JP7225321B2 - Optical equipment and optical elements - Google Patents

Optical equipment and optical elements Download PDF

Info

Publication number
JP7225321B2
JP7225321B2 JP2021109338A JP2021109338A JP7225321B2 JP 7225321 B2 JP7225321 B2 JP 7225321B2 JP 2021109338 A JP2021109338 A JP 2021109338A JP 2021109338 A JP2021109338 A JP 2021109338A JP 7225321 B2 JP7225321 B2 JP 7225321B2
Authority
JP
Japan
Prior art keywords
optical element
shielding film
light shielding
optically effective
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021109338A
Other languages
Japanese (ja)
Other versions
JP2021165854A (en
Inventor
淳理 石倉
法彦 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2021109338A priority Critical patent/JP7225321B2/en
Publication of JP2021165854A publication Critical patent/JP2021165854A/en
Application granted granted Critical
Publication of JP7225321B2 publication Critical patent/JP7225321B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lens Barrels (AREA)
  • Camera Bodies And Camera Details Or Accessories (AREA)
  • Optical Elements Other Than Lenses (AREA)

Description

本発明は、非光学有効面に遮光膜を備えた光学素子及び該光学素子を有する光学機器に関する。 TECHNICAL FIELD The present invention relates to an optical element having a light shielding film on its non-optically effective surface and an optical apparatus having the optical element.

一般に光学機器に使用されるレンズにおいて、入射した光は入射面の反対側の面から出射されるが、ごく一部の光がレンズの端面(コバ面)で内部反射をしてしまう。このため、レンズを多数組み合わせて用いる光学機器においては、内面反射によって画質の低下を及ぼさないように、端面(コバ面)に遮光膜が設けられている。 In lenses generally used in optical equipment, incident light is emitted from the surface opposite to the incident surface, but a very small portion of the light is internally reflected at the end surface (edge surface) of the lens. For this reason, in an optical device that uses a combination of a large number of lenses, a light shielding film is provided on the end surface (edge surface) so as to prevent deterioration of image quality due to internal reflection.

特許文献1は、光学素子の外周部に段付き形状を有し、段付き形状の非光学有効面の一部に遮光膜が設けられた光学素子について開示している。引用文献1に開示された光学素子では、非光学有効面の平坦部に形成された遮光膜を曲面部に設けられた遮光膜より薄くして、曲面部での全反射を抑制しつつ軽量で遮光性能に優れた光学素子について記載している。 Patent Literature 1 discloses an optical element having a stepped shape on the outer periphery of the optical element, and a light shielding film provided on a part of the non-optically effective surface of the stepped shape. In the optical element disclosed in Cited Document 1, the light-shielding film formed on the flat portion of the non-optically effective surface is made thinner than the light-shielding film provided on the curved surface portion, thereby suppressing total reflection on the curved surface portion and reducing the weight. An optical element with excellent light shielding performance is described.

特開2013-114235号公報JP 2013-114235 A

特許文献1は、光学素子に、一様な硬度の遮光膜を光学素子に設けているので、遮光膜の膜厚分布に起因して、光学素子の鏡筒内の光軸に対する偏心が生じやすい。 In Patent Document 1, since the optical element is provided with a light shielding film having a uniform hardness, the optical element tends to be decentered with respect to the optical axis in the lens barrel due to the film thickness distribution of the light shielding film. .

段付き形状を有する光学素子では、光軸に垂直な非光学有効面に遮光膜を設けた場合には、光軸に垂直な非光学有効面における遮光膜の膜厚分布に起因して、光軸に対する偏心が生じる。 In an optical element having a stepped shape, when a light shielding film is provided on the non-optically effective surface perpendicular to the optical axis, the light is blocked due to the film thickness distribution of the light shielding film on the non-optically effective surface perpendicular to the optical axis. Eccentricity with respect to the axis occurs.

本発明は、光軸に垂直な非光学有効面に遮光膜を設けた場合でも、鏡筒内におけるレンズの光軸に対する偏心量を小さくすることができる光学機器を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide an optical apparatus capable of reducing the eccentricity of a lens with respect to the optical axis in a lens barrel even when a light shielding film is provided on a non-optically effective surface perpendicular to the optical axis.

本発明の光学機器は、光学素子と、前記光学素子を内部に保持する鏡筒と、を有する光学機器であって、前記光学素子は、光学有効面および非光学有効面を有する基材と、前記基材の前記非光学有効面の少なくとも一部の上に設けられた遮光膜と、を有し、前記遮光膜は、第一の部分と、第二の部分と、を有し、前記第一の部分は、前記第二の部分より硬度が低く、前記光学素子は、前記第一の部分において前記鏡筒に接していることを特徴とする。 An optical instrument of the present invention is an optical instrument comprising an optical element and a lens barrel holding the optical element therein, wherein the optical element comprises a base material having an optically effective surface and a non-optically effective surface; a light shielding film provided on at least part of the non-optically effective surface of the base material, the light shielding film having a first portion and a second portion; The first portion is lower in hardness than the second portion, and the optical element is in contact with the lens barrel at the first portion.

本発明の光学素子は、光学有効面と非光学有効面とを有する基材と、前記基材の前記非光学有効面の少なくとも一部の上に設けられた遮光膜と、を有する光学素子であって、前記遮光膜は、前記光学素子を内部に保持する鏡筒に接するように配置された第一の部分と、第二の部分と、を有し、前記第一の部分は、前記第二の部分より硬度が低いことを特徴とする。 An optical element of the present invention is an optical element comprising a substrate having an optically effective surface and a non-optically effective surface, and a light-shielding film provided on at least part of the non-optically effective surface of the substrate. The light shielding film has a first portion arranged so as to be in contact with the lens barrel holding the optical element inside, and a second portion, and the first portion is the second portion. It is characterized by having a lower hardness than the second part .

本発明によれば、遮光性能を有するとともに、鏡筒内におけるレンズの光軸に対する偏心量が小さい光学素子及び光学機器を提供することができる。 Advantageous Effects of Invention According to the present invention, it is possible to provide an optical element and an optical apparatus having light shielding performance and a small amount of eccentricity with respect to the optical axis of the lens in the lens barrel.

本発明の光学機器の断面の模式図である。It is a schematic diagram of the cross section of the optical instrument of the present invention. 外周部の非光学有効面に段差を設けた光学素子の模式図である。FIG. 4 is a schematic diagram of an optical element having a stepped portion on the non-optically effective surface of the outer peripheral portion; 硬度の異なる遮光膜が形成された光学素子の模式図である。FIG. 4 is a schematic diagram of an optical element on which light shielding films having different hardnesses are formed; 実施例1の硬度差を有する遮光膜が形成された光学素子の模式図である。1 is a schematic diagram of an optical element formed with a light-shielding film having a hardness difference of Example 1. FIG. 実施例1の遮光膜の作製過程で、遮光膜の一部を研削した遮光膜の模式図である。4 is a schematic diagram of a light shielding film obtained by grinding a part of the light shielding film in the process of manufacturing the light shielding film of Example 1. FIG. 実施例1の遮光膜の作製過程で、第2の塗料を塗工した遮光膜の模式図である。FIG. 4 is a schematic diagram of a light-shielding film coated with a second paint in the process of manufacturing the light-shielding film of Example 1; 実施例1で作製した遮光膜が形成された光学素子の模式図である。1 is a schematic diagram of an optical element formed with a light shielding film produced in Example 1. FIG. 実施例6の遮光膜が形成された光学素子の模式図である。FIG. 11 is a schematic diagram of an optical element on which a light shielding film of Example 6 is formed. 実施例7のディスペンサーを用いた塗布方法を示す模式図である。FIG. 11 is a schematic diagram showing a coating method using the dispenser of Example 7; 実施例7の第2の塗料を塗布した塗布方法を示す模式図である。FIG. 11 is a schematic diagram showing a coating method in which the second coating material of Example 7 is applied; 実施例9で第2の塗料を塗布した光学素子を示すR1面側から見た模式図である。FIG. 12 is a schematic view of the optical element coated with the second coating material in Example 9, viewed from the R1 surface side. 実施例8で用いたメニスカス形状の光学素子の模式図である。FIG. 11 is a schematic diagram of a meniscus-shaped optical element used in Example 8; 実施例9の遮光膜が形成された光学素子の模式図である。FIG. 11 is a schematic diagram of an optical element on which a light shielding film of Example 9 is formed.

以下、本発明の好ましい実施の形態を詳細に説明する。 Preferred embodiments of the present invention are described in detail below.

(光学機器)
本発明の光学機器は、鏡筒内に光学素子を有する望遠鏡、双眼鏡、顕微鏡、カメラ、内視鏡等に用いることができる。
(optical equipment)
The optical instrument of the present invention can be used for telescopes, binoculars, microscopes, cameras, endoscopes, etc., which have optical elements in their barrels.

以下に、カメラのレンズユニットの例を用いて、本発明の光学機器について説明する。 The optical apparatus of the present invention will be described below using an example of a camera lens unit.

図1に示すように、本発明のレンズユニット(光学機器)1は、鏡筒2が内部に光学素子3を保持している。光学素子3は、基材5の非光学有効面に設けられた遮光膜4で鏡筒2と接している。 As shown in FIG. 1, in a lens unit (optical device) 1 of the present invention, a lens barrel 2 holds an optical element 3 inside. The optical element 3 is in contact with the lens barrel 2 through a light shielding film 4 provided on the non-optically effective surface of the substrate 5 .

鏡筒2は、金属又は樹脂で構成されている。 The lens barrel 2 is made of metal or resin.

(光学素子)
図2に示すように、本発明の光学素子(レンズ)3の基材5は、光学有効面R1,R2を有し、少なくとも光軸Lに対して垂直な方向の非光学有効面(コバ面)a,cを有する。基材5の材質としては、ガラス又は樹脂を用いることができる。
(optical element)
As shown in FIG. 2, the substrate 5 of the optical element (lens) 3 of the present invention has optically effective surfaces R1 and R2, and at least non-optically effective surfaces (edge surfaces) perpendicular to the optical axis L. ) a and c. Glass or resin can be used as the material of the base material 5 .

基材5の形状は、例えば図2に示すように、光軸Lに対して平行な非光学有効面(コバ面)b,dと、光軸Lに対して垂直な方向の非光学有効面(コバ面)a,cが形成されている。この形状は、段付き形状と言われている。本明細書において、光軸に対して垂直な方向とは、光軸に対して90°であるものだけでなく90°±1°のものも含む。また、本明細書において平行とは、平行であるものだけでなく平行から±3°傾いたものも含む。 For example, as shown in FIG. 2, the base material 5 has non-optically effective surfaces (edge surfaces) b and d parallel to the optical axis L and non-optically effective surfaces perpendicular to the optical axis L. (Edge surface) a and c are formed. This shape is called a stepped shape. In this specification, the direction perpendicular to the optical axis includes not only 90° to the optical axis but also 90°±1°. Moreover, in this specification, parallel includes not only being parallel but also being inclined ±3° from parallel.

図2に示すように、本発明の光学素子(レンズ)3は、光軸Lに対して垂直な面c上に、遮光膜4を有している。 As shown in FIG. 2, the optical element (lens) 3 of the present invention has a light shielding film 4 on a plane c perpendicular to the optical axis L. As shown in FIG.

遮光膜4は、少なくとも樹脂及び着色剤を有している。 The light shielding film 4 has at least resin and colorant.

遮光膜4に用いる樹脂は、エポキシ樹脂、アルキド樹脂、およびアクリル樹脂から選ばれる熱硬化性樹脂を適宜選択して用いることができる。これらの中で、寸法安定性が良いのでエポキシ樹脂を用いることがより好ましい。 As the resin used for the light shielding film 4, a thermosetting resin selected from epoxy resin, alkyd resin, and acrylic resin can be appropriately selected and used. Among these, it is more preferable to use an epoxy resin because of its good dimensional stability.

遮光膜4は、遮光膜4の屈折率を調整するために無機微粒子を含有することが好ましい。屈折率(nd)が2.1以上の無機微粒子を用いると、一般的に基材5と比較して屈折率が低い遮光膜3の屈折率を高くすることができるので、内面反射を低減する効果がある。屈折率(nd)が2.1以上の無機微粒子としては、酸化チタンや酸化ジルコニウム、酸化アルミニウム、酸化イットリウム、酸化カドミウム、ダイヤモンド、チタン酸ストロンチウム、ゲルマニウムの微粒子を用いることができる。これらの中で、屈折率(nd)が2.1以上3.5以下である酸化チタンや酸化ジルコニウムを用いることが好ましい。無機微粒子の屈折率が2.1未満であると、遮光膜の屈折率が低いので、基材と遮光膜の屈折率差が大きくなり内面反射が大きくなる。 The light shielding film 4 preferably contains inorganic fine particles in order to adjust the refractive index of the light shielding film 4 . The use of inorganic fine particles having a refractive index (nd) of 2.1 or more can increase the refractive index of the light-shielding film 3, which generally has a lower refractive index than the base material 5, thereby reducing internal reflection. effective. As inorganic fine particles having a refractive index (nd) of 2.1 or more, fine particles of titanium oxide, zirconium oxide, aluminum oxide, yttrium oxide, cadmium oxide, diamond, strontium titanate, and germanium can be used. Among these, titanium oxide and zirconium oxide having a refractive index (nd) of 2.1 or more and 3.5 or less are preferably used. When the refractive index of the inorganic fine particles is less than 2.1, the refractive index of the light-shielding film is low, so that the difference in refractive index between the substrate and the light-shielding film increases, resulting in increased internal reflection.

着色剤は、染料又は顔料を用いることができるが、均一に分散し易いので染料を用いることが好ましい。顔料は、カーボンブラック、チタンブラック、酸化銅、酸化鉄(ベンガラ)から選ばれる少なくとも1種以上の黒色顔料を用いることができる。染料は、アントラキノン染料、フタロシアニン染料、スチルベンゼン染料、ピラゾロン染料、チアゾール染料、カルボニウム染料、アジン染料を用いることができる。本発明の遮光膜中に含有される染料の含有量は、染料を単独で使用する場合には遮光膜に対して13.0質量%以上50.0質量%以下、好ましくは13.0質量%以上40.0質量%以下が好ましい。 A dye or a pigment can be used as the colorant, but it is preferable to use a dye because it is easily dispersed uniformly. At least one black pigment selected from carbon black, titanium black, copper oxide, and iron oxide (red iron oxide) can be used as the pigment. Dyes that can be used include anthraquinone dyes, phthalocyanine dyes, stilbenzene dyes, pyrazolone dyes, thiazole dyes, carbonium dyes, and azine dyes. The content of the dye contained in the light-shielding film of the present invention is 13.0% by mass or more and 50.0% by mass or less, preferably 13.0% by mass, relative to the light-shielding film when the dye is used alone. More than 40.0 mass % or less is preferable.

図3は、光学素子3の外周部の非光学有効面c付近を拡大した模式図である。光学素子3は、図3に示すように、基材21の光軸Lに対し垂直な方向の非光学有効面(コバ面)cに、遮光膜4が設けられている。光軸Lから離れた表面の部分f2の遮光膜4が、光軸Lと近い部分f1の遮光膜4よりも柔らかい。この遮光膜4の柔らかい部分f2で、光学素子3は鏡筒と接触し保持されている。本発明の光学素子3は、鏡筒2と接触する部分の遮光膜4が柔らかいことで、鏡筒2に光学素子3を組み込んだ際に遮光膜4の表面がより凹みやすくなる。これにより、鏡筒2に組み込む前に遮光膜4における膜厚差があった場合でも、その膜厚差を遮光膜4が吸収することが可能となる。 FIG. 3 is an enlarged schematic view of the periphery of the optical element 3 near the non-optically effective surface c. As shown in FIG. 3, the optical element 3 is provided with a light shielding film 4 on the non-optically effective surface (edge surface) c of the substrate 21 in the direction perpendicular to the optical axis L. As shown in FIG. The light shielding film 4 on the surface portion f2 away from the optical axis L is softer than the light shielding film 4 on the surface portion f1 close to the optical axis L. - 特許庁The optical element 3 is held in contact with the lens barrel at the soft portion f2 of the light shielding film 4 . In the optical element 3 of the present invention, the light shielding film 4 in the portion that contacts the lens barrel 2 is soft, so that the surface of the light shielding film 4 is more likely to be dented when the optical element 3 is incorporated in the lens barrel 2 . As a result, even if there is a film thickness difference in the light shielding film 4 before it is incorporated into the lens barrel 2, the light shielding film 4 can absorb the film thickness difference.

光学素子の光軸Lに対し垂直な方向の面cに形成された遮光膜4で、鏡筒2と接触する部分に隣接して鏡筒2と接触しない部分f1が硬いことで、この硬い部分により鏡筒2と光学素子3の光軸と垂直方向の相対移動が抑制される。本発明の光学素子3は、このような構造を有しているので、鏡筒2内におけるレンズの光軸に対する偏心量を小さくすることができる。 In the light shielding film 4 formed on the surface c in the direction perpendicular to the optical axis L of the optical element, the portion f1 adjacent to the portion in contact with the lens barrel 2 and not in contact with the lens barrel 2 is hard. , the relative movement of the lens barrel 2 and the optical element 3 in the direction perpendicular to the optical axis is suppressed. Since the optical element 3 of the present invention has such a structure, the eccentricity of the lens in the barrel 2 with respect to the optical axis can be reduced.

遮光膜4における膜厚差が偏心量に与える影響は、同じ膜厚差とすればレンズ径が小さいほど偏心量が大きくなる。一眼レフカメラ用レンズとして、比較的小径の外径φ25mmレンズを例にとって考える。遮光膜4を形成することにより増加する偏心量を15秒以下とするためには、鏡筒2に光学素子3(レンズ)を組みつけた際におおよそ1μm程度以下の遮光膜4における膜厚差になっている必要がある。また、塗布方法にもよるが、一般に10μm程度の膜厚となるよう塗布を行った場合、塗布後の遮光膜4の膜厚バラツキは1~2μmとなる。 As for the effect of the film thickness difference in the light shielding film 4 on the amount of eccentricity, the smaller the lens diameter, the greater the amount of eccentricity if the film thickness difference is the same. As a lens for a single-lens reflex camera, a relatively small outer diameter φ25 mm lens is taken as an example. In order to keep the amount of eccentricity that increases due to the formation of the light shielding film 4 to 15 seconds or less, the thickness difference in the light shielding film 4 when the optical element 3 (lens) is assembled to the lens barrel 2 should be approximately 1 μm or less. must be Although it depends on the coating method, when coating is performed so as to have a thickness of about 10 μm, the variation in thickness of the light shielding film 4 after coating is 1 to 2 μm.

そこで、接触した遮光膜を凹ませて最大1μm程度膜厚バラツキを吸収させることができれば、偏心量の増大を抑制することができ、小径レンズであってもほぼ目標とする偏心量とすることができる。具体的には、一般的な遮光塗料GT-7II(製品名、キヤノン化成社製)で形成し80℃で焼成した10μmの膜厚の遮光膜を塗布した光学素子を、鏡筒に組み込んだ際の遮光膜の凹み量は0.5μm程度である。鏡筒と接触する遮光膜の硬度を約半分に低下させることで、おおよそ1μm程度遮光膜を凹ませることが可能となる。 Therefore, if it is possible to dent the light-shielding film in contact with the light shielding film to absorb film thickness variations of up to about 1 μm, it is possible to suppress an increase in the amount of eccentricity. can. Specifically, when an optical element coated with a light-shielding film with a thickness of 10 μm formed by general light-shielding paint GT-7II (product name, manufactured by Canon Chemicals Co., Ltd.) and baked at 80 ° C. is incorporated into a lens barrel. is about 0.5 μm. By reducing the hardness of the light shielding film in contact with the lens barrel by about half, it is possible to recess the light shielding film by about 1 μm.

遮光膜4の膜厚計測は、塗布後のレンズを割断しその断面を顕微鏡やSEMで観察することで確認している。また、遮光膜4膜厚差は、複数の割断面を作製しその断面を同様に観察することで求めることができる。 The film thickness measurement of the light shielding film 4 is confirmed by cutting the coated lens and observing the cross section with a microscope or SEM. Further, the film thickness difference of the light shielding film 4 can be obtained by preparing a plurality of cut surfaces and observing the cross sections in the same manner.

遮光塗料GT-7II(製品名、キヤノン化成社製)で形成した遮光膜4を、ダイヤモンド圧子を押し込み荷重と変位から硬度を算出するナノインデンション法で測定した硬度は、ビッカース硬度でおおよそ10.0~11.5GPaである。膜厚10μmでこの硬度である遮光膜4の場合、鏡筒に組み込んだ場合のへこみ量は最大0.5μm程度であるが、これを5GPaの硬度にすることで、同膜厚で1μm程度凹ませることができる。 The hardness of the light-shielding film 4 formed of light-shielding paint GT-7II (product name, manufactured by Canon Kasei Co., Ltd.) measured by the nanoindentation method, in which the hardness is calculated from the load and displacement of a diamond indenter, is approximately 10 Vickers hardness. 0 to 11.5 GPa. In the case of the light-shielding film 4 with a film thickness of 10 μm and this hardness, the amount of dent when incorporated in the lens barrel is about 0.5 μm at maximum. can let

光学素子と光軸と垂直な面cで接している遮光膜4の部分f2は、ビッカース硬度が4.5GPa以上9.5Gpa以下であることが好ましい。遮光膜4の部分f2の硬度が4.5GPa未満だと光学素子を鏡筒に組み込んだ時の鏡筒内での光学素子のブレが大きくなり、十分な位置精度が出ない。また、遮光膜4の部分f2の硬度が9.5GPaを超えると、凹み量が減少して、位置精度が低下する。 The portion f2 of the light shielding film 4 that is in contact with the optical element on the plane c perpendicular to the optical axis preferably has a Vickers hardness of 4.5 GPa or more and 9.5 GPa or less. If the hardness of the portion f2 of the light-shielding film 4 is less than 4.5 GPa, the optical element wobbles in the lens barrel when the optical element is assembled in the lens barrel, and sufficient positional accuracy cannot be obtained. Further, when the hardness of the portion f2 of the light shielding film 4 exceeds 9.5 GPa, the amount of recession is reduced and the positional accuracy is lowered.

鏡筒2と接している遮光膜4の部分f2のビッカース硬度は、鏡筒2と接していない遮光膜4の部分f1よりビッカース硬度が0.8GPa以上低いことが好ましく、1.0GPa以上低いことがより好ましい。硬度が0.8GPa以上低い場合、鏡筒2内での光学素子の径方向のブレを抑制することができる。 The Vickers hardness of the portion f2 of the light shielding film 4 that is in contact with the lens barrel 2 is preferably lower than that of the portion f1 of the light shielding film 4 that is not in contact with the lens barrel 2 by 0.8 GPa or more, and is lower by 1.0 GPa or more. is more preferred. If the hardness is lower than 0.8 GPa, it is possible to suppress radial blurring of the optical element within the lens barrel 2 .

遮光膜4の平均膜厚は、3μm以上50μm以下であることが好ましく、5μm以上30μm以下であることがより好ましい。3μm未満だと遮光性能が低下する。また、50μmを超えると位置精度が低下する。 The average film thickness of the light shielding film 4 is preferably 3 μm or more and 50 μm or less, more preferably 5 μm or more and 30 μm or less. If it is less than 3 μm, the light shielding performance is lowered. Moreover, if it exceeds 50 μm, the positional accuracy is lowered.

(光学素子の製造方法)
光学素子3を製造するために用いる遮光塗料としては、GT-7II、GT-20(商品名、キヤノン化成社製)等の樹脂,染料,各種微粒子を主成分とする塗料を用いることができる。また、使用する光学素子に対して、光学特性や屈折率、膜耐久性等の遮光膜として必要な特性が満たされれば、これに限定されるものではなく、遮光塗料を溶媒で希釈等行ってもよい。
(Method for manufacturing optical element)
As the light-shielding paint used for manufacturing the optical element 3, resins such as GT-7II and GT-20 (trade name, manufactured by Canon Chemical Industries, Ltd.), dyes, and paints containing various fine particles as main components can be used. In addition, if the optical element to be used satisfies the properties required as a light-shielding film such as optical properties, refractive index, film durability, etc., it is not limited to this, and the light-shielding paint may be diluted with a solvent or the like. good too.

非光学有効面(コバ面)への遮光塗料の塗布は、バーコート法、スプレーコート法、ディップコート法、インクジェット法などの直接塗布する方法、また刷毛・スポンジコート法、ロールコート法など他の媒体を介して塗布する方法がある。 The light-shielding paint can be applied to the non-optically effective surface (edge surface) by direct coating methods such as the bar coating method, spray coating method, dip coating method, and inkjet method, as well as other methods such as the brush/sponge coating method and the roll coating method. There is a method of coating through a medium.

遮光膜4において鏡筒2と接する部分f2を接しない部分f1より柔らかくするには、以下の方法で光学素子3を作製する。第1の方法は、非光学有効面(コバ面)の全面に遮光塗料を塗布した後、遮光塗料が乾燥する前に、溶媒で希釈した遮光塗料を柔らかくする部分f2に塗布する。塗料の乾燥が終了する前に重ねて塗布することで、ある程度均一な膜厚とすることが可能となり、遮光膜中に一部溶媒が残るので硬度が低下する。 In order to make the portion f2 in contact with the lens barrel 2 of the light shielding film 4 softer than the portion f1 not in contact with the lens barrel 2, the optical element 3 is produced by the following method. In the first method, after applying the light-shielding paint to the entire non-optically effective surface (edge surface), before the light-shielding paint dries, the light-shielding paint diluted with a solvent is applied to the portion f2 to be softened. By repeatedly applying the paint before the drying of the paint is finished, it is possible to obtain a uniform film thickness to some extent, and the hardness is lowered because part of the solvent remains in the light-shielding film.

第2の方法は、第1の方法で、非光学有効面(コバ面)全面に遮光塗料を塗布する時に、遮光塗料の塗布量を部分的に変えて塗布する。例えば、非光学有効面(コバ面)の鏡筒と接しない部分f2の塗布量を減らして遮光塗料を塗布する。 The second method is the first method, in which the coating amount of the light-shielding paint is partially changed when the light-shielding paint is applied to the entire non-optically effective surface (edge surface). For example, the light shielding paint is applied with a reduced coating amount on the portion f2 of the non-optically effective surface (edge surface) that is not in contact with the lens barrel.

第3の方法は、非光学有効面(コバ面)の全面に遮光塗料を塗布し、乾燥、焼成工程を経た後、遮光膜の鏡筒と接する部分f2の遮光膜を物理的もしくは化学的に除去し、溶媒で希釈した遮光塗料を塗布、乾燥、焼成する。また、はじめの乾燥、焼成工程と、その後の乾燥・焼成工程で、後の乾燥・焼成工程の温度を低くして硬度に差を設けることもできる。 In the third method, a light-shielding paint is applied to the entire surface of the non-optically effective surface (edge surface), and after drying and baking, the portion f2 of the light-shielding film in contact with the lens barrel is physically or chemically removed. Remove, apply a light-shielding paint diluted with a solvent, dry, and bake. In addition, it is also possible to provide a difference in hardness by lowering the temperature in the subsequent drying/firing process between the initial drying/firing process and the subsequent drying/firing process.

第4の方法は、非光学有効面(コバ面)全面に遮光塗料を厚く塗布した後、十分乾燥する前に光軸Kを中心に光学素子を高速で回転させることでも、遠心力により塗料表面の樹脂成分を外周部に移動させる。これにより、鏡筒2と接する部分f2の遮光膜を柔らかくできる。このとき、レンズ径により非光学有効面(コバ面)に働く遠心力が変わる為、小さい径のレンズほど回転数を上げる必要がある。 A fourth method is to apply a thick layer of light-shielding paint to the entire non-optically effective surface (edge surface), and then rotate the optical element at high speed around the optical axis K before it dries sufficiently. The resin component of is moved to the outer peripheral portion. This makes it possible to soften the light shielding film at the portion f2 in contact with the lens barrel 2 . At this time, since the centrifugal force acting on the non-optically effective surface (edge surface) changes depending on the lens diameter, the smaller the diameter of the lens, the higher the number of revolutions required.

(光学機器の製造方法)
本発明の光学機器1は、鏡筒2に光学素子3が突き当たるまで挿入し、そののちレンズ保持部材である押え環で締めこむことでレンズを固定でき、光学機器1を作製することができる。
(Method for manufacturing optical equipment)
The optical device 1 of the present invention can be manufactured by inserting the optical element 3 into the lens barrel 2 until it abuts against it, and then tightening it with a pressing ring, which is a lens holding member, so that the lens can be fixed.

以下、本発明の各実施例の光学素子の構成を具体的に説明する。ただし、本発明はかかる実施例に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。 The configuration of the optical element of each example of the present invention will be specifically described below. However, the present invention is not limited to such embodiments, and various modifications and changes are possible within the scope of the gist thereof.

(評価方法)
実施例および比較例では、以下の手法により評価した。
(Evaluation method)
Examples and comparative examples were evaluated by the following methods.

(遮光膜の硬度の測定)
遮光膜の硬度は、ナノインデンター(MTS社製、(製品名))を用い、ダイヤモンド圧子を遮光膜の表面に押し込みそれぞれ膜表面の強度を測定した。硬度の測定は、硬度の異なる遮光膜4の部分を測定した。具体的には、図4に示す実施例1の遮光膜4で、h3の部分とh1の部分について行った。h3部は、図中光軸に垂直な第2のコバ面cの幅3mmの中で、幅の中央より外周部側に0.5~1.5mmの位置である。また測定したh1部は図中光軸に垂直な第2のコバ面cの幅3mmの中で、幅の中央よりレンズ中央に向かい0.5~1.5mmの位置である。
(Measurement of hardness of light shielding film)
The hardness of the light-shielding film was measured by using a nanoindenter (manufactured by MTS, (product name)) and pressing a diamond indenter into the surface of the light-shielding film to measure the strength of each film surface. The hardness was measured at portions of the light shielding film 4 having different hardnesses. Specifically, the light-shielding film 4 of Example 1 shown in FIG. The h3 portion is positioned 0.5 to 1.5 mm from the center of the width to the outer peripheral side within the width of 3 mm of the second edge surface c perpendicular to the optical axis in the figure. The measured h1 portion is located 0.5 to 1.5 mm from the center of the width toward the center of the lens within the width of 3 mm of the second edge surface c perpendicular to the optical axis in the drawing.

(偏心量の評価)
遮光膜を形成することにより増加した偏心量を測定した。透過偏心の測定は、光軸測定器(オプトロニクス社製、Opti Centric MOT)を用いて行った。透過偏心の測定は、治具に固定したレンズに並行光を照射し、治具ごとレンズを一回転させた。このとき、焦点における像の最大移動量を計測し、この長さをレンズ焦点距離で割りアークタンジェントを取った値を評価した。
(Evaluation of eccentricity)
The amount of eccentricity increased by forming the light shielding film was measured. The transmission eccentricity was measured using an optical axis measuring instrument (Opti Centric MOT manufactured by Optronics). The transmission eccentricity was measured by irradiating the lens fixed to the jig with parallel light and rotating the lens together with the jig. At this time, the maximum amount of movement of the image at the focal point was measured, and the value obtained by dividing this length by the lens focal length and taking the arctangent was evaluated.

遮光膜形成にともなう透過偏心量は小さいほど鏡筒内におけるレンズの傾きが小さく位置精度が良好である。一般にこの偏心量が15秒以下であればほぼ画像に影響がなく理想的とされており、以下の基準で評価した。
A:偏心量が15秒以下でほぼ画像に影響がない。
B:偏心量が15秒を超えて20秒以下で画像に影響が少ない。
C:偏心量が20秒を超えて画像に影響が生じる。
The smaller the transmission eccentricity associated with the formation of the light shielding film, the smaller the inclination of the lens in the lens barrel and the better the positional accuracy. In general, if the amount of eccentricity is 15 seconds or less, it is considered ideal because there is almost no effect on the image, and evaluation was made according to the following criteria.
A: The amount of eccentricity is 15 seconds or less, and there is almost no effect on the image.
B: The amount of eccentricity exceeds 15 seconds and is 20 seconds or less, and there is little effect on the image.
C: The amount of eccentricity exceeds 20 seconds and affects the image.

(実施例1)
実施例1では、図4に示す遮光膜4が設けられた光学素子3を作製した。実施例1で用いた光学素子3の光学有効面R1の曲率半径は35.0mmであり、光学有効面R2の曲率半径は80mmであった。光学有効面R1の最大外周はφ46.0mm、光学有効面R2の最大外周はφ60mmであった。また、コバ面cにおいて、最外周部より内周部にかけての1.5mm程度が鏡筒中で光学素子を保持する部分であった。コバ面aの幅は3mm、コバ面cの幅は4mmであった。
(Example 1)
In Example 1, the optical element 3 provided with the light shielding film 4 shown in FIG. 4 was manufactured. The radius of curvature of the optically effective surface R1 of the optical element 3 used in Example 1 was 35.0 mm, and the radius of curvature of the optically effective surface R2 was 80 mm. The maximum perimeter of the effective optical surface R1 was φ46.0 mm, and the maximum perimeter of the effective optical surface R2 was φ60 mm. Also, on the edge surface c, about 1.5 mm from the outermost periphery to the inner periphery was a portion for holding the optical element in the lens barrel. The width of the edge surface a was 3 mm, and the width of the edge surface c was 4 mm.

実施例1では、コバ面cに形成された遮光膜の一部を削ることで溝をつくり、その後に塗料希釈率を変えた遮光塗料で溝を埋める方法で遮光膜を作製した。 In Example 1, a light-shielding film was produced by a method of forming a groove by scraping a portion of the light-shielding film formed on the edge surface c, and then filling the groove with a light-shielding paint having a different paint dilution ratio.

遮光膜の塗布は、基材21の光学有効面側R2を塗布装置の吸着回転シャフトに吸着させ回転させながらコバ面に遮光材料GT-7II(キヤノン化成製)をスポンジコート法により塗布した。コバ面全体が黒色を呈し十分に厚膜化した後に、1時間自然乾燥させた後、80℃,2時間焼成を行った。この時のコバ面cに形成された遮光膜の平均膜厚は10μmであった。次に、図5に示すようにc面に形成した遮光膜h1の外周部より2mmを機械加工により、おおよそ5μmの深さで周方向に研削した。光学素子を洗浄後、この機械加工により形成された外周部の溝に、GT-7IIとシンナーを1:0.5の質量比で希釈した第2の塗料h3を手動のディスペンサーにより配置して、図6に示す遮光膜を作製した。この後に、コバ面cの研削していない部分にはみ出した希釈塗料はワイパーで拭きとった。次に、1時間自然乾燥させた後、80℃,2時間焼成を行った。さらに、この状態で機械加工によりコバ面cの遮光膜の膜厚が均一になるよう研削を行い、図7に示した遮光膜が形成された光学素子を製造した。 The light-shielding film was applied by applying a light-shielding material GT-7II (manufactured by Canon Kasei Co., Ltd.) to the edge surface by a sponge coating method while the optically effective surface side R2 of the base material 21 was attracted to and rotated by the suction rotation shaft of the coating device. After the entire edge surface was black and the film was sufficiently thick, it was air-dried for 1 hour and then fired at 80° C. for 2 hours. The average film thickness of the light shielding film formed on the edge surface c at this time was 10 μm. Next, as shown in FIG. 5, 2 mm from the outer peripheral portion of the light shielding film h1 formed on the c-plane was machined to a depth of approximately 5 μm in the circumferential direction. After cleaning the optical element, a second paint h3 prepared by diluting GT-7II and thinner at a mass ratio of 1:0.5 is placed in the groove on the outer periphery formed by the machining using a manual dispenser. A light-shielding film shown in FIG. 6 was produced. After that, the diluted paint that protruded onto the unground portion of the edge surface c was wiped off with a wiper. Next, after air-drying for 1 hour, baking was performed at 80° C. for 2 hours. Further, in this state, grinding was performed by machining so that the film thickness of the light shielding film on the edge surface c was uniform, and the optical element having the light shielding film shown in FIG. 7 was manufactured.

評価結果は表1のようになった。 The evaluation results are shown in Table 1.

(実施例2)
実施例2は、GT-7IIとシンナーを1:1の質量比で希釈した第2の塗料を用いた以外は実施例1と同様に遮光膜を形成して、光学素子および光学機器を作製した。
(Example 2)
In Example 2, a light-shielding film was formed in the same manner as in Example 1, except that a second paint obtained by diluting GT-7II and thinner at a mass ratio of 1:1 was used to produce an optical element and an optical device. .

評価結果は表1のようになった。 The evaluation results are shown in Table 1.

実施例2で第2の塗料の希釈率を変更したのは、第2の塗料で作成した部分の遮光膜の部分の硬度を変える為である。つまり希釈率を大きくすることで塗料中に最終的に残留するシンナーである有機溶媒比率が大きくなり、逆に塗料に含まれるシリカ等の微粒子成分の割合が小さくなる為、塗膜硬度は低くなると考えられる。 The reason why the dilution rate of the second paint was changed in Example 2 is to change the hardness of the light shielding film portion formed with the second paint. In other words, by increasing the dilution rate, the ratio of the organic solvent, which is the thinner that eventually remains in the paint, increases, and conversely, the ratio of fine particles such as silica contained in the paint decreases, so the coating film hardness decreases. Conceivable.

(実施例3)
実施例3は、GT-7IIとシンナーを1:2の質量比で希釈した第2の塗料を用いた以外は実施例1と同様に遮光膜を形成して、光学素子および光学機器を作製した。
(Example 3)
In Example 3, a light-shielding film was formed in the same manner as in Example 1, except that the second paint obtained by diluting GT-7II and thinner at a mass ratio of 1:2 was used, and an optical element and an optical instrument were produced. .

評価結果は表1のようになった。 The evaluation results are shown in Table 1.

(実施例4)
実施例4は、GT-7IIとシンナーを1:3の質量比で希釈した第2の塗料を用いた以外は実施例1と同様に遮光膜を形成して、光学素子および光学機器を作製した。
(Example 4)
In Example 4, a light-shielding film was formed in the same manner as in Example 1, except that a second paint obtained by diluting GT-7II and thinner at a mass ratio of 1:3 was used, and an optical element and an optical device were produced. .

評価結果は表1のようになった。 The evaluation results are shown in Table 1.

(実施例5)
実施例5は、GT-7IIとシンナーを1:4の質量比で希釈した第2の塗料を用いた以外は実施例1と同様に遮光膜を形成して、光学素子および光学機器を作製した。
(Example 5)
In Example 5, a light-shielding film was formed in the same manner as in Example 1, except that a second paint obtained by diluting GT-7II and thinner at a mass ratio of 1:4 was used to produce optical elements and optical equipment. .

評価結果は表1のようになった。 The evaluation results are shown in Table 1.

(比較例1)
比較例1は、実施例1と異なり、第2の塗料を用いずに遮光膜を作製した。
(Comparative example 1)
In Comparative Example 1, unlike Example 1, a light-shielding film was produced without using the second paint.

比較例1では、実施例1で用いた光学素子と同様の光学素子を用い、遮光膜を形成した。遮光膜の塗布は、基材21の光学有効面側R2を塗布装置の吸着回転シャフトに吸着させ回転させながらコバ面に遮光膜GT-7II(キヤノン化成製)をスポンジコート法により塗布した。コバ面全体が黒色を呈し十分に厚膜化した後に、1時間自然乾燥させた後、80℃,2時間焼成を行った。この時のコバ面cに形成された遮光膜の平均膜厚は10μmであった。 In Comparative Example 1, an optical element similar to the optical element used in Example 1 was used to form a light shielding film. For the application of the light shielding film, the light shielding film GT-7II (manufactured by Canon Kasei Co., Ltd.) was applied to the edge surface by a sponge coating method while the optically effective surface side R2 of the substrate 21 was attracted to and rotated by the suction rotary shaft of the coating device. After the entire edge surface was black and the film was sufficiently thick, it was air-dried for 1 hour and then fired at 80° C. for 2 hours. The average film thickness of the light shielding film formed on the edge surface c at this time was 10 μm.

評価結果は表1のようになった。 The evaluation results are shown in Table 1.

(比較例2)
比較例2は、実施例1で用いた光学素子と同様の光学素子を用い、遮光膜を形成した。比較例2では、遮光膜の塗布は、基材21の光学有効面側R2を塗布装置の吸着回転シャフトに吸着させ回転させながらコバ面に遮光材料GT-7II(キヤノン化成製)をスポンジコート法により塗布した。コバ面全体が黒色を呈し十分に厚膜化した後に、1時間自然乾燥させた後、80℃,2時間焼成を行った。この時のコバ面cに形成された遮光膜の平均膜厚は10μmであった。
(Comparative example 2)
In Comparative Example 2, an optical element similar to the optical element used in Example 1 was used to form a light shielding film. In Comparative Example 2, the light-shielding film was applied by sponge coating a light-shielding material GT-7II (manufactured by Canon Kasei Co., Ltd.) on the edge surface while the optically effective surface side R2 of the base material 21 was attracted to the suction rotary shaft of the coating device and rotated. coated with After the entire edge surface was black and the film was sufficiently thick, it was air-dried for 1 hour and then fired at 80° C. for 2 hours. The average film thickness of the light shielding film formed on the edge surface c at this time was 10 μm.

次に、図5に示すようにc面に形成した遮光膜h1の外周部より2mmを機械加工により、おおよそ5μmの深さで周方向に研削した。光学素子を洗浄後、この機械加工により形成された外周部の溝に、再度GT-7II塗料h3を手動のディスペンサーにより配置して図6に示す遮光膜を作製した。この後に、コバ面cの研削していない部分にはみ出した希釈塗料はワイパーで拭きとった。次に、1時間自然乾燥させた後、80℃,2時間焼成を行った。さらに、この状態で機械加工によりコバ面cの遮光膜の膜厚が均一になるよう研削を行って、図7に示す遮光膜が形成された光学素子を製造した。 Next, as shown in FIG. 5, 2 mm from the outer peripheral portion of the light shielding film h1 formed on the c-plane was machined to a depth of approximately 5 μm in the circumferential direction. After cleaning the optical element, the GT-7II paint h3 was placed again in the grooves formed by the machining on the outer periphery using a manual dispenser to produce the light-shielding film shown in FIG. After that, the diluted paint that protruded onto the unground portion of the edge surface c was wiped off with a wiper. Next, after air-drying for 1 hour, baking was performed at 80° C. for 2 hours. Further, in this state, grinding was performed by machining so that the film thickness of the light shielding film on the edge surface c was uniform, and an optical element having the light shielding film shown in FIG. 7 was manufactured.

評価結果は表1のようになった。 The evaluation results are shown in Table 1.

(比較例3)
比較例3は、実施例1で用いた光学素子と同様の光学素子を用い、遮光膜を形成した。比較例3では、遮光膜の塗布は、光学素子21の光学有効面の側R2を塗布装置の吸着回転シャフトに吸着させ回転させながらコバ面に、遮光材料GT-7II(キヤノン化成製)とシンナーを質量比1:4で希釈した塗料をスポンジコート法により塗布した。次に、1時間自然乾燥させた後、80℃,2時間焼成を行って、遮光膜を形成した。
(Comparative Example 3)
In Comparative Example 3, an optical element similar to the optical element used in Example 1 was used to form a light shielding film. In Comparative Example 3, the light-shielding film was applied to the edge surface while the optically effective surface side R2 of the optical element 21 was being attracted to the suction rotation shaft of the coating device and rotated. was diluted at a mass ratio of 1:4 and applied by a sponge coating method. Next, after air-drying for 1 hour, baking was performed at 80° C. for 2 hours to form a light-shielding film.

Figure 0007225321000001
Figure 0007225321000001

(実施例6)
実施例6では、図8に示す遮光膜4が設けられた光学素子3を作製した。実施例6に用いた基材21は実施例1と同形状のものを用いた。また、コバ面cの中で、最外周部より内周部にかけての1.5mm程度が鏡筒の中で光学素子を保持する部分となる。コバ面aの幅は3mm、コバ面cの幅は4mmであった。
(Example 6)
In Example 6, the optical element 3 provided with the light shielding film 4 shown in FIG. 8 was produced. The substrate 21 used in Example 6 had the same shape as in Example 1. Also, in the edge surface c, about 1.5 mm from the outermost periphery to the inner periphery becomes a portion for holding the optical element in the lens barrel. The width of the edge surface a was 3 mm, and the width of the edge surface c was 4 mm.

基材21の光学有効面R2側を塗布装置の吸着回転シャフトに吸着させ回転させながら各コバ面に遮光塗料GT-7II(キヤノン化成製)をスポンジコート法により塗布した。コバ面全体が黒色を呈し十分に厚膜化した後に、塗料と同量のシンナーで希釈したGT-7IIをコバ面cの外周側からおおよそ2mmの幅部分に、初期に塗布した塗膜の上から重ねてスポンジコート法により塗布した。次にこれらを1時間自然乾燥させた後、80℃,2時間焼成を行った。 While the optically effective surface R2 side of the base material 21 was attracted to and rotated by the suction rotating shaft of the coating device, the light shielding paint GT-7II (manufactured by Canon Kasei Co., Ltd.) was applied to each edge surface by a sponge coating method. After the entire edge surface is black and the film is sufficiently thick, GT-7II diluted with the same amount of thinner as the paint is applied to a width of about 2 mm from the outer peripheral side of the edge surface c. It was coated by a sponge coating method by stacking the layers. Next, after air-drying these for 1 hour, they were calcined at 80° C. for 2 hours.

評価結果は表2のようになった。 The evaluation results are shown in Table 2.

(比較例4)
比較例4は、実施例6と同条件、同工程で遮光塗料GT-7IIを塗布し、その後のシンナー希釈塗料を重ね塗布を実施しないサンプルを作製した。次にこれらを1時間自然乾燥させた後、80℃,2時間焼成を行った。
(Comparative Example 4)
In Comparative Example 4, a sample was prepared in which the light-shielding paint GT-7II was applied in the same conditions and in the same process as in Example 6, and then the thinner-diluted paint was not repeatedly applied. Next, after air-drying these for 1 hour, they were calcined at 80° C. for 2 hours.

評価結果は表2のようになった。 The evaluation results are shown in Table 2.

Figure 0007225321000002
Figure 0007225321000002

(実施例7)
実施例7では、実施例1と同じ光学素子を用いた。実施例7の光学素子は、光学素子の最外周部より内周部におおよそ1.5mmの領域が鏡筒内における光学素子の取り付け保持部で鏡筒と接触した。
(Example 7)
In Example 7, the same optical element as in Example 1 was used. In the optical element of Example 7, an area of about 1.5 mm from the outermost periphery of the optical element to the inner peripheral part was in contact with the lens barrel at the attachment holding portion of the optical element in the lens barrel.

遮光膜の塗布は、2台のディスペンサーを備えた塗布装置で行った。初めに、図9に示すように、基材21の光学有効面側R2を塗布装置の吸着回転シャフトに吸着させ、光学素子を光軸に対し45度傾けた状態で回転させながらディスペンサー11を用い遮光材料GT-7IIを吐出させコバ面を塗布した。 Coating of the light-shielding film was performed using a coating device equipped with two dispensers. First, as shown in FIG. 9, the optically effective surface side R2 of the base material 21 is attracted to the suction rotation shaft of the coating device, and the dispenser 11 is used while the optical element is rotated at an angle of 45 degrees with respect to the optical axis. A light shielding material GT-7II was discharged to coat the edge surface.

コバ面全体を塗布した後、図10に示すように、基材21の光軸が鉛直となるように位置を調整した。基材21を回転させながら第2のディスペンサー12を用いて、光学素子の中心軸に対し垂直な面cに、外周部よりおおよそ2mmの幅で遮光材料GT-7II同量のシンナーで希釈した第2の塗料16を重ねて塗布した。図11は、こうした塗布を行ったあとの光学素子をR1面側から見た様子を表しており、図中h3がシンナー希釈したGT-7IIを塗布した位置に相当し、おおよそ2mmの幅であった。最初に塗布した塗料GT-7IIが乾燥しきる前にシンナー希釈塗料を塗布することで、図8に示すように両塗料間にグラデーションh2を持つ遮光膜構造となる。次に、1時間自然乾燥させた後、80℃,2時間の焼成を行った。 After coating the entire edge surface, as shown in FIG. 10, the position of the substrate 21 was adjusted so that the optical axis was vertical. While rotating the substrate 21, using the second dispenser 12, a light shielding material GT-7II diluted with the same amount of thinner was applied to the surface c perpendicular to the central axis of the optical element over a width of about 2 mm from the outer periphery. No. 2 paint 16 was applied in layers. FIG. 11 shows the optical element after such coating as viewed from the R1 side. In the figure, h3 corresponds to the position where GT-7II diluted with thinner was coated, and has a width of approximately 2 mm. rice field. By applying the thinner-diluted paint before the first applied paint GT-7II is completely dried, a light-shielding film structure having a gradation h2 between the two paints as shown in FIG. 8 is obtained. Next, after air-drying for 1 hour, firing was performed at 80° C. for 2 hours.

評価結果は表3のようになった。 The evaluation results are shown in Table 3.

(比較例5)
比較例5は、実施例7と異なり、シンナー希釈を上塗りしていない遮光膜を形成した以外は実施例7と同様に遮光膜を形成した。
(Comparative Example 5)
In Comparative Example 5, unlike Example 7, a light shielding film was formed in the same manner as in Example 7 except that the light shielding film was not overcoated with diluted thinner.

比較例5では、実施例7と同一の条件及び工程でコバ面全面にGT-7IIを塗布した。この後、シンナーで希釈した塗料を上から塗布することなく、1時間の自然乾燥と、80℃,2時間の焼成を行って、比較用サンプルを作製した。 In Comparative Example 5, GT-7II was applied to the entire edge surface under the same conditions and steps as in Example 7. After that, without coating the paint diluted with thinner on top, natural drying for 1 hour and baking at 80° C. for 2 hours were performed to prepare a sample for comparison.

評価結果は表3のようになった。 The evaluation results are shown in Table 3.

(比較例6)
比較例6は、実施例7と異なりシンナー希釈塗料でなくGT-7II原液を上塗りした遮光膜を形成した。
(Comparative Example 6)
In Comparative Example 6, unlike Example 7, a light-shielding film was formed by top-coating GT-7II undiluted solution instead of thinner-diluted paint.

比較例6では、実施例7と同一の条件及び工程でコバ面全面にGT-7IIを塗布した。その後、図10に示すように、基材21の光軸が鉛直となるように位置を調整した。基材21を回転させながら第2のディスペンサー12を用いて、光学素子の中心軸に対し垂直な面cに、外周部よりおおよそ2mmの幅で、先に塗布した同じ遮光材料GT-7IIを重ねて塗布した。1時間自然乾燥させた後、80℃,2時間の焼成を行った。 In Comparative Example 6, GT-7II was applied to the entire edge surface under the same conditions and steps as in Example 7. After that, as shown in FIG. 10, the position was adjusted so that the optical axis of the substrate 21 was vertical. Using the second dispenser 12 while rotating the base material 21, the same light-shielding material GT-7II that was previously applied was overlaid on the surface c perpendicular to the central axis of the optical element with a width of about 2 mm from the outer periphery. was applied. After air-drying for 1 hour, baking was performed at 80° C. for 2 hours.

評価結果は表3のようになった。 The evaluation results are shown in Table 3.

Figure 0007225321000003
Figure 0007225321000003

(実施例8)
実施例8は、図12に示すメニスカス形状の基材31を用いた。基材31の光学有効面R1の曲率半径は70.0mmであり、光学有効面R2の曲率半径は110mmである。光学有効面R1の最大外周はφ50.0mm、光学有効面R2の最大外周はφ80mmである。また、コバ面41の幅は15mmであり、このうち外周部より5mm程度が、鏡筒中における光学素子の取り付け保持部で鏡筒と接触することとなる。
(Example 8)
In Example 8, a meniscus-shaped substrate 31 shown in FIG. 12 was used. The radius of curvature of the effective optical surface R1 of the substrate 31 is 70.0 mm, and the radius of curvature of the effective optical surface R2 is 110 mm. The maximum perimeter of the effective optical surface R1 is φ50.0 mm, and the maximum perimeter of the effective optical surface R2 is φ80 mm. The edge surface 41 has a width of 15 mm, and about 5 mm from the outer peripheral portion of this width comes into contact with the lens barrel at the attachment holding portion of the optical element in the lens barrel.

実施例8では、基材31の光学有効面R2側を塗布装置の吸着回転シャフトに吸着させ回転させながらコバ面41を上面に向け、遮光塗料GT-20(キヤノン化成製)をロールコート法で塗布した。この時、基材31は20rpmで回転させながら塗布を行った。次に、塗料の流動性が維持されている間に、その姿勢を保持したまま光学素子を200rpmで20秒回転させた。次にこれを1時間自然乾燥させた後、80℃,2時間焼成を行った。 In Example 8, the optically effective surface R2 side of the base material 31 is attracted to the suction rotary shaft of the coating device and rotated while the edge surface 41 faces upward, and the light shielding paint GT-20 (manufactured by Canon Kasei Co., Ltd.) is applied by a roll coating method. applied. At this time, the substrate 31 was applied while being rotated at 20 rpm. Next, while the fluidity of the paint was maintained, the optical element was rotated at 200 rpm for 20 seconds while maintaining that posture. Next, after air-drying this for 1 hour, it was calcined at 80° C. for 2 hours.

評価結果は表4のようになった。 The evaluation results are shown in Table 4.

(比較例7)
比較例7は、実施例8と異なり、塗布後の回転を行わない光学素子を作製した。
(Comparative Example 7)
In Comparative Example 7, unlike Example 8, an optical element was produced without rotating after coating.

比較例7では、実施例8と同一の条件及び工程でコバ面全面にGT-20を塗布した。この後、光学素子を回転させることなく、1時間の自然乾燥と、80℃,2時間の焼成を行い比較用サンプルを作製した。 In Comparative Example 7, GT-20 was applied to the entire edge surface under the same conditions and steps as in Example 8. Thereafter, without rotating the optical element, natural drying for 1 hour and baking at 80° C. for 2 hours were performed to prepare a sample for comparison.

評価結果は表4のようになった。 The evaluation results are shown in Table 4.

(比較例8)
比較例8は、実施例8と異なり、塗布後の回転数を変えて遮光膜の硬度差が少ない光学素子も作製した。
(Comparative Example 8)
In Comparative Example 8, unlike Example 8, an optical element having a light-shielding film with a small difference in hardness was produced by changing the number of revolutions after coating.

比較例8では、実施例8と同一の条件及び工程でコバ面全面にGT-20を塗布した。この後、塗料の流動性が維持されている間に、光学素子を塗布した際の姿勢のまま、80rpmの回転数で20秒回転させた。次に、1時間の自然乾燥と、80℃,2時間の焼成を行って、比較用サンプルを作製した。 In Comparative Example 8, GT-20 was applied to the entire edge surface under the same conditions and steps as in Example 8. After that, while the fluidity of the coating material was maintained, the optical element was rotated at a rotation speed of 80 rpm for 20 seconds in the same posture as when the optical element was coated. Next, natural drying for 1 hour and baking at 80° C. for 2 hours were performed to prepare a sample for comparison.

評価結果は表4のようになった。 The evaluation results are shown in Table 4.

(比較例9)
比較例9は、実施例8と異なり塗布後の回転数を変えた光学素子を作製した。
(Comparative Example 9)
In Comparative Example 9, unlike Example 8, an optical element was produced by changing the number of revolutions after coating.

比較例9では、実施例8と同一の条件及び工程でコバ面全面にGT-20を塗布した。この後、塗料の流動性が維持されている間に、光学素子を塗布した際の姿勢のまま、400rpmの回転数で20秒回転させた。次に、1時間の自然乾燥と、80℃,2時間の焼成を行って、比較用サンプルを作製した。 In Comparative Example 9, GT-20 was applied to the entire edge surface under the same conditions and steps as in Example 8. After that, while the fluidity of the paint was maintained, the optical element was rotated at a rotation speed of 400 rpm for 20 seconds while maintaining the posture in which the optical element was applied. Next, natural drying for 1 hour and baking at 80° C. for 2 hours were performed to prepare a sample for comparison.

評価結果は表4のようになった。 The evaluation results are shown in Table 4.

Figure 0007225321000004
Figure 0007225321000004

(実施例9)
実施例9は、実施例8で用いた光学素子と同一形状の光学素子に、ディスペンサーで遮光膜の塗布を行った。塗料はGT-20(キヤノン化成)を用い、実施例4と同様に、塗布装置のR2面を吸着回転シャフトに吸着させ回転させながら、コバ面41を上向きにした状態で塗布を行った。ディスペンサーからはおおよそ10nlの塗料を吐出させながら、コバ面に塗布された塗料が重なるよう光学素子をおおよそ60rpmで回転させながら塗布した。また、塗布は外周部から内周部にかけて行い、塗料の吐出周波数を調整することで塗布された塗料の重なり量が概ね一定になるようにした。
(Example 9)
In Example 9, an optical element having the same shape as the optical element used in Example 8 was coated with a light-shielding film using a dispenser. GT-20 (Canon Kasei Co., Ltd.) was used as the paint, and as in Example 4, the coating was performed with the edge surface 41 facing upward while the R2 surface of the coating device was attracted to the suction rotation shaft and rotated. While discharging about 10 nl of paint from the dispenser, the coating was applied while rotating the optical element at about 60 rpm so that the paint applied to the edge surface overlapped. Further, the coating was applied from the outer peripheral portion to the inner peripheral portion, and by adjusting the ejection frequency of the coating material, the overlapping amount of the applied coating material was kept substantially constant.

次に、塗料が十分に乾燥し、流動性が失われる前に、光学素子の姿勢はそのままで180rpmで30秒回転させた。この後、1時間自然乾燥させた後、2時間80℃の焼成を行った。実施例9で作製した光学素子の模式図を図13に示す。 The optical element was then rotated at 180 rpm for 30 seconds while maintaining its position before the paint was sufficiently dried and lost its fluidity. Then, after air-drying for 1 hour, baking was performed at 80° C. for 2 hours. A schematic diagram of the optical element produced in Example 9 is shown in FIG.

評価結果は表5のようになった。 The evaluation results are shown in Table 5.

(比較例10)
比較例10は、実施例9と異なり塗布後の回転を行わず光学素子を作製した。
(Comparative Example 10)
In Comparative Example 10, unlike Example 9, an optical element was produced without rotating after coating.

比較例10では、実施例9と同一の条件及び工程でコバ面全面にGT-20を塗布した。この後、光学素子を回転させることなく、1時間の自然乾燥と、80℃,2時間の焼成を行い比較用サンプルを作製した。 In Comparative Example 10, GT-20 was applied to the entire edge surface under the same conditions and steps as in Example 9. Thereafter, without rotating the optical element, natural drying for 1 hour and baking at 80° C. for 2 hours were performed to prepare a sample for comparison.

評価結果は表5のようになった。 The evaluation results are shown in Table 5.

(比較例11)
比較例11は、実施例9と異なり、塗布後の回転数を変えた光学素子も作製した。
(Comparative Example 11)
In Comparative Example 11, unlike Example 9, an optical element was also produced in which the number of revolutions after coating was changed.

比較例11では、実施例9と同一の条件及び工程でコバ面全面にGT-20を塗布した。この後、塗料の流動性が維持されている間に、光学素子を塗布した際の姿勢のまま、60rpmの回転数で30秒回転させた。次に、1時間の自然乾燥と、80℃,2時間の焼成を行って、比較用サンプルを作製した。 In Comparative Example 11, GT-20 was applied to the entire edge surface under the same conditions and steps as in Example 9. After that, while the fluidity of the paint was maintained, the optical element was rotated at a rotation speed of 60 rpm for 30 seconds while maintaining the posture when the optical element was applied. Next, natural drying for 1 hour and baking at 80° C. for 2 hours were performed to prepare a sample for comparison.

評価結果は表5のようになった。 The evaluation results are shown in Table 5.

Figure 0007225321000005
Figure 0007225321000005

(実施例及び比較例の評価)
実施例1~9では、表1~5に示すように、基材21の中心軸Lに対し垂直なコバ面cに形成された遮光膜の空気側かつ外周側の遮光膜h3の硬度が4.5GPa以上9.5GPa以下の範囲のときに偏心量は小さかった。また、コバ面cに形成された鏡筒と接している部分h3と接していない部分h1硬度差が0.8GPa以上にすることが好ましいことが解った。このように、光軸に対して垂直方向で、表面に硬度分布を有する遮光膜を用いることで、光軸に対する偏心量を小さくできた。比較例1~11では、鏡筒と接している遮光膜の部分のビッカース硬度が、9.5GPaを超える場合や、遮光膜の硬度分布が無い場合には、偏心量が大きくなった。
(Evaluation of Examples and Comparative Examples)
In Examples 1 to 9, as shown in Tables 1 to 5, the hardness of the light shielding film h3 on the air side and outer peripheral side of the light shielding film formed on the edge surface c perpendicular to the central axis L of the base material 21 is 4. The amount of eccentricity was small in the range of 0.5 GPa to 9.5 GPa. Further, it has been found that the difference in hardness between the portion h3 formed on the edge surface c that is in contact with the lens barrel and the portion h1 that is not in contact with the lens barrel is preferably 0.8 GPa or more. Thus, by using a light-shielding film having a hardness distribution on the surface in the direction perpendicular to the optical axis, the amount of eccentricity with respect to the optical axis can be reduced. In Comparative Examples 1 to 11, when the Vickers hardness of the portion of the light shielding film in contact with the lens barrel exceeded 9.5 GPa, or when the hardness distribution of the light shielding film was absent, the amount of eccentricity increased.

以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。例えば、本実施形態の光学素子はレンズには限定されず、光を透過する部材であれば、波長板、ビームスプリッタなどでも良い。また、光学機器はカメラに限定されず、顕微鏡、プロジェクタ等の光学機器に広く適用することができる。 Although preferred embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and various modifications and changes are possible within the scope of the gist. For example, the optical element of this embodiment is not limited to a lens, and may be a wavelength plate, a beam splitter, or the like as long as it is a member that transmits light. Further, the optical equipment is not limited to cameras, and can be widely applied to optical equipment such as microscopes and projectors.

光学素子は、カメラ、顕微鏡、プロジェクタ等の光学機器に適用することができる。 The optical element can be applied to optical equipment such as cameras, microscopes, and projectors.

1 光学機器
2 鏡筒
3 光学素子
4 遮光膜
5 基材
21 基材
31 メニスカス形状の基材
41 メニスカス形状の基材のコバ面
a 光軸に垂直な第1のコバ面
b 光軸に平行な内周側のコバ面
c 光軸に垂直な第2のコバ面
d 光軸に平行な外周側のコバ面
f1 光軸に垂直に第2のコバ面内周側に形成された遮光膜
f2 光軸に垂直に第2のコバ面外周側表面に形成された遮光膜
h1 光軸に垂直に第2のコバ面内周側に形成された遮光膜
L 光軸
REFERENCE SIGNS LIST 1 optical device 2 lens barrel 3 optical element 4 light shielding film 5 substrate 21 substrate 31 meniscus substrate 41 edge surface of meniscus substrate a first edge surface perpendicular to the optical axis b parallel to the optical axis Inner peripheral edge surface c Second edge surface perpendicular to the optical axis d Outer peripheral edge surface parallel to the optical axis f1 Light-shielding film formed on the inner peripheral side of the second edge surface perpendicular to the optical axis f2 Light Light shielding film h1 formed on the outer peripheral surface of the second edge surface perpendicular to the axis Light shielding film formed on the inner peripheral side of the second edge surface perpendicular to the optical axis L Optical axis

Claims (15)

光学素子と、
前記光学素子を内部に保持する鏡筒と、を有する光学機器であって、
前記光学素子は、
光学有効面および非光学有効面を有する基材と、
前記基材の前記非光学有効面の少なくとも一部の上に設けられた遮光膜と、
を有し、
前記遮光膜は、第一の部分と第二の部分とを有し、前記第一の部分は、前記第二の部分より硬度が低く、
前記光学素子は、前記第一の部分において前記鏡筒に接しており、
前記第二の部分の少なくとも一部が、前記基材の前記非光学有効面と前記第一の部分との間に位置する、
ことを特徴とする光学機器。
an optical element;
and a lens barrel that holds the optical element therein,
The optical element is
a substrate having an optically effective surface and a non-optically effective surface;
a light shielding film provided on at least part of the non-optically effective surface of the base;
has
the light shielding film has a first portion and a second portion , the first portion having a lower hardness than the second portion;
The optical element is in contact with the lens barrel at the first portion ,
at least a portion of the second portion is located between the non-optically effective surface of the substrate and the first portion;
An optical instrument characterized by:
光学素子と、
前記光学素子を内部に保持する鏡筒と、を有する光学機器であって、
前記光学素子は、
光学有効面および非光学有効面を有する基材と、
前記基材の前記非光学有効面の少なくとも一部の上に設けられた遮光膜と、
を有し、
前記遮光膜は、第一の部分と、第二の部分と、を有し、前記第一の部分は、前記第二の部分より硬度が低く、
前記光学素子は、前記第一の部分において前記鏡筒に接しており、
前記第一の部分および前記第二の部分は、前記非光学有効面のうち前記光学素子の光軸垂直の上に、前記光軸に垂直な方向において互いに隣接して設けられており
前記第二の部分は、前記第一の部分よりも、前記光軸近い部分であることを特徴とする光学機器。
an optical element;
and a lens barrel that holds the optical element therein,
The optical element is
a substrate having an optically effective surface and a non-optically effective surface;
a light shielding film provided on at least part of the non-optically effective surface of the base;
has
the light shielding film has a first portion and a second portion, the first portion having a lower hardness than the second portion;
The optical element is in contact with the lens barrel at the first portion,
The first portion and the second portion are provided adjacent to each other in a direction perpendicular to the optical axis on a surface perpendicular to the optical axis of the optical element among the non-optically effective surfaces. ,
An optical instrument, wherein the second portion is closer to the optical axis than the first portion .
光学素子と、
前記光学素子を内部に保持する鏡筒と、を有する光学機器であって、
前記光学素子は、
光学有効面および非光学有効面を有する基材と、
前記基材の前記非光学有効面の少なくとも一部の上に設けられた遮光膜と、
を有し、
前記遮光膜は、第一の部分と、第二の部分と、を有し、前記第一の部分は、前記第二の部分より硬度が低く、
前記光学素子は、前記第一の部分において前記鏡筒に接しており、
前記第一の部分のビッカース硬度は、4.5GPa以上9.5GPa以下であることを特徴とする光学機器。
an optical element;
and a lens barrel that holds the optical element therein,
The optical element is
a substrate having an optically effective surface and a non-optically effective surface;
a light shielding film provided on at least part of the non-optically effective surface of the base;
has
the light shielding film has a first portion and a second portion, the first portion having a lower hardness than the second portion;
The optical element is in contact with the lens barrel at the first portion,
The optical device, wherein the first portion has a Vickers hardness of 4.5 GPa or more and 9.5 GPa or less.
光学素子と、
前記光学素子を内部に保持する鏡筒と、を有する光学機器であって、
前記光学素子は、
光学有効面および非光学有効面を有する基材と、
前記基材の前記非光学有効面の少なくとも一部の上に設けられた遮光膜と、
を有し、
前記遮光膜は、第一の部分と、第二の部分と、を有し、前記第一の部分は、前記第二の部分より硬度が低く、
前記光学素子は、前記第一の部分において前記鏡筒に接しており、
前記第一の部分のビッカース硬度は、前記第二の部分よりビッカース硬度が0.8GPa以上低いことを特徴とする請求項1乃至3のいずれか一項に記載の光学機器。
an optical element;
and a lens barrel that holds the optical element therein,
The optical element is
a substrate having an optically effective surface and a non-optically effective surface;
a light shielding film provided on at least part of the non-optically effective surface of the base;
has
the light shielding film has a first portion and a second portion, the first portion having a lower hardness than the second portion;
The optical element is in contact with the lens barrel at the first portion,
4. The optical instrument according to claim 1, wherein the first portion has a Vickers hardness lower than that of the second portion by 0.8 GPa or more.
前記第一の部分のビッカース硬度は、4.5GPa以上9.5GPa以下であり、前記第一の部分のビッカース硬度は、前記第二の部分よりビッカース硬度が0.8GPa以上低いことを特徴とする請求項1または2に記載の光学機器 The Vickers hardness of the first portion is 4.5 GPa or more and 9.5 GPa or less, and the Vickers hardness of the first portion is lower than that of the second portion by 0.8 GPa or more. 3. The optical instrument according to claim 1 or 2 . 前記光学素子の光軸に垂直な方向において、前記第一の部分と前記光軸との間には、前記非光学有効面の一部が位置することを特徴とする請求項1乃至5のいずれか一項に記載の光学機器 6. A portion of the non-optically effective surface is positioned between the first portion and the optical axis in a direction perpendicular to the optical axis of the optical element. or the optical instrument according to item 1 . 前記遮光膜の平均膜厚が3μm以上50μm以下であることを特徴とする請求項1乃至のいずれか一項に記載の光学機器。 7. The optical device according to claim 1 , wherein the light shielding film has an average film thickness of 3 μm or more and 50 μm or less. 前記基材は、ガラス又は樹脂を有することを特徴とする請求項1乃至のいずれか一項に記載の光学機器。 8. The optical device according to any one of claims 1 to 7 , wherein the substrate comprises glass or resin. 前記鏡筒は、金属又は樹脂を有することを特徴とする請求項1乃至のいずれか一項に記載の光学機器。 9. The optical apparatus according to any one of claims 1 to 8 , wherein the lens barrel comprises metal or resin. 光学有効面と非光学有効面とを有する基材と
前記基材の前記非光学有効面の少なくとも一部の上設けられた遮光膜と、を有する光学素子であって、
前記遮光膜は、前記光学素子を内部に保持する鏡筒に接するように配置された第一の部分と第二の部分とを有し、前記第一の部分は、前記第二の部分より硬度が低く、
前記第二の部分の少なくとも一部が、前記基材の前記非光学有効面と前記第一の部分との間にすることを特徴とする光学素子。
a substrate having an optically effective surface and a non-optically effective surface ;
and a light shielding film provided on at least part of the non-optically effective surface of the base material,
The light shielding film has a first portion arranged to be in contact with the lens barrel holding the optical element inside , and a second portion , and the first portion is the second portion. lower hardness,
An optical element , wherein at least part of the second portion is between the non-optically effective surface of the substrate and the first portion.
光学有効面と非光学有効面とを有する基材と、
前記基材の前記非光学有効面の少なくとも一部の上に設けられた遮光膜と、を有する光学素子であって、
前記遮光膜は、前記光学素子を内部に保持する鏡筒に接するように配置された第一の部分と、第二の部分と、を有し、前記第一の部分は、前記第二の部分より硬度が低く、
前記第一の部分および前記第二の部分は、前記非光学有効面のうち前記光学素子の光軸垂直の上に、前記光軸に垂直な方向において互いに隣接して設けられており
前記第二の部分は、前記第一の部分よりも、前記光軸近い部分であることを特徴とする光学素子。
a substrate having an optically effective surface and a non-optically effective surface;
and a light shielding film provided on at least part of the non-optically effective surface of the base material,
The light shielding film has a first portion arranged to be in contact with the lens barrel holding the optical element inside, and a second portion, and the first portion is the second portion. lower hardness,
The first portion and the second portion are provided adjacent to each other in a direction perpendicular to the optical axis on a surface perpendicular to the optical axis of the optical element among the non-optically effective surfaces. ,
The optical element, wherein the second portion is closer to the optical axis than the first portion .
光学有効面と非光学有効面とを有する基材と、
前記基材の前記非光学有効面の少なくとも一部の上に設けられた遮光膜と、を有する光学素子であって、
前記遮光膜は、前記光学素子を内部に保持する鏡筒に接するように配置された第一の部分と、第二の部分と、を有し、前記第一の部分は、前記第二の部分より硬度が低く、
前記第一の部分のビッカース硬度が、4.5GPa以上9.5GPa以下であることを特徴とする光学素子。
a substrate having an optically effective surface and a non-optically effective surface;
and a light shielding film provided on at least part of the non-optically effective surface of the base material,
The light shielding film has a first portion arranged to be in contact with the lens barrel holding the optical element inside, and a second portion, and the first portion is the second portion. lower hardness,
The optical element, wherein the first portion has a Vickers hardness of 4.5 GPa or more and 9.5 GPa or less.
光学有効面と非光学有効面とを有する基材と、
前記基材の前記非光学有効面の少なくとも一部の上に設けられた遮光膜と、を有する光学素子であって、
前記遮光膜は、前記光学素子を内部に保持する鏡筒に接するように配置された第一の部分と、第二の部分と、を有し、前記第一の部分は、前記第二の部分より硬度が低く、
前記第一の部分のビッカース硬度は、前記第二の部分よりビッカース硬度が0.8GPa以上低いことを特徴とする光学素子。
a substrate having an optically effective surface and a non-optically effective surface;
and a light shielding film provided on at least part of the non-optically effective surface of the base material,
The light shielding film has a first portion arranged to be in contact with the lens barrel holding the optical element inside, and a second portion, and the first portion is the second portion. lower hardness,
The optical element, wherein the Vickers hardness of the first portion is lower than that of the second portion by 0.8 GPa or more.
前記遮光膜の平均膜厚が3μm以上50μm以下であることを特徴とする請求項10乃至13のいずれか一項に記載の光学素子。 14. The optical element according to any one of claims 10 to 13 , wherein the light shielding film has an average film thickness of 3 µm or more and 50 µm or less. 前記基材は、ガラス又は樹脂を有することを特徴とする請求項10乃至14のいずれか一項に記載の光学素子。 15. The optical element according to any one of claims 10 to 14 , wherein the substrate comprises glass or resin.
JP2021109338A 2017-08-03 2021-06-30 Optical equipment and optical elements Active JP7225321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021109338A JP7225321B2 (en) 2017-08-03 2021-06-30 Optical equipment and optical elements

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017150876A JP2019028394A (en) 2017-08-03 2017-08-03 Optical equipment and optical element
JP2021109338A JP7225321B2 (en) 2017-08-03 2021-06-30 Optical equipment and optical elements

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017150876A Division JP2019028394A (en) 2017-08-03 2017-08-03 Optical equipment and optical element

Publications (2)

Publication Number Publication Date
JP2021165854A JP2021165854A (en) 2021-10-14
JP7225321B2 true JP7225321B2 (en) 2023-02-20

Family

ID=65476262

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017150876A Ceased JP2019028394A (en) 2017-08-03 2017-08-03 Optical equipment and optical element
JP2021109338A Active JP7225321B2 (en) 2017-08-03 2021-06-30 Optical equipment and optical elements

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017150876A Ceased JP2019028394A (en) 2017-08-03 2017-08-03 Optical equipment and optical element

Country Status (1)

Country Link
JP (2) JP2019028394A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013125269A (en) 2011-12-15 2013-06-24 Lg Display Co Ltd Polarized glasses type stereoscopic image display device
JP2015114601A (en) 2013-12-13 2015-06-22 キヤノン株式会社 Method for manufacturing optical lens and optical lens

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11344657A (en) * 1998-06-01 1999-12-14 Sony Corp Assembly of lenses and its assembling method
JP2013024988A (en) * 2011-07-19 2013-02-04 Canon Inc Light shielding film for optical element and method for manufacturing the same, and optical element
WO2013027366A1 (en) * 2011-08-25 2013-02-28 パナソニック株式会社 Plastic lens
JP2013097288A (en) * 2011-11-04 2013-05-20 Canon Inc Optical element, optical system using the same and optical device
JP2013114103A (en) * 2011-11-30 2013-06-10 Canon Inc Optical system and optical equipment
JP2013114235A (en) * 2011-12-01 2013-06-10 Canon Inc Optical element, method for manufacturing optical element, optical system, and optical apparatus
JP2016106239A (en) * 2013-03-27 2016-06-16 富士フイルム株式会社 Lens unit, imaging module, and electronic apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013125269A (en) 2011-12-15 2013-06-24 Lg Display Co Ltd Polarized glasses type stereoscopic image display device
JP2015114601A (en) 2013-12-13 2015-06-22 キヤノン株式会社 Method for manufacturing optical lens and optical lens

Also Published As

Publication number Publication date
JP2019028394A (en) 2019-02-21
JP2021165854A (en) 2021-10-14

Similar Documents

Publication Publication Date Title
US6778240B2 (en) Anti-glare and anti-reflection film, polarizing plate, and image display device
KR102246589B1 (en) Optical article with gradient photochromism
US11553120B2 (en) Optical element, optical system, and image pickup apparatus
US20080217797A1 (en) Simple micro concave mirror
JP6971587B2 (en) Optical elements and their manufacturing methods, optical equipment
JP6923998B2 (en) Optical member and its manufacturing method
JP2014092632A (en) Inner surface antireflection coating material and method for manufacturing optical element
JP7225321B2 (en) Optical equipment and optical elements
JP6878141B2 (en) Optical elements and optics
JP2018159892A (en) Lens with water-repellent antireflection film and method for producing the same
US7760447B2 (en) Optical member and method for manufacturing the same
JP7195823B2 (en) OPTICAL ELEMENT, OPTICAL ELEMENT MANUFACTURING METHOD, OPTICAL DEVICE
CN106574987A (en) Optical lens comprising a protective removable film
US20190377104A1 (en) Lens and lens manufacturing method
JP6742716B2 (en) Optical element manufacturing method and optical device manufacturing method
JP5311944B2 (en) Optical element and optical system having the same
JP2015169874A (en) Optical element, optical system, and optical element manufacturing method
US11187829B2 (en) Optical element, method for manufacturing the same, and optical apparatus
JP2007248195A (en) Wettability evaluation method of spectacle lens
JP2015114600A (en) Method for manufacturing optical lens, optical lens and light-shielding film
JP2021096392A (en) Optical element with antireflection film
US20080085414A1 (en) Optical Substrate and Method of Manufacture
JP2006150187A (en) Thin film using fluorocarbon

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210727

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230208

R151 Written notification of patent or utility model registration

Ref document number: 7225321

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151