JP7228439B2 - Powder material for powder additive manufacturing and manufacturing method of model - Google Patents

Powder material for powder additive manufacturing and manufacturing method of model Download PDF

Info

Publication number
JP7228439B2
JP7228439B2 JP2019060845A JP2019060845A JP7228439B2 JP 7228439 B2 JP7228439 B2 JP 7228439B2 JP 2019060845 A JP2019060845 A JP 2019060845A JP 2019060845 A JP2019060845 A JP 2019060845A JP 7228439 B2 JP7228439 B2 JP 7228439B2
Authority
JP
Japan
Prior art keywords
powder
powder material
additive manufacturing
particles
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019060845A
Other languages
Japanese (ja)
Other versions
JP2020158850A (en
Inventor
純也 山田
博之 伊部
伸映 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujimi Inc
Original Assignee
Fujimi Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujimi Inc filed Critical Fujimi Inc
Priority to JP2019060845A priority Critical patent/JP7228439B2/en
Priority to PCT/JP2019/046658 priority patent/WO2020194873A1/en
Publication of JP2020158850A publication Critical patent/JP2020158850A/en
Application granted granted Critical
Publication of JP7228439B2 publication Critical patent/JP7228439B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/30Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Powder Metallurgy (AREA)
  • Producing Shaped Articles From Materials (AREA)

Description

本発明は、粉末積層造形用粉末材料及びそれを用いる造形物の製造方法に関する。 TECHNICAL FIELD The present invention relates to a powder material for powder additive manufacturing and a manufacturing method of a model using the same.

サーメット、超硬合金で形成された工具、金型等の製作に、粉末積層造形法を用いることが検討されている。粉末積層造形用の粉末材料として、例えば特許文献1には、タングステンカーバイド(WC)の一次粒子とコバルト(Co)の一次粒子との焼結粒子(二次粒子)で構成された粉末材料が開示されている。
また、例えば特許文献2には、減圧下において電子ビームで粉末材料を融解させて粉末積層造形法によって三次元的な造形物を製造する積層造形装置が開示されている。この積層造形装置においては、造形物にクラックが生じることを抑制するなど造形精度を向上させる目的で、造形前に粉末材料の予熱が行われる。
The use of the powder additive manufacturing method for manufacturing tools, molds, and the like made of cermet and cemented carbide has been studied. As a powder material for powder additive manufacturing, for example, Patent Document 1 discloses a powder material composed of sintered particles (secondary particles) of primary particles of tungsten carbide (WC) and primary particles of cobalt (Co). It is
Further, for example, Patent Literature 2 discloses a layered modeling apparatus that melts a powder material with an electron beam under reduced pressure and manufactures a three-dimensional modeled object by a powder layered modeling method. In this layered modeling apparatus, the powder material is preheated before modeling for the purpose of improving modeling accuracy, such as suppressing the occurrence of cracks in the modeled object.

国際公開第2015/194678号WO2015/194678 特表2015-507092号公報Special Table 2015-507092

しかしながら、特許文献2に開示の積層造形装置を用いて造形物を製造しようとすると、予熱によって粉末材料からガスが発生して十分な減圧ができず、造形を行うことができない場合があった。この原因は、粉末材料に添加したバインダーに由来する有機成分が予熱によって分解して二酸化炭素が生成するためであった。
本発明は、造形前に予熱を行ってもガスが生成しにくく減圧下で粉末積層造形法によって造形物を製造することが可能な粉末積層造形用粉末材料及び造形物の製造方法を提供することを課題とする。
However, when an attempt is made to manufacture a modeled object using the layered modeling apparatus disclosed in Patent Document 2, there are cases where gas is generated from the powder material due to preheating and sufficient pressure reduction cannot be achieved, making it impossible to model. This was because the organic component derived from the binder added to the powder material was decomposed by preheating to generate carbon dioxide.
The present invention provides a powder material for powder additive manufacturing and a method for producing a model, which makes it difficult for gas to be generated even if preheating is performed before modeling, and which enables a model to be manufactured by a powder additive manufacturing method under reduced pressure. is the subject.

本発明の一態様に係る粉末積層造形用粉末材料は、粉末積層造形法によって造形物を製造するための粉末材料であって、複数の一次粒子が結合してなる二次粒子を含有し、1100℃、2.5時間との条件で熱処理した場合の質量減少率が0.02質量%以下であることを要旨とする。
本発明の他の態様に係る造形物の製造方法は、上記の一態様に係る粉末積層造形用粉末材料を用いて粉末積層造形法によって造形物を製造することを要旨とする。
A powder material for powder additive manufacturing according to one aspect of the present invention is a powder material for producing a modeled object by a powder additive manufacturing method, and contains secondary particles formed by bonding a plurality of primary particles, and 1100 C. for 2.5 hours, the mass reduction rate is 0.02% by mass or less.
A gist of a method for manufacturing a modeled object according to another aspect of the present invention is to manufacture a modeled object by a powder additive manufacturing method using the powder material for powder additive manufacturing according to the above aspect.

本発明によれば、造形前に予熱を行ってもガスが生成しにくく減圧下で粉末積層造形法によって造形物を製造することが可能である。 According to the present invention, even if preheating is performed before modeling, gas is less likely to be generated, and it is possible to manufacture a modeled object by the powder additive manufacturing method under reduced pressure.

粉末積層造形のための積層造形装置の一例を示す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows an example of the lamination-molding apparatus for powder lamination-molding.

本発明の一実施形態について詳細に説明する。なお、以下の実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。また、以下の実施形態には種々の変更又は改良を加えることが可能であり、その様な変更又は改良を加えた形態も本発明に含まれ得る。 An embodiment of the present invention will be described in detail. In addition, the following embodiment shows an example of the present invention, and the present invention is not limited to this embodiment. In addition, various modifications or improvements can be added to the following embodiments, and forms with such modifications or improvements can also be included in the present invention.

本実施形態の粉末積層造形用粉末材料は、粉末積層造形法によって造形物を製造するための粉末材料であって、複数の一次粒子が結合してなる二次粒子を含有し、1100℃、2.5時間との条件で熱処理した場合の質量減少率が0.02質量%以下である。
粉末積層造形用粉末材料は、例えば、セラミック粒子、金属粒子等の粒子にバインダーを添加して造粒することにより製造される場合があるが、前述した予熱などの加熱によりバインダーから熱分解ガス、揮発ガス等のガスが発生する場合がある。例えば、バインダーが分解して二酸化炭素、有機成分ガス等の熱分解ガスが発生する場合がある。
The powder material for powder additive manufacturing of the present embodiment is a powder material for manufacturing a modeled object by a powder additive manufacturing method, and contains secondary particles formed by bonding a plurality of primary particles. The mass reduction rate is 0.02% by mass or less when heat-treated for 0.5 hours.
The powder material for powder additive manufacturing may be produced, for example, by adding a binder to particles such as ceramic particles and metal particles and granulating them. Gases such as volatile gas may be generated. For example, the binder may decompose to generate thermal decomposition gas such as carbon dioxide and organic component gas.

本実施形態の粉末積層造形用粉末材料は、1100℃、2.5時間との条件で熱処理した場合の質量減少率が0.02質量%以下であるので、造形前に予熱を行ったとしても、粉末積層造形用粉末材料から熱分解ガス、揮発ガス等のガスが発生しにくい。そのため、本実施形態の粉末積層造形用粉末材料は、十分に減圧をすることができ、減圧下で粉末積層造形法による造形を行うことができるので、クラックが少ないなど造形精度が高い造形物を製造することができる。 The powder material for powder additive manufacturing of the present embodiment has a mass reduction rate of 0.02% by mass or less when heat-treated under the conditions of 1100 ° C. and 2.5 hours, so even if preheating is performed before modeling , gases such as pyrolysis gas and volatilization gas are less likely to be generated from the powder material for powder additive manufacturing. Therefore, the powder material for powder additive manufacturing of the present embodiment can be sufficiently decompressed, and modeling by the powder additive manufacturing method can be performed under reduced pressure. can be manufactured.

本実施形態の粉末積層造形用粉末材料においては、質量減少率を測定する際の上記熱処理の条件は1100℃、2.5時間であるが、熱処理の温度は1100℃以上であれば他の温度とすることもできる。ただし、熱処理の温度は、1500℃以下であることが好ましく、1300℃以下であることがより好ましく、1200℃以下であることがさらに好ましい。 In the powder material for powder additive manufacturing of the present embodiment, the heat treatment conditions for measuring the mass reduction rate are 1100 ° C. and 2.5 hours, but if the heat treatment temperature is 1100 ° C. or higher, other temperatures can also be However, the heat treatment temperature is preferably 1500° C. or lower, more preferably 1300° C. or lower, and even more preferably 1200° C. or lower.

また、熱処理の時間は2.5時間以上とすることもできる。ただし、熱処理の時間は、24時間以下であることが好ましく、12時間以下であることがより好ましく、6時間以下であることがさらに好ましい。
さらに、熱処理による質量減少率は低い方がより好ましいので、0.015質量%以下であることがより好ましく、0.01質量%以下であることがさらに好ましい。
さらに、熱処理時の圧力は特に限定されるものではなく、常圧下で熱処理を行ってもよいし、減圧下で熱処理を行ってもよい。
Also, the heat treatment time can be set to 2.5 hours or more. However, the heat treatment time is preferably 24 hours or less, more preferably 12 hours or less, and even more preferably 6 hours or less.
Furthermore, since the mass reduction rate due to heat treatment is preferably low, it is more preferably 0.015% by mass or less, and even more preferably 0.01% by mass or less.
Furthermore, the pressure during the heat treatment is not particularly limited, and the heat treatment may be performed under normal pressure or under reduced pressure.

本実施形態の粉末積層造形用粉末材料を用いて粉末積層造形法によって造形を行えば、種々の立体形状の造形物を製造することが可能である。例えば、工作を行うための種々の工具(例えば切削工具)や、成形を行うための種々の金型や、治具等の種々の部品を、本実施形態の粉末積層造形用粉末材料を用いた粉末積層造形法によって製造することが可能である。 If the powder material for powder additive manufacturing of the present embodiment is used for modeling by the additive additive manufacturing method, it is possible to manufacture various three-dimensional shaped objects. For example, various tools for working (for example, cutting tools), various molds for molding, various parts such as jigs, etc., are manufactured using the powder material for powder additive manufacturing of the present embodiment. It can be manufactured by powder additive manufacturing.

本実施形態における粉末積層造形法としては、例えば、レーザー粉体肉盛り法(レーザーメタルデポジション法;LMD)、選択的レーザー溶融法(セレクトレーザーメルティング法;SLM)、電子ビーム溶融法(エレクトロンビームメルティング法;EBM)等のビーム照射方式が挙げられる。特に電子ビーム溶融法は、造形時に減圧が必要となるので、本実施形態の粉末積層造形用粉末材料を好適に使用することができる。 Examples of the powder additive manufacturing method in the present embodiment include a laser powder build-up method (laser metal deposition method; LMD), a selective laser melting method (select laser melting method; SLM), an electron beam melting method (electron A beam irradiation method such as a beam melting method (EBM) can be used. In particular, the electron beam melting method requires decompression during modeling, so the powder material for powder additive manufacturing of the present embodiment can be preferably used.

レーザーメタルデポジション法とは、具体的には、構造物の所望の部位に粉末材料を提供して、そこにレーザー光を照射することで粉末材料を溶融・凝固させ、当該部位に肉盛りを行う技術である。この手法を利用することで、例えば、構造物に摩耗等の物理的な劣化が発生した場合に、当該劣化部位に粉末材料として当該構造物を構成する材料又は補強材料等を供給し、その粉末材料を溶融・凝固させることで劣化部位等に肉盛りを行うことができる。 Specifically, the laser metal deposition method involves providing a powder material to a desired part of a structure, irradiating it with a laser beam to melt and solidify the powder material, and building up the part. It is a technique to do. By using this method, for example, when physical deterioration such as wear occurs in a structure, a material constituting the structure or a reinforcing material is supplied as a powder material to the deteriorated part, and the powder By melting and solidifying the material, it is possible to build up the deteriorated portion.

セレクトレーザーメルティング法とは、設計図から作成したスライスデータに基づき、粉末材料を堆積させた粉末層にレーザー光を走査させ、粉末層を所望形状に溶融・凝固する操作を、1断面(1スライスデータ)ごとに繰り返して積層させることで、三次元的な構造体を造形する技術である。
エレクトロンビームメルティング法とは、3D CADデータから作成したスライスデータを基に、電子ビームを用いて上記粉末層を選択的に溶融・凝固させ、積層することで、3次元的な構造体を造形する技術である。
The select laser melting method is based on the slice data created from the design drawing, scanning the laser beam on the powder layer on which the powder material is deposited, and melting and solidifying the powder layer into a desired shape. It is a technology that forms a three-dimensional structure by repeatedly stacking each slice data).
The electron beam melting method is based on slice data created from 3D CAD data, and uses an electron beam to selectively melt and solidify the above powder layers, layering them to form a three-dimensional structure. It is a technology to

本実施形態の粉末積層造形用粉末材料の種類は特に限定されるものではなく、例えば、セラミック粒子、金属粒子等が挙げられるが、複数の一次粒子が結合してなる二次粒子を含有すればよく、例えば、セラミック粒子と金属粒子の焼結体からなる焼結粒子を含有してもよい。詳述すると、本実施形態の粉末積層造形用粉末材料は、セラミック粒子(一次粒子)と金属粒子(一次粒子)とを焼結して得られた焼結体からなる焼結粒子(二次粒子)を含有してもよい。 The type of the powder material for powder additive manufacturing of the present embodiment is not particularly limited, and examples thereof include ceramic particles and metal particles. It may contain, for example, sintered particles comprising a sintered body of ceramic particles and metal particles. More specifically, the powder material for powder additive manufacturing of the present embodiment is a sintered body obtained by sintering ceramic particles (primary particles) and metal particles (primary particles). ) may contain.

セラミック粒子と金属粒子とを焼結して焼結体からなる焼結粒子を得る方法は、特に限定されるものではなく、一般的な焼結方法を採用可能であるが、例えば、プラズマアトマイズ法等のアトマイズ法、溶射法、高周波誘導熱プラズマ法を用いることにより、焼結体からなる焼結粒子を得ることができる。 The method of sintering ceramic particles and metal particles to obtain sintered particles made of a sintered body is not particularly limited, and a general sintering method can be employed. Sintered particles made of a sintered body can be obtained by using an atomizing method, a thermal spraying method, or a high-frequency induction thermal plasma method.

セラミック粒子の種類は特に限定されるものではないが、酸化物系セラミックの粒子や非酸化物系セラミックの粒子が挙げられる。
酸化物系セラミックとしては、例えば、以下に示す金属の酸化物が挙げられる。すなわち、金属としては、B、Si、Ge、Sb、Bi等の半金属元素、Mg、Ca、Sr、Ba、Zn、Al、Ga、In、Sn、Pb等の典型元素、Sc、Y、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Ni、Cu、Ag、Au等の遷移金属元素、La、Ce、Pr、Nd、Sm、Er、Lu等のランタノイド元素から選択される1種又は2種以上の金属が挙げられる。これらの金属の中でも、Mg、Y、Ti、Zr、Cr、Mn、Fe、Zn、Al、Erから選択される1種又は2種以上の金属が好ましい。
The type of ceramic particles is not particularly limited, but examples include particles of oxide ceramics and particles of non-oxide ceramics.
Examples of oxide-based ceramics include oxides of the following metals. That is, metals include semimetal elements such as B, Si, Ge, Sb, and Bi; typical elements such as Mg, Ca, Sr, Ba, Zn, Al, Ga, In, Sn, and Pb; , Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, Ag, Au transition metal elements, La, Ce, Pr, Nd, Sm, Er, Lu, etc. and one or more metals selected from lanthanoid elements. Among these metals, one or more metals selected from Mg, Y, Ti, Zr, Cr, Mn, Fe, Zn, Al, and Er are preferred.

酸化物系セラミックとしては、より具体的には、例えば、アルミナ、ジルコニア、イットリア、クロミア、チタニア、コバルタイト、マグネシア、シリカ、カルシア、セリア、フェライト、スピネル、ジルコン、酸化ニッケル、酸化銀、酸化銅、酸化亜鉛、酸化ガリウム、酸化ストロンチウム、酸化スカンジウム、酸化サマリウム、酸化ビスマス、酸化ランタン、酸化ルテチウム、酸化ハフニウム、酸化バナジウム、酸化ニオブ、酸化タングステン、マンガン酸化物、酸化タンタル、酸化テルピウム、酸化ユーロピウム、酸化ネオジウム、酸化スズ、酸化アンチモン、アンチモン含有酸化スズ、酸化インジウム、スズ含有酸化インジウム、酸化ジルコニウムアルミネート、酸化ジルコニウムシリケート、酸化ハフニウムアルミネート、酸化ハフニウムシリケート、酸化チタンシリケート、酸化ランタンシリケート、酸化ランタンアルミネート、酸化イットリウムシリケート、酸化チタンシリケート、酸化タンタルシリケート等が挙げられる。 More specifically, oxide ceramics include, for example, alumina, zirconia, yttria, chromia, titania, cobaltite, magnesia, silica, calcia, ceria, ferrite, spinel, zircon, nickel oxide, silver oxide, copper oxide, Zinc oxide, gallium oxide, strontium oxide, scandium oxide, samarium oxide, bismuth oxide, lanthanum oxide, lutetium oxide, hafnium oxide, vanadium oxide, niobium oxide, tungsten oxide, manganese oxide, tantalum oxide, terpium oxide, europium oxide, oxide Neodymium, tin oxide, antimony oxide, antimony-containing tin oxide, indium oxide, tin-containing indium oxide, zirconium oxide aluminate, zirconium oxide silicate, hafnium oxide aluminate, hafnium silicate oxide, titanium oxide silicate, lanthanum silicate oxide, lanthanum aluminum oxide silicate, yttrium oxide silicate, titanium oxide silicate, tantalum silicate oxide and the like.

また、非酸化物系セラミックとしては、例えば、炭化タングステン(タングステンカーバイド)、炭化クロム、炭化バナジウム、炭化ニオブ、炭化モリブデン、炭化タンタル、炭化チタン、炭化ジルコニウム、炭化ハフニウム、炭化ケイ素、炭化ホウ素等の炭化物系セラミックや、ホウ化モリブデン、ホウ化クロム、ホウ化ハフニウム、ホウ化ジルコニウム、ホウ化タンタル、ホウ化チタン等のホウ化物系セラミックや、窒化ホウ素、窒化チタン、窒化ケイ素、窒化アルミニウム等の窒化物系セラミックが挙げられる。 Examples of non-oxide ceramics include tungsten carbide, chromium carbide, vanadium carbide, niobium carbide, molybdenum carbide, tantalum carbide, titanium carbide, zirconium carbide, hafnium carbide, silicon carbide, boron carbide, and the like. Carbide-based ceramics, boride-based ceramics such as molybdenum boride, chromium boride, hafnium boride, zirconium boride, tantalum boride, and titanium boride, and nitrides such as boron nitride, titanium nitride, silicon nitride, and aluminum nitride material ceramics.

さらに、非酸化物系セラミックとしては、例えば、フオルステライト、ステアタイト、コーディエライト、ムライト、チタン酸バリウム、チタン酸鉛、チタン酸ジルコン酸鉛、Mn-Znフェライト、Ni-Znフェライト、サイアロン等の複合化物や、ハイドロキシアパタイト、リン酸カルシウム等のリン酸化合物が挙げられる。
これらのセラミックは、いずれか1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。また、これらのセラミックの中では、炭化タングステンが特に好ましい。
Furthermore, non-oxide ceramics include, for example, forsterite, steatite, cordierite, mullite, barium titanate, lead titanate, lead zirconate titanate, Mn--Zn ferrite, Ni--Zn ferrite, and sialon. and phosphate compounds such as hydroxyapatite and calcium phosphate.
Any one of these ceramics may be used alone, or two or more thereof may be used in combination. Among these ceramics, tungsten carbide is particularly preferred.

金属粒子の種類は特に限定されるものではないが、マグネシウム(Mg)、アルミニウム(Al)、チタン(Ti)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、ジルコニウム(Zr)、金(Au)、銀(Ag)、白金(Pt)、イリジウム(Ir)、ビスマス(Bi)、ニオブ(Ni)、モリブデン(Mo)、錫(Sn)、タングステン(W)、鉛(Pb)等の金属の粒子や、これらの金属のうち2種以上の金属の合金の粒子が挙げられる。
これらの金属は、いずれか1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。また、これらの金属の中では、コバルトが特に好ましい。
Although the types of metal particles are not particularly limited, magnesium (Mg), aluminum (Al), titanium (Ti), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), zirconium (Zr), gold (Au), silver (Ag), platinum (Pt), iridium (Ir), bismuth (Bi), niobium (Ni), molybdenum Particles of metals such as (Mo), tin (Sn), tungsten (W), and lead (Pb), and particles of alloys of two or more of these metals can be used.
Any one of these metals may be used alone, or two or more thereof may be used in combination. Among these metals, cobalt is particularly preferred.

セラミック粒子と金属粒子の焼結体からなる焼結粒子においては、セラミック粒子と金属粒子との質量比は特に限定されるものではなく、粉末積層造形用粉末材料の使用目的や使用条件に応じて任意に設定することができる。また、本発明の目的が達成される範囲内の量であれば、第3の成分を添加剤としてセラミック粒子及び金属粒子に添加して、焼結体としてもよい。さらに、粉末積層造形用粉末材料は、セラミック粒子、金属粒子、焼結粒子等を含有していれば、樹脂の粒子、添加剤の粒子等の他の粒子をさらに含有していてもよい。 In the sintered particles composed of a sintered body of ceramic particles and metal particles, the mass ratio of the ceramic particles and the metal particles is not particularly limited, and depends on the purpose and conditions of use of the powder material for powder additive manufacturing. Can be set arbitrarily. In addition, the third component may be added as an additive to the ceramic particles and metal particles to form a sintered body, as long as the amount is within the range where the object of the present invention is achieved. Furthermore, the powder material for powder additive manufacturing may further contain other particles such as resin particles and additive particles as long as it contains ceramic particles, metal particles, sintered particles and the like.

セラミック粒子及び金属粒子の平均粒子径(平均一次粒子径)は特に限定されるものではなく、粉末積層造形用粉末材料の使用目的や使用条件に応じて任意に設定することができる。また、焼結体からなる焼結粒子の平均粒子径(平均二次粒子径)も同様に特に限定されるものではなく、粉末積層造形用粉末材料の使用目的や使用条件に応じて任意に設定することができる。 The average particle size (average primary particle size) of the ceramic particles and metal particles is not particularly limited, and can be arbitrarily set according to the intended use and use conditions of the powder material for powder additive manufacturing. Similarly, the average particle size (average secondary particle size) of the sintered particles made of the sintered body is not particularly limited, and can be set arbitrarily according to the purpose and conditions of use of the powder material for powder additive manufacturing. can do.

<粉末積層造形用粉末材料の製造方法>
本実施形態の粉末積層造形用粉末材料の製造方法は、1100℃、2.5時間との条件で熱処理した場合の質量減少率が0.02質量%以下であるならば、特に限定されるものではないが、粉末積層造形用粉末材料の製造工程中のいずれかの工程(例えば最終工程)に焼成工程を有する方法により、使用時に加熱されてもガスが発生しにくい粉末積層造形用粉末材料を製造することができる。
<Method for producing powder material for powder additive manufacturing>
The method for producing the powder material for powder additive manufacturing of the present embodiment is particularly limited as long as the mass reduction rate is 0.02% by mass or less when heat-treated under the conditions of 1100 ° C. for 2.5 hours. However, a powder material for powder additive manufacturing that does not easily generate gas even when heated during use is produced by a method that includes a firing step in one of the processes (for example, the final process) during the manufacturing process of the powder material for additive additive manufacturing. can be manufactured.

加熱により熱分解ガス、揮発ガス等のガスを発生させ得る物質(例えば、粉末積層造形用粉末材料を製造する際に添加されるバインダー)を、焼成工程における加熱によって予め除去すれば、使用時に加熱されてもガスが発生しにくい粉末積層造形用粉末材料を製造することができる。
あるいは、本実施形態の粉末積層造形用粉末材料が焼結により製造される場合には、焼結工程において、熱分解ガス、揮発ガス等のガスを発生させ得る物質を除去可能な条件(加熱温度及び加熱時間)で焼結を行うことにより、使用時に加熱されてもガスが発生しにくい粉末積層造形用粉末材料を製造することができる。
Substances that can generate gases such as pyrolysis gas and volatile gas by heating (for example, binders added when manufacturing powder materials for powder additive manufacturing) are removed in advance by heating in the firing process, so that they can be heated at the time of use. It is possible to manufacture a powder material for powder additive manufacturing that does not easily generate gas even if it is heated.
Alternatively, when the powder material for powder additive manufacturing of the present embodiment is produced by sintering, in the sintering process, conditions (heating temperature and heating time), it is possible to produce a powder material for powder additive manufacturing that does not easily generate gas even when heated during use.

焼成工程における焼成条件及び焼結工程における焼結条件は、粉末積層造形用粉末材料を1100℃、2.5時間との条件で熱処理した場合の質量減少率が0.02質量%以下となる条件に設定する必要がある。焼成条件及び焼結条件は、1100℃且つ24時間以上であることが好ましく、1150℃且つ12時間以上であることがより好ましく、1200℃且つ6時間以上であることがさらに好ましい。 The firing conditions in the firing step and the sintering conditions in the sintering step are conditions in which the mass reduction rate when the powder material for powder additive manufacturing is heat treated at 1100 ° C. for 2.5 hours is 0.02% by mass or less. must be set to The firing conditions and sintering conditions are preferably 1100° C. and 24 hours or longer, more preferably 1150° C. and 12 hours or longer, and even more preferably 1200° C. and 6 hours or longer.

なお、上記のような焼成条件での焼成や焼結条件での焼結を行わなくても、1100℃、2.5時間との条件で熱処理した場合の質量減少率が0.02質量%以下となる場合には、上記のような焼成条件での焼成や焼結条件での焼結を行う必要はない。すなわち、焼成工程を有しない製造方法で粉末積層造形用粉末材料を製造してもよいし、通常の焼結条件で焼結を行う製造方法で粉末積層造形用粉末材料を製造してもよい。 Even without firing under the firing conditions or sintering under the sintering conditions as described above, the mass reduction rate is 0.02% by mass or less when heat treated at 1100 ° C. for 2.5 hours. In that case, it is not necessary to perform firing under the firing conditions or sintering under the sintering conditions described above. That is, the powder material for powder additive manufacturing may be manufactured by a manufacturing method that does not have a firing step, or the powder material for powder additive manufacturing may be manufactured by a manufacturing method that performs sintering under normal sintering conditions.

<造形物の製造方法>
本実施形態の粉末積層造形用粉末材料を用いて粉末積層造形法によって三次元的な造形物を製造する方法は、例えば、次のような方法がある。図1は粉末積層造形のための積層造形装置の一例の簡略図を示しており、大まかな構成として、積層造形が行われる空間である積層エリア10と、粉末材料を貯留しておくストック12と、積層エリア10への粉末材料の供給を補助するワイパ11と、粉末材料を固化するための固化手段(電子銃、レーザー発振器等)13と、を備えている。
<Manufacturing method of model>
Examples of the method for manufacturing a three-dimensional model by the powder additive manufacturing method using the powder material for powder additive manufacturing of the present embodiment include the following methods. FIG. 1 shows a simplified diagram of an example of a layered manufacturing apparatus for powder layered manufacturing, and as a rough configuration, a layering area 10, which is a space where layered manufacturing is performed, and a stock 12 for storing powder materials. , a wiper 11 for assisting the supply of the powder material to the stacking area 10, and a solidification means (electron gun, laser oscillator, etc.) 13 for solidifying the powder material.

積層エリア10は、典型的には、外周が囲まれた造形空間を造形面より下方に有し、この造形空間内に昇降可能な昇降テーブル14を備えている。この昇降テーブル14は、所定厚みΔt1ずつ降下することができ、この昇降テーブル14上に目的の造形物を造形してゆく。ストック12は、積層エリア10の傍に配置され、例えば、外周が囲まれた貯留空間内に、シリンダー等によって昇降可能な底板(昇降テーブル)を備えている。底板が上昇することで、所定量の粉末材料を造形面に供給(押し出し)することができる。 The stacking area 10 typically has a molding space whose outer periphery is surrounded below the molding surface, and is provided with an elevating table 14 that can move up and down within the molding space. The elevating table 14 can be lowered by a predetermined thickness Δt1, and a desired object is formed on the elevating table 14.例文帳に追加The stock 12 is arranged beside the stacking area 10, and has, for example, a bottom plate (elevating table) that can be raised and lowered by a cylinder or the like in a storage space whose outer periphery is surrounded. By raising the bottom plate, a predetermined amount of powder material can be supplied (extruded) to the modeling surface.

このような積層造形装置では、昇降テーブル14を造形面より所定厚みΔt1だけ下げた状態で積層エリア10へ粉末材料層20を供給することで、所定厚みΔt1の粉末材料層20を用意することができる。このとき、造形面にワイパ11を走査させることで、ストック12から押し出された粉末材料を積層エリア10上に供給するとともに、粉末材料の表面を平坦化して、均質な粉末材料層20を形成することができる。そして、例えば、形成された第1層目の粉末材料層20に対し、第1層目のスライスデータに対応した固化領域にのみ、固化手段13を介して熱源を与えることで、粉末材料を所望の断面形状に焼結又は接合等し、第1層目の粉末固化層21を形成することができる。 In such a layered modeling apparatus, the powder material layer 20 having a predetermined thickness Δt1 can be prepared by supplying the powder material layer 20 to the stacking area 10 in a state where the elevating table 14 is lowered by a predetermined thickness Δt1 from the modeling surface. can. At this time, by scanning the molding surface with the wiper 11, the powder material extruded from the stock 12 is supplied onto the stacking area 10, and the surface of the powder material is flattened to form a homogeneous powder material layer 20. be able to. Then, for example, for the formed first layer of powder material layer 20, a heat source is applied only to the solidified region corresponding to the slice data of the first layer through the solidifying means 13, thereby obtaining the desired powder material. can be sintered or joined to form the powder solidified layer 21 of the first layer.

この後、昇降テーブル14を所定厚みΔt1だけ下げて積層エリア10へ再度粉末材料を供給し、ワイパ11でならすことで第2層目の粉末材料層20を形成する。そしてこの粉末材料層20の第2層目のスライスデータに対応した固化領域にのみ、固化手段13を介して熱源を与えて粉末材料を固化させて第2層目の粉末固化層21を形成する。このとき、第2層目の粉末固化層21と、下層である第1層目の粉末固化層21とが一体化されて、第2層目までの積層体を形成する。 Thereafter, the elevating table 14 is lowered by a predetermined thickness Δt1, the powder material is supplied again to the stacking area 10, and the wiper 11 is used to smooth the powder material, thereby forming the second powder material layer 20. FIG. Only the solidified region corresponding to the slice data of the second layer of the powder material layer 20 is supplied with a heat source through the solidifying means 13 to solidify the powder material, thereby forming the powder solidified layer 21 of the second layer. . At this time, the solidified powder layer 21 of the second layer and the solidified powder layer 21 of the first layer, which is the lower layer, are integrated to form a laminate up to the second layer.

引き続き、昇降テーブル14を所定厚みΔt1だけ下降させて積層エリア10へ新たな粉末材料層20を形成し、固化手段13を介して熱源を与えて所要箇所を粉末固化層21とする、との工程を、所望の回数繰り返す。これにより、複数層の粉末固化層21が積層され一体化されてなる積層体が形成され、目的とする三次元的な造形物を製造することができる。 Subsequently, the elevating table 14 is lowered by a predetermined thickness Δt1 to form a new powder material layer 20 in the lamination area 10, and a heat source is applied through the solidification means 13 to form a powder solidified layer 21 at a desired location. is repeated as many times as desired. As a result, a laminate is formed by laminating and integrating a plurality of solidified powder layers 21, and a desired three-dimensional modeled object can be manufactured.

なお、粉末材料を固化する方法としては、電子ビーム、レーザー光等の照射により熱を与えて粉末材料を溶融固化する方法などが選択される。具体的には、粉末材料を固化するための固化手段が電子銃である場合は、例えば熱電子放出型の電子銃や電界放射型の電子銃を固化手段として好適に用いることができる。また、粉末材料を固化するための固化手段がレーザー発振器である場合は、例えば炭酸ガスレーザーやYAGレーザーを固化手段として好適に用いることができる。 As a method for solidifying the powder material, a method of melting and solidifying the powder material by applying heat by irradiation with an electron beam, a laser beam, or the like is selected. Specifically, when the solidification means for solidifying the powder material is an electron gun, for example, a thermionic emission electron gun or a field emission electron gun can be suitably used as the solidification means. Further, when the solidification means for solidifying the powder material is a laser oscillator, for example, a carbon dioxide laser or a YAG laser can be suitably used as the solidification means.

〔実施例〕
以下に実施例及び比較例を示し、本発明をさらに具体的に説明する。
平均一次粒子径2μmの炭化タングステン粒子と平均一次粒子径2μmのコバルト粒子の焼結体からなる焼結粒子の集合体である実施例及び比較例の粉末(粉末積層造形用粉末材料)を製造した。一次粒子の平均粒子径はレーザー回折・散乱法により測定することができる。例えば、株式会社堀場製作所製のレーザー回折/散乱式粒子径分布測定装置LA-300を用いて測定することができる。
〔Example〕
EXAMPLES Examples and comparative examples are shown below to describe the present invention more specifically.
Powders (powder materials for powder additive manufacturing) of Examples and Comparative Examples, which are aggregates of sintered particles composed of sintered bodies of tungsten carbide particles having an average primary particle diameter of 2 μm and cobalt particles having an average primary particle diameter of 2 μm, were produced. . The average particle size of primary particles can be measured by a laser diffraction/scattering method. For example, it can be measured using a laser diffraction/scattering particle size distribution analyzer LA-300 manufactured by Horiba, Ltd.

比較例の粉末積層造形用粉末材料は、炭化タングステン粒子とコバルト粒子と有機バインダーの混合粉末を、ボトムスプレー方式の噴霧流動造粒機にて造粒し、1250℃、常圧で2.5時間焼結した後に、解砕、分級することにより製造した。炭化タングステン粒子とコバルト粒子の混合比は、炭化タングステン粒子88質量%に対しコバルト粒子12質量%とした。 The powder material for powder additive manufacturing of the comparative example is obtained by granulating a mixed powder of tungsten carbide particles, cobalt particles and an organic binder with a bottom spray fluidized bed granulator, followed by granulating at 1250° C. and normal pressure for 2.5 hours. It was produced by crushing and classifying after sintering. The mixing ratio of the tungsten carbide particles and the cobalt particles was 88% by mass of the tungsten carbide particles and 12% by mass of the cobalt particles.

実施例の粉末積層造形用粉末材料は、炭化タングステン粒子とコバルト粒子と有機バインダーの混合粉末を、ボトムスプレー方式の噴霧流動造粒機にて造粒し、1250℃、常圧で2.5時間焼結し解砕したものを、さらに1100℃、常圧で24時間焼結した後に、解砕、分級することにより製造した。炭化タングステン粒子とコバルト粒子の混合比は、炭化タングステン粒子88質量%に対しコバルト粒子12質量%とした。 The powder materials for powder additive manufacturing of Examples are obtained by granulating a mixed powder of tungsten carbide particles, cobalt particles and an organic binder with a bottom spray fluidized bed granulator, followed by granulating at 1250° C. and normal pressure for 2.5 hours. The sintered and pulverized product was further sintered at 1100° C. and normal pressure for 24 hours, and then pulverized and classified. The mixing ratio of the tungsten carbide particles and the cobalt particles was 88% by mass of the tungsten carbide particles and 12% by mass of the cobalt particles.

実施例及び比較例の粉末積層造形用粉末材料に対して、それぞれ熱処理を施し、熱処理前後での質量減少率(単位は%)を測定した。実施例、比較例ともに、20gの粉末積層造形用粉末材料を熱処理に供した。熱処理の条件は1100℃、常圧、2.5時間である。質量減少率は、熱処理前の粉末積層造形用粉末材料の質量から熱処理後の粉末積層造形用粉末材料の質量を差し引き、それを熱処理前の粉末積層造形用粉末材料の質量で除することにより求めることができる。測定の結果、実施例の粉末積層造形用粉末材料の質量減少率は0.001質量%であるのに対して、比較例の粉末積層造形用粉末材料の質量減少率は0.064質量%であった。 The powder materials for powder additive manufacturing of Examples and Comparative Examples were each subjected to heat treatment, and the mass reduction rate (unit: %) before and after the heat treatment was measured. In both examples and comparative examples, 20 g of the powder material for powder additive manufacturing was subjected to heat treatment. The heat treatment conditions are 1100° C., normal pressure, and 2.5 hours. The mass reduction rate is obtained by subtracting the mass of the powder material for additive manufacturing after heat treatment from the mass of the powder material for additive manufacturing before heat treatment and dividing the result by the mass of the powder material for additive manufacturing before heat treatment. be able to. As a result of the measurement, the mass reduction rate of the powder material for powder additive manufacturing of the example was 0.001% by mass, while the mass reduction rate of the powder material for powder additive manufacturing of the comparative example was 0.064 mass%. there were.

次に、実施例及び比較例の粉末積層造形用粉末材料を用いて、それぞれ粉末積層造形法によって造形物を製造した。造形物の製造には、特許文献2に開示の積層造形装置に類似の積層造形装置を用いた。すなわち、この積層造形装置においては、造形前に粉末積層造形用粉末材料の予熱を1000℃で行った後に、減圧下において電子ビームで粉末積層造形用粉末材料を融解させて粉末積層造形法によって三次元的な造形物を製造するようになっている。 Next, using the powder materials for powder additive manufacturing of Examples and Comparative Examples, molded objects were manufactured by the additive additive manufacturing method. A layered modeling apparatus similar to the layered modeling apparatus disclosed in Patent Document 2 was used to manufacture the modeled object. That is, in this layered manufacturing apparatus, after preheating the powder material for layered powder manufacturing at 1000° C. before modeling, the powder material for layered powder manufacturing is melted with an electron beam under reduced pressure, and the powder layered manufacturing method is used to perform a third step. It is designed to manufacture original moldings.

その結果、実施例の粉末積層造形用粉末材料を用いた場合には、予熱によって粉末材料からガスが発生することがほとんどないので、十分な減圧を行うことができ、上記積層造形装置によって造形物を問題なく製造することができた。これに対して、比較例の粉末積層造形用粉末材料を用いた場合には、予熱によって粉末材料から二酸化炭素等のガスが発生したため、十分な減圧を行うことができず、上記積層造形装置によって造形物を製造することができなかった。 As a result, when the powder material for powder additive manufacturing of the example is used, gas is hardly generated from the powder material by preheating, so sufficient decompression can be performed, and the article can be manufactured by the additive manufacturing apparatus. could be produced without any problems. On the other hand, when the powder material for powder additive manufacturing of the comparative example was used, gas such as carbon dioxide was generated from the powder material by preheating, so that sufficient pressure reduction could not be performed, and the additive manufacturing apparatus described above could not be used. It was not possible to produce a model.

13・・・固化手段
20・・・粉末材料層
21・・・粉末固化層
13 Solidifying Means 20 Powder Material Layer 21 Solidified Powder Layer

Claims (5)

造形前に粉末材料の予熱を行う粉末積層造形法によって造形物を製造するための粉末材料であって、複数の一次粒子が結合してなる二次粒子を含有し、1100℃、2.5時間との条件で熱処理した場合の質量減少率が0.02質量%以下である粉末積層造形用粉末材料。 A powder material for manufacturing a modeled object by a powder additive manufacturing method in which the powder material is preheated before modeling , the powder material containing secondary particles formed by combining a plurality of primary particles, at 1100° C. for 2.5 hours. A powder material for powder additive manufacturing having a mass reduction rate of 0.02% by mass or less when heat-treated under the conditions of 前記二次粒子が、セラミック粒子と金属粒子の焼結体からなる焼結粒子である請求項1に記載の粉末積層造形用粉末材料。 2. The powder material for powder additive manufacturing according to claim 1, wherein the secondary particles are sintered particles made of a sintered body of ceramic particles and metal particles. 前記セラミック粒子が炭化タングステン粒子である請求項2に記載の粉末積層造形用粉末材料。 3. The powder material for powder additive manufacturing according to claim 2, wherein the ceramic particles are tungsten carbide particles. 前記金属粒子がコバルト粒子である請求項2又は請求項3に記載の粉末積層造形用粉末材料。 4. The powder material for additive manufacturing according to claim 2, wherein the metal particles are cobalt particles. 請求項1~4のいずれか一項に記載の粉末積層造形用粉末材料を用いて、造形前に粉末材料の予熱を行う粉末積層造形法によって造形物を製造する造形物の製造方法。 A method for manufacturing a modeled object by using the powder material for powder additive manufacturing according to any one of claims 1 to 4 and by a powder additive manufacturing method in which the powder material is preheated before modeling .
JP2019060845A 2019-03-27 2019-03-27 Powder material for powder additive manufacturing and manufacturing method of model Active JP7228439B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019060845A JP7228439B2 (en) 2019-03-27 2019-03-27 Powder material for powder additive manufacturing and manufacturing method of model
PCT/JP2019/046658 WO2020194873A1 (en) 2019-03-27 2019-11-28 Powder material for use in powder laminate molding and molding production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019060845A JP7228439B2 (en) 2019-03-27 2019-03-27 Powder material for powder additive manufacturing and manufacturing method of model

Publications (2)

Publication Number Publication Date
JP2020158850A JP2020158850A (en) 2020-10-01
JP7228439B2 true JP7228439B2 (en) 2023-02-24

Family

ID=72608737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019060845A Active JP7228439B2 (en) 2019-03-27 2019-03-27 Powder material for powder additive manufacturing and manufacturing method of model

Country Status (2)

Country Link
JP (1) JP7228439B2 (en)
WO (1) WO2020194873A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017113952A (en) 2015-12-22 2017-06-29 株式会社フジミインコーポレーテッド Molding material to be used for powder laminate molding

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088311A (en) * 1996-09-17 1998-04-07 Showa Denko Kk Tungsten carbide/cobalt thermal spraying powder and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017113952A (en) 2015-12-22 2017-06-29 株式会社フジミインコーポレーテッド Molding material to be used for powder laminate molding

Also Published As

Publication number Publication date
WO2020194873A1 (en) 2020-10-01
JP2020158850A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
JP6656911B2 (en) Modeling materials for use in powder additive manufacturing
JP6170994B2 (en) Materials for modeling for use in powder additive manufacturing
EP3096937B1 (en) Additive manufacturing of metal matrix composite feedstock
CN110049836B (en) Manufacturing of metal parts and tungsten heavy metal alloy powder therefor by additive manufacturing
JP4351998B2 (en) Manufacture of metal parts using the selective inhibition of sintering (SIS) method
Zocca et al. Additive manufacturing of ceramics: issues, potentialities, and opportunities
JP6764228B2 (en) Modeling material for use in additive manufacturing
US20170008236A1 (en) Additive Manufacturing 3D Printing of Advanced Ceramics
US20160052162A1 (en) Selective laser melting process
US11648706B2 (en) Selective sinter-based fabrication of fully dense complexing shaped parts
CA3032195A1 (en) Aluminum alloy products, and methods of making the same
KR20190033639A (en) Metal powder feedstock for lamination and systems and methods for making the same
JP7201401B2 (en) Powder material for use in powder additive manufacturing, powder additive manufacturing method using the same, and modeled object
JP7228439B2 (en) Powder material for powder additive manufacturing and manufacturing method of model
JP2021055156A (en) Powder material and method for manufacturing molded article
JP7117226B2 (en) Powder material for use in powder additive manufacturing, powder additive manufacturing method using the same, and modeled object
JP7336843B2 (en) Powder material for powder additive manufacturing and powder additive manufacturing method
WO2017053850A2 (en) Additive manufacturing 3d printing of advanced ceramics
JP7336944B2 (en) Molded object manufacturing method
WO2024070378A1 (en) Powder material for additive manufacturing and method for producing said powder material
Rowlands Additive manufacturing of advanced ceramics for demanding applications
Jimenez Evaluating the Feasibility of Processing Ceramic-Based Materials in Powder Bed Additive Manufacturing
JP7216362B2 (en) Three-dimensional modeling method, three-dimensional modeling apparatus and base material used therefor
CN117120181A (en) Powder material for laminate molding and method for producing molded article using the same
Mendoza Jimenez Evaluating the Feasibility of Processing Ceramic-Based Materials in Powder Bed Additive Manufacturing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230213

R150 Certificate of patent or registration of utility model

Ref document number: 7228439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150