal light output from the multiplexer.
(Appendix 7) The second transmission device has a second detection unit that detects the power of the main signal light,
the notification unit notifying the first transmission device of the power of the supervisory signal light detected by the first detection unit and the power of the main signal light detected by the second detection unit;
When the difference between the power of the supervisory signal light notified from the notification unit and the target value is equal to or less than a first threshold, the controller controls the difference between the attenuation amount and the upper limit value of the attenuation amount to be equal to or less than a second threshold. or if the difference between the power of the main signal light notified by the notification unit and the lower limit value of the power of the main signal light is equal to or less than a third threshold, the attenuation unit stops controlling the amount of attenuation. The transmission system according to appendix 6, characterized by:
(Appendix 8) In a transmission device that transmits main signal light to another transmission device via a transmission line,
an output unit for outputting supervisory signal light containing information on supervisory control of the transmission device and the other transmission device;
an attenuation unit that attenuates the supervisory signal light;
a multiplexing unit that multiplexes the supervisory signal light with the main signal light;
and a control section for controlling attenuation of the attenuator so that the power of the supervisory signal light received by the other transmission apparatus approaches a predetermined target value.
(Additional Note 9) The controller attenuates the attenuator so that the power of the supervisory signal light received by the other transmission device approaches the minimum power of light that can be received by the receiver. 9. Transmission device according to clause 8, characterized in that it controls the amount.
(Supplementary Note 10) The control unit controls the power of the supervisory signal light received by the other transmission device to be the minimum value of light power that can be received within the range of the specifications of the light receiving characteristics of the reception unit. The transmission device according to appendix 8, wherein the attenuation amount of the attenuator is controlled so as to be close to each other.
(Supplementary note 11) The transmission device according to any one of Supplementary notes 8 to 10, wherein the attenuator attenuates the supervisory signal light input to the multiplexer.
(Supplementary Note 12) The control unit, when the difference between the power of the supervisory signal light received by the other transmission device and the target value is equal to or less than a first threshold value, or the difference between the attenuation amount and the upper limit value of the attenuation amount 12. The transmission apparatus according to appendix 11, wherein control of the attenuation amount of the attenuation unit is stopped when the difference is equal to or less than a second threshold.
(Supplementary note 13) The transmission device according to any one of Supplementary notes 8 to 10, wherein the attenuator attenuates the supervisory signal light and the main signal light output from the multiplexer.
(Supplementary Note 14) When the difference between the power of the supervisory signal light received by the other transmission device and the target value is equal to or less than a first threshold, the controller controls the difference between the attenuation amount and the upper limit value of the attenuation amount. is equal to or less than a second threshold, or the difference between the power of the main signal light received by the other transmission device and the lower limit of the power of the main signal light is equal to or less than a third threshold, the attenuation of the attenuator 14. Transmission device according to clause 13, characterized in that it stops controlling the quantity.
(Appendix 15) In the transmission method for transmitting the main signal light from the first transmission device to the second transmission device via the transmission line,
The first transmission device,
outputting supervisory signal light containing information on supervisory control of the first transmission device and the second transmission device;
Attenuating the supervisory signal light by an attenuator,
combining the supervisory signal light with the main signal light;
The second transmission device,
demultiplexing the main signal light and the supervisory signal light input from the transmission line;
detecting the power of the supervisory signal light by a first detector;
receiving the supervisory signal light by a receiving unit;
notifying the first transmission device of the power of the supervisory signal light detected by the first detection unit;
The transmission method, wherein the first transmission device controls the attenuation of the attenuator so that the power of the supervisory signal light notified from the second transmission device approaches a predetermined target value.
(Supplementary Note 16) The attenuation amount of the attenuator is controlled so that the power of the supervisory signal light notified from the second transmission device approaches the minimum power of light that can be received by the receiver. The transmission method according to appendix 15, characterized by:
(Supplementary Note 17) The power of the supervisory signal light notified from the second transmission device approaches the minimum value of the power of light that can be received within the specification of the light receiving characteristics of the receiver. 16. The transmission method according to appendix 15, wherein the attenuation amount of the attenuation unit is controlled.
(Supplementary note 18) The transmission method according to any one of Supplementary notes 15 to 17, wherein the attenuator attenuates the supervisory signal light combined with the main signal light.
(Supplementary Note 19) When the difference between the power of the supervisory signal light notified from the second transmission device and the target value is equal to or less than a first threshold, or the difference between the attenuation amount and the upper limit value of the attenuation amount is a second 19. The transmission method according to appendix 18, wherein control of the attenuation amount of the attenuator is stopped when it is equal to or less than the threshold.
(Supplementary note 20) The transmission method according to any one of Supplementary notes 15 to 17, wherein the attenuator attenuates the multiplexed supervisory signal light and main signal light.

1a,1b 伝送装置
10a,10b FPGA
20a,20b SFP
21a,21b,26a,26b VOA
25a,25b PD
33a,33b,34a,34b フィルタ
90,91 伝送路
1a, 1b transmission device 10a, 10b FPGA
20a, 20b SFPs
21a, 21b, 26a, 26b VOAs
25a, 25b PDs
33a, 33b, 34a, 34b Filter 90, 91 Transmission line

Claims (7)

主信号光を伝送路に送信する第1伝送装置と、
前記第1伝送装置から前記伝送路を介して前記主信号光を受信する第2伝送装置とを有し、
前記第1伝送装置は、
前記第1伝送装置及び前記第2伝送装置の監視制御に関する情報を含む監視信号光を出力する出力部と、
前記監視信号光を減衰させる減衰部と、
前記監視信号光を前記主信号光に合波する合波部と、
前記減衰部の減衰量を制御する制御部とを有し、
前記第2伝送装置は、
前記伝送路から入力された前記主信号光及び前記監視信号光を分波する分波部と、
前記監視信号光のパワーを検出する第1検出部と、
前記監視信号光を受信する受信部と、
前記第1検出部が検出した前記監視信号光のパワーを前記第1伝送装置に通知する通知部とを有し、
前記制御部は、前記通知部から通知された前記監視信号光のパワーと、前記受信部の受光特性の仕様に規定された最小受光感度との差分が第1閾値より大きい場合、前記通知部から通知された前記監視信号光のパワーが前記最小受光感度に近づくように前記減衰部の減衰量を制御することにより、前記監視信号光のパワーを低下させ、前記第1伝送装置及び前記第2伝送装置の監視制御機能を低下させずに前記伝送路中の前記主信号光及び前記監視信号光の非線形光学効果を抑圧することを特徴とする伝送システム。
a first transmission device that transmits main signal light to a transmission line;
a second transmission device that receives the main signal light from the first transmission device via the transmission line,
The first transmission device,
an output unit that outputs supervisory signal light containing information on supervisory control of the first transmission device and the second transmission device;
an attenuation unit that attenuates the supervisory signal light;
a multiplexing unit that multiplexes the supervisory signal light with the main signal light;
a control unit that controls the attenuation amount of the attenuation unit;
The second transmission device,
a demultiplexer that demultiplexes the main signal light and the supervisory signal light input from the transmission line;
a first detector that detects the power of the supervisory signal light;
a receiver that receives the supervisory signal light;
a notification unit that notifies the first transmission device of the power of the supervisory signal light detected by the first detection unit;
When the difference between the power of the supervisory signal light notified from the notification unit and the minimum light receiving sensitivity defined in the specifications of the light reception characteristics of the reception unit is greater than a first threshold, the control unit By controlling the attenuation amount of the attenuator so that the power of the notified supervisory signal light approaches the minimum light receiving sensitivity, the power of the supervisory signal light is reduced, and the first transmission device and the second transmission are controlled. A transmission system characterized by suppressing a nonlinear optical effect of said main signal light and said supervisory signal light in said transmission path without degrading the supervisory control function of an apparatus.
前記減衰部は、前記合波部に入力される前記監視信号光を減衰させることを特徴とする請求項1に記載の伝送システム。 2. The transmission system according to claim 1, wherein the attenuator attenuates the supervisory signal light input to the multiplexer. 前記制御部は、前記通知部から通知された前記監視信号光のパワーと、前記最小受光感度との差分が前記第1閾値以下である場合、または前記減衰量と前記減衰量の上限値の差分が第2閾値以下である場合、前記減衰部の減衰量の制御を停止することを特徴とする請求項2に記載の伝送システム。 When the difference between the power of the supervisory signal light notified from the notification unit and the minimum light-receiving sensitivity is equal to or less than the first threshold value, or the difference between the attenuation amount and the upper limit value of the attenuation amount 3. The transmission system according to claim 2, wherein control of the attenuation amount of said attenuation unit is stopped when is equal to or less than a second threshold. 前記減衰部は、前記合波部から出力された前記監視信号光及び前記主信号光を減衰させることを特徴とする請求項1に記載の伝送システム。 2. The transmission system according to claim 1, wherein the attenuator attenuates the supervisory signal light and the main signal light output from the multiplexer. 前記第2伝送装置は、前記主信号光のパワーを検出する第2検出部を有し、
前記通知部は、前記第1検出部が検出した前記監視信号光のパワーと、前記第2検出部が検出した前記主信号光のパワーとを前記第1伝送装置に通知し、
前記制御部は、前記通知部から通知された前記監視信号光のパワーと、前記最小受光感度との差分が前記第1閾値以下である場合、前記減衰量と前記減衰量の上限値の差分が第2閾値以下である場合、または前記通知部から通知された前記主信号光のパワーと前記主信号光のパワーの下限値の差分が第3閾値以下である場合、前記減衰部の減衰量の制御を停止することを特徴とする請求項4に記載の伝送システム。
The second transmission device has a second detection unit that detects power of the main signal light,
the notification unit notifying the first transmission device of the power of the supervisory signal light detected by the first detection unit and the power of the main signal light detected by the second detection unit;
When the difference between the power of the supervisory signal light notified from the notification unit and the minimum light-receiving sensitivity is equal to or less than the first threshold value, the control unit determines that the difference between the attenuation amount and the upper limit value of the attenuation amount is When the difference between the power of the main signal light and the lower limit value of the power of the main signal light notified by the notification unit is equal to or less than the third threshold, the attenuation amount of the attenuation unit 5. Transmission system according to claim 4, characterized in that the control is stopped.
主信号光を、伝送路を介して他の伝送装置に伝送する伝送装置において、
前記伝送装置及び前記他の伝送装置の監視制御に関する情報を含む監視信号光を出力する出力部と、
前記監視信号光を減衰させる減衰部と、
前記監視信号光を前記主信号光に合波する合波部と、
前記他の伝送装置の受信部が受信した前記監視信号光のパワーと、前記受信部の受光特性の仕様に規定された最小受光感度との差分が第1閾値より大きい場合、前記受信部が受信した前記監視信号光のパワーが前記最小受光感度に近づくように前記減衰部の減衰量を制御することにより、前記監視信号光のパワーを低下させ、前記伝送装置及び前記他の伝送装置の監視制御機能を低下させずに前記伝送路中の前記主信号光及び前記監視信号光の非線形光学効果を抑圧する制御部とを有することを特徴とする伝送装置。
In a transmission device that transmits main signal light to another transmission device via a transmission line,
an output unit for outputting supervisory signal light containing information on supervisory control of the transmission device and the other transmission device;
an attenuation unit that attenuates the supervisory signal light;
a multiplexing unit that multiplexes the supervisory signal light with the main signal light;
When the difference between the power of the supervisory signal light received by the receiving unit of the other transmission device and the minimum light receiving sensitivity defined in the specifications of the light receiving characteristics of the receiving unit is greater than a first threshold, the receiving unit receives by controlling the attenuation amount of the attenuator so that the power of the received supervisory signal light approaches the minimum light receiving sensitivity, the power of the supervisory signal light is reduced, and the supervisory control of the transmission device and the other transmission devices and a controller for suppressing a nonlinear optical effect of the main signal light and the supervisory signal light in the transmission path without lowering the function.
第1伝送装置から伝送路を介して第2伝送装置に主信号光を伝送する伝送方法において、
前記第1伝送装置は、
前記第1伝送装置及び前記第2伝送装置の監視制御に関する情報を含む監視信号光を出力し、
前記監視信号光を減衰部により減衰させ、
前記監視信号光を前記主信号光に合波し、
前記第2伝送装置は、
前記伝送路から入力された前記主信号光及び前記監視信号光を分波し、
前記監視信号光のパワーを第1検出部により検出し、
前記監視信号光を受信部により受信し、
前記第1検出部が検出した前記監視信号光のパワーを前記第1伝送装置に通知し、
前記第1伝送装置は、前記第2伝送装置から通知された前記監視信号光のパワーと、前記受信部の受光特性の仕様に規定された最小受光感度との差分が第1閾値より大きい場合、前記第2伝送装置から通知された前記監視信号光のパワーが前記最小受光感度に近づくように前記減衰部の減衰量を制御することにより、前記監視信号光のパワーを低下させ、前記第1伝送装置及び前記第2伝送装置の監視制御機能を低下させずに前記伝送路中の前記主信号光及び前記監視信号光の非線形光学効果を抑圧することを特徴とする伝送方法。
In a transmission method for transmitting main signal light from a first transmission device to a second transmission device via a transmission line,
The first transmission device,
outputting supervisory signal light containing information on supervisory control of the first transmission device and the second transmission device;
Attenuating the supervisory signal light by an attenuator,
combining the supervisory signal light with the main signal light;
The second transmission device,
demultiplexing the main signal light and the supervisory signal light input from the transmission line;
detecting the power of the supervisory signal light by a first detector;
receiving the supervisory signal light by a receiving unit;
notifying the first transmission device of the power of the supervisory signal light detected by the first detection unit;
When the difference between the power of the supervisory signal light notified from the second transmission device and the minimum light receiving sensitivity defined in the specifications of the light receiving characteristics of the receiving unit is greater than a first threshold, By controlling the attenuation amount of the attenuator so that the power of the supervisory signal light notified from the second transmission device approaches the minimum light receiving sensitivity, the power of the supervisory signal light is reduced and the first transmission is performed. A transmission method characterized by suppressing a nonlinear optical effect of said main signal light and said supervisory signal light in said transmission line without deteriorating supervisory control functions of said apparatus and said second transmission apparatus.
JP2018181785A 2018-09-27 2018-09-27 TRANSMISSION SYSTEM, TRANSMISSION DEVICE, AND TRANSMISSION METHOD Active JP7230401B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018181785A JP7230401B2 (en) 2018-09-27 2018-09-27 TRANSMISSION SYSTEM, TRANSMISSION DEVICE, AND TRANSMISSION METHOD
US16/560,176 US11228375B2 (en) 2018-09-27 2019-09-04 Transmission system, transmission device, and transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018181785A JP7230401B2 (en) 2018-09-27 2018-09-27 TRANSMISSION SYSTEM, TRANSMISSION DEVICE, AND TRANSMISSION METHOD

Publications (2)

Publication Number Publication Date
JP2020053858A JP2020053858A (en) 2020-04-02
JP7230401B2 true JP7230401B2 (en) 2023-03-01

Family

ID=69946189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018181785A Active JP7230401B2 (en) 2018-09-27 2018-09-27 TRANSMISSION SYSTEM, TRANSMISSION DEVICE, AND TRANSMISSION METHOD

Country Status (2)

Country Link
US (1) US11228375B2 (en)
JP (1) JP7230401B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023209981A1 (en) * 2022-04-28 2023-11-02 日本電信電話株式会社 Station-side optical network unit, communication system, and control method
WO2024029035A1 (en) * 2022-08-04 2024-02-08 日本電信電話株式会社 Communication system and normality determination unit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101273557A (en) 2005-09-21 2008-09-24 富士通株式会社 Monitoring optical transmission method for wavelength division multiplexing transmission system and wavelength division multiplexing transmission apparatus
JP2009159290A (en) 2007-12-26 2009-07-16 Fujitsu Ltd Optical transmission apparatus and optical communication system
WO2011101919A1 (en) 2010-02-22 2011-08-25 三菱電機株式会社 Optical transmitter
JP2011199624A (en) 2010-03-19 2011-10-06 Fujitsu Ltd Optical modulation apparatus and optical modulation method
JP2012205172A (en) 2011-03-28 2012-10-22 Nec Networks & System Integration Corp Span loss automatic adjustment device and method in optical transmission system
WO2015015551A1 (en) 2013-07-29 2015-02-05 三菱電機株式会社 Optical transmission system and node
JP2015091003A (en) 2013-11-05 2015-05-11 富士通株式会社 Optical transmission system and optical transmission device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2366925A (en) * 2000-09-13 2002-03-20 Marconi Comm Ltd Power control and equalisation in an optical WDM system
JP4746953B2 (en) 2005-09-30 2011-08-10 富士通株式会社 Optical transmission apparatus, optical level control method, and optical level control program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101273557A (en) 2005-09-21 2008-09-24 富士通株式会社 Monitoring optical transmission method for wavelength division multiplexing transmission system and wavelength division multiplexing transmission apparatus
JP2009159290A (en) 2007-12-26 2009-07-16 Fujitsu Ltd Optical transmission apparatus and optical communication system
WO2011101919A1 (en) 2010-02-22 2011-08-25 三菱電機株式会社 Optical transmitter
JP2011199624A (en) 2010-03-19 2011-10-06 Fujitsu Ltd Optical modulation apparatus and optical modulation method
JP2012205172A (en) 2011-03-28 2012-10-22 Nec Networks & System Integration Corp Span loss automatic adjustment device and method in optical transmission system
WO2015015551A1 (en) 2013-07-29 2015-02-05 三菱電機株式会社 Optical transmission system and node
JP2015091003A (en) 2013-11-05 2015-05-11 富士通株式会社 Optical transmission system and optical transmission device

Also Published As

Publication number Publication date
US20200106531A1 (en) 2020-04-02
US11228375B2 (en) 2022-01-18
JP2020053858A (en) 2020-04-02

Similar Documents

Publication Publication Date Title
JP5863172B2 (en) Optical receiver
EP2355388A2 (en) Optical network and control method therefor
US8116626B2 (en) Optical transmission apparatus and optical attenuation amount control method
US9225456B2 (en) Post-transient gain control of optical amplifiers
JP7304364B2 (en) Multi-fiber interface automatic power reduction system and method
JP4654560B2 (en) Optical output control device, optical output control method, and optical output control program
JP7230401B2 (en) TRANSMISSION SYSTEM, TRANSMISSION DEVICE, AND TRANSMISSION METHOD
US8867922B2 (en) Control device of node transferring signal light
JP6455297B2 (en) Optical amplifier, optical transmission device, and optical repeater
US8861965B2 (en) Optical transmission apparatus
US9191143B2 (en) Optical transmission device and optical transmission device control method
JP4702540B2 (en) Optical transmission apparatus and system, and control method and program thereof
JP2008503886A (en) Wavelength division multiplexing (WDM) optical demultiplexer
CN108370277A (en) The quick detection of signal quality in wavelength division multiplexed network
US8989574B2 (en) Method and device for monitoring WDM signal light
US11018762B2 (en) Transmission device, transmission system, and transmission method
EP3678304B1 (en) Optical transmission device and spectrum control method
US10530474B2 (en) Optical transmission device and optical signal gain control method
KR102126238B1 (en) Transmitter for transmitting for optical signal in optical communication system and operation method therefor
CN107359933B (en) A kind of method and device for realizing system receiver optical signal to noise ratio automatic equalization
US11184102B2 (en) Apparatus and adding and dropping method
US20150009555A1 (en) Optical amplification control apparatus and control method of the same
JP7134354B2 (en) Optical communication device
JP5190132B2 (en) Optical transmission equipment
JP2008294818A (en) Wavelength multiplex transmission system, and optical transmitter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221130

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20221130

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20221209

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20221213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230130

R150 Certificate of patent or registration of utility model

Ref document number: 7230401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150