JP7226513B2 - Method for manufacturing positive electrode active material particles, method for manufacturing positive electrode paste, method for manufacturing positive electrode plate, and method for manufacturing lithium ion secondary battery - Google Patents

Method for manufacturing positive electrode active material particles, method for manufacturing positive electrode paste, method for manufacturing positive electrode plate, and method for manufacturing lithium ion secondary battery Download PDF

Info

Publication number
JP7226513B2
JP7226513B2 JP2021201518A JP2021201518A JP7226513B2 JP 7226513 B2 JP7226513 B2 JP 7226513B2 JP 2021201518 A JP2021201518 A JP 2021201518A JP 2021201518 A JP2021201518 A JP 2021201518A JP 7226513 B2 JP7226513 B2 JP 7226513B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
material particles
phosphoric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021201518A
Other languages
Japanese (ja)
Other versions
JP2022022446A (en
Inventor
友宏 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018037838A external-priority patent/JP7024505B2/en
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2021201518A priority Critical patent/JP7226513B2/en
Publication of JP2022022446A publication Critical patent/JP2022022446A/en
Application granted granted Critical
Publication of JP7226513B2 publication Critical patent/JP7226513B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオンを挿入離脱可能な正極活物質粒子の製造方法、この正極活物質粒子を含む正極ペーストの製造方法、上記正極活物質粒子を活物質層中に含む正極板の製造方法、及び、この正極板を備えるリチウムイオン二次電池の製造方法に関する。 The present invention provides a method for producing positive electrode active material particles capable of inserting and extracting lithium ions, a method for producing a positive electrode paste containing the positive electrode active material particles, a method for producing a positive electrode plate containing the positive electrode active material particles in an active material layer, and a method for manufacturing a lithium-ion secondary battery including this positive electrode plate.

リチウムイオン二次電池(以下、単に「電池」ともいう)には、リチウムイオンを挿入離脱可能な正極活物質粒子が用いられる。この正極活物質粒子としては、例えば、リチウムニッケルコバルトアルミニウム複合酸化物粒子や、リチウムニッケルコバルトマンガン複合酸化物粒子、オリビン型リン酸鉄リチウム粒子、スピネル型リチウムマンガン酸化物粒子などが知られている。なお、関連する従来技術として、特許文献1が挙げられる。 A lithium ion secondary battery (hereinafter also simply referred to as a “battery”) uses positive electrode active material particles into which lithium ions can be inserted and extracted. Known positive electrode active material particles include, for example, lithium-nickel-cobalt-aluminum composite oxide particles, lithium-nickel-cobalt-manganese composite oxide particles, olivine-type lithium iron phosphate particles, and spinel-type lithium manganese oxide particles. . In addition, patent document 1 is mentioned as a related prior art.

特開2013-175325号公報JP 2013-175325 A

ところで、リチウムイオンを挿入離脱可能な正極活物質粒子は、大気中の水分に触れると、その粒子表面で水(H2O)と反応して水酸化リチウム(LiOH)を生じる(Li2O+H2O→2LiOH)。更に、この水酸化リチウムは大気中の二酸化炭素(CO2)と反応して炭酸リチウム(Li2CO3)を生じる(2LiOH+CO2→Li2CO3+H2O)。正極活物質粒子の粒子表面で生じた炭酸リチウムは抵抗体である。また、正極活物質粒子が水と反応し正極活物質粒子からリチウムイオンが抜けると、正極活物質粒子の結晶構造が変化し、正極活物質粒子におけるリチウムイオンの挿入離脱がし難くなる。このため、このような正極活物質粒子を用いて製造した電池では、電池のIV抵抗が高くなる。 By the way, when positive electrode active material particles capable of intercalating and deintercalating lithium ions come into contact with moisture in the atmosphere, the particle surfaces react with water (H 2 O) to generate lithium hydroxide (LiOH) (Li 2 O+H 2 O→2LiOH). Furthermore, this lithium hydroxide reacts with carbon dioxide (CO 2 ) in the atmosphere to produce lithium carbonate (Li 2 CO 3 ) (2LiOH+CO 2 →Li 2 CO 3 +H 2 O). Lithium carbonate generated on the particle surface of the positive electrode active material particles is a resistor. In addition, when the positive electrode active material particles react with water and lithium ions are released from the positive electrode active material particles, the crystal structure of the positive electrode active material particles changes, making it difficult for lithium ions to be inserted into and removed from the positive electrode active material particles. Therefore, in a battery manufactured using such positive electrode active material particles, the IV resistance of the battery is high.

本発明は、かかる現状に鑑みてなされたものであって、大気中の水分及び二酸化炭素との接触に起因して、電池を製造したときに電池のIV抵抗が高くなるのを抑制できる、正極活物質粒子の製造方法、正極ペーストの製造方法、正極板の製造方法、及び、リチウムイオン二次電池の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and a positive electrode that can suppress an increase in the IV resistance of the battery when the battery is manufactured due to contact with moisture and carbon dioxide in the atmosphere. An object of the present invention is to provide a method for manufacturing active material particles, a method for manufacturing a positive electrode paste, a method for manufacturing a positive electrode plate, and a method for manufacturing a lithium ion secondary battery.

上記課題を解決するための本発明の一態様は、リチウムイオンを挿入離脱可能な正極活物質粒子の製造方法であって、無機リン酸(H3PO4)、無機リン酸の塩、有機リン酸及び有機リン酸の塩の少なくともいずれかであるリン酸化合物を第1分散媒に溶解したリン酸化合物溶液を、処理前正極活物質粒子に接触させる接触工程と、上記接触工程の後、上記リン酸化合物溶液に濡れた接触後乾燥前正極活物質粒子を乾燥させて、粒子表面にリンを含む被膜が形成された上記正極活物質粒子を得る粒子乾燥工程と、を備え、前記リン酸化合物は、無機リン酸及び無機リン酸の塩であり、前記第1分散媒は、水であり、前記処理前正極活物質粒子と接触する前の前記リン酸化合物溶液のpHは、pH=4.0~5.2である正極活物質粒子の製造方法である。 One aspect of the present invention for solving the above problems is a method for producing positive electrode active material particles capable of intercalating and deintercalating lithium ions, comprising inorganic phosphoric acid (H 3 PO 4 ), inorganic phosphoric acid salt, organic phosphoric acid, a contacting step of contacting the positive electrode active material particles before treatment with a phosphoric acid compound solution obtained by dissolving a phosphoric acid compound, which is at least one of an acid and a salt of an organic phosphoric acid, in a first dispersion medium; a particle drying step of drying the pre-dried positive electrode active material particles wetted with the phosphoric acid compound solution to obtain the positive electrode active material particles having a coating containing phosphorus on the particle surface, wherein the phosphoric acid compound is an inorganic phosphoric acid and a salt of an inorganic phosphoric acid, the first dispersion medium is water, and the pH of the phosphoric acid compound solution before contact with the positive electrode active material particles before treatment is pH=4. This is a method for producing positive electrode active material particles having a ratio of 0 to 5.2.

上述の正極活物質粒子の製造方法では、上述の接触工程及び粒子乾燥工程を行うことによって、処理前正極活物質粒子の粒子表面に既に形成されている抵抗体(炭酸リチウムなど)を除去できる。また、上述のリンを含む被膜(以下、「リン含有被膜」ともいう)を粒子表面に有する正極活物質粒子を得ることができる。このような正極活物質粒子は、リン含有被膜を粒子表面に有しない正極活物質粒子に比べて、大気中の水分や二酸化炭素と反応し難いので、正極活物質粒子の粒子表面に、抵抗体となる炭酸リチウム(Li2CO3)が形成され難い。また、この正極活物質粒子は、リン含有被膜を粒子表面に有しない正極活物質粒子に比べて、水と反応し難いので、水との反応で正極活物質粒子からリチウムイオンが抜けて正極活物質粒子の結晶構造が変化するのを抑制できる。このため、この正極活物質粒子を用いたリチウムイオン二次電池では、リン含有被膜を粒子表面に有しない正極活物質粒子を用いたリチウムイオン二次電池に比べて、電池のIV抵抗を抑制できる。
なお、リン酸化合物を無機リン酸及び無機リン酸の塩とし、第1分散媒を水とした場合、処理前正極活物質粒子と接触する前のリン酸化合物溶液のpHが低いほど、接触工程及びそれ以降に、正極活物質粒子が酸によって大きく損傷すること、具体的には、正極活物質粒子からリチウムイオンが溶出して正極活物質粒子の結晶構造が不可逆的に変化することが判ってきた。一方、処理前正極活物質粒子と接触する前のリン酸化合物溶液のpHを高くし過ぎると、無機リン酸の塩がリン酸化合物溶液中に粒状に析出する。
これに対し、上述の製造方法では、処理前正極活物質粒子と接触する前のリン酸化合物溶液のpHを、pH=4.0~5.2とする。リン酸化合物溶液をpH=4.0以上とすることにより、pH=4.0未満とする場合に比べて、接触工程及びそれ以降に、正極活物質粒子が酸によって大きく損傷するのを抑制できる。一方、リン酸化合物溶液をpH=5.2以下とすることにより、無機リン酸の塩がリン酸化合物溶液中に粒状に析出するのを防止できる。
In the above-described method for producing positive electrode active material particles, the resistor (lithium carbonate, etc.) already formed on the particle surface of the untreated positive electrode active material particles can be removed by performing the above-described contact step and particle drying step. In addition, it is possible to obtain positive electrode active material particles having the above-described coating containing phosphorus (hereinafter also referred to as “phosphorus-containing coating”) on the particle surface. Such positive electrode active material particles are less likely to react with moisture and carbon dioxide in the atmosphere than positive electrode active material particles that do not have a phosphorus-containing coating on the particle surface. Lithium carbonate (Li 2 CO 3 ) is difficult to form. In addition, since the positive electrode active material particles are less likely to react with water than the positive electrode active material particles that do not have a phosphorus-containing coating on the particle surface, lithium ions are released from the positive electrode active material particles by the reaction with water, resulting in positive electrode active material particles. It is possible to suppress changes in the crystal structure of the substance particles. Therefore, in the lithium ion secondary battery using the positive electrode active material particles, the IV resistance of the battery can be suppressed as compared with the lithium ion secondary battery using the positive electrode active material particles that do not have a phosphorus-containing coating on the particle surface. .
When inorganic phosphoric acid and a salt of inorganic phosphoric acid are used as the phosphoric acid compound, and water is used as the first dispersion medium, the lower the pH of the phosphoric acid compound solution before contact with the positive electrode active material particles before treatment, the higher the contact. It was found that the positive electrode active material particles were greatly damaged by the acid in the process and after that, specifically, lithium ions were eluted from the positive electrode active material particles and the crystal structure of the positive electrode active material particles was irreversibly changed. It's here. On the other hand, if the pH of the phosphoric acid compound solution before contact with the untreated positive electrode active material particles is too high, the salt of inorganic phosphoric acid precipitates in the phosphoric acid compound solution in granular form.
On the other hand, in the manufacturing method described above, the pH of the phosphoric acid compound solution before being brought into contact with the untreated positive electrode active material particles is set to pH=4.0 to 5.2. By setting the pH of the phosphoric acid compound solution to 4.0 or more, it is possible to suppress the positive electrode active material particles from being greatly damaged by the acid in the contact step and thereafter, compared to the case where the pH is less than 4.0. . On the other hand, by adjusting the pH of the phosphoric acid compound solution to 5.2 or less, it is possible to prevent the salt of inorganic phosphoric acid from precipitating in the phosphoric acid compound solution in granular form.

なお、「処理前正極活物質粒子」は、リン含有被膜を形成する前の、リチウムを含有する正極活物質粒子であり、例えば、リチウムニッケルコバルトアルミニウム複合酸化物粒子や、リチウムニッケルコバルトマンガン複合酸化物粒子、オリビン型リン酸鉄リチウム粒子、スピネル型リチウムマンガン酸化物粒子などが挙げられる。なお、「接触後乾燥前正極活物質粒子」は、リン酸化合物溶液を接触させた後で、乾燥させる前の正極活物質粒子を指す。
「無機リン酸(H3PO4)の塩」としては、例えば、リン酸リチウム(Li3PO4)、リン酸ナトリウム(Na3PO4)、リン酸カリウム(K3PO4)などが挙げられる。リチウムイオン二次電池では、リチウムイオンが電池反応に寄与するため、無機リン酸の塩としては、リン酸リチウムが特に好ましい。
The "pre-treated positive electrode active material particles" are positive electrode active material particles containing lithium before the phosphorus-containing coating is formed. For example, lithium nickel cobalt aluminum composite oxide particles, lithium nickel cobalt manganese composite oxide particles, olivine-type lithium iron phosphate particles, spinel-type lithium manganese oxide particles, and the like. In addition, the “post-contact and pre-drying positive electrode active material particles” refer to positive electrode active material particles before being dried after contact with the phosphoric acid compound solution.
Examples of "salts of inorganic phosphoric acid ( H3PO4 )" include lithium phosphate ( Li3PO4 ), sodium phosphate ( Na3PO4 ) , potassium phosphate ( K3PO4 ), and the like . be done. In a lithium ion secondary battery, lithium phosphate is particularly preferable as the salt of inorganic phosphoric acid because lithium ions contribute to the battery reaction.

「有機リン酸」としては、例えば、フェニルホスホン酸、メチルホスホン酸などが挙げられる。
「有機リン酸の塩」としては、有機リン酸のリチウム塩、ナトリウム塩、カリウム塩など、例えば、フェニルホスホン酸、メチルホスホン酸のリチウム塩などが挙げられる。リチウムイオン二次電池では、リチウムイオンが電池反応に寄与するため、有機リン酸の塩としては、有機リン酸のリチウム塩が特に好ましい。
"Organic phosphoric acid" includes, for example, phenylphosphonic acid, methylphosphonic acid and the like.
Examples of "salts of organic phosphoric acid" include lithium salts, sodium salts and potassium salts of organic phosphoric acids, such as lithium salts of phenylphosphonic acid and methylphosphonic acid. In a lithium-ion secondary battery, lithium ions contribute to the battery reaction, so the organic phosphoric acid salt is particularly preferably a lithium salt of an organic phosphoric acid.

「第1分散媒」としては、用いるリン酸化合物に合わせてリン酸化合物が溶解可能な分散媒を選択すればよく、例えば、水や、N-メチル-2-ピロリドン(NMP)、ベンゼンなどの有機溶媒などが挙げられる。
正極活物質粒子の粒子表面の「リンを含む被膜(リン含有被膜)」は、用いるリン酸化合物によって、その組成が異なる。例えば、リン酸化合物として、無機リン酸や無機リン酸の塩を用いた場合には、リン酸リチウム(Li3PO4)からなる被膜が形成されると考えられる。また、リン酸化合物として、例えばフェニルホスホン酸やその塩を用いた場合には、フェニルホスホン酸リチウムからなる被膜が形成されると考えられる。
As the "first dispersion medium", a dispersion medium in which the phosphoric acid compound can be dissolved may be selected according to the phosphoric acid compound to be used. For example, water, N-methyl-2-pyrrolidone (NMP), benzene, An organic solvent etc. are mentioned.
The composition of the “film containing phosphorus (phosphorus-containing film)” on the surface of the positive electrode active material particles varies depending on the phosphoric acid compound used. For example, when inorganic phosphoric acid or a salt of inorganic phosphoric acid is used as the phosphoric acid compound, it is considered that a film made of lithium phosphate (Li 3 PO 4 ) is formed. Further, when phenylphosphonic acid or a salt thereof is used as the phosphoric acid compound, it is considered that a film made of lithium phenylphosphonate is formed.

なお、「アルカリ水溶液」としては、例えば、水酸化リチウム(LiOH)、水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)などの水溶液が挙げられる。リチウムイオン二次電池では、リチウムイオンが電池反応に寄与するため、アルカリ水溶液としては、水酸化リチウム水溶液が特に好ましい。 Examples of the "alkaline aqueous solution" include aqueous solutions of lithium hydroxide (LiOH), sodium hydroxide (NaOH), potassium hydroxide (KOH), and the like. In a lithium ion secondary battery, since lithium ions contribute to the battery reaction, the alkaline aqueous solution is particularly preferably a lithium hydroxide aqueous solution.

更に、上記の正極活物質粒子の製造方法であって、前記処理前正極活物質粒子は、1gの上記処理前正極活物質粒子を50gの水に分散させた分散液のpHがpH=11.3以上となる特性を有する正極活物質粒子の製造方法とすると良い。 Further, in the method for producing the positive electrode active material particles described above, the positive electrode active material particles before treatment are obtained by dispersing 1 g of the positive electrode active material particles before treatment in 50 g of water. A method for producing positive electrode active material particles having characteristics of .3 or more is preferable.

上述の製造方法では、処理前正極活物質粒子として、上記分散液のpHがpH=11.3以上となる特性を有するものを用いている。このような処理前正極活物質粒子は、特に、水及び二酸化炭素と反応して水酸化リチウム、更には炭酸リチウムを生じ易く、この処理前正極活物質粒子をそのまま用いた電池ではIV抵抗が高くなり易い。このため、前述のように、接触工程及び粒子乾燥工程を行い、正極活物質粒子の粒子表面にリン含有被膜を設けて、水及び二酸化炭素と反応するのを抑制することが特に好ましい。 In the manufacturing method described above, as the positive electrode active material particles before treatment, those having a characteristic that the pH of the dispersion liquid becomes pH=11.3 or higher are used. Such positive electrode active material particles before treatment are particularly likely to react with water and carbon dioxide to produce lithium hydroxide and even lithium carbonate, and a battery using these positive electrode active material particles as they are has a high IV resistance. easy to become For this reason, as described above, it is particularly preferable to perform the contacting step and the particle drying step to provide a phosphorus-containing coating on the particle surface of the positive electrode active material particles to suppress the reaction with water and carbon dioxide.

また、他の態様は、リチウムイオンを挿入離脱可能な正極活物質粒子と、第2分散媒と、を含む正極ペーストの製造方法であって、上記のいずれかに記載の正極活物質粒子の製造方法により上記正極活物質粒子を製造する粒子製造工程と、上記正極活物質粒子と上記第2分散媒とを混合して、上記正極ペーストを形成する混合ペースト形成工程と、を備える正極ペーストの製造方法である。 Another aspect is a method for producing a positive electrode paste containing positive electrode active material particles capable of inserting and extracting lithium ions and a second dispersion medium, wherein the positive electrode active material particles according to any one of the above are produced. Manufacture of a positive electrode paste comprising: a particle manufacturing step of manufacturing the positive electrode active material particles by a method; and a mixed paste forming step of mixing the positive electrode active material particles and the second dispersion medium to form the positive electrode paste. The method.

上述の正極ペーストの製造方法では、粒子製造工程においてリン含有被膜を粒子表面に有する正極活物質粒子を製造し、混合ペースト形成工程において、この正極活物質粒子を用いて正極ペーストを製造する。従って、この正極ペーストを用いて正極板を形成し、更にこの正極板を用いて電池を製造すれば、リン含有被膜を粒子表面に有しない正極活物質粒子を用いた電池に比べて、電池のIV抵抗を抑制できる。 In the positive electrode paste manufacturing method described above, the positive electrode active material particles having the phosphorus-containing coating on the particle surface are manufactured in the particle manufacturing step, and the positive electrode active material particles are used in the mixed paste forming step to manufacture the positive electrode paste. Therefore, if a positive electrode plate is formed using this positive electrode paste and a battery is manufactured using this positive electrode plate, the battery performance will be lower than that of a battery using positive electrode active material particles that do not have a phosphorus-containing coating on the particle surface. IV resistance can be suppressed.

また、他の態様は、集電箔と、上記集電箔上に形成され、リチウムイオンを挿入離脱可能な正極活物質粒子を含む活物質層と、を備える正極板の製造方法であって、上記の正極ペーストの製造方法により上記正極ペーストを製造するペースト製造工程と、上記集電箔上に上記正極ペーストを塗工して、未乾燥活物質層を形成する塗工工程と、上記集電箔上の上記未乾燥活物質層を乾燥させて、上記活物質層を形成する層乾燥工程と、を備える正極板の製造方法である。 Another aspect is a method for producing a positive electrode plate comprising a current collector foil and an active material layer formed on the current collector foil and containing positive electrode active material particles capable of inserting and extracting lithium ions, A paste manufacturing step of manufacturing the positive electrode paste by the above positive electrode paste manufacturing method, a coating step of coating the positive electrode paste on the current collector foil to form an undried active material layer, and the current collector. a layer drying step of drying the undried active material layer on the foil to form the active material layer.

上述の正極板の製造方法では、ペースト製造工程においてリン含有被膜を粒子表面に有する正極活物質粒子を含む正極ペーストを製造し、この正極ペーストを用いて正極板を製造する。従って、この正極板を用いた電池では、リン含有被膜を粒子表面に有しない正極活物質粒子を用いた電池に比べて、電池のIV抵抗を抑制できる。 In the method for producing a positive electrode plate described above, a positive electrode paste containing positive electrode active material particles having a phosphorus-containing coating on the particle surface is produced in the paste production process, and the positive electrode plate is produced using this positive electrode paste. Therefore, in a battery using this positive electrode plate, the IV resistance of the battery can be suppressed as compared with a battery using positive electrode active material particles that do not have a phosphorus-containing coating on the particle surface.

また、他の態様は、集電箔と、上記集電箔上に形成され、リチウムイオンを挿入離脱可能な正極活物質粒子を含む活物質層とを有する正極板を備えるリチウムイオン二次電池の製造方法であって、上記の正極板の製造方法により上記正極板を製造する正極板製造工程と、上記正極板を用いて、上記リチウムイオン二次電池を組み立てる電池組立工程と、を備えるリチウムイオン二次電池の製造方法である。 Another aspect is a lithium ion secondary battery comprising a positive electrode plate having a current collector foil and an active material layer formed on the current collector foil and containing positive electrode active material particles capable of inserting and extracting lithium ions. A lithium ion manufacturing method, comprising: a positive electrode plate manufacturing step of manufacturing the positive electrode plate by the positive electrode plate manufacturing method; and a battery assembling step of assembling the lithium ion secondary battery using the positive electrode plate. A method for manufacturing a secondary battery.

上述の電池の製造方法では、正極板製造工程においてリン含有被膜を粒子表面に有する正極活物質粒子を含む正極板を製造し、電池組立工程においてこの正極板を用いて電池を組み立てる。従って、この電池では、リン含有被膜を粒子表面に有しない正極活物質粒子を用いた電池に比べて、電池のIV抵抗を抑制できる。 In the above-described battery manufacturing method, a positive electrode plate containing positive electrode active material particles having a phosphorus-containing coating on the particle surface is manufactured in the positive electrode plate manufacturing process, and a battery is assembled using this positive electrode plate in the battery assembling process. Therefore, in this battery, the IV resistance of the battery can be suppressed as compared with a battery using positive electrode active material particles that do not have a phosphorus-containing coating on the particle surface.

実施形態1及び参考形態に係る電池の斜視図である。1 is a perspective view of a battery according to Embodiment 1 and a reference embodiment; FIG. 実施形態1及び参考形態に係る電池の縦断面図である。1 is a vertical cross-sectional view of a battery according to Embodiment 1 and a reference embodiment; FIG. 実施形態1及び参考形態に係る正極板の斜視図である。1 is a perspective view of a positive electrode plate according to Embodiment 1 and a reference embodiment; FIG . 実施形態1及び参考形態に係る正極活物質粒子の断面図である。1 is a cross-sectional view of positive electrode active material particles according to Embodiment 1 and a reference embodiment; FIG . 実施形態1及び参考形態に係る電池の製造方法のフローチャートである。1 is a flow chart of a method for manufacturing a battery according to Embodiment 1 and Reference Embodiment . 実施形態1及び参考形態に係り、正極板製造工程サブルーチンのフローチャートである。4 is a flowchart of a positive electrode plate manufacturing process subroutine according to Embodiment 1 and Reference Embodiment . 実施形態1及び参考形態に係り、粒子製造工程サブルーチンのフローチャートである。4 is a flow chart of a particle manufacturing process subroutine according to Embodiment 1 and Reference Mode . 実施例1,参考例及び比較例1,2に係る各電池のIV抵抗比を示すグラフである。4 is a graph showing the IV resistance ratio of each battery according to Example 1, Reference Example , and Comparative Examples 1 and 2. FIG.

(実施形態1)
以下、本発明の第1の実施形態を、図面を参照しつつ説明する。図1及び図2に、本実施形態1に係るリチウムイオン二次電池(以下、単に「電池」ともいう)1の斜視図及び断面図を示す。また、図3に、電池1を構成する正極板31の斜視図を示す。なお、以下では、電池1の電池縦方向BH、電池横方向CH及び電池厚み方向DHを、図1及び図2に示す方向と定めて説明する。また、正極板31の長手方向EH、幅方向FH及び厚み方向GHを、図3に示す方向と定めて説明する。
(Embodiment 1)
A first embodiment of the present invention will be described below with reference to the drawings. 1 and 2 show a perspective view and a cross-sectional view of a lithium ion secondary battery (hereinafter also simply referred to as "battery") 1 according to Embodiment 1. FIG. 3 shows a perspective view of the positive electrode plate 31 that constitutes the battery 1. As shown in FIG. In the following description, the battery vertical direction BH, the battery horizontal direction CH, and the battery thickness direction DH of the battery 1 are defined as the directions shown in FIGS. 1 and 2 . Further, the longitudinal direction EH, width direction FH, and thickness direction GH of the positive electrode plate 31 are defined as the directions shown in FIG.

電池1は、ハイブリッドカーやプラグインハイブリッドカー、電気自動車等の車両などに搭載される角型で密閉型のリチウムイオン二次電池である。この電池1は、電池ケース10と、この内部に収容された電極体20と、電池ケース10に支持された正極端子部材70及び負極端子部材80等から構成される。また、電池ケース10内には、電解液15が収容されており、その一部は電極体20内に含浸されている。この電解液15は、溶質としてヘキサフルオロリン酸リチウム(LiPF6)を含む。 The battery 1 is a prismatic sealed lithium-ion secondary battery mounted in a vehicle such as a hybrid car, a plug-in hybrid car, an electric car, or the like. The battery 1 comprises a battery case 10, an electrode body 20 housed therein, a positive terminal member 70 and a negative terminal member 80 supported by the battery case 10, and the like. The battery case 10 contains an electrolytic solution 15 , part of which is impregnated in the electrode assembly 20 . This electrolytic solution 15 contains lithium hexafluorophosphate (LiPF 6 ) as a solute.

このうち電池ケース10は、直方体箱状で金属(本実施形態1ではアルミニウム)からなる。この電池ケース10は、上側のみが開口した有底角筒状のケース本体部材11と、このケース本体部材11の開口を閉塞する形態で溶接された矩形板状のケース蓋部材13とから構成される。ケース蓋部材13には、アルミニウムからなる正極端子部材70がケース蓋部材13と絶縁された状態で固設されている。この正極端子部材70は、電池ケース10内で電極体20の正極板31の正極露出部31mに接続し導通する一方、ケース蓋部材13を貫通して電池外部まで延びている。また、ケース蓋部材13には、銅からなる負極端子部材80がケース蓋部材13と絶縁された状態で固設されている。この負極端子部材80は、電池ケース10内で電極体20の負極板51の負極露出部51mに接続し導通する一方、ケース蓋部材13を貫通して電池外部まで延びている。 Among them, the battery case 10 has a rectangular parallelepiped box shape and is made of metal (aluminum in the first embodiment). The battery case 10 is composed of a case main body member 11 in the shape of a bottomed square cylinder with an opening only on the upper side, and a case cover member 13 in the shape of a rectangular plate welded so as to close the opening of the case main body member 11 . be. A positive electrode terminal member 70 made of aluminum is fixed to the case lid member 13 while being insulated from the case lid member 13 . The positive electrode terminal member 70 is connected to the positive electrode exposed portion 31m of the positive electrode plate 31 of the electrode body 20 in the battery case 10 to be electrically connected, and extends through the case lid member 13 to the outside of the battery. A negative electrode terminal member 80 made of copper is fixed to the case lid member 13 while being insulated from the case lid member 13 . The negative electrode terminal member 80 is connected to the negative electrode exposed portion 51m of the negative electrode plate 51 of the electrode body 20 in the battery case 10 and is electrically connected, and extends through the case lid member 13 to the outside of the battery.

電極体20は、扁平状をなし、横倒しにした状態で電池ケース10内に収容されている。電極体20と電池ケース10との間には、絶縁フィルムからなる袋状の絶縁フィルム包囲体19が配置されている。この電極体20は、帯状の正極板31及び帯状の負極板51を、帯状で樹脂製の多孔質膜からなる一対のセパレータ61,61を介して互いに重ね、軸線周りに扁平状に捲回されてなる。 The electrode body 20 has a flat shape and is accommodated in the battery case 10 in a laid down state. Between the electrode body 20 and the battery case 10, a bag-shaped insulating film enclosure 19 made of an insulating film is arranged. The electrode body 20 is formed by stacking a strip-shaped positive electrode plate 31 and a strip-shaped negative electrode plate 51 on each other with a pair of strip-shaped porous resin membrane separators 61 interposed therebetween, and then flatly wound around the axis. It becomes

正極板31(図3も参照)は、帯状のアルミニウム箔からなる正極集電箔32を有する。この正極集電箔32の一方の主面32aのうち、正極板31の幅方向FHの一部でかつ長手方向EHに延びる領域上には、正極活物質層33が帯状に形成されている。また、正極集電箔32の他方の主面32bのうち、正極板31の幅方向FHの一部でかつ長手方向EHに延びる領域上にも、正極活物質層34が帯状に形成されている。 The positive electrode plate 31 (see also FIG. 3) has a positive collector foil 32 made of strip-shaped aluminum foil. A positive electrode active material layer 33 is formed in a strip shape on one main surface 32a of the positive electrode current collector foil 32 on a region that is part of the positive electrode plate 31 in the width direction FH and extends in the longitudinal direction EH. A positive electrode active material layer 34 is also formed in a strip shape on a region of the other main surface 32b of the positive electrode current collector foil 32 that is part of the positive electrode plate 31 in the width direction FH and extends in the longitudinal direction EH. .

これらの正極活物質層33,34は、リチウムイオンを挿入離脱可能なリチウム酸化物からなる正極活物質粒子41、導電材42及び結着剤43を含む。本実施形態1では、正極活物質粒子41として、層状岩塩構造を有するリチウムニッケルコバルトアルミニウム複合酸化物粒子、具体的には、Li1.02(Ni0.82Co0.14Al0.04)O2粒子を用いている。この正極活物質粒子41の粒子表面41aには、リンを含む被膜であるリン含有被膜41yが形成されている(図4参照)。また、本実施形態1では、導電材42としてアセチレンブラック(AB)を、結着剤43としてポリフッ化ビニリデン(PVDF)を用いている。
なお、正極板31のうち幅方向FHの片方の端部は、厚み方向GHに正極活物質層33,34が存在せず、正極集電箔32が厚み方向GHに露出した正極露出部31mとなっている。この正極露出部31mには、前述の正極端子部材70が溶接されている。
These positive electrode active material layers 33 and 34 contain positive electrode active material particles 41 made of lithium oxide capable of intercalating and deintercalating lithium ions, a conductive material 42 and a binder 43 . In Embodiment 1, lithium-nickel-cobalt-aluminum composite oxide particles having a layered rock salt structure, specifically Li 1.02 (Ni 0.82 Co 0.14 Al 0.04 )O 2 particles, are used as the positive electrode active material particles 41 . Phosphorus-containing coatings 41y, which are coatings containing phosphorus, are formed on the particle surfaces 41a of the positive electrode active material particles 41 (see FIG. 4). Further, in Embodiment 1, acetylene black (AB) is used as the conductive material 42 and polyvinylidene fluoride (PVDF) is used as the binder 43 .
At one end of the positive electrode plate 31 in the width direction FH, the positive electrode active material layers 33 and 34 do not exist in the thickness direction GH, and the positive electrode collector foil 32 is exposed in the thickness direction GH. It's becoming The aforementioned positive electrode terminal member 70 is welded to the positive electrode exposed portion 31m.

負極板51は、帯状の銅箔からなる負極集電箔52を有する(図2参照)。この負極集電箔52の一方の主面のうち、負極板51の幅方向の一部でかつ長手方向に延びる領域上には、負極活物質層(不図示)が帯状に形成されている。また、負極集電箔52の他方の主面のうち、負極板51の幅方向の一部でかつ長手方向に延びる領域上にも、負極活物質層(不図示)が帯状に形成されている。これらの負極活物質層は、負極活物質粒子、結着剤及び増粘剤からなる。本実施形態1では、負極活物質粒子として黒鉛粒子を、結着剤としてスチレンブタジエンゴム(SBR)を、増粘剤としてカルボキシメチルセルロース(CMC)を用いている。
なお、負極板51のうち幅方向の片方の端部は、厚み方向に負極活物質層が存在せず、負極集電箔52が厚み方向に露出した負極露出部51mとなっている。この負極露出部51mには、前述の負極端子部材80が溶接されている。
The negative electrode plate 51 has a negative current collecting foil 52 made of strip-shaped copper foil (see FIG. 2). A strip-shaped negative electrode active material layer (not shown) is formed on one main surface of the negative electrode current collector foil 52 on a region that is part of the width direction of the negative electrode plate 51 and extends in the longitudinal direction. A negative electrode active material layer (not shown) is also formed in a belt shape on a region of the other main surface of the negative electrode current collector foil 52 that is part of the width direction of the negative electrode plate 51 and extends in the longitudinal direction. . These negative electrode active material layers are composed of negative electrode active material particles, a binder and a thickener. In Embodiment 1, graphite particles are used as the negative electrode active material particles, styrene-butadiene rubber (SBR) is used as the binder, and carboxymethyl cellulose (CMC) is used as the thickener.
At one end of the negative electrode plate 51 in the width direction, there is no negative electrode active material layer in the thickness direction, and the negative electrode collector foil 52 is exposed in the thickness direction to form a negative electrode exposed portion 51m. The aforementioned negative electrode terminal member 80 is welded to the negative electrode exposed portion 51m.

次いで、上記電池1の製造方法について説明する(図5~図7参照)。まず正極板製造工程S1(図5参照)のペースト製造工程S11(図6参照)のうち、粒子製造工程S110(図7参照)において、正極活物質粒子41を製造する。
即ち、「粒子製造工程S110」のうち、まず「溶解工程S111」において、リン酸化合物を第1分散媒に溶解して、リン酸化合物溶液を作製する。本実施形態1では、リン酸化合物として無機リン酸(H3PO4)及び無機リン酸の塩であるリン酸リチウム(Li3PO4)を用い、第1分散媒として水を用いた。具体的には、水100gあたり、10gの無機リン酸と、90gのリン酸リチウムとを溶解して、pH=4.0~5.2(本実施形態1ではpH=5.0)のリン酸化合物溶液を作製した。
Next, a method for manufacturing the battery 1 will be described (see FIGS. 5 to 7). First, the positive electrode active material particles 41 are manufactured in the particle manufacturing step S110 (see FIG. 7) in the paste manufacturing step S11 (see FIG. 6) of the positive electrode plate manufacturing step S1 (see FIG. 5).
That is, first, in the "dissolving step S111" of the "particle manufacturing step S110", the phosphoric acid compound is dissolved in the first dispersion medium to prepare a phosphoric acid compound solution. In Embodiment 1, inorganic phosphoric acid (H 3 PO 4 ) and lithium phosphate (Li 3 PO 4 ), which is a salt of inorganic phosphoric acid, are used as the phosphoric acid compound, and water is used as the first dispersion medium. Specifically, 10 g of inorganic phosphoric acid and 90 g of lithium phosphate are dissolved in 100 g of water, and the pH is 4.0 to 5.2 (pH = 5.0 in the first embodiment). An acid compound solution was prepared.

次に、「粒子混合工程(前述の接触工程に該当する)S112」において、上述のリン酸化合物溶液を処理前正極活物質粒子41x(図4参照)に接触させる(リン酸化合物溶液に処理前正極活物質粒子41xを混合する)。本実施形態1では、処理前正極活物質粒子41xとして、層状岩塩構造を有するリチウムニッケルコバルトアルミニウム複合酸化物粒子、具体的には、平均粒径が11μmのLi1.02(Ni0.82Co0.14Al0.04)O2粒子を用いた。この処理前正極活物質粒子41xは、1gの処理前正極活物質粒子41xを50gの水に分散させた分散液のpHがpH=11.3以上(本実施形態1ではpH=11.6)となる特性を有する。 Next, in the “particle mixing step (corresponding to the contact step described above) S112”, the above-mentioned phosphate compound solution is brought into contact with the pre-treated positive electrode active material particles 41x (see FIG. 4) (the phosphate compound solution is the positive electrode active material particles 41x are mixed). In Embodiment 1, lithium-nickel-cobalt-aluminum composite oxide particles having a layered rock salt structure, specifically, Li 1.02 (Ni 0.82 Co 0.14 Al 0.04 ) having an average particle size of 11 μm, are used as the untreated positive electrode active material particles 41x. O2 particles were used. The positive electrode active material particles 41x before treatment have a pH of 11.3 or higher (pH=11.6 in Embodiment 1) of a dispersion obtained by dispersing 1 g of positive electrode active material particles 41x before treatment in 50 g of water. It has the characteristics of

具体的には、環境温度25℃下において、リン酸化合物溶液100gあたり、120gの処理前正極活物質粒子41xを加えて、1時間攪拌混合した。これにより、処理前正極活物質粒子41xの粒子表面41xaに既に形成されていた抵抗体(炭酸リチウムなど)が除去されると共に、処理前正極活物質粒子41xの粒子表面41xaに、リンを含む被膜であるリン含有被膜41yが形成されると考えられる。また、本実施形態1のリン含有被膜41yは、リン酸リチウム(Li3PO4)からなる被膜と考えられる。なお、本実施形態1では、この粒子混合工程S112後のリン酸化合物溶液中に含まれる正極活物質粒子が、前述の「接触後乾燥前正極活物質粒子41z」に該当する。 Specifically, at an ambient temperature of 25° C., 120 g of the positive electrode active material particles 41x before treatment were added to 100 g of the phosphoric acid compound solution, and stirred and mixed for 1 hour. As a result, the resistor (such as lithium carbonate) already formed on the particle surface 41xa of the positive electrode active material particles 41x before treatment is removed, and the coating containing phosphorus is formed on the particle surfaces 41xa of the positive electrode active material particles 41x before treatment. is formed. Further, the phosphorus-containing coating 41y of Embodiment 1 is considered to be a coating made of lithium phosphate (Li 3 PO 4 ). In Embodiment 1, the positive electrode active material particles contained in the phosphoric acid compound solution after the particle mixing step S112 correspond to the above-mentioned "post-contact and pre-drying positive electrode active material particles 41z".

次に、「粒子乾燥工程S113」において、上述のリン酸化合物溶液に濡れた接触後乾燥前正極活物質粒子41zを乾燥させて、粒子表面41aにリン含有被膜41yが形成された正極活物質粒子41を得る。具体的には、粒子混合工程S112で得られた混合液を濾過して、接触後乾燥前正極活物質粒子41zを回収した。その後、150℃以下(本実施形態1では130℃)の熱風により、接触後乾燥前正極活物質粒子41zを加熱乾燥させて、正極活物質粒子41を得た。
その後、この正極活物質粒子41をふるいに掛けて、所定の粒径以下の正極活物質粒子41を得た。かくして、リン含有被膜41yを粒子表面41aに有する正極活物質粒子41を製造した。
Next, in the “particle drying step S113”, the positive electrode active material particles 41z before drying after contact that have been wetted with the phosphoric acid compound solution are dried to obtain positive electrode active material particles in which the phosphorus-containing coating 41y is formed on the particle surface 41a. get 41. Specifically, the mixed solution obtained in the particle mixing step S112 was filtered to recover the positive electrode active material particles 41z after contact and before drying. After that, the post-contact and pre-drying positive electrode active material particles 41z were dried by heating with hot air at 150° C. or less (130° C. in the first embodiment) to obtain the positive electrode active material particles 41 .
After that, the positive electrode active material particles 41 were sieved to obtain the positive electrode active material particles 41 having a predetermined particle size or less. Thus, the positive electrode active material particles 41 having the phosphorus-containing coating 41y on the particle surface 41a were produced.

次に、ペースト製造工程S11(図6参照)のうち、「混合ペースト形成工程S120」において、上述の粒子製造工程S110で製造した正極活物質粒子41と、第2分散媒とを混合して、正極ペースト45を形成する。本実施形態1では、第2分散媒として、N-メチル-2-ピロリドン(NMP)を用いた。また、正極ペースト45には、導電材42(本実施形態1ではAB)及び結着剤43(本実施形態1ではPVDF)も含めた。具体的には、正極活物質粒子41と導電材42と結着剤43との重量配合比を、93:6:1とし、正極ペースト45の固形分率NVが70wt%(NMPの割合が30wt%)となるように、正極活物質粒子41、導電材42及び結着剤43をMPと共に混練した。かくして、正極ペースト45を製造した。 Next, in the “mixed paste forming step S120” of the paste manufacturing step S11 (see FIG. 6), the positive electrode active material particles 41 manufactured in the particle manufacturing step S110 and the second dispersion medium are mixed, A positive electrode paste 45 is formed. In Embodiment 1, N-methyl-2-pyrrolidone (NMP) is used as the second dispersion medium. The positive electrode paste 45 also includes a conductive material 42 (AB in the first embodiment) and a binder 43 (PVDF in the first embodiment). Specifically, the weight mixing ratio of the positive electrode active material particles 41, the conductive material 42, and the binder 43 is set to 93:6:1, and the solid content rate NV of the positive electrode paste 45 is 70 wt% (NMP rate is 30 wt%). %), the positive electrode active material particles 41, the conductive material 42 and the binder 43 were kneaded with MP. Thus, the positive electrode paste 45 was produced.

次に、「第1塗工工程S12」(図6参照)において、上述のペースト製造工程S11で製造した正極ペースト45を、別途用意した正極集電箔32の一方の主面32a上にダイ塗工により塗布して、未乾燥活物質層33xを形成する。
次に、「第1層乾燥工程S13」において、正極集電箔32上の未乾燥活物質層33xを乾燥させて、正極活物質層33を形成する。具体的には、未乾燥活物質層33xが形成された正極集電箔32を、加熱乾燥炉内に搬送し、未乾燥活物質層33xに熱風を当てて未乾燥活物質層33xを加熱乾燥させて、正極活物質層33を形成した。
Next, in the "first coating step S12" (see FIG. 6), the positive electrode paste 45 produced in the paste producing step S11 is die-coated on one main surface 32a of the separately prepared positive electrode current collector foil 32. is applied by a process to form an undried active material layer 33x.
Next, in the "first layer drying step S13", the undried active material layer 33x on the positive electrode current collector foil 32 is dried to form the positive electrode active material layer 33. As shown in FIG. Specifically, the positive electrode current collector foil 32 on which the undried active material layer 33x is formed is conveyed into a heating and drying furnace, and hot air is applied to the undried active material layer 33x to heat and dry the undried active material layer 33x. Then, the positive electrode active material layer 33 was formed.

次に、「第2塗工工程S14」において、正極集電箔32の他方の主面32b上に、前述の正極ペースト45を塗布して、未乾燥活物質層34xを形成する。
次に、「第2層乾燥工程S15」において、正極集電箔32の主面32b上の未乾燥活物質層34xを乾燥させて、正極活物質層34を形成する。具体的には、未乾燥活物質層34xが主面32b上に形成された正極集電箔32を、加熱乾燥炉内に搬送し、未乾燥活物質層34xに熱風を当てて未乾燥活物質層34xを加熱乾燥させて、正極活物質層34を形成した。
次に、「プレス工程S16」において、この正極板をロールプレス機(不図示)でプレスして、正極活物質層33,34の密度をそれぞれ高める。かくして、正極板31を製造した。
Next, in the “second coating step S14”, the positive electrode paste 45 described above is applied onto the other main surface 32b of the positive electrode current collector foil 32 to form the undried active material layer 34x.
Next, in the “second layer drying step S15”, the undried active material layer 34x on the main surface 32b of the positive electrode current collector foil 32 is dried to form the positive electrode active material layer 34. FIG. Specifically, the positive electrode current collector foil 32 having the undried active material layer 34x formed on the main surface 32b is conveyed into a heating and drying furnace, and hot air is applied to the undried active material layer 34x to dry the undried active material. Layer 34x was dried by heating to form cathode active material layer 34 .
Next, in "pressing step S16", the positive electrode plate is pressed by a roll press (not shown) to increase the density of the positive electrode active material layers 33 and 34, respectively. Thus, the positive electrode plate 31 was manufactured.

また別途、「負極板製造工程S2」(図5参照)において、負極板51を製造する。具体的には、負極活物質粒子(本実施形態1では黒鉛粒子)、結着剤(本実施形態1ではSBR)及び増粘剤(本実施形態1ではCMC)を、分散媒(本実施形態1では水)と共に混練して、負極ペーストを製造した。この負極ペーストを、負極集電箔52の一方の主面上にダイ塗工により塗布して、未乾燥活物質層(不図示)を形成し、その後、この未乾燥活物質層を熱風により加熱乾燥させて、負極活物質層(不図示)を形成する。同様に、負極集電箔52の他方の主面上にも負極ペーストを塗布して、未乾燥活物質層(不図示)を形成し、その後、この未乾燥活物質層を加熱乾燥させて、負極活物質層(不図示)を形成する。その後、この負極板をロールプレス機(不図示)でプレスして、負極活物質層の密度を高める。かくして、負極板51を製造した。 Separately, in the "negative plate manufacturing step S2" (see FIG. 5), the negative electrode plate 51 is manufactured. Specifically, negative electrode active material particles (graphite particles in the first embodiment), a binder (SBR in the first embodiment) and a thickener (CMC in the first embodiment) are added to a dispersion medium (the 1 was kneaded with water) to produce a negative electrode paste. This negative electrode paste is applied on one main surface of the negative electrode current collector foil 52 by die coating to form an undried active material layer (not shown), and then this undried active material layer is heated with hot air. It is dried to form a negative electrode active material layer (not shown). Similarly, the negative electrode paste is also applied to the other main surface of the negative electrode current collector foil 52 to form an undried active material layer (not shown), and then the undried active material layer is dried by heating, A negative electrode active material layer (not shown) is formed. Thereafter, this negative electrode plate is pressed with a roll press (not shown) to increase the density of the negative electrode active material layer. Thus, the negative electrode plate 51 was manufactured.

次に、「電極体形成工程S3」において、電極体20を形成する。具体的には、正極板31及び負極板51を2枚のセパレータ61,61を介して互いに重ね、巻き芯を用いて軸線周りに捲回した。その後、これを扁平状に圧縮して扁平状捲回型の電極体20を形成した(図2参照)。 Next, in the "electrode body forming step S3", the electrode body 20 is formed. Specifically, the positive electrode plate 31 and the negative electrode plate 51 were stacked with two separators 61, 61 interposed therebetween, and wound around the axis using a winding core. Thereafter, this was compressed into a flat shape to form a flat wound electrode body 20 (see FIG. 2).

次に、「電池組立工程S4」において、電池1を組み立てる。具体的には、ケース蓋部材13を用意し、これに正極端子部材70及び負極端子部材80を固設する(図1及び図2参照)。その後、正極端子部材70及び負極端子部材80を、電極体20の正極板31の正極露出部31m及び負極板51の負極露出部51mにそれぞれ溶接した。次に、電極体20に絶縁フィルム包囲体19を被せて、これらをケース本体部材11内に挿入すると共に、ケース本体部材11の開口をケース蓋部材13で塞ぐ。そして、ケース本体部材11とケース蓋部材13とを溶接して電池ケース10を形成した。 Next, in "battery assembly step S4", the battery 1 is assembled. Specifically, the case lid member 13 is prepared, and the positive electrode terminal member 70 and the negative electrode terminal member 80 are fixed thereto (see FIGS. 1 and 2). After that, the positive electrode terminal member 70 and the negative electrode terminal member 80 were welded to the positive electrode exposed portion 31m of the positive electrode plate 31 and the negative electrode exposed portion 51m of the negative electrode plate 51 of the electrode assembly 20, respectively. Next, the electrode body 20 is covered with the insulating film surrounding body 19 and inserted into the case body member 11 , and the opening of the case body member 11 is closed with the case lid member 13 . Then, the battery case 10 was formed by welding the case body member 11 and the case lid member 13 together.

次に、「注液工程S5」において、電解液15を、注液孔13hから電池ケース10内に注液して電極体20内に含浸させる。その後、封止部材17で注液孔13hを封止する。
次に、「初充電工程S6」において、この電池1を初充電する。その後、この電池1について各種の検査を行う。かくして、電池1が完成する。
Next, in the “injection step S5”, the electrolytic solution 15 is injected into the battery case 10 through the injection hole 13h to impregnate the electrode assembly 20 with the electrolyte solution 15 . After that, the sealing member 17 seals the injection hole 13h.
Next, in the "initial charging step S6", the battery 1 is initially charged. After that, the battery 1 is subjected to various tests. Thus, the battery 1 is completed.

以上で説明したように、本実施形態1では、前述の粒子混合工程S112及び粒子乾燥工程S113を行うことによって、処理前正極活物質粒子41xの粒子表面41xaに既に形成されている抵抗体(炭酸リチウムなど)を除去できる。また、リン含有被膜41yを粒子表面41aに有する正極活物質粒子41を得ることができる。この正極活物質粒子41は、リン含有被膜41yを粒子表面に有しない正極活物質粒子に比べて、大気中の水分や二酸化炭素と反応し難いので、正極活物質粒子41の粒子表面41aに、抵抗体となる炭酸リチウム(Li2CO3)が形成され難い。また、この正極活物質粒子41は、リン含有被膜41yを粒子表面に有しない正極活物質粒子に比べて、水と反応し難いので、水との反応で正極活物質粒子41からリチウムイオンが抜けて正極活物質粒子41の結晶構造が変化するのを抑制できる。このため、この正極活物質粒子41を用いて正極ペースト45を作製し、この正極ペースト45を用いて正極板31を形成し、更にこの正極板31を用いて電池1を製造すれば、リン含有被膜41yを粒子表面に有しない正極活物質粒子を用いた電池に比べて、電池のIV抵抗を抑制できる。 As described above, in Embodiment 1, by performing the particle mixing step S112 and the particle drying step S113, the resistor (carbonic acid) already formed on the particle surface 41xa of the untreated positive electrode active material particle 41x Lithium, etc.) can be removed. Moreover, positive electrode active material particles 41 having phosphorus-containing coatings 41y on particle surfaces 41a can be obtained. The positive electrode active material particles 41 are less likely to react with moisture and carbon dioxide in the atmosphere than the positive electrode active material particles that do not have the phosphorus-containing coating 41y on the particle surface. Lithium carbonate (Li 2 CO 3 ), which serves as a resistor, is difficult to form. In addition, since the positive electrode active material particles 41 are less likely to react with water than the positive electrode active material particles that do not have the phosphorus-containing coating 41y on the particle surface, lithium ions are released from the positive electrode active material particles 41 by the reaction with water. Therefore, it is possible to suppress the change in the crystal structure of the positive electrode active material particles 41 . Therefore, if the positive electrode paste 45 is prepared using the positive electrode active material particles 41, the positive electrode plate 31 is formed using the positive electrode paste 45, and the battery 1 is manufactured using the positive electrode plate 31, phosphorus-containing The IV resistance of the battery can be suppressed as compared with a battery using positive electrode active material particles that do not have the coating 41y on the particle surface.

更に本実施形態1では、前述のリン酸化合物を無機リン酸及び無機リン酸の塩のうち、少なくとも無機リン酸(本実施形態1では無機リン酸及びリン酸リチウム)とし、第1分散媒を水としている。この場合、処理前正極活物質粒子41xと接触する前のリン酸化合物溶液のpHが低いほど、粒子混合工程S112及びそれ以降に、正極活物質粒子41が酸によって大きく損傷する。具体的には、正極活物質粒子41からリチウムイオンが溶出して正極活物質粒子41の結晶構造が不可逆的に変化することが判ってきた。一方、処理前正極活物質粒子41xと接触する前のリン酸化合物溶液のpHを高くし過ぎると、無機リン酸の塩(本実施形態1ではリン酸リチウム)がリン酸化合物溶液中に粒状に析出する。 Further, in Embodiment 1, the phosphoric acid compound is at least inorganic phosphoric acid (inorganic phosphoric acid and lithium phosphate in Embodiment 1) among inorganic phosphoric acid and inorganic phosphoric acid salts, and the first dispersion medium is water. In this case, the lower the pH of the phosphoric acid compound solution before contact with the untreated positive electrode active material particles 41x, the more the positive electrode active material particles 41 are damaged by the acid in the particle mixing step S112 and thereafter. Specifically, it has been found that lithium ions are eluted from the positive electrode active material particles 41 and the crystal structure of the positive electrode active material particles 41 is irreversibly changed. On the other hand, if the pH of the phosphate compound solution before contact with the unprocessed positive electrode active material particles 41x is too high, the salt of inorganic phosphoric acid (lithium phosphate in the first embodiment) becomes granular in the phosphate compound solution. Precipitate.

これに対し、本実施形態1では、処理前正極活物質粒子41xと接触する前のリン酸化合物溶液のpHを、pH=4.0~5.2(本実施形態1ではpH=5.0)としている。リン酸化合物溶液をpH=4.0以上とすることにより、pH=4.0未満とする場合に比べて、粒子混合工程S112及びそれ以降に、正極活物質粒子41が酸によって大きく損傷するのを抑制できる。一方、リン酸化合物溶液をpH=5.2以下とすることにより、無機リン酸の塩(リン酸リチウム)がリン酸化合物溶液中に粒状に析出するのを防止できる。 On the other hand, in Embodiment 1, the pH of the phosphate compound solution before contact with the untreated positive electrode active material particles 41x is set to pH=4.0 to 5.2 (pH=5.0 in Embodiment 1). ). By setting the pH of the phosphoric acid compound solution to be 4.0 or higher, the positive electrode active material particles 41 are less damaged by the acid in the particle mixing step S112 and thereafter than when the pH is lower than 4.0. can be suppressed. On the other hand, by adjusting the pH of the phosphate compound solution to 5.2 or less, it is possible to prevent the salt of inorganic phosphoric acid (lithium phosphate) from depositing in the phosphate compound solution in granular form.

また本実施形態1では、処理前正極活物質粒子41xとして、1gの処理前正極活物質粒子41xを50gの水に分散させた分散液のpHがpH=11.3以上となる特性を有する正極活物質粒子を用いている。このような処理前正極活物質粒子41xは、特に、水及び二酸化炭素と反応して水酸化リチウム、更には炭酸リチウムを生じ易く、この処理前正極活物質粒子41xをそのまま用いた電池ではIV抵抗が高くなり易い。このため、前述のように、正極活物質粒子41の粒子表面41aにリン含有被膜41yを設けて、水及び二酸化炭素と反応するのを抑制することが特に好ましい。 Further, in Embodiment 1, the positive electrode having the characteristic that the pH of the dispersion liquid obtained by dispersing 1 g of the untreated positive electrode active material particles 41x in 50 g of water becomes pH=11.3 or higher as the untreated positive electrode active material particles 41x. Active material particles are used. Such positive electrode active material particles 41x before treatment are particularly likely to react with water and carbon dioxide to produce lithium hydroxide and further lithium carbonate. tends to be high. Therefore, as described above, it is particularly preferable to provide the phosphorus-containing coating 41y on the particle surface 41a of the positive electrode active material particle 41 to suppress the reaction with water and carbon dioxide.

参考形態
次いで、参考形態について説明する。実施形態1では、リン酸化合物として無機リン酸及び無機リン酸の塩(リン酸リチウム)を用いた。これに対し、本参考形態では、リン酸化合物として無機リン酸のみを用いる。
また、実施形態1では、粒子混合工程S112に続いて粒子乾燥工程S113を行って、正極活物質粒子41を製造した。これに対し、本参考形態の粒子製造工程S710では、図7中に破線で示すように、粒子混合工程S112の後、粒子乾燥工程S113の前に、アルカリ混合工程(前述のアルカリ付加工程に該当する)S715を行う点が異なる。
( Reference form )
Next, a reference form will be described. In Embodiment 1, inorganic phosphoric acid and a salt of inorganic phosphoric acid (lithium phosphate) were used as the phosphoric acid compound. In contrast, in the present embodiment , only inorganic phosphoric acid is used as the phosphoric acid compound.
Further, in Embodiment 1, the particle drying step S113 was performed following the particle mixing step S112 to manufacture the positive electrode active material particles 41 . On the other hand, in the particle manufacturing step S710 of this reference embodiment , as indicated by the dashed line in FIG. ) is different in that S715 is executed.

具体的には、本参考形態では、正極板製造工程S7(図5参照)のペースト製造工程S71(図6参照)のうち、粒子製造工程S710(図7参照)において、正極活物質粒子141を製造する。即ち、まず「溶解工程S111」では、リン酸化合物として無機リン酸(H3PO4)のみを用いて、第1分散媒(本参考形態でも水)100gあたり、100gの無機リン酸を溶解して、リン酸化合物溶液を作製した。このリン酸化合物溶液のpHは、pH=3.0である。 Specifically, in the present embodiment , in the particle manufacturing step S710 (see FIG. 7) of the paste manufacturing step S71 (see FIG. 6) of the positive electrode plate manufacturing step S7 (see FIG. 5), the positive electrode active material particles 141 are manufacture. That is, first, in the “dissolving step S111”, only inorganic phosphoric acid (H 3 PO 4 ) is used as the phosphoric acid compound, and 100 g of inorganic phosphoric acid is dissolved in 100 g of the first dispersion medium (also water in this embodiment ). to prepare a phosphate compound solution. The pH of this phosphate compound solution is pH=3.0.

次に、「粒子混合工程(接触工程)S112」において、上述のリン酸化合物溶液に、実施形態1と同じ処理前正極活物質粒子41x(図4参照)を加えて、実施形態1と同様に混合する。これにより、処理前正極活物質粒子41xの粒子表面41xaに既に形成されていた抵抗体(炭酸リチウムなど)が除去されると共に、処理前正極活物質粒子41xの粒子表面41xaに、リンを含む被膜であるリン含有被膜141yが形成されると考えられる。また、本参考形態のリン含有被膜141yも、リン酸リチウム(Li3PO4)からなる被膜と考えられる。 Next, in the “particle mixing step (contact step) S112”, the same untreated positive electrode active material particles 41x (see FIG. 4) as in Embodiment 1 are added to the phosphoric acid compound solution described above, and Mix. As a result, the resistor (such as lithium carbonate) already formed on the particle surface 41xa of the positive electrode active material particles 41x before treatment is removed, and the coating containing phosphorus is formed on the particle surfaces 41xa of the positive electrode active material particles 41x before treatment. is formed. Further, the phosphorus-containing coating 141y of this reference embodiment is also considered to be a coating made of lithium phosphate (Li 3 PO 4 ).

その後、本参考形態では、「アルカリ混合工程S715」において、上述のリン酸化合物溶液にアルカリ水溶液を加えて、pH=5.2以上とする。具体的には、アルカリ水溶液として、水に水酸化リチウム(LiOH)を溶解したアルカリ水溶液を用意し、このアルカリ水溶液を、処理前正極活物質粒子41xを加えたリン酸化合物溶液に添加して混ぜて、pH=5.2以上(本参考形態では、pH=11.5)とした。なお、本参考形態では、このアルカリ混合工程S715後のリン酸化合物溶液中に含まれる正極活物質粒子が、前述の「接触後乾燥前正極活物質粒子141z」に該当する。 After that, in the present reference embodiment , in the "alkali mixing step S715", an alkaline aqueous solution is added to the phosphoric acid compound solution to adjust the pH to 5.2 or higher. Specifically, an alkaline aqueous solution obtained by dissolving lithium hydroxide (LiOH) in water is prepared as the alkaline aqueous solution, and this alkaline aqueous solution is added to and mixed with the phosphoric acid compound solution to which the untreated positive electrode active material particles 41x are added. Therefore, the pH was set to 5.2 or more (pH=11.5 in the present embodiment ). In this reference embodiment , the positive electrode active material particles contained in the phosphoric acid compound solution after the alkali mixing step S715 correspond to the above-mentioned "post-contact and pre-drying positive electrode active material particles 141z".

次に、「粒子乾燥工程S113」において、実施形態1と同様にして、上述のリン酸化合物溶液に濡れた接触後乾燥前正極活物質粒子141zを乾燥させて、粒子表面141aにリン含有被膜141yが形成された正極活物質粒子141を得る。かくして、正極活物質粒子141を製造した。 Next, in the “particle drying step S113”, in the same manner as in Embodiment 1, the post-contact and pre-drying positive electrode active material particles 141z wet with the phosphoric acid compound solution are dried, and the phosphorus-containing coatings 141y are formed on the particle surfaces 141a. to obtain positive electrode active material particles 141 formed with Thus, positive electrode active material particles 141 were manufactured.

その後は、実施形態1と同様に、この正極活物質粒子141を用いて正極ペースト145を製造し、更にこの正極ペースト145を用いて正極板131を製造し、更にこの正極板131を用いて電池100を製造する。即ち、混合ペースト形成工程S120(図6参照)において、上述の正極活物質粒子141と第2分散媒(本参考形態でもNMP)とを混合して、正極ペースト145を形成する。その後、「第1塗工工程S12」において、この正極ペースト145を用いて、正極集電箔32の一方の主面32a上に未乾燥活物質層133xを形成し、「第1層乾燥工程S13」において、この未乾燥活物質層133xを乾燥させて、正極活物質層133を形成する。 Thereafter, in the same manner as in Embodiment 1, the positive electrode active material particles 141 are used to produce the positive electrode paste 145, the positive electrode paste 145 is used to produce the positive electrode plate 131, and the positive electrode plate 131 is used to produce the battery. 100 are manufactured. That is, in the mixed paste forming step S120 (see FIG. 6), the positive electrode active material particles 141 and the second dispersion medium (also NMP in this embodiment ) are mixed to form the positive electrode paste 145 . Thereafter, in the "first coating step S12", the positive electrode paste 145 is used to form an undried active material layer 133x on one main surface 32a of the positive electrode current collector foil 32, followed by the "first layer drying step S13. , the undried active material layer 133 x is dried to form the positive electrode active material layer 133 .

その後、「第2塗工工程S14」において、正極集電箔32の他方の主面32b上にも、正極ペースト145を用いて未乾燥活物質層134xを形成し、「第2層乾燥工程S15」において、この未乾燥活物質層134xを乾燥させて、正極活物質層134を形成する。その後、プレス工程S16でこの正極板をプレスして、正極活物質層133,134の密度をそれぞれ高める。かくして、正極板131を製造した。 Thereafter, in the "second coating step S14", the positive electrode paste 145 is used to form the undried active material layer 134x also on the other main surface 32b of the positive electrode current collector foil 32, followed by the "second layer drying step S15. ”, the undried active material layer 134 x is dried to form the positive electrode active material layer 134 . Thereafter, in a pressing step S16, this positive electrode plate is pressed to increase the density of the positive electrode active material layers 133 and 134, respectively. Thus, the positive electrode plate 131 was manufactured.

また別途、「負極板製造工程S2」(図5参照)において、実施形態1と同様に負極板51を製造する。次に、「電極体形成工程S3」において、上述の正極板131と負極板51と2枚のセパレータ61,61とを用いて、電極体20を形成する。その後、「電池組立工程S4」、「注液工程S5」及び「初充電工程S6」を実施形態1と同様に行って、電池100を製造する。 Separately, in the "negative electrode plate manufacturing step S2" (see FIG. 5), the negative electrode plate 51 is manufactured in the same manner as in the first embodiment. Next, in the "electrode assembly step S3", the electrode assembly 20 is formed using the positive electrode plate 131, the negative electrode plate 51, and the two separators 61, 61 described above. After that, the “battery assembly step S4”, the “injection step S5”, and the “initial charging step S6” are performed in the same manner as in the first embodiment to manufacture the battery 100. FIG.

参考形態でも、粒子混合工程(接触工程)S112及び粒子乾燥工程S113を行うことによって、処理前正極活物質粒子41xの粒子表面41xaに既に形成されている抵抗体(炭酸リチウムなど)を除去できる。また、リン含有被膜141yを粒子表面141aに有する正極活物質粒子141を得ることができる。この正極活物質粒子141も、リン含有被膜141yを粒子表面に有しない正極活物質粒子に比べて、水と反応し難いので、水との反応で正極活物質粒子141からリチウムイオンが抜けて正極活物質粒子141の結晶構造が変化するのを抑制できる。このため、この正極活物質粒子141を用いて正極ペースト145を作製し、この正極ペースト145を用いて正極板131を形成し、更にこの正極板131を用いて電池100を製造すれば、リン含有被膜141yを粒子表面に有しない正極活物質粒子を用いた電池に比べて、電池のIV抵抗を抑制できる。 Also in this reference embodiment , by performing the particle mixing step (contact step) S112 and the particle drying step S113, the resistor (such as lithium carbonate) already formed on the particle surface 41xa of the positive electrode active material particle 41x before treatment can be removed. . In addition, positive electrode active material particles 141 having phosphorus-containing coatings 141y on particle surfaces 141a can be obtained. The positive electrode active material particles 141 are also less likely to react with water than the positive electrode active material particles that do not have the phosphorus-containing coating 141y on the particle surface. A change in the crystal structure of the active material particles 141 can be suppressed. Therefore, if the positive electrode paste 145 is prepared using the positive electrode active material particles 141, the positive electrode plate 131 is formed using the positive electrode paste 145, and the battery 100 is manufactured using the positive electrode plate 131, phosphorus-containing The IV resistance of the battery can be suppressed as compared with a battery using positive electrode active material particles that do not have the coating 141y on the particle surface.

更に本参考形態では、リン酸化合物を無機リン酸とし、第1分散媒を水としている。このため、処理前正極活物質粒子41xと接触する前のリン酸化合物溶液は、pHが低くなる。前述のように、リン酸化合物溶液のpHが低いほど、粒子混合工程S112及びそれ以降に、正極活物質粒子141が酸によって大きく損傷する(リチウムイオンが溶出して結晶構造が不可逆的に変化する)。これに対し、本参考形態では、粒子混合工程S112の後、粒子乾燥工程S113の前に、アルカリ混合工程(アルカリ付加工程)S715でアルカリ水溶液を加えてpH=5.2以上としているので、アルカリ混合工程S715を行わない場合に比べて、 粒子混合工程S112以降に正極活物質粒子141が酸によって大きく損傷するのを抑制できる。その他、実施形態1と同様な部分は、実施形態1と同様な作用効果を奏する。 Furthermore, in this reference embodiment , inorganic phosphoric acid is used as the phosphoric acid compound, and water is used as the first dispersion medium. Therefore, the pH of the phosphate compound solution before contact with the untreated positive electrode active material particles 41x is low. As described above, the lower the pH of the phosphate compound solution, the more the positive electrode active material particles 141 are damaged by the acid in the particle mixing step S112 and thereafter (lithium ions are eluted and the crystal structure is irreversibly changed. ). In contrast, in the present embodiment , after the particle mixing step S112 and before the particle drying step S113, in the alkali mixing step (alkali adding step) S715, an alkaline aqueous solution is added to set the pH to 5.2 or higher. Compared to the case where the mixing step S715 is not performed, it is possible to prevent the positive electrode active material particles 141 from being greatly damaged by the acid after the particle mixing step S112. In addition, the parts similar to those of the first embodiment have the same effects as those of the first embodiment.

(実施例,参考例及び比較例)
次いで、本発明の効果を検証するために行った試験の結果について説明する。実施例1として実施形態1の電池1を、参考例として参考形態の電池100をそれぞれ用意した。
一方、比較例1として、リン含有被膜41y,141yを有しない正極活物質粒子、つまり、実施形態1及び参考形態の処理前正極活物質粒子41xをそのまま用いて、ペースト製造工程S11を行い、正極ペーストを作製した。それ以外は、実施形態1と同様にして電池を製造した。
(Examples , reference examples and comparative examples)
Next, the results of tests conducted to verify the effects of the present invention will be described. The battery 1 of Embodiment 1 was prepared as Example 1, and the battery 100 of the reference form was prepared as a reference example .
On the other hand, as Comparative Example 1, the positive electrode active material particles without the phosphorus-containing coatings 41y and 141y, that is, the untreated positive electrode active material particles 41x of Embodiment 1 and the reference form are used as they are, and the paste manufacturing step S11 is performed to perform the positive electrode. A paste was made. Other than that, the battery was manufactured in the same manner as in the first embodiment.

また、比較例2として、ペースト製造工程S11において、リン含有被膜41y,141yを有しない正極活物質粒子(処理前正極活物質粒子41x)をそのまま用い、かつ、正極ペースト中に、正極活物質粒子(処理前正極活物質粒子41x)100gあたり、1gのリン酸リチウム(Li3PO4)を混ぜて、正極ペーストを製造した。そして、この正極ペーストを用いて電池を製造した。即ち、実施形態1では、正極活物質粒子41の製造過程(粒子製造工程S110)において、リン酸リチウム(Li3PO4)を用いたのに対し、この比較例2では、正極ペーストの混合過程(混合ペースト形成工程S120)において、リン酸リチウムを用いた点が異なる。 Further, as Comparative Example 2, in the paste manufacturing step S11, the positive electrode active material particles without the phosphorus-containing coatings 41y and 141y (positive electrode active material particles 41x before treatment) were used as they were, and the positive electrode active material particles were added to the positive electrode paste. A positive electrode paste was produced by mixing 1 g of lithium phosphate (Li 3 PO 4 ) with 100 g of (untreated positive electrode active material particles 41x). A battery was manufactured using this positive electrode paste. That is, in Embodiment 1, lithium phosphate (Li 3 PO 4 ) was used in the process of manufacturing the positive electrode active material particles 41 (particle manufacturing step S110), whereas in Comparative Example 2, the process of mixing the positive electrode paste was The difference is that lithium phosphate is used in (mixed paste forming step S120).

次に、実施例1,参考例及び比較例1,2のそれぞれ10個の電池について、IV抵抗Rを測定した。具体的には、SOC50%に調整した各電池について、環境温度25℃において、放電電流値I=5Cで5秒間放電させて、この放電開始時の電池電圧V1と、5秒後の電池電圧V2とをそれぞれ測定し、R=(V1-V2)/Iにより、各電池のIV抵抗Rをそれぞれ算出した。更に、比較例1に係る電池のIV抵抗値(平均値)を基準(=100%)として、実施例1,参考例及び比較例2に係る電池のIV抵抗比(平均値)をそれぞれ求めた。その結果を図8に示す。 Next, the IV resistance R was measured for 10 batteries each of Example 1, Reference Example , and Comparative Examples 1 and 2. Specifically, each battery adjusted to SOC 50% is discharged for 5 seconds at a discharge current value I = 5C at an ambient temperature of 25 ° C., and the battery voltage V1 at the start of this discharge and the battery voltage V2 after 5 seconds was measured, and the IV resistance R of each battery was calculated from R=(V1-V2)/I. Furthermore, with the IV resistance value (average value) of the battery according to Comparative Example 1 as a reference (=100%), the IV resistance ratio (average value) of the batteries according to Example 1, Reference Example , and Comparative Example 2 was obtained. . The results are shown in FIG.

比較例1,2の電池に比べて、実施例1及び参考例の電池1,100ではIV抵抗比が低く(実施例1では93.0%、参考例では94.7%)なった。このような結果となった理由は、以下であると考えられる。即ち、比較例1では、粒子混合工程(接触工程)S112及び粒子乾燥工程S113を行っていないために、正極活物質粒子(処理前正極活物質粒子41x)の粒子表面41xaに、炭酸リチウムなどの抵抗体が残っている上、リン含有被膜41y,141yが形成されていない。 Compared with the batteries of Comparative Examples 1 and 2, the IV resistance ratios of the batteries 1 and 100 of Example 1 and Reference Example were lower (93.0% in Example 1 and 94.7% in Reference Example ). The reason for such results is considered as follows. That is, in Comparative Example 1, since the particle mixing step (contact step) S112 and the particle drying step S113 were not performed, the particle surfaces 41xa of the positive electrode active material particles (pre-treated positive electrode active material particles 41x) were coated with lithium carbonate or the like. Resistors remain, and phosphorus-containing films 41y and 141y are not formed.

また、比較例2も、粒子混合工程S112及び粒子乾燥工程S113を行っていないために、正極活物質粒子(処理前正極活物質粒子41x)の粒子表面41xaに、炭酸リチウムなどの抵抗体が残っている上、リン含有被膜41y,141yが形成されていない。また、比較例2では、正極ペーストの混合過程(混合ペースト形成工程S120)で、正極ペースト中にリン酸リチウムを加えている。しかし、正極ペースト中にリン酸リチウムを加えただけでは、正極活物質粒子(処理前正極活物質粒子41x)の粒子表面41xaにリン含有被膜41y,141yは形成されない。 Also in Comparative Example 2, since the particle mixing step S112 and the particle drying step S113 were not performed, a resistor such as lithium carbonate remained on the particle surface 41xa of the positive electrode active material particles (untreated positive electrode active material particles 41x). Moreover, the phosphorus-containing films 41y and 141y are not formed. In Comparative Example 2, lithium phosphate is added to the positive electrode paste in the positive electrode paste mixing process (mixed paste forming step S120). However, the phosphorus-containing coatings 41y and 141y are not formed on the particle surfaces 41xa of the positive electrode active material particles (untreated positive electrode active material particles 41x) only by adding lithium phosphate to the positive electrode paste.

このため、比較例1,2では、電池を製造する過程で、正極活物質粒子(処理前正極活物質粒子41x)が大気中の水分に触れて、粒子表面41xaで水と反応して水酸化リチウムを生じる(Li2O+H2O→2LiOH)。更に、この水酸化リチウムは大気中の二酸化炭素と反応して炭酸リチウムを生じる(2LiOH+CO2→Li2CO3+H2O)。正極活物質粒子(処理前正極活物質粒子41x)の粒子表面41xaで生じた炭酸リチウムは抵抗体である。また、正極活物質粒子(処理前正極活物質粒子41x)が水と反応し正極活物質粒子(処理前正極活物質粒子41x)からリチウムイオンが抜けると、正極活物質粒子(処理前正極活物質粒子41x)の結晶構造が変化し、正極活物質粒子(処理前正極活物質粒子41x)におけるリチウムイオンの挿入離脱がし難くなる。このため、比較例1,2の電池では、IV抵抗Rが高くなったと考えられる。 Therefore, in Comparative Examples 1 and 2, in the process of manufacturing the battery, the positive electrode active material particles (untreated positive electrode active material particles 41x) come into contact with moisture in the atmosphere, react with water on the particle surfaces 41xa, and undergo hydroxylation. Lithium is produced (Li 2 O+H 2 O→2LiOH). Furthermore, this lithium hydroxide reacts with carbon dioxide in the atmosphere to produce lithium carbonate (2LiOH+CO 2 →Li 2 CO 3 +H 2 O). Lithium carbonate generated on the particle surface 41xa of the positive electrode active material particles (untreated positive electrode active material particles 41x) is a resistor. Further, when the positive electrode active material particles (pre-treated positive electrode active material particles 41x) react with water and lithium ions are released from the positive electrode active material particles (pre-treated positive electrode active material particles 41x), the positive electrode active material particles (pre-treated positive electrode active material particles 41x) The crystal structure of the particles 41x) changes, and insertion and extraction of lithium ions in the positive electrode active material particles (untreated positive electrode active material particles 41x) becomes difficult. For this reason, in the batteries of Comparative Examples 1 and 2, the IV resistance R is considered to be high.

一方、実施例1及び参考例では、粒子混合工程(接触工程)S112及び粒子乾燥工程S113を行って、処理前正極活物質粒子41xの粒子表面41xaの抵抗体を除去すると共に、粒子表面41xaにリン含有被膜41y,141yを形成している。このような正極活物質粒子41,141は、大気中の水分及び二酸化炭素が接触し難くなる。このため、電池を製造する過程において、大気中の水分及び二酸化炭素との接触に起因して、正極活物質粒子41,141の粒子表面41a,141aで水酸化リチウム、更には炭酸リチウムを生じること、及び、粒子表面41a,141aで結晶構造が変化することを抑制できる。これにより、実施例1及び参考例の電池1,100では、比較例1,2の電池に比べて、IV抵抗比が低く(IV抵抗Rが低く)なったと考えられる。 On the other hand, in Example 1 and Reference Example , the particle mixing step (contact step) S112 and the particle drying step S113 were performed to remove the resistor on the particle surface 41xa of the positive electrode active material particle 41x before treatment, and to remove the resistor on the particle surface 41xa. Phosphorus-containing coatings 41y and 141y are formed. Such positive electrode active material particles 41 and 141 are less likely to come into contact with moisture and carbon dioxide in the air. Therefore, in the process of manufacturing the battery, lithium hydroxide and lithium carbonate are generated on the particle surfaces 41a and 141a of the positive electrode active material particles 41 and 141 due to contact with moisture and carbon dioxide in the atmosphere. , and changes in the crystal structure on the particle surfaces 41a and 141a can be suppressed. As a result, the batteries 1 and 100 of Example 1 and Reference Example had lower IV resistance ratios (lower IV resistance R) than the batteries of Comparative Examples 1 and 2.

以上において、本発明を実施形態1に即して説明したが、本発明は上述の実施形態1に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態1では、処理前正極活物質粒子41xとして、リチウムニッケルコバルトアルミニウム複合酸化物粒子を用いたが、これに限られない。例えば、処理前正極活物質粒子41xとして、リチウムニッケルコバルトマンガン複合酸化物粒子やオリビン型リン酸鉄リチウム粒子、スピネル型リチウムマンガン酸化物粒子などを用いることもできる。
In the above, the present invention has been described in accordance with the first embodiment, but the present invention is not limited to the above-described first embodiment, and it goes without saying that the present invention can be appropriately modified and applied without departing from the gist thereof. .
For example, in Embodiment 1 , lithium-nickel-cobalt-aluminum composite oxide particles are used as the untreated positive electrode active material particles 41x, but the present invention is not limited to this. For example, lithium-nickel-cobalt-manganese composite oxide particles, olivine-type lithium iron phosphate particles, spinel-type lithium-manganese oxide particles, or the like can be used as the positive electrode active material particles 41x before treatment.

また、実施形態1では、リン酸化合物として、無機リン酸及び無機リン酸の塩(リン酸リチウム)を用いる場合(実施形態1)と、無機リン酸のみを用いる場合(参考形態)を例示したが、これに限られない。例えば、リン酸化合物として、フェニルホスホン酸、メチルホスホン酸などの有機リン酸や、フェニルホスホン酸、メチルホスホン酸などの塩(リチウム塩など)を用いることもできる。 Further, in Embodiment 1 and the like , the case of using inorganic phosphoric acid and a salt of inorganic phosphoric acid (lithium phosphate) as the phosphoric acid compound (Embodiment 1) and the case of using only inorganic phosphoric acid ( reference form ) are illustrated. However, it is not limited to this. For example, as the phosphoric acid compound, an organic phosphoric acid such as phenylphosphonic acid or methylphosphonic acid, or a salt (lithium salt or the like) of phenylphosphonic acid or methylphosphonic acid can be used.

1,100 リチウムイオン二次電池(電池)
20 電極体
31、131 正極板
32 正極集電箔
33,34,133,134 正極活物質層
33x,34x,133x,134x 未乾燥活物質層
41,141 正極活物質粒子
41a,141a (正極活物質粒子の)粒子表面
41x 処理前正極活物質粒子
41z,141z 接触後乾燥前正極活物質粒子
41xa (処理前正極活物質粒子の)粒子表面
41y,141y リン含有被膜
45,145 正極ペースト
51 負極板
S1,S7 正極板製造工程
S4 電池組立工程
S11,S71 ペースト製造工程
S110,S710 粒子製造工程
S120 混合ペースト形成工程
S12 第1塗工工程
S13 第1層乾燥工程
S14 第2塗工工程
S15 第2層乾燥工程
S111 溶解工程
S112 粒子混合工程(接触工程)
S715 アルカリ混合工程(アルカリ付加工程)
S113 粒子乾燥工程
1,100 Lithium ion secondary battery (battery)
20 electrode bodies 31, 131 positive electrode plate 32 positive electrode current collector foils 33, 34, 133, 134 positive electrode active material layers 33x, 34x, 133x, 134x undried active material layers 41, 141 positive electrode active material particles 41a, 141a (positive electrode active material Particle surface 41x of particles Pre-treatment positive electrode active material particles 41z, 141z Post-contact and pre-drying positive electrode active material particles 41xa Particle surfaces 41y, 141y (of positive electrode active material particles before treatment) Phosphorus-containing coatings 45, 145 Positive electrode paste 51 Negative electrode plate S1 , S7 positive electrode plate manufacturing process S4 battery assembly process S11, S71 paste manufacturing process S110, S710 particle manufacturing process S120 mixed paste forming process S12 first coating process S13 first layer drying process S14 second coating process S15 second layer drying Step S111 Dissolution step S112 Particle mixing step (contact step)
S715 Alkali mixing step (alkali addition step)
S113 Particle drying step

Claims (5)

リチウムイオンを挿入離脱可能な正極活物質粒子の製造方法であって、
無機リン酸(H3PO4)、無機リン酸の塩、有機リン酸及び有機リン酸の塩の少なくともいずれかであるリン酸化合物を第1分散媒に溶解したリン酸化合物溶液を、処理前正極活物質粒子に接触させる接触工程と、
上記接触工程の後、上記リン酸化合物溶液に濡れた接触後乾燥前正極活物質粒子を乾燥させて、粒子表面にリンを含む被膜が形成された上記正極活物質粒子を得る粒子乾燥工程と、を備え、
前記リン酸化合物は、無機リン酸及び無機リン酸の塩であり、
前記第1分散媒は、水であり、
前記処理前正極活物質粒子と接触する前の前記リン酸化合物溶液のpHは、pH=4.0~5.2である
正極活物質粒子の製造方法。
A method for producing positive electrode active material particles capable of inserting and extracting lithium ions,
A phosphoric acid compound solution obtained by dissolving a phosphoric acid compound that is at least one of inorganic phosphoric acid (H 3 PO 4 ), a salt of inorganic phosphoric acid, organic phosphoric acid, and a salt of organic phosphoric acid in a first dispersion medium before treatment. A contacting step of contacting the positive electrode active material particles;
After the contacting step, a particle drying step of drying the post-contact and pre-drying positive electrode active material particles wetted with the phosphoric acid compound solution to obtain the positive electrode active material particles having a coating containing phosphorus on the particle surface; with
The phosphoric acid compound is an inorganic phosphoric acid and a salt of an inorganic phosphoric acid,
The first dispersion medium is water,
The method for producing positive electrode active material particles, wherein the pH of the phosphoric acid compound solution before being brought into contact with the untreated positive electrode active material particles is pH=4.0 to 5.2.
請求項1に記載の正極活物質粒子の製造方法であって、
前記処理前正極活物質粒子は、
1gの上記処理前正極活物質粒子を50gの水に分散させた分散液のpHがpH=11.3以上となる特性を有する
正極活物質粒子の製造方法。
A method for producing the positive electrode active material particles according to claim 1,
The positive electrode active material particles before treatment are
A method for producing positive electrode active material particles having a characteristic that the pH of a dispersion obtained by dispersing 1 g of the positive electrode active material particles before treatment in 50 g of water is pH=11.3 or higher.
リチウムイオンを挿入離脱可能な正極活物質粒子と、第2分散媒と、を含む正極ペーストの製造方法であって、
請求項1又は請求項2に記載の正極活物質粒子の製造方法により上記正極活物質粒子を製造する粒子製造工程と、
上記正極活物質粒子と上記第2分散媒とを混合して、上記正極ペーストを形成する混合ペースト形成工程と、を備える
正極ペーストの製造方法。
A method for producing a positive electrode paste containing positive electrode active material particles capable of inserting and removing lithium ions and a second dispersion medium,
A particle manufacturing step of manufacturing the positive electrode active material particles by the method for manufacturing positive electrode active material particles according to claim 1 or claim 2;
A mixed paste forming step of mixing the positive electrode active material particles and the second dispersion medium to form the positive electrode paste.
集電箔と、上記集電箔上に形成され、リチウムイオンを挿入離脱可能な正極活物質粒子を含む活物質層と、を備える正極板の製造方法であって、
請求項3に記載の正極ペーストの製造方法により上記正極ペーストを製造するペースト製造工程と、
上記集電箔上に上記正極ペーストを塗工して、未乾燥活物質層を形成する塗工工程と、
上記集電箔上の上記未乾燥活物質層を乾燥させて、上記活物質層を形成する層乾燥工程と、を備える
正極板の製造方法。
A method for producing a positive electrode plate comprising a current collector foil and an active material layer formed on the current collector foil and containing positive electrode active material particles capable of inserting and extracting lithium ions,
A paste manufacturing step for manufacturing the positive electrode paste by the positive electrode paste manufacturing method according to claim 3;
a coating step of coating the positive electrode paste on the current collector foil to form an undried active material layer;
a layer drying step of drying the undried active material layer on the current collector foil to form the active material layer.
集電箔と、上記集電箔上に形成され、リチウムイオンを挿入離脱可能な正極活物質粒子を含む活物質層とを有する正極板を備えるリチウムイオン二次電池の製造方法であって、
請求項4に記載の正極板の製造方法により上記正極板を製造する正極板製造工程と、
上記正極板を用いて、上記リチウムイオン二次電池を組み立てる電池組立工程と、を備える
リチウムイオン二次電池の製造方法。
A method for producing a lithium ion secondary battery comprising a positive electrode plate having a current collector foil and an active material layer formed on the current collector foil and containing positive electrode active material particles capable of inserting and extracting lithium ions,
A positive electrode plate manufacturing process for manufacturing the positive electrode plate by the positive electrode plate manufacturing method according to claim 4;
A method for manufacturing a lithium ion secondary battery, comprising: a battery assembling step of assembling the lithium ion secondary battery using the positive electrode plate.
JP2021201518A 2018-03-02 2021-12-13 Method for manufacturing positive electrode active material particles, method for manufacturing positive electrode paste, method for manufacturing positive electrode plate, and method for manufacturing lithium ion secondary battery Active JP7226513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021201518A JP7226513B2 (en) 2018-03-02 2021-12-13 Method for manufacturing positive electrode active material particles, method for manufacturing positive electrode paste, method for manufacturing positive electrode plate, and method for manufacturing lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018037838A JP7024505B2 (en) 2018-03-02 2018-03-02 Method for manufacturing positive electrode active material particles, method for manufacturing positive electrode paste, method for manufacturing positive electrode plate, and method for manufacturing lithium ion secondary battery
JP2021201518A JP7226513B2 (en) 2018-03-02 2021-12-13 Method for manufacturing positive electrode active material particles, method for manufacturing positive electrode paste, method for manufacturing positive electrode plate, and method for manufacturing lithium ion secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018037838A Division JP7024505B2 (en) 2018-03-02 2018-03-02 Method for manufacturing positive electrode active material particles, method for manufacturing positive electrode paste, method for manufacturing positive electrode plate, and method for manufacturing lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2022022446A JP2022022446A (en) 2022-02-03
JP7226513B2 true JP7226513B2 (en) 2023-02-21

Family

ID=87885207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021201518A Active JP7226513B2 (en) 2018-03-02 2021-12-13 Method for manufacturing positive electrode active material particles, method for manufacturing positive electrode paste, method for manufacturing positive electrode plate, and method for manufacturing lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP7226513B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011238523A (en) 2010-05-12 2011-11-24 Toyota Motor Corp Manufacturing method of composite cathode active material, manufacturing method of all-solid battery, and composite cathode active material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3654005B2 (en) * 1998-09-18 2005-06-02 新神戸電機株式会社 Method for producing positive electrode plate for lithium ion secondary battery
JP6035669B2 (en) * 2012-07-20 2016-11-30 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2016015298A (en) * 2014-07-03 2016-01-28 株式会社Gsユアサ Positive electrode active material for lithium secondary battery, electrode for lithium secondary battery, lithium secondary battery and power storage device
JP5835446B1 (en) * 2014-10-28 2015-12-24 住友大阪セメント株式会社 Positive electrode material, method for producing positive electrode material, positive electrode and lithium ion battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011238523A (en) 2010-05-12 2011-11-24 Toyota Motor Corp Manufacturing method of composite cathode active material, manufacturing method of all-solid battery, and composite cathode active material

Also Published As

Publication number Publication date
JP2022022446A (en) 2022-02-03

Similar Documents

Publication Publication Date Title
CN114497503B (en) Method for producing positive electrode active material particles, method for producing positive electrode paste, method for producing positive electrode plate, and method for producing lithium ion secondary battery
JP6042324B2 (en) Lithium iron phosphate having olivine crystal structure coated with carbon and lithium secondary battery using the same
JP5674057B2 (en) Negative electrode active material for lithium ion secondary battery
JP5257700B2 (en) Lithium secondary battery
JP5854279B2 (en) Method for producing non-aqueous electrolyte secondary battery
KR101497330B1 (en) Electrode Assembly for Sulfur-Lithium Ion Battery and Sulfur-Lithium Ion Battery Comprising The Same
JPWO2016157735A1 (en) Nonaqueous electrolyte secondary battery
JP2013247009A (en) Manufacturing method of nonaqueous electrolyte secondary battery
US11387448B2 (en) Positive electrode plate of lithium ion secondary battery, lithium ion secondary battery, and method of producing positive electrode plate of lithium ion secondary battery
JP6337914B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP4174691B2 (en) Nonaqueous electrolyte battery and method for producing nonaqueous electrolyte battery
JP7226513B2 (en) Method for manufacturing positive electrode active material particles, method for manufacturing positive electrode paste, method for manufacturing positive electrode plate, and method for manufacturing lithium ion secondary battery
JP6120065B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
US11444275B2 (en) Method for manufacturing positive active material, and positive active material and lithium secondary battery using same
JP5975291B2 (en) Method for producing non-aqueous electrolyte secondary battery
US20140272585A1 (en) Electrode for an electrochemical energy store
JP7146359B2 (en) Method for producing coated positive electrode active material particles
KR101812267B1 (en) Cathode active material for lithium secondary battery and a method of making the same
WO2019066065A1 (en) Electrode and power storage element
JP7402840B2 (en) Manufacturing method of non-aqueous secondary battery and non-aqueous secondary battery
JP7341975B2 (en) Method for manufacturing high coverage positive electrode active material particles and method for manufacturing positive electrode active material particles with LPO layer as intermediates
JP2017069020A (en) Method for manufacturing nonaqueous electrolyte secondary battery
CN114008826A (en) Collector, conductive layer forming paste, electrode, and electricity storage element
JP2017142937A (en) Method for manufacturing lithium ion secondary battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230123

R151 Written notification of patent or utility model registration

Ref document number: 7226513

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151