JP7224182B2 - Fluid dynamic bearings and spindle motors - Google Patents

Fluid dynamic bearings and spindle motors Download PDF

Info

Publication number
JP7224182B2
JP7224182B2 JP2018248589A JP2018248589A JP7224182B2 JP 7224182 B2 JP7224182 B2 JP 7224182B2 JP 2018248589 A JP2018248589 A JP 2018248589A JP 2018248589 A JP2018248589 A JP 2018248589A JP 7224182 B2 JP7224182 B2 JP 7224182B2
Authority
JP
Japan
Prior art keywords
bearing member
conical
conical bearing
fluid dynamic
dynamic pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018248589A
Other languages
Japanese (ja)
Other versions
JP2020110018A (en
Inventor
秀明 昭和
大吾 中嶌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MinebeaMitsumi Inc
Original Assignee
MinebeaMitsumi Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MinebeaMitsumi Inc filed Critical MinebeaMitsumi Inc
Priority to JP2018248589A priority Critical patent/JP7224182B2/en
Publication of JP2020110018A publication Critical patent/JP2020110018A/en
Application granted granted Critical
Publication of JP7224182B2 publication Critical patent/JP7224182B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、流体動圧軸受およびスピンドルモータに関する。 The present invention relates to fluid dynamic bearings and spindle motors.

ハードディスク駆動装置には、ハードディスクを回転させるためにスピンドルモータが用いられている。スピンドルモータは、例えば、ベースプレートと、ベースプレートに支持されたシャフト(軸部材)と、ベースプレートに固定されたステータと、シャフトに回転可能に支持されたロータとを有している。このようなスピンドルモータにおける流体動圧軸受において、例えば、シャフトには、コーン(円錐軸受部材)が圧入にて固定されているものがある(例えば特許文献1参照。)。 A hard disk drive uses a spindle motor to rotate the hard disk. A spindle motor has, for example, a base plate, a shaft (shaft member) supported by the base plate, a stator fixed to the base plate, and a rotor rotatably supported by the shaft. Among fluid dynamic pressure bearings in such a spindle motor, for example, there is a shaft in which a cone (conical bearing member) is press-fitted and fixed (see, for example, Patent Document 1).

特開2006-38073号公報JP-A-2006-38073

空気に比べて密度が低いヘリウム等のガスが筐体の内部空間に封入されている。ハードディスク駆動装置では、ハードディスクの積層枚数を増加させて記憶容量の増加を図っている。これに伴い、ハードディスク駆動装置では、シャフト(軸部材)とコーン(円錐軸受部材)との間の締結強度を増加して外部からの衝撃に対する耐久力を向上することが求められている。しかしながら、シャフトとコーンとの間を圧入のみで締結強度を増加した場合には、コーンの圧入時におけるコーンの動圧面部(円錐外面)の変形に伴い、駆動時にハードディスクが振動してしまうおそれがある。 A gas such as helium, which has a lower density than air, is enclosed in the internal space of the housing. In a hard disk drive, the number of stacked hard disks is increased to increase the storage capacity. Along with this, in hard disk drives, it is required to increase the fastening strength between the shaft (shaft member) and the cone (conical bearing member) to improve durability against external impact. However, if the joint strength is increased only by press-fitting the shaft and cone, there is a risk that the hard disk will vibrate during driving due to the deformation of the cone's dynamic pressure surface (the outer surface of the cone) when the cone is press-fitted. be.

本発明の目的は、軸部材と円錐軸受部材との間の締結強度を確保しつつ、円錐軸受部材の圧入時における円錐軸受部材の円錐外面の変形を抑制することができる技術を提供することにある。 An object of the present invention is to provide a technique capable of suppressing deformation of the conical outer surface of the conical bearing member when the conical bearing member is press-fitted while securing the fastening strength between the shaft member and the conical bearing member. be.

本発明の一態様に係る流体動圧軸受は、軸部材と、前記軸部材の端部に固定される第1円錐軸受部材および第2円錐軸受部材と、前記第1円錐軸受部材および第2円錐軸受部材を介して前記軸部材に回転自在な状態で支持されたロータ部材と、を備え、前記第2円錐軸受部材は、前記第1円錐軸受部材に当接し、前記第2円錐軸受部材の円錐面と前記ロータ部材との間で潤滑油を保持するテーパシール部が形成され、前記第1円錐軸受部材の円錐軸受面と前記ロータ部材との間で前記潤滑油による動圧が発生する動圧軸受部が設けられている。 A fluid dynamic bearing according to an aspect of the present invention includes a shaft member, a first conical bearing member and a second conical bearing member fixed to an end portion of the shaft member, and the first conical bearing member and the second conical bearing member. a rotor member rotatably supported by the shaft member via a bearing member, wherein the second conical bearing member contacts the first conical bearing member and the conical portion of the second conical bearing member A tapered seal portion that retains lubricating oil is formed between the surface and the rotor member, and dynamic pressure is generated by the lubricating oil between the conical bearing surface of the first conical bearing member and the rotor member. A bearing is provided.

本発明に係る流体動圧軸受によれば、軸部材と円錐軸受部材との間の締結強度を確保しつつ、円錐軸受部材の圧入時における円錐軸受部材の円錐外面の変形を抑制することができる。 According to the fluid dynamic bearing according to the present invention, it is possible to suppress deformation of the conical outer surface of the conical bearing member when the conical bearing member is press-fitted while securing the fastening strength between the shaft member and the conical bearing member. .

本発明の第1の実施の形態に係るハードディスク駆動装置の概略構成を示すための斜視図である。1 is a perspective view showing a schematic configuration of a hard disk drive according to a first embodiment of the invention; FIG. 本発明の第1の実施の形態に係るハードディスク駆動装置のスピンドルモータにおける流体動圧軸受の構成を概略的に示す断面図である。3 is a cross-sectional view schematically showing the configuration of a fluid dynamic pressure bearing in the spindle motor of the hard disk drive according to the first embodiment of the present invention; FIG. 図2に示す流体動圧軸受の上側円錐軸受部材付近の部分の構成を概略的に示す部分拡大断面図である。FIG. 3 is a partially enlarged cross-sectional view schematically showing the configuration of a portion near an upper conical bearing member of the fluid dynamic pressure bearing shown in FIG. 2; 図3に示す上側円錐軸受部材の上側下部円錐軸受部材の構成を概略的に示す平面図である。FIG. 4 is a plan view schematically showing the configuration of an upper lower conical bearing member of the upper conical bearing member shown in FIG. 3; 図4に示す上側下部円錐軸受部材の構成を概略的に示すA-A断面図である。FIG. 5 is a cross-sectional view taken along line AA schematically showing the configuration of the upper and lower conical bearing member shown in FIG. 4; 図4に示す上側下部円錐軸受部材の構成を概略的に示すB-B断面図である。FIG. 5 is a BB cross-sectional view schematically showing the configuration of the upper and lower conical bearing member shown in FIG. 4; 図3に示す上側円錐軸受部材の上側上部円錐軸受部材の構成を概略的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing the configuration of an upper upper conical bearing member of the upper conical bearing member shown in FIG. 3; 図2に示す流体動圧軸受の下側円錐軸受部材付近の部分の構成を概略的に示す部分拡大断面図である。FIG. 3 is a partially enlarged cross-sectional view schematically showing the configuration of a portion near a lower conical bearing member of the fluid dynamic pressure bearing shown in FIG. 2; 本発明の第2の実施の形態に係る流体動圧軸受の上側円錐軸受部材付近の部分の構成を概略的に示す部分拡大断面図である。FIG. 6 is a partially enlarged cross-sectional view schematically showing the configuration of the portion near the upper conical bearing member of the fluid dynamic pressure bearing according to the second embodiment of the present invention; 図8に示す上側円錐軸受部材の上側上部円錐軸受部材の構成を概略的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing the configuration of an upper upper conical bearing member of the upper conical bearing member shown in FIG. 8; 本発明の第2の実施の形態に係る流体動圧軸受の下側円錐軸受部材付近の部分の構成を概略的に示す部分拡大断面図である。FIG. 6 is a partially enlarged cross-sectional view schematically showing the configuration of the portion near the lower conical bearing member of the fluid dynamic pressure bearing according to the second embodiment of the present invention; 本発明の第3の実施の形態に係る流体動圧軸受の上側円錐軸受部材付近の部分の構成を概略的に示す部分拡大断面図である。FIG. 11 is a partially enlarged cross-sectional view schematically showing the configuration of a portion near an upper conical bearing member of a fluid dynamic pressure bearing according to a third embodiment of the present invention; 図12に示す上側円錐軸受部材の油溜まり部付近の部分の構成を概略的に示す部分拡大断面図である。FIG. 13 is a partially enlarged cross-sectional view schematically showing a configuration of a portion near an oil reservoir portion of the upper conical bearing member shown in FIG. 12; 本発明の第4の実施の形態に係る流体動圧軸受の上側円錐軸受部材付近の部分の構成を概略的に示す部分拡大断面図である。FIG. 11 is a partial enlarged cross-sectional view schematically showing the configuration of a portion near an upper conical bearing member of a fluid dynamic pressure bearing according to a fourth embodiment of the present invention; 本発明の第5の実施の形態に係る流体動圧軸受の上側円錐軸受部材付近の部分の構成を概略的に示す部分拡大断面図である。FIG. 11 is a partially enlarged cross-sectional view schematically showing the configuration of a portion near an upper conical bearing member of a fluid dynamic pressure bearing according to a fifth embodiment of the present invention;

以下、本発明の実施の形態について図面を参照しながら説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の第1の実施の形態に係るスピンドルモータ1が適用されたハードディスク駆動装置200の概略構成を示すための斜視図である。ハードディスク駆動装置200において、スピンドルモータ1は、ハウジング201の底部201aに固定または形成されており、ハードディスク202を回転可能に支持している。カバー(図示せず)とハウジング201とにより、ハードディスク駆動装置200の筐体が形成される。カバー(図示せず)とハウジング201とにより形成される内部の空間Sには、空気より密度の低いガス(例えば、ヘリウム、窒素、もしくはヘリウムと窒素との混合ガス)が充填されている。 FIG. 1 is a perspective view showing a schematic configuration of a hard disk drive device 200 to which a spindle motor 1 according to the first embodiment of the invention is applied. In the hard disk drive device 200, the spindle motor 1 is fixed or formed on the bottom portion 201a of the housing 201 and supports the hard disk 202 rotatably. A cover (not shown) and housing 201 form a housing for hard disk drive 200 . An internal space S formed by a cover (not shown) and the housing 201 is filled with a gas having a density lower than that of air (for example, helium, nitrogen, or a mixed gas of helium and nitrogen).

ハードディスク駆動装置200は、軸受装置203により揺動可能に支持されているスイングアーム204の先端部に、ヘッド部205を有している。ヘッド部205は、磁気ヘッドが先端に設けられている。ハードディスク駆動装置200では、ヘッド部205が、回転しているハードディスク202上を移動する。これにより、ハードディスク202に情報を記録し、また、ハードディスク202に記録されている情報を読み出すことができる。 The hard disk drive device 200 has a head portion 205 at the tip of a swing arm 204 that is swingably supported by a bearing device 203 . The head portion 205 is provided with a magnetic head at its tip. In the hard disk drive 200, the head unit 205 moves over the rotating hard disk 202. FIG. Thus, information can be recorded on the hard disk 202 and information recorded on the hard disk 202 can be read.

図2は、図1に示すスピンドルモータ1における流体動圧軸受20の構成を概略的に示す断面図である。以下、説明の便宜上、図2におけるスピンドルモータ1の軸Y1の方向(以下、軸Y1方向ともいう)における一方側(矢印a方向)を上側とし、他方側(矢印b方向)を下側とする。また、図2におけるスピンドルモータ1の軸Y1に直交して延在する半径方向において軸Y1に近づいていく一方側(矢印c方向)を半径方向内側とし、軸Y1から離れていく他方側(矢印d方向)を半径方向外側とする。以下の説明において、各部材の位置関係や方向を用いて説明するときは、あくまで図面における位置関係や方向を示し、実際の機器に組み込まれたときの位置関係や方向を示すものではない。 FIG. 2 is a cross-sectional view schematically showing the configuration of the fluid dynamic pressure bearing 20 in the spindle motor 1 shown in FIG. Hereinafter, for convenience of explanation, one side (direction of arrow a) in the direction of axis Y1 of spindle motor 1 in FIG. . In FIG. 2, in the radial direction extending perpendicular to the axis Y1 of the spindle motor 1, the one side (the direction of arrow c) approaching the axis Y1 is defined as the radially inner side, and the other side (the direction of the arrow c) moving away from the axis Y1 is defined as the radially inner side. d direction) is defined as radially outward. In the following description, when the positional relationship and direction of each member are used, the positional relationship and direction in the drawings are shown, and the positional relationship and direction when incorporated into an actual device are not shown.

本発明の第1の実施の形態に係るスピンドルモータ1における流体動圧軸受20は、軸部材21と、軸部材21の端部に固定される第1円錐軸受部材としての上側下部円錐軸受部材40および第2円錐軸受部材としての上側上部円錐軸受部材50と、上側下部円錐軸受部材40および上側上部円錐軸受部材50を介して軸部材21に回転自在な状態で支持されたロータ部材31とを備えている。上側上部円錐軸受部材50は、上側下部円錐軸受部材40に当接し、上側上部円錐軸受部材50の円錐面50dとロータ部材31との間で潤滑油Gを保持するテーパシール部Tが形成され、上側下部円錐軸受部材40の円錐軸受面としての下側円錐外面40bとロータ部材31との間で潤滑油Gによる動圧が発生する動圧軸受部DBが設けられている。 The fluid dynamic pressure bearing 20 in the spindle motor 1 according to the first embodiment of the present invention includes a shaft member 21 and an upper and lower conical bearing member 40 as a first conical bearing member fixed to the end of the shaft member 21. and an upper upper conical bearing member 50 as a second conical bearing member, and a rotor member 31 rotatably supported by the shaft member 21 via the upper lower conical bearing member 40 and the upper upper conical bearing member ing. The upper upper conical bearing member 50 abuts on the upper lower conical bearing member 40, and a tapered seal portion T is formed between the conical surface 50d of the upper upper conical bearing member 50 and the rotor member 31 to hold the lubricating oil G, A dynamic pressure bearing portion DB is provided in which dynamic pressure is generated by the lubricating oil G between the lower conical outer surface 40 b as the conical bearing surface of the upper lower conical bearing member 40 and the rotor member 31 .

すなわち、流体動圧軸受20は、ベースプレート11に固定された軸部材21と、軸部材21が挿通された貫通孔31aを備えるロータ部材31とを備えている。貫通孔31aは、上側に向かって内径が拡大する円錐内面31duと、下側に向かって内径が拡大する円錐内面31dbとを有する。また、スピンドルモータ1は、円錐内面31dと対向する円錐外面としての下側円錐外面40b,上側円錐外面60uを有して軸部材21に固定された円錐軸受部材としての上側円錐軸受部材22,下側円錐軸受部材23とを備えている。 Specifically, the fluid dynamic pressure bearing 20 includes a shaft member 21 fixed to the base plate 11 and a rotor member 31 having a through hole 31a through which the shaft member 21 is inserted. The through hole 31a has a conical inner surface 31du whose inner diameter increases upward and a conical inner surface 31db whose inner diameter increases downward. The spindle motor 1 has a lower conical outer surface 40b as a conical outer surface facing the conical inner surface 31d, an upper conical outer surface 60u and an upper conical bearing member 22 as a conical bearing member fixed to the shaft member 21. and a side conical bearing member 23 .

また、スピンドルモータ1は、円錐内面31du、31dbに形成された動圧溝Dを備えている。なお、動圧溝Dは、円錐内面31duと下側円錐外面40bとの少なくともいずれかに形成され、また、円錐内面31dbと上側円錐外面60uとの少なくともいずれかに形成されてもよい。 The spindle motor 1 also includes dynamic pressure grooves D formed in the conical inner surfaces 31du and 31db. The dynamic pressure groove D is formed on at least one of the conical inner surface 31du and the lower conical outer surface 40b, and may be formed on at least one of the conical inner surface 31db and the upper conical outer surface 60u.

また、スピンドルモータ1は、円錐内面31duと下側円錐外面40bとの間の隙間および円錐内面31dbと上側円錐外面60uとの間の隙間に充填された潤滑油Gを備えている。上側円錐軸受部材22は、図3に示すように、円錐内面31dと対向して軸部材21に固定された第1円錐軸受部材としての上側下部円錐軸受部材40と、上側下部円錐軸受部材40よりも上側において、上側下部円錐軸受部材40に当接して軸部材21に固定された第2円錐軸受部材としての上側上部円錐軸受部材50とを有している。 The spindle motor 1 also includes a lubricating oil G filled in the gap between the conical inner surface 31du and the lower conical outer surface 40b and the gap between the conical inner surface 31db and the upper conical outer surface 60u. As shown in FIG. 3, the upper conical bearing member 22 consists of an upper lower conical bearing member 40 as a first conical bearing member fixed to the shaft member 21 facing the conical inner surface 31d, and an upper lower conical bearing member 40. Also on the upper side, it has an upper upper conical bearing member 50 as a second conical bearing member fixed to the shaft member 21 in contact with the upper lower conical bearing member 40 .

下側円錐軸受部材23は、図8に示すように、円錐内面31dと対向して軸部材21に固定された第1円錐軸受部材としての下側上部円錐軸受部材60と、下側上部円錐軸受部材60よりも下側において、下側上部円錐軸受部材60に当接して軸部材21に固定された第2円錐軸受部材としての下側下部円錐軸受部材70とを有している。以下、スピンドルモータ1の構成について具体的に説明する。 The lower conical bearing member 23 includes, as shown in FIG. A lower lower conical bearing member 70 as a second conical bearing member fixed to the shaft member 21 in contact with the lower upper conical bearing member 60 is provided below the member 60 . The configuration of the spindle motor 1 will be specifically described below.

スピンドルモータ1は、図2に示すように、ステータ10と、流体動圧軸受20と、ロータ30とを有している。ステータ10は、ベースプレート11と、ベースプレート11に固定されたステータコア12とを有している。ベースプレート11には、軸部材21の下部を挿通して固定するための貫通孔11aと、貫通孔11aと同心の円周壁部11bとが形成されている。また、円周壁部11bの外周面にはステータコア12が固定され、ステータコア12にはコイル13が巻回されている。 The spindle motor 1 has a stator 10, a fluid dynamic pressure bearing 20, and a rotor 30, as shown in FIG. The stator 10 has a base plate 11 and a stator core 12 fixed to the base plate 11 . The base plate 11 is formed with a through hole 11a through which the lower portion of the shaft member 21 is inserted and fixed, and a circumferential wall portion 11b concentric with the through hole 11a. A stator core 12 is fixed to the outer peripheral surface of the circumferential wall portion 11b, and a coil 13 is wound around the stator core 12. As shown in FIG.

流体動圧軸受20は、軸部材21と、軸部材21に挿通された上側円錐軸受部材22および下側円錐軸受部材23とを有している。上側円錐軸受部材22および下側円錐軸受部材23は、軸Y1方向に離間して軸部材21に固定されている。流体動圧軸受20は、例えば、コニカル動圧軸受である。軸部材21は、軸Y1と同軸となっており、略円筒状に形成されている。軸部材21は、例えばマルテンサイト系ステンレス鋼であるSUS420J2で形成されている。軸部材21の内部には、軸部材21の上面および下面から軸Y1方向に延びる軸孔21aが形成されている。 The fluid dynamic pressure bearing 20 has a shaft member 21 and an upper conical bearing member 22 and a lower conical bearing member 23 inserted through the shaft member 21 . The upper conical bearing member 22 and the lower conical bearing member 23 are fixed to the shaft member 21 spaced apart in the direction of the axis Y1. The fluid dynamic pressure bearing 20 is, for example, a conical dynamic pressure bearing. The shaft member 21 is coaxial with the axis Y1 and has a substantially cylindrical shape. The shaft member 21 is made of SUS420J2, which is martensitic stainless steel, for example. Inside the shaft member 21, a shaft hole 21a extending in the direction of the axis Y1 is formed from the upper surface and the lower surface of the shaft member 21. As shown in FIG.

軸部材21は、軸Y1と同軸となっており、ロータ30のロータ部材31に形成された貫通孔31aに挿通されている。また、軸部材21の下部は、ベースプレート11に形成された貫通孔11aに挿入され、圧入、または圧入および接着により固定されている。上側円錐軸受部材22および下側円錐軸受部材23は、軸部材21の周囲を取り囲むように設けられており、例えばオーステナイト系ステンレス鋼であるSUS303により形成されている。上側円錐軸受部材22および下側円錐軸受部材23の具体的な構成については後述する。 The shaft member 21 is coaxial with the axis Y<b>1 and is inserted through a through hole 31 a formed in the rotor member 31 of the rotor 30 . A lower portion of the shaft member 21 is inserted into a through hole 11a formed in the base plate 11 and fixed by press fitting or press fitting and adhesion. The upper conical bearing member 22 and the lower conical bearing member 23 are provided so as to surround the shaft member 21, and are made of SUS303, which is austenitic stainless steel, for example. Specific configurations of the upper conical bearing member 22 and the lower conical bearing member 23 will be described later.

ロータ30は、ロータ部材31と、ヨーク32と、ロータマグネット33と、エンドキャップ34とを有している。ロータ部材31は、略円筒状に形成されている。また、ロータ部材31には、軸部材21を挿通するための貫通孔31aと、2つの動圧溝部31bと、ヨーク取付部31cとが形成されている。ヨーク取付部31cには、ヨーク32を介してロータマグネット33が固定されている。ロータマグネット33は、永久磁石からなり、ステータコア12に対向して配置されている。 The rotor 30 has a rotor member 31 , a yoke 32 , a rotor magnet 33 and an end cap 34 . The rotor member 31 is formed in a substantially cylindrical shape. Further, the rotor member 31 is formed with a through hole 31a for inserting the shaft member 21, two dynamic pressure groove portions 31b, and a yoke mounting portion 31c. A rotor magnet 33 is fixed via the yoke 32 to the yoke mounting portion 31c. The rotor magnet 33 is made of a permanent magnet and arranged to face the stator core 12 .

動圧溝部31bは、貫通孔31aの半径方向外側であって、上側円錐軸受部材22および下側円錐軸受部材23と対向する位置に形成されている。動圧溝部31bには、動圧を発生させるための動圧溝Dが形成されている。この動圧溝Dは、例えば、ロータ部材31において貫通孔31aの上側および下側に設けられた円錐内面31du,31dbに電解加工を施すことにより形成することが可能である。 The dynamic pressure groove portion 31 b is formed radially outside the through hole 31 a and at a position facing the upper conical bearing member 22 and the lower conical bearing member 23 . A dynamic pressure groove D for generating dynamic pressure is formed in the dynamic pressure groove portion 31b. The dynamic pressure grooves D can be formed, for example, by electrochemically machining conical inner surfaces 31du and 31db provided on the upper and lower sides of the through hole 31a in the rotor member 31 .

また、円錐内面31duと、上側円錐軸受部材22の上側下部円錐軸受部材40(図3)の下側の面である下側円錐外面40bとは、微小な隙間(図示省略)を隔てて対向している。また、円錐内面31dbと、下側円錐軸受部材23の下側上部円錐軸受部材60(図8)の上側の面である上側円錐外面60uとは、微小な隙間(図示省略)を隔てて対向している。なお、動圧溝Dは、円錐内面31du,31dbではなく、上側円錐軸受部材22の下側円錐外面40bおよび下側円錐軸受部材23の上側円錐外面60uに形成されていてもよく、いずれかに形成されていればよい。 In addition, the conical inner surface 31du and the lower conical outer surface 40b, which is the lower surface of the upper lower conical bearing member 40 (FIG. 3) of the upper conical bearing member 22, face each other with a minute gap (not shown). ing. In addition, the conical inner surface 31db and the upper conical outer surface 60u, which is the upper surface of the lower upper conical bearing member 60 (FIG. 8) of the lower conical bearing member 23, face each other with a minute gap (not shown). ing. The dynamic pressure groove D may be formed on the lower conical outer surface 40b of the upper conical bearing member 22 and the upper conical outer surface 60u of the lower conical bearing member 23 instead of the conical inner surfaces 31du and 31db. It is sufficient if it is formed.

上側円錐軸受部材22の下側円錐外面40bに対向する円錐内面31duは、ロータ部材31の貫通孔31aの上側に向かって内径が拡大している。下側円錐軸受部材23の上側円錐外面60uに対向する円錐内面31dbは、ロータ部材31の貫通孔31aの下側に向かって内径が拡大している。円錐内面31duと上側円錐軸受部材22の下側円錐外面40bとの間の微小な隙間、および円錐内面31dbと下側円錐軸受部材23の上側円錐外面60uとの間の微小な隙間には潤滑油Gが充填されている。 A conical inner surface 31du facing the lower conical outer surface 40b of the upper conical bearing member 22 has an inner diameter that increases toward the upper side of the through hole 31a of the rotor member 31 . A conical inner surface 31db facing the upper conical outer surface 60u of the lower conical bearing member 23 has an inner diameter that expands toward the lower side of the through hole 31a of the rotor member 31 . The minute gap between the conical inner surface 31du and the lower conical outer surface 40b of the upper conical bearing member 22 and the minute gap between the conical inner surface 31db and the upper conical outer surface 60u of the lower conical bearing member 23 contain lubricating oil. G is filled.

エンドキャップ34は、ロータ部材31に固定される部材である。エンドキャップ34と軸部材21との間には、エンドキャップ34によってロータ部材31の回転を妨げられないように、微小な隙間が形成されている。エンドキャップ34は、接着、または接着および圧入によって、ロータ部材31に固定されている。 The end cap 34 is a member fixed to the rotor member 31 . A minute gap is formed between the end cap 34 and the shaft member 21 so that the rotation of the rotor member 31 is not hindered by the end cap 34 . The end cap 34 is secured to the rotor member 31 by gluing or gluing and press fitting.

ロータ30に固定されたロータマグネット33と、ステータ10に固定されたステータコア12とは、微小な隙間を挟んで対向している。そして、ステータコア12の複数のコイル13に位相の異なる駆動電流を流すと回転磁界が発生し、この回転磁界によってロータマグネット33に回転力が発生する。これにより、ロータ30がステータ10および流体動圧軸受20に対して回転する。 The rotor magnet 33 fixed to the rotor 30 and the stator core 12 fixed to the stator 10 face each other across a minute gap. When drive currents having different phases are passed through the plurality of coils 13 of the stator core 12, a rotating magnetic field is generated, and a rotating force is generated in the rotor magnet 33 by this rotating magnetic field. This causes rotor 30 to rotate relative to stator 10 and fluid dynamic bearing 20 .

また、ロータ30が流体動圧軸受20に対して回転すると、動圧溝部31bに設けられた動圧溝Dにより、ロータ30の円錐内面31du,31dbと、流体動圧軸受20の上側円錐軸受部材22の下側円錐外面40bおよび下側円錐軸受部材23の上側円錐外面60uとを離間させる動圧が発生する。これにより、円錐内面31du,31dbと下側円錐外面40bおよび上側円錐外面60uとが非接触状態で支持される。そして、円錐内面31du,31dbと下側円錐外面40bおよび上側円錐外面60uとが非接触状態で支持されることにより、ロータ30は、流体動圧軸受20が固定されたステータ10に対して自在に回転する。 Further, when the rotor 30 rotates with respect to the fluid dynamic pressure bearing 20, the conical inner surfaces 31du and 31db of the rotor 30 and the upper conical bearing member of the fluid dynamic pressure bearing 20 are moved by the dynamic pressure groove D provided in the dynamic pressure groove portion 31b. 22 and the upper conical outer surface 60u of the lower conical bearing member 23 are separated from each other. Thereby, the conical inner surfaces 31du, 31db, the lower conical outer surface 40b, and the upper conical outer surface 60u are supported in a non-contact state. Since the conical inner surfaces 31du and 31db are supported in a non-contact state with the lower conical outer surface 40b and the upper conical outer surface 60u, the rotor 30 can be freely moved relative to the stator 10 to which the fluid dynamic pressure bearing 20 is fixed. Rotate.

図3は、図2に示すスピンドルモータ1における流体動圧軸受20の上側円錐軸受部材22付近の部分の構成を概略的に示す部分拡大断面図であり、図4は、図3に示す上側円錐軸受部材22の上側下部円錐軸受部材40の構成を概略的に示す平面図である。図5は、図4に示す上側下部円錐軸受部材40の構成を概略的に示すA-A断面図であり、図6は、図4に示す上側下部円錐軸受部材40の構成を概略的に示すB-B断面図である。図7は、図3に示す上側円錐軸受部材22の上側上部円錐軸受部材50の構成を概略的に示す断面図である。 3 is a partially enlarged cross-sectional view schematically showing the configuration of a portion near the upper conical bearing member 22 of the fluid dynamic pressure bearing 20 in the spindle motor 1 shown in FIG. 2, and FIG. 4 is a plan view schematically showing the structure of an upper and lower conical bearing member 40 of the bearing member 22; FIG. 5 is a cross-sectional view taken along line AA schematically showing the configuration of the upper and lower conical bearing member 40 shown in FIG. 4, and FIG. 6 schematically shows the configuration of the upper and lower conical bearing member 40 shown in FIG. It is a BB sectional view. FIG. 7 is a cross-sectional view schematically showing the configuration of the upper upper conical bearing member 50 of the upper conical bearing member 22 shown in FIG.

スピンドルモータ1において、上側円錐軸受部材22は、円錐内面31duと対向して軸部材21に固定された第1円錐軸受部材としての上側下部円錐軸受部材40と、上側下部円錐軸受部材40よりも上側において、上側下部円錐軸受部材40に当接して軸部材21に固定された第2円錐軸受部材としての上側上部円錐軸受部材50とを有している。 In the spindle motor 1, the upper conical bearing member 22 includes an upper lower conical bearing member 40 as a first conical bearing member fixed to the shaft member 21 facing the conical inner surface 31du, and an upper lower conical bearing member 40 above the upper and lower conical bearing member 40. , an upper upper conical bearing member 50 as a second conical bearing member fixed to the shaft member 21 in contact with the upper lower conical bearing member 40 .

具体的に、上側下部円錐軸受部材40は、図4に示すように略円環状に形成されており、図5,6に示すように略逆円錐状に形成されている。上側下部円錐軸受部材40の略中心には、軸Y1方向に延びる略円筒状の貫通孔40aが形成されている。上側下部円錐軸受部材40の貫通孔40aは、軸部材21と同軸となっており、貫通孔40aの直径は、軸部材21の半径方向外側の面である外周面21dの直径よりも僅かに大きい直径となっている。このため、貫通孔40aは、軸部材21を挿通することができるようになっており、軸部材21の外周面21dとの間の微小な隙間に潤滑油Gを充填することができるようになっている。 Specifically, the upper and lower conical bearing member 40 is formed in a substantially annular shape as shown in FIG. 4, and is formed in a substantially inverted conical shape as shown in FIGS. A substantially cylindrical through hole 40a extending in the direction of the axis Y1 is formed substantially in the center of the upper and lower conical bearing member 40. As shown in FIG. The through hole 40a of the upper and lower conical bearing member 40 is coaxial with the shaft member 21, and the diameter of the through hole 40a is slightly larger than the diameter of the outer peripheral surface 21d, which is the radially outer surface of the shaft member 21. diameter. Therefore, the shaft member 21 can be inserted through the through-hole 40a, and the minute gap between the shaft member 21 and the outer peripheral surface 21d can be filled with the lubricating oil G. ing.

上側下部円錐軸受部材40の下側には、ロータ部材31の円錐内面31duと対向する下側円錐外面40bが形成されている。下側円錐外面40bは、貫通孔40aの下側の縁から上側に向かうに連れて拡径されているテーパ面である。下側円錐外面40bは、ロータ部材31において貫通孔31aの上側に設けられた円錐内面31duと対向する位置に配置されるようになっている。下側円錐外面40bの上側の縁は、上側下部円錐軸受部材40の半径方向外側の面である円錐面40dの下側の縁と接続している。 A lower conical outer surface 40 b facing the conical inner surface 31 du of the rotor member 31 is formed on the lower side of the upper lower conical bearing member 40 . The lower conical outer surface 40b is a tapered surface whose diameter increases upward from the lower edge of the through hole 40a. The lower conical outer surface 40b is arranged at a position facing the conical inner surface 31du provided on the upper side of the through hole 31a in the rotor member 31. As shown in FIG. The upper edge of the lower conical outer surface 40 b connects with the lower edge of the conical surface 40 d that is the radially outer surface of the upper lower conical bearing member 40 .

上側下部円錐軸受部材40の円錐面40dは、下側円錐外面40bの上側の縁から上側に向かうに連れて縮径されているテーパ面である。円錐面40dの上側の縁は、上側下部円錐軸受部材40の上側の面である円錐対向面40uの半径方向外側の縁と接続している。上側下部円錐軸受部材40の円錐対向面40uは、貫通孔40aの上側の縁から上側に向かうに連れて拡径されているテーパ面である。 The conical surface 40d of the upper lower conical bearing member 40 is a tapered surface whose diameter decreases upward from the upper edge of the lower conical outer surface 40b. The upper edge of the conical surface 40 d connects with the radially outer edge of the conical facing surface 40 u that is the upper surface of the upper lower conical bearing member 40 . The conical facing surface 40u of the upper and lower conical bearing member 40 is a tapered surface whose diameter increases upward from the upper edge of the through hole 40a.

上側下部円錐軸受部材40の円錐対向面40uには、半径方向内側から半径方向外側に向かって背向して半径方向に延びる一対の上側溝部41が形成されている。具体的に、一対の上側溝部41は、夫々、円錐対向面40uから下側に凹んでいる。一対の上側溝部41は、夫々、軸Y1から半径方向外側に向かうに連れて上側に向かって延びており、一対の上側溝部41の半径方向内側の縁の間に軸Y1が位置している。 A pair of upper groove portions 41 radially extending from the radially inner side to the radially outer side are formed in the conical facing surface 40u of the upper lower conical bearing member 40 . Specifically, the pair of upper groove portions 41 are recessed downward from the conical facing surface 40u. The pair of upper groove portions 41 each extend upward as it goes radially outward from the axis Y1, and the axis Y1 is positioned between the radially inner edges of the pair of upper groove portions 41. there is

一対の上側溝部41は、夫々、半径方向外側から見た形状が略矩形状となっており、円錐対向面40uから下側における所定の深さの位置に半径方向内側から半径方向外側に向かって背向して半径方向外側に向かうに連れて上側に向かってに延びる傾斜面である底面41tを有している。底面41tは、一対の上側溝部41の下側の境界を画成している。 Each of the pair of upper groove portions 41 has a substantially rectangular shape when viewed from the radially outer side, and extends from the radially inner side to the radially outer side at a predetermined depth below the conical facing surface 40u. It has a bottom surface 41t which is an inclined surface extending upward as it faces radially outward. The bottom surface 41 t defines the lower boundary of the pair of upper groove portions 41 .

また、一対の上側溝部41は、夫々、円錐対向面40uから底面41tに向かって軸Y1方向に平行に延びる一対の側面41pを有している。一対の側面41pは、夫々、円錐対向面40uと底面41tとの間の境界を画成している。このため、一対の上側溝部41と上側上部円錐軸受部材50の円錐対向面50b(図3)との間に潤滑油Gを充填することができるようになっている。なお、一対の上側溝部41は、半径方向外側から見た形状が略矩形状に限らず、半径方向外側から見た形状が略V状や略半円状となっており、V状溝や半円状溝であってもよい。 Also, the pair of upper groove portions 41 each have a pair of side surfaces 41p extending parallel to the axis Y1 direction from the conical facing surface 40u toward the bottom surface 41t. The pair of side surfaces 41p respectively define boundaries between the conical facing surface 40u and the bottom surface 41t. Therefore, lubricating oil G can be filled between the pair of upper groove portions 41 and the conical facing surface 50b (FIG. 3) of the upper upper conical bearing member 50. As shown in FIG. In addition, the shape of the pair of upper groove portions 41 is not limited to the substantially rectangular shape when viewed from the radially outer side, and the shape when viewed from the radially outer side is substantially V-shaped or substantially semicircular. It may be a semi-circular groove.

貫通孔40aの上側の端部には、貫通孔40aから半径方向内側に向かって突出する、一部が切り欠かれた円環状のフランジ部42が設けられている。フランジ部42は、軸部材21と同軸となっており、フランジ部42の半径方向内側の直径は、軸部材21の外周面21dの直径よりも小さくなっている。このため、上側下部円錐軸受部材40は、軸部材21が貫通孔40aに挿入されると、フランジ部42が軸部材21に圧入されて軸部材21に固定されるようになっている。フランジ部42は、一対の上側溝部41によりその一部が切り欠かれている。なお、フランジ部42は、一部が切り欠かれた円環状に限らず、一部が貫通孔40aから半径方向内側に向かって突出しており、軸部材21に圧入されていればよい。 The upper end of the through hole 40a is provided with a partially cut annular flange 42 that protrudes radially inward from the through hole 40a. The flange portion 42 is coaxial with the shaft member 21 , and the radial inner diameter of the flange portion 42 is smaller than the diameter of the outer peripheral surface 21 d of the shaft member 21 . Therefore, when the shaft member 21 is inserted into the through hole 40a, the upper and lower conical bearing member 40 is fixed to the shaft member 21 by press-fitting the flange portion 42 into the shaft member 21 . The flange portion 42 is partially cut out by the pair of upper groove portions 41 . Note that the flange portion 42 is not limited to a partially notched annular shape, and it is sufficient that a portion of the flange portion 42 protrudes radially inward from the through hole 40 a and is press-fitted into the shaft member 21 .

図7は、図3に示す上側円錐軸受部材22の上側上部円錐軸受部材50の構成を概略的に示す断面図である。上側下部円錐軸受部材40と上側上部円錐軸受部材50とは、軸部材21に圧入されており、上側上部円錐軸受部材50は、上側下部円錐軸受部材40よりも圧入代が大きい。上側下部円錐軸受部材40の圧入代は5~20μmであり、上側上部円錐軸受部材50の圧入代は15~30μmである。上側上部円錐軸受部材50の圧入代の長さは、上側下部円錐軸受部材40の長さよりも長くなっている。具体的に、上側上部円錐軸受部材50は、図7に示すように略円筒状に形成されており、上側上部円錐軸受部材50の略中心には、軸Y1方向に延びる略円筒状の貫通孔50aが形成されている。 FIG. 7 is a cross-sectional view schematically showing the configuration of the upper upper conical bearing member 50 of the upper conical bearing member 22 shown in FIG. The upper lower conical bearing member 40 and the upper upper conical bearing member 50 are press-fitted into the shaft member 21 , and the upper upper conical bearing member 50 has a greater press-fit allowance than the upper lower conical bearing member 40 . The press-fit allowance of the upper lower conical bearing member 40 is 5-20 μm, and the press-fit allowance of the upper upper conical bearing member 50 is 15-30 μm. The length of the press-fit margin of the upper upper conical bearing member 50 is longer than the length of the upper lower conical bearing member 40 . Specifically, the upper upper conical bearing member 50 is formed in a substantially cylindrical shape as shown in FIG. 50a is formed.

上側上部円錐軸受部材50の貫通孔50aは、軸部材21と同軸となっており、貫通孔50aの直径は、軸部材21の外周面21dの直径よりも小さい直径となっている。さらに、貫通孔50aの直径は、上側下部円錐軸受部材40のフランジ部42の半径方向内側の直径よりも小さい直径となっている。このため、上側上部円錐軸受部材50は、軸部材21が貫通孔50aに挿入されると、貫通孔50aが軸部材21に圧入されて軸部材21に固定されるようになっている。このとき、上側上部円錐軸受部材50は、上側下部円錐軸受部材40よりも強く圧入されているため、上側下部円錐軸受部材40よりも締結強度を強くして締結強度を確保することができるようになっている。 A through hole 50 a of the upper conical bearing member 50 is coaxial with the shaft member 21 and has a smaller diameter than the outer peripheral surface 21 d of the shaft member 21 . Furthermore, the diameter of the through-hole 50 a is smaller than the radially inner diameter of the flange portion 42 of the upper and lower conical bearing member 40 . Therefore, when the shaft member 21 is inserted into the through-hole 50a, the upper conical bearing member 50 is fixed to the shaft member 21 by press-fitting the through-hole 50a into the shaft member 21 . At this time, since the upper upper conical bearing member 50 is press-fitted more strongly than the upper lower conical bearing member 40, the fastening strength is made stronger than that of the upper lower conical bearing member 40 so that the fastening strength can be secured. It's becoming

上側上部円錐軸受部材50の貫通孔50aの圧入代は、15~30μmの範囲が好ましく、20~25μmの範囲が更に好ましく、22~23μmの範囲が最も好ましい。また、上側下部円錐軸受部材40のフランジ部42の圧入代は、5~20μmの範囲が好ましく、10~15μmの範囲が更に好ましく、12~13μmの範囲が最も好ましい。 The press-fit margin of the through hole 50a of the upper conical bearing member 50 is preferably in the range of 15-30 μm, more preferably in the range of 20-25 μm, and most preferably in the range of 22-23 μm. The press-fit margin of the flange portion 42 of the upper and lower conical bearing member 40 is preferably in the range of 5-20 μm, more preferably in the range of 10-15 μm, and most preferably in the range of 12-13 μm.

上側上部円錐軸受部材50の下側には、上側下部円錐軸受部材40の円錐対向面40uと当接する円錐対向面50bが形成されている。円錐対向面50bは、貫通孔50aの下側の縁から上側に向かうに連れて拡径されているテーパ面である。円錐対向面50bは、上側下部円錐軸受部材40の円錐対向面40uと当接する位置に配置されるようになっている。円錐対向面50bは、上側下部円錐軸受部材40の円錐対向面40uと同じ傾斜を有しており、上側下部円錐軸受部材40の円錐対向面40uと当接することができるようになっている。上側下部円錐軸受部材40の一対の上側溝部41と上側上部円錐軸受部材50の円錐対向面50bとにより潤滑油Gを循環する潤滑油循環孔を画成している。円錐対向面50bの上側の縁は、上側上部円錐軸受部材50の半径方向外側の面である円錐面50dの下側の縁と接続している。 On the lower side of the upper upper conical bearing member 50, a conical facing surface 50b that abuts against the conical facing surface 40u of the upper lower conical bearing member 40 is formed. The conical facing surface 50b is a tapered surface whose diameter increases upward from the lower edge of the through hole 50a. The conical facing surface 50b is arranged at a position to contact the conical facing surface 40u of the upper and lower conical bearing member 40. As shown in FIG. The conical facing surface 50 b has the same inclination as the conical facing surface 40 u of the upper and lower conical bearing member 40 so that it can abut against the conical facing surface 40 u of the upper and lower conical bearing member 40 . The pair of upper groove portions 41 of the upper and lower conical bearing member 40 and the conical facing surface 50b of the upper and upper conical bearing member 50 define lubricating oil circulation holes through which the lubricating oil G is circulated. The upper edge of the conical facing surface 50 b connects with the lower edge of the conical surface 50 d which is the radially outer surface of the upper upper conical bearing member 50 .

上側上部円錐軸受部材50の円錐面50dは、円錐対向面50bの上側の縁から上側に向かうに連れて縮径されているテーパ面である。円錐面50dの上側の縁は、上側上部円錐軸受部材50の上側の面である上面50uの半径方向外側の縁と接続している。円錐面50dは、上側下部円錐軸受部材40の円錐面40dと同じ傾斜を有しており、上側下部円錐軸受部材40の円錐面40dと滑らかに接続することができるようになっている。上側上部円錐軸受部材50の上面50uは、貫通孔50aの上側の縁から半径方向外側に延びる円環状の平面である。 The conical surface 50d of the upper upper conical bearing member 50 is a tapered surface whose diameter decreases upward from the upper edge of the conical facing surface 50b. The upper edge of the conical surface 50 d connects with the radially outer edge of the upper surface 50 u of the upper upper conical bearing member 50 . The conical surface 50d has the same inclination as the conical surface 40d of the upper and lower conical bearing member 40 so that it can be smoothly connected to the conical surface 40d of the upper and lower conical bearing member 40 . The upper surface 50u of the upper conical bearing member 50 is an annular flat surface extending radially outward from the upper edge of the through hole 50a.

図3に示すように、スピンドルモータ1の組み立て状態において、上側下部円錐軸受部材40は、貫通孔40aが軸部材21に挿通されると共に、フランジ部42が軸部材21に圧入されて、軸部材21に固定されている。上側下部円錐軸受部材40の下側円錐外面40bは、ロータ部材31において貫通孔31aの上側に設けられた円錐内面31duと対向する位置に配置されている。 As shown in FIG. 3, in the assembled state of the spindle motor 1, the upper and lower conical bearing member 40 has the through hole 40a inserted into the shaft member 21, and the flange portion 42 is press-fitted into the shaft member 21 so that the shaft member 21 is fixed. The lower conical outer surface 40b of the upper lower conical bearing member 40 is arranged at a position facing the conical inner surface 31du provided on the upper side of the through hole 31a in the rotor member 31 .

上側上部円錐軸受部材50は、貫通孔50aが軸部材21に圧入されて挿入され、軸部材21に固定されている。上側上部円錐軸受部材50の円錐対向面50bは、上側下部円錐軸受部材40の円錐対向面40uと同じ傾斜を有しており、上側下部円錐軸受部材40の円錐対向面40uと当接されている。上側下部円錐軸受部材40の一対の上側溝部41と上側上部円錐軸受部材50の円錐対向面50bとにより潤滑油Gを循環する潤滑油循環孔が画成されている。上側上部円錐軸受部材50の円錐面50dは、上側下部円錐軸受部材40の円錐面40dと同じ傾斜を有しており、上側下部円錐軸受部材40の円錐面40dと滑らかに接続されている。 The upper conical bearing member 50 is fixed to the shaft member 21 by press-fitting the through hole 50 a into the shaft member 21 . The conical facing surface 50b of the upper upper conical bearing member 50 has the same inclination as the conical facing surface 40u of the upper lower conical bearing member 40, and is in contact with the conical facing surface 40u of the upper lower conical bearing member 40. . A lubricating oil circulation hole through which the lubricating oil G circulates is defined by the pair of upper groove portions 41 of the upper lower conical bearing member 40 and the conical facing surface 50b of the upper upper conical bearing member 50 . The conical surface 50d of the upper upper conical bearing member 50 has the same inclination as the conical surface 40d of the upper lower conical bearing member 40 and is smoothly connected with the conical surface 40d of the upper lower conical bearing member 40 .

潤滑油Gは、上側下部円錐軸受部材40の貫通孔40aと軸部材21の外周面21dとの間の微小な隙間、および円錐内面31duと上側下部円錐軸受部材40の下側円錐外面40bとの間の微小な隙間に充填されている。また、潤滑油Gは、上側下部円錐軸受部材40の一対の上側溝部41と上側上部円錐軸受部材50の円錐対向面50bとにより画定された潤滑油循環孔、並びにロータ部材31と上側下部円錐軸受部材40の円錐面40dおよび上側上部円錐軸受部材50の円錐面50dとの間に充填されている。すなわち、上側上部円錐軸受部材50の円錐面50dとロータ部材31との間で潤滑油Gを保持するテーパシール部Tが形成され、上側下部円錐軸受部材40の円錐軸受面としての下側円錐外面40bとロータ部材31との間で潤滑油Gによる動圧が発生する動圧軸受部DBが設けられている。 The lubricating oil G penetrates into the minute gap between the through hole 40 a of the upper and lower conical bearing member 40 and the outer peripheral surface 21 d of the shaft member 21 and between the inner conical surface 31 du and the lower outer conical surface 40 b of the upper and lower conical bearing member 40 . It fills the tiny gaps between Also, the lubricating oil G flows through the lubricating oil circulation holes defined by the pair of upper grooves 41 of the upper and lower conical bearing member 40 and the cone-facing surfaces 50b of the upper and upper conical bearing member 50, and through the rotor member 31 and the upper and lower conical surfaces. It is filled between the conical surface 40 d of the bearing member 40 and the conical surface 50 d of the upper upper conical bearing member 50 . That is, a tapered seal portion T for retaining lubricating oil G is formed between the conical surface 50d of the upper upper conical bearing member 50 and the rotor member 31, and the lower conical outer surface as the conical bearing surface of the upper lower conical bearing member 40. Between 40b and rotor member 31, there is provided a dynamic pressure bearing portion DB in which dynamic pressure is generated by lubricating oil G. As shown in FIG.

図8は、図2に示すスピンドルモータ1の下側円錐軸受部材23付近の部分の構成を概略的に示す部分拡大断面図である。スピンドルモータ1において、下側円錐軸受部材23は、円錐内面31dbと対向して軸部材21に固定された第1円錐軸受部材としての下側上部円錐軸受部材60と、下側上部円錐軸受部材60よりも下側において、下側上部円錐軸受部材60に当接して軸部材21に固定された第2円錐軸受部材としての下側下部円錐軸受部材70とを有している。 FIG. 8 is a partially enlarged cross-sectional view schematically showing the structure of the vicinity of the lower conical bearing member 23 of the spindle motor 1 shown in FIG. In the spindle motor 1, the lower conical bearing member 23 includes a lower upper conical bearing member 60 as a first conical bearing member fixed to the shaft member 21 facing the conical inner surface 31db, and a lower upper conical bearing member 60. It has a lower lower conical bearing member 70 as a second conical bearing member fixed to the shaft member 21 in contact with the lower upper conical bearing member 60 on the lower side.

下側下部円錐軸受部材70は、下側上部円錐軸受部材60に当接し、下側下部円錐軸受部材70の円錐面70dとロータ部材31との間で潤滑油Gを保持するテーパシール部Tが形成され、下側上部円錐軸受部材60の円錐軸受面としての上側円錐外面60uとロータ部材31との間で潤滑油Gによる動圧が発生する動圧軸受部DBが設けられている。具体的に、下側上部円錐軸受部材60は、図4~6に示す上側下部円錐軸受部材40と同じ部材で形成されている。すなわち、下側上部円錐軸受部材60は、図4に示すように略円環状に形成されており、図5,6に示すように略円錐状に形成されている。図8に示すように、下側上部円錐軸受部材60の略中心には、軸Y1方向に延びる略円筒状の貫通孔60aが形成されている。下側上部円錐軸受部材60の貫通孔60aは、軸部材21と同軸となっており、貫通孔60aの直径は、軸部材21の外周面21dの直径よりも僅かに大きい直径となっている。このため、貫通孔60aは、軸部材21を挿通することができるようになっており、軸部材21の外周面21dとの間の微小な隙間に潤滑油Gを充填することができるようになっている。 The lower lower conical bearing member 70 abuts on the lower upper conical bearing member 60, and a tapered seal portion T that retains lubricating oil G between the conical surface 70d of the lower lower conical bearing member 70 and the rotor member 31 is formed. A dynamic pressure bearing portion DB is provided in which dynamic pressure is generated by lubricating oil G between an upper conical outer surface 60u as a conical bearing surface of the lower upper conical bearing member 60 and the rotor member 31 . Specifically, the lower upper conical bearing member 60 is formed of the same material as the upper lower conical bearing member 40 shown in FIGS. That is, the lower upper conical bearing member 60 is formed in a substantially annular shape as shown in FIG. 4, and is formed in a substantially conical shape as shown in FIGS. As shown in FIG. 8, a substantially cylindrical through hole 60a extending in the direction of the axis Y1 is formed substantially in the center of the lower upper conical bearing member 60. As shown in FIG. A through hole 60 a of the lower upper conical bearing member 60 is coaxial with the shaft member 21 and has a diameter slightly larger than the diameter of the outer peripheral surface 21 d of the shaft member 21 . Therefore, the shaft member 21 can be inserted through the through-hole 60a, and the minute gap between the shaft member 21 and the outer peripheral surface 21d can be filled with the lubricating oil G. ing.

下側上部円錐軸受部材60の上側には、ロータ部材31の円錐内面31dbと対向する上側円錐外面60uが形成されている。上側円錐外面60uは、貫通孔60aの上側の縁から下側に向かうに連れて拡径されているテーパ面である。上側円錐外面60uは、ロータ部材31において貫通孔31aの下側に設けられた円錐内面31dbと対向する位置に配置されるようになっている。上側円錐外面60uの下側の縁は、下側上部円錐軸受部材60の半径方向外側の面である円錐面60dの上側の縁と接続している。 An upper conical outer surface 60 u facing the conical inner surface 31 db of the rotor member 31 is formed on the upper side of the lower upper conical bearing member 60 . The upper conical outer surface 60u is a tapered surface whose diameter increases downward from the upper edge of the through hole 60a. The upper conical outer surface 60u is arranged at a position facing the conical inner surface 31db provided on the lower side of the through hole 31a in the rotor member 31. As shown in FIG. The lower edge of the upper conical outer surface 60 u connects with the upper edge of the conical surface 60 d that is the radially outer surface of the lower upper conical bearing member 60 .

下側上部円錐軸受部材60の円錐面60dは、上側円錐外面60uの下側の縁から下側に向かうに連れて縮径されているテーパ面である。円錐面60dの下側の縁は、下側上部円錐軸受部材60の下側の面である円錐対向面60bの半径方向外側の縁と接続している。下側上部円錐軸受部材60の円錐対向面60bは、貫通孔60aの下側の縁から下側に向かうに連れて拡径されているテーパ面である。 The conical surface 60d of the lower upper conical bearing member 60 is a tapered surface whose diameter decreases downward from the lower edge of the upper conical outer surface 60u. The lower edge of the conical surface 60d connects with the radially outer edge of the lower surface of the lower upper conical bearing member 60, the conical facing surface 60b. The conical facing surface 60b of the lower upper conical bearing member 60 is a tapered surface whose diameter increases downward from the lower edge of the through hole 60a.

下側上部円錐軸受部材60の円錐対向面60bには、半径方向内側から半径方向外側に向かって背向して半径方向に延びる一対の溝部としての一対の下側溝部61が形成されている。具体的に、一対の下側溝部61は、夫々、円錐対向面60bから上側に凹んでいる。一対の下側溝部61は、夫々、軸Y1から半径方向外側に向かうに連れて下側に向かって延びており、一対の下側溝部61の半径方向内側の縁の間に軸Y1が位置している。 A pair of lower groove portions 61 are formed on the conical facing surface 60b of the lower upper conical bearing member 60 as a pair of groove portions extending radially from the inner side to the outer side in the radial direction. Specifically, the pair of lower groove portions 61 are respectively recessed upward from the conical facing surface 60b. The pair of lower groove portions 61 each extend downward as it goes radially outward from the axis Y1, and the axis Y1 is positioned between the radially inner edges of the pair of lower groove portions 61. ing.

一対の下側溝部61は、夫々、半径方向外側から見た形状が略矩形状となっており、円錐対向面60bから上側における所定の深さの位置に半径方向内側から半径方向外側に向かって背向して半径方向外側に向かうに連れて下側に向かってに延びる傾斜面である底面61tを有している。底面61tは、一対の下側溝部61の下側の境界を画成している。 Each of the pair of lower groove portions 61 has a substantially rectangular shape when viewed from the radially outer side, and extends from the radially inner side to the radially outer side at a predetermined depth above the conical facing surface 60b. It has a bottom surface 61t which is an inclined surface extending downward as it faces radially outward. The bottom surface 61 t defines the lower boundary of the pair of lower grooves 61 .

また、一対の下側溝部61は、夫々、円錐対向面60bから底面61tに向かって軸Y1方向に平行に延びる一対の側面61pを有している。一対の側面61pは、夫々、円錐対向面60bと底面61tとの間の境界を画成している。このため、一対の下側溝部61と下側下部円錐軸受部材70の円錐対向面70uとの間に潤滑油Gを充填することができるようになっている。なお、一対の下側溝部61は、半径方向外側から見た形状が略矩形状に限らず、半径方向外側から見た形状が略逆V状や略半円状となっており、逆V状溝や半円状溝であってもよい。 Each of the pair of lower groove portions 61 has a pair of side surfaces 61p extending parallel to the axis Y1 direction from the conical facing surface 60b toward the bottom surface 61t. A pair of side surfaces 61p each define a boundary between the conical facing surface 60b and the bottom surface 61t. Therefore, the lubricating oil G can be filled between the pair of lower groove portions 61 and the conical facing surface 70u of the lower lower conical bearing member 70 . The shape of the pair of lower groove portions 61 when viewed from the outside in the radial direction is not limited to the substantially rectangular shape. It may be a groove or a semi-circular groove.

貫通孔60aの下側の端部には、貫通孔60aから半径方向内側に向かって突出する、一部が切り欠かれた円環状のフランジ部62が設けられている。フランジ部62は、軸部材21と同軸となっており、フランジ部62の半径方向内側の直径は、軸部材21の外周面21dの直径よりも小さくなっている。このため、下側上部円錐軸受部材60は、軸部材21が貫通孔60aに挿入されると、フランジ部62が軸部材21に圧入されて軸部材21に固定されるようになっている。フランジ部62は、一対の下側溝部61によりその一部が切り欠かれている。なお、フランジ部62は、一部が切り欠かれた円環状に限らず、一部が貫通孔60aから半径方向内側に向かって突出しており、軸部材21に圧入されていればよい。 A partially cut annular flange portion 62 that protrudes radially inward from the through hole 60a is provided at the lower end of the through hole 60a. The flange portion 62 is coaxial with the shaft member 21 , and the radial inner diameter of the flange portion 62 is smaller than the diameter of the outer peripheral surface 21 d of the shaft member 21 . Therefore, the lower upper conical bearing member 60 is fixed to the shaft member 21 by pressing the flange portion 62 into the shaft member 21 when the shaft member 21 is inserted into the through hole 60a. The flange portion 62 is partially cut out by the pair of lower groove portions 61 . Note that the flange portion 62 is not limited to a partially notched annular shape, and it is sufficient that a portion of the flange portion 62 protrudes radially inward from the through hole 60 a and is press-fitted into the shaft member 21 .

下側上部円錐軸受部材60と下側下部円錐軸受部材70とは、軸部材21に圧入されており、下側下部円錐軸受部材70は、下側上部円錐軸受部材60よりも圧入代が大きい。下側上部円錐軸受部材60の圧入代は5~20μmであり、下側下部円錐軸受部材70の圧入代は15~30μmである。下側下部円錐軸受部材70の圧入代の長さは、下側上部円錐軸受部材60の長さよりも長くなっている。具体的に、下側下部円錐軸受部材70は、図7に示す上側上部円錐軸受部材50と同じ部材で形成されている。すなわち、下側下部円錐軸受部材70は、図7に示すように略円筒状に形成されており、下側下部円錐軸受部材70の略中心には、軸Y1方向に延びる略円筒状の貫通孔70aが形成されている。 The lower upper conical bearing member 60 and the lower lower conical bearing member 70 are press-fitted onto the shaft member 21 , and the lower lower conical bearing member 70 has a greater press-fit allowance than the lower upper conical bearing member 60 . The press-fit allowance of the lower upper conical bearing member 60 is 5-20 μm, and the press-fit allowance of the lower lower conical bearing member 70 is 15-30 μm. The press-fit margin of the lower lower conical bearing member 70 is longer than the length of the lower upper conical bearing member 60 . Specifically, the lower lower conical bearing member 70 is made of the same material as the upper upper conical bearing member 50 shown in FIG. That is, the lower lower conical bearing member 70 is formed in a substantially cylindrical shape as shown in FIG. 70a is formed.

下側下部円錐軸受部材70の貫通孔70aは、軸部材21と同軸となっており、貫通孔70aの直径は、軸部材21の外周面21dの直径よりも小さい直径となっている。さらに、貫通孔70aの直径は、下側上部円錐軸受部材60のフランジ部62の半径方向内側の直径よりも小さい直径となっている。このため、下側下部円錐軸受部材70は、軸部材21が貫通孔70aに挿入されると、貫通孔70aが軸部材21に圧入されて軸部材21に固定されるようになっている。このとき、下側下部円錐軸受部材70は、下側上部円錐軸受部材60よりも強く圧入されているため、下側上部円錐軸受部材60よりも締結強度を強くすることができるようになっている。 A through hole 70 a of the lower lower conical bearing member 70 is coaxial with the shaft member 21 and has a diameter smaller than the diameter of the outer peripheral surface 21 d of the shaft member 21 . Furthermore, the diameter of the through-hole 70 a is smaller than the radially inner diameter of the flange portion 62 of the lower upper conical bearing member 60 . Therefore, the lower lower conical bearing member 70 is fixed to the shaft member 21 by press-fitting the through hole 70a into the shaft member 21 when the shaft member 21 is inserted into the through hole 70a. At this time, since the lower lower conical bearing member 70 is press-fitted more strongly than the lower upper conical bearing member 60, the fastening strength can be made stronger than that of the lower upper conical bearing member 60. .

下側下部円錐軸受部材70の貫通孔70aの圧入代は、15~30μmの範囲が好ましく、20~25μmの範囲が更に好ましく、22~23μmの範囲が最も好ましい。また、下側上部円錐軸受部材60のフランジ部62の圧入代は、5~20μmの範囲が好ましく、10~15μmの範囲が更に好ましく、12~13μmの範囲が最も好ましい。 The press-fit allowance of the through hole 70a of the lower lower conical bearing member 70 is preferably in the range of 15-30 μm, more preferably in the range of 20-25 μm, and most preferably in the range of 22-23 μm. Also, the press-fit allowance of the flange portion 62 of the lower upper conical bearing member 60 is preferably in the range of 5 to 20 μm, more preferably in the range of 10 to 15 μm, and most preferably in the range of 12 to 13 μm.

下側下部円錐軸受部材70の上側には、下側上部円錐軸受部材60の円錐対向面60bと当接する円錐対向面70uが形成されている。円錐対向面70uは、貫通孔70aの上側の縁から下側に向かうに連れて拡径されているテーパ面である。円錐対向面70uは、下側上部円錐軸受部材60の円錐対向面60bと当接する位置に配置されるようになっている。円錐対向面70uは、下側上部円錐軸受部材60の円錐対向面60bと同じ傾斜を有しており、下側上部円錐軸受部材60の円錐対向面60bと当接することができるようになっている。下側上部円錐軸受部材60の一対の下側溝部61と下側下部円錐軸受部材70の円錐対向面70uとにより潤滑油Gを循環する潤滑油循環孔を画成している。円錐対向面70uの下側の縁は、下側下部円錐軸受部材70の半径方向外側の面である円錐面70dの上側の縁と接続している。 On the upper side of the lower lower conical bearing member 70 is formed a conical facing surface 70u that contacts the conical facing surface 60b of the lower upper conical bearing member 60 . The conical facing surface 70u is a tapered surface whose diameter increases downward from the upper edge of the through hole 70a. The conical facing surface 70u is arranged at a position to contact the conical facing surface 60b of the lower upper conical bearing member 60. As shown in FIG. The conical facing surface 70u has the same inclination as the conical facing surface 60b of the lower upper conical bearing member 60 so that it can abut against the conical facing surface 60b of the lower upper conical bearing member 60. . The pair of lower groove portions 61 of the lower upper conical bearing member 60 and the conical facing surface 70u of the lower lower conical bearing member 70 define a lubricating oil circulation hole through which the lubricating oil G is circulated. The lower edge of the conical facing surface 70u connects with the upper edge of the conical surface 70d, which is the radially outer surface of the lower lower conical bearing member 70. As shown in FIG.

下側下部円錐軸受部材70の円錐面70dは、円錐対向面70uの下側の縁から下側に向かうに連れて縮径されているテーパ面である。円錐面70dの下側の縁は、下側下部円錐軸受部材70の下側の面である下面70bの半径方向外側の縁と接続している。円錐面70dは、下側上部円錐軸受部材60の円錐面60dと同じ傾斜を有しており、下側上部円錐軸受部材60の円錐面60dと滑らかに接続することができるようになっている。下側下部円錐軸受部材70の下面70bは、貫通孔70aの下側の縁から半径方向外側に延びる円環状の平面である。 The conical surface 70d of the lower lower conical bearing member 70 is a tapered surface whose diameter decreases downward from the lower edge of the conical facing surface 70u. The lower edge of the conical surface 70 d connects with the radially outer edge of the lower surface 70 b of the lower lower conical bearing member 70 . The conical surface 70d has the same inclination as the conical surface 60d of the lower upper conical bearing member 60, so that it can be smoothly connected to the conical surface 60d of the lower upper conical bearing member 60. The lower surface 70b of the lower lower conical bearing member 70 is an annular flat surface extending radially outward from the lower edge of the through hole 70a.

図8に示すように、スピンドルモータ1の組み立て状態において、下側上部円錐軸受部材60は、貫通孔60aが軸部材21に挿通されると共に、フランジ部62が軸部材21に圧入されて、軸部材21に固定されている。下側上部円錐軸受部材60の上側円錐外面60uは、ロータ部材31において貫通孔31aの下側に設けられた円錐内面31dbと対向する位置に配置されている。 As shown in FIG. 8, in the assembled state of the spindle motor 1, the lower upper conical bearing member 60 has the through hole 60a inserted into the shaft member 21, and the flange portion 62 is press-fitted into the shaft member 21 so that the shaft It is fixed to member 21 . The upper conical outer surface 60u of the lower upper conical bearing member 60 is arranged at a position facing the conical inner surface 31db provided on the lower side of the through hole 31a in the rotor member 31. As shown in FIG.

下側下部円錐軸受部材70は、貫通孔70aが軸部材21に圧入されて挿入され、軸部材21に固定されている。下側下部円錐軸受部材70の円錐対向面70uは、下側上部円錐軸受部材60の円錐対向面60bと同じ傾斜を有しており、下側上部円錐軸受部材60の円錐対向面60bと当接されている。下側上部円錐軸受部材60の一対の下側溝部61と下側下部円錐軸受部材70の円錐対向面70uとにより潤滑油Gを循環する潤滑油循環孔が画成されている。下側下部円錐軸受部材70の円錐面70dは、下側上部円錐軸受部材60の円錐面60dと同じ傾斜を有しており、下側上部円錐軸受部材60の円錐面60dと滑らかに接続されている。 The lower conical bearing member 70 is fixed to the shaft member 21 by press-fitting the through hole 70 a into the shaft member 21 . The conical facing surface 70u of the lower lower conical bearing member 70 has the same inclination as the conical facing surface 60b of the lower upper conical bearing member 60, and contacts the conical facing surface 60b of the lower upper conical bearing member 60. It is A lubricating oil circulation hole through which the lubricating oil G circulates is defined by the pair of lower groove portions 61 of the lower upper conical bearing member 60 and the cone-facing surface 70u of the lower lower conical bearing member 70 . The conical surface 70d of the lower lower conical bearing member 70 has the same inclination as the conical surface 60d of the lower upper conical bearing member 60, and is smoothly connected to the conical surface 60d of the lower upper conical bearing member 60. there is

潤滑油Gは、下側上部円錐軸受部材60の貫通孔60aと軸部材21の外周面21dとの間の微小な隙間、および円錐内面31dbと下側上部円錐軸受部材60の上側円錐外面60uとの間の微小な隙間に充填されている。また、潤滑油Gは、下側上部円錐軸受部材60の一対の下側溝部61と下側下部円錐軸受部材70の円錐対向面70uとにより画定された潤滑油循環孔、並びにロータ部材31と下側上部円錐軸受部材60の円錐面60dおよび下側下部円錐軸受部材70の円錐面70dとの間に充填されている。すなわち、下側下部円錐軸受部材70の円錐面70dとロータ部材31との間で潤滑油Gを保持するテーパシール部Tが形成され、下側上部円錐軸受部材60の円錐軸受面としての上側円錐外面60uとロータ部材31との間で潤滑油Gによる動圧が発生する動圧軸受部DBが設けられている。 The lubricating oil G is distributed between the small gap between the through hole 60a of the lower upper conical bearing member 60 and the outer peripheral surface 21d of the shaft member 21, the inner conical surface 31db and the upper conical outer surface 60u of the lower upper conical bearing member 60. It fills the tiny gaps between Also, the lubricating oil G flows through the lubricating oil circulation holes defined by the pair of lower groove portions 61 of the lower upper conical bearing member 60 and the conical facing surface 70u of the lower lower conical bearing member 70, and the rotor member 31 and the lower conical bearing member 70. The space between the conical surface 60d of the upper side conical bearing member 60 and the conical surface 70d of the lower lower conical bearing member 70 is filled. That is, a tapered seal portion T for retaining lubricating oil G is formed between the conical surface 70d of the lower conical bearing member 70 and the rotor member 31, and the upper conical surface serving as the conical bearing surface of the lower upper conical bearing member 60 is formed. A dynamic pressure bearing portion DB in which dynamic pressure is generated by the lubricating oil G between the outer surface 60u and the rotor member 31 is provided.

このように、本発明の第1の実施の形態に係るスピンドルモータ1では、上側円錐軸受部材22が、円錐内面31duと対向して軸部材21に固定された上側下部円錐軸受部材40と、上側下部円錐軸受部材40に当接して軸部材21に固定された上側上部円錐軸受部材50とを有している。このため、上側下部円錐軸受部材40は、上側上部円錐軸受部材50よりも弱く圧入して、上側下部円錐軸受部材40の下側円錐外面40bの変形を抑制し、駆動時にハードディスク202が振動することを抑制することができる。また、上側上部円錐軸受部材50は、上側下部円錐軸受部材40よりも強く圧入して、上側下部円錐軸受部材40よりも締結強度を強くして締結強度を確保することができ、外部からの衝撃に対する耐久力を向上することができる。 As described above, in the spindle motor 1 according to the first embodiment of the present invention, the upper conical bearing member 22 includes the upper lower conical bearing member 40 fixed to the shaft member 21 facing the conical inner surface 31du, and the upper and an upper upper conical bearing member 50 fixed to the shaft member 21 in contact with the lower conical bearing member 40 . Therefore, the upper and lower conical bearing members 40 are press-fitted more weakly than the upper and upper conical bearing members 50, suppressing deformation of the lower conical outer surface 40b of the upper and lower conical bearing members 40, thereby preventing the hard disk 202 from vibrating during driving. can be suppressed. In addition, the upper upper conical bearing member 50 is press-fitted more strongly than the upper lower conical bearing member 40, and the fastening strength is stronger than that of the upper and lower conical bearing member 40, so that the fastening strength can be secured. It is possible to improve the durability against

また、本発明の第1の実施の形態に係るスピンドルモータ1では、下側円錐軸受部材23が、円錐内面31dbと対向して軸部材21に固定された下側上部円錐軸受部材60と、下側上部円錐軸受部材60に当接して軸部材21に固定された第2円錐軸受部材としての下側下部円錐軸受部材70とを有している。このため、下側上部円錐軸受部材60は、下側下部円錐軸受部材70よりも弱く圧入して、下側上部円錐軸受部材60の上側円錐外面60uの変形を抑制し、駆動時にハードディスク202が振動することを抑制することができる。また、下側下部円錐軸受部材70は、下側上部円錐軸受部材60よりも強く圧入して、下側上部円錐軸受部材60よりも締結強度を強くして締結強度を確保することができ、外部からの衝撃に対する耐久力を向上することができる。 Further, in the spindle motor 1 according to the first embodiment of the present invention, the lower conical bearing member 23 includes a lower upper conical bearing member 60 fixed to the shaft member 21 facing the conical inner surface 31db, and a lower and a lower lower conical bearing member 70 as a second conical bearing member fixed to the shaft member 21 in contact with the upper side conical bearing member 60 . Therefore, the lower upper conical bearing member 60 is press-fitted more weakly than the lower lower conical bearing member 70, suppressing deformation of the upper conical outer surface 60u of the lower upper conical bearing member 60, and vibrating the hard disk 202 during driving. can be suppressed. In addition, the lower lower conical bearing member 70 can be press-fitted more strongly than the lower upper conical bearing member 60, and the fastening strength can be made stronger than the lower upper conical bearing member 60 to secure the fastening strength. It is possible to improve durability against impact from.

また、本発明の第1の実施の形態に係るスピンドルモータ1では、上側円錐軸受部材22が、上側下部円錐軸受部材40と、上側上部円錐軸受部材50との2つの円錐軸受部材により構成されている。このため、上側下部円錐軸受部材40の一対の上側溝部41と上側上部円錐軸受部材50の円錐対向面50bとにより潤滑油循環孔を画成することができ、潤滑油循環孔をドリルによる孔加工ではなく、溝加工により形成することができる。従って、上側円錐軸受部材22の潤滑油循環孔を加工する加工時間を削減することができ、上側円錐軸受部材22を作製するコストを削減することができる。 Further, in the spindle motor 1 according to the first embodiment of the present invention, the upper conical bearing member 22 is composed of two conical bearing members, the upper lower conical bearing member 40 and the upper upper conical bearing member 50. there is Therefore, the pair of upper groove portions 41 of the upper and lower conical bearing member 40 and the conical facing surface 50b of the upper and upper conical bearing member 50 can define a lubricating oil circulation hole. It can be formed by grooving instead of machining. Therefore, the processing time for machining the lubricating oil circulation holes of the upper conical bearing member 22 can be reduced, and the cost of manufacturing the upper conical bearing member 22 can be reduced.

また、本発明の第1の実施の形態に係るスピンドルモータ1では、下側円錐軸受部材23が、下側上部円錐軸受部材60と、下側下部円錐軸受部材70との2つの円錐軸受部材により構成されている。このため、下側上部円錐軸受部材60の一対の下側溝部61と下側下部円錐軸受部材70の円錐対向面70uとにより潤滑油循環孔を画成することができ、潤滑油循環孔をドリルによる孔加工ではなく、溝加工により形成することができる。従って、下側円錐軸受部材23の潤滑油循環孔を加工する加工時間を削減することができ、下側円錐軸受部材23を作製するコストを削減することができる。 Further, in the spindle motor 1 according to the first embodiment of the present invention, the lower conical bearing member 23 is formed by two conical bearing members, the lower upper conical bearing member 60 and the lower lower conical bearing member 70. It is configured. Therefore, the lubricating oil circulation hole can be defined by the pair of lower groove portions 61 of the lower upper conical bearing member 60 and the conical facing surface 70u of the lower lower conical bearing member 70, and the lubricating oil circulation hole can be formed by drilling. It can be formed by grooving instead of drilling. Therefore, the processing time for machining the lubricating oil circulation holes of the lower conical bearing member 23 can be reduced, and the cost of manufacturing the lower conical bearing member 23 can be reduced.

次に、本発明の第2の実施の形態に係る流体動圧軸受80の構成を説明する。図9は、本発明の第2の実施の形態に係る流体動圧軸受80の上側円錐軸受部材90付近の部分の構成を概略的に示す部分拡大断面図である。図10は、図9に示す上側円錐軸受部材90の上側上部円錐軸受部材91の構成を概略的に示す断面図である。図11は、流体動圧軸受80の下側円錐軸受部材100付近の部分の構成を概略的に示す部分拡大断面図である。以下、上述の第1の実施の形態に係るスピンドルモータ1と同一のまたは類似する構成に対しては同一の符号を付してその説明を省略し、異なる構成についてのみ説明する。 Next, the configuration of the fluid dynamic pressure bearing 80 according to the second embodiment of the invention will be described. FIG. 9 is a partially enlarged cross-sectional view schematically showing the configuration of the portion near the upper conical bearing member 90 of the fluid dynamic pressure bearing 80 according to the second embodiment of the present invention. FIG. 10 is a cross-sectional view schematically showing the configuration of an upper upper conical bearing member 91 of the upper conical bearing member 90 shown in FIG. FIG. 11 is a partially enlarged cross-sectional view schematically showing the configuration of a portion of the fluid dynamic pressure bearing 80 near the lower conical bearing member 100. As shown in FIG. Hereinafter, the same reference numerals will be given to the same or similar configurations as those of the spindle motor 1 according to the first embodiment described above, and the description thereof will be omitted, and only the different configurations will be described.

本発明の第2の実施の形態に係る流体動圧軸受80は、上述の本発明の第1の実施の形態に係るスピンドルモータ1に対して上側上部円錐軸受部材および下側下部円錐軸受部材の構成が異なる。具体的に、流体動圧軸受80においては、上側上部円錐軸受部材50に代えて上側上部円錐軸受部材91が設けられており、下側下部円錐軸受部材70に代えて下側下部円錐軸受部材101が設けられている。 The fluid dynamic pressure bearing 80 according to the second embodiment of the present invention has an upper upper conical bearing member and a lower lower conical bearing member for the spindle motor 1 according to the first embodiment of the present invention. Different configurations. Specifically, in the fluid dynamic pressure bearing 80 , an upper upper conical bearing member 91 is provided in place of the upper upper conical bearing member 50 , and a lower lower conical bearing member 101 is provided in place of the lower lower conical bearing member 70 . is provided.

上側下部円錐軸受部材40の円錐対向面40uには、一対の上側溝部41が形成されており、上側上部円錐軸受部材50の円錐対向面91bcと円錐面50dとの間には、円錐対向面40uと離間して対向する環状の連結面91bdが形成されている。円錐対向面40uと連結面91bdとの間には、一対の上側溝部41と連通する環状の油溜まり部92が形成されている。すなわち、上側上部円錐軸受部材91は、上側下部円錐軸受部材40の円錐対向面40uと当接する円錐対向面91bcと、円錐対向面91bcの半径方向外側に上側下部円錐軸受部材40の円錐対向面40uと離間する連結面91bdとが形成されている。 A pair of upper groove portions 41 are formed in the conical facing surface 40u of the upper and lower conical bearing member 40, and between the conical facing surface 91bc and the conical surface 50d of the upper upper conical bearing member 50, there are conical facing surfaces. An annular connecting surface 91bd is formed to face 40u while being spaced apart. An annular oil reservoir 92 communicating with the pair of upper grooves 41 is formed between the conical facing surface 40u and the connecting surface 91bd. That is, the upper upper conical bearing member 91 has a conical facing surface 91bc that contacts the conical facing surface 40u of the upper and lower conical bearing member 40, and a conical facing surface 40u of the upper and lower conical bearing member 40 radially outward of the conical facing surface 91bc. , and a connecting surface 91bd that is spaced apart is formed.

円錐対向面91bcは、貫通孔50aの下側の縁から上側に向かうに連れて拡径されているテーパ面である。円錐対向面91bcは、上側下部円錐軸受部材40の円錐対向面40uと当接する位置に配置されるようになっている。円錐対向面91bcは、上側下部円錐軸受部材40の円錐対向面40uと同じ傾斜を有しており、上側下部円錐軸受部材40の円錐対向面40uと当接することができるようになっている。円錐対向面91bcの上側の縁は、連結面91bdの下側の縁に接続している。 The conical facing surface 91bc is a tapered surface whose diameter increases upward from the lower edge of the through hole 50a. The conical facing surface 91bc is arranged at a position to contact the conical facing surface 40u of the upper and lower conical bearing member 40. As shown in FIG. The conical facing surface 91bc has the same inclination as the conical facing surface 40u of the upper and lower conical bearing member 40, so that it can come into contact with the conical facing surface 40u of the upper and lower conical bearing member 40. The upper edge of the conical facing surface 91bc is connected to the lower edge of the connecting surface 91bd.

連結面91bdは、円錐対向面91bcの上側の縁から上側に向かうに連れて拡径されているテーパ面である。連結面91bdは、円錐対向面91bcおよび上側下部円錐軸受部材40の円錐対向面40uよりも半径方向に対して大きい傾斜角度を有しており、上側下部円錐軸受部材40の円錐対向面40uと離間することができるようになっている。 The connecting surface 91bd is a tapered surface whose diameter increases upward from the upper edge of the conical facing surface 91bc. The connecting surface 91bd has a larger inclination angle with respect to the radial direction than the conical facing surface 91bc and the conical facing surface 40u of the upper and lower conical bearing member 40, and is separated from the conical facing surface 40u of the upper and lower conical bearing member 40. You can do it.

図9に示すように、流体動圧軸受80の組み立て状態において、上側円錐軸受部材90は、上側下部円錐軸受部材40と上側上部円錐軸受部材91との間に、上側上部円錐軸受部材91が半径方向内側から半径方向外側に向かって切り欠かれて形成された油溜まり部92を更に有している。具体的に、油溜まり部92は、上側下部円錐軸受部材40の円錐対向面40uと上側上部円錐軸受部材91の連結面91bdとの間に形成された円環状の空間である。油溜まり部92は、上側下部円錐軸受部材40の円錐対向面40uと離間しており、半径方向内側から半径方向外側に向かうに連れて軸Y1方向における幅が大きくなっている。 As shown in FIG. 9, in the assembled state of the fluid dynamic bearing 80, the upper conical bearing member 90 is positioned between the upper lower conical bearing member 40 and the upper upper conical bearing member 91 so that the upper upper conical bearing member 91 is radially It further has an oil reservoir portion 92 formed by notching from the inner side toward the outer side in the radial direction. Specifically, the oil reservoir 92 is an annular space formed between the conical facing surface 40u of the upper lower conical bearing member 40 and the connecting surface 91bd of the upper upper conical bearing member 91 . The oil reservoir 92 is separated from the conical facing surface 40u of the upper and lower conical bearing member 40, and its width in the direction of the axis Y1 increases from the radially inner side toward the radially outer side.

下側下部円錐軸受部材101は、図10に示す上側上部円錐軸受部材91と同じ部材で形成されている。すなわち、下側下部円錐軸受部材101は、下側上部円錐軸受部材60の円錐対向面60b(図11)と当接する円錐対向面101ucと、円錐対向面101ucの半径方向外側に下側上部円錐軸受部材60の円錐対向面60bと離間する連結面101udとが形成されている。 The lower lower conical bearing member 101 is made of the same material as the upper upper conical bearing member 91 shown in FIG. That is, the lower lower conical bearing member 101 has a conical facing surface 101uc that contacts the conical facing surface 60b (FIG. 11) of the lower upper conical bearing member 60, and a lower upper conical bearing surface 101uc radially outward of the conical facing surface 101uc. A conical facing surface 60b of the member 60 and a connecting surface 101ud are formed apart from each other.

円錐対向面101ucは、貫通孔70aの上側の縁から下側に向かうに連れて拡径されているテーパ面である。円錐対向面101ucは、下側上部円錐軸受部材60の円錐対向面60bと当接する位置に配置されるようになっている。円錐対向面101ucは、下側上部円錐軸受部材60の円錐対向面60bと同じ傾斜を有しており、下側上部円錐軸受部材60の円錐対向面60bと当接することができるようになっている。円錐対向面101ucの下側の縁は、連結面101udの上側の縁に接続している。 The conical facing surface 101uc is a tapered surface whose diameter increases downward from the upper edge of the through hole 70a. The conical facing surface 101uc is arranged at a position to contact the conical facing surface 60b of the lower upper conical bearing member 60. As shown in FIG. The conical facing surface 101uc has the same inclination as the conical facing surface 60b of the lower upper conical bearing member 60 so that it can abut against the conical facing surface 60b of the lower upper conical bearing member 60. . The lower edge of the conical facing surface 101uc is connected to the upper edge of the connecting surface 101ud.

連結面101udは、円錐対向面101ucの下側の縁から下側に向かうに連れて拡径されているテーパ面である。連結面101udは、円錐対向面101ucおよび下側上部円錐軸受部材60の円錐対向面60bよりも半径方向に対して大きい傾斜角度を有しており、下側上部円錐軸受部材60の円錐対向面60bと離間することができるようになっている。 The connecting surface 101ud is a tapered surface whose diameter increases downward from the lower edge of the conical facing surface 101uc. The connecting surface 101ud has a larger inclination angle with respect to the radial direction than the conical facing surface 101uc and the conical facing surface 60b of the lower upper conical bearing member 60. and can be separated from each other.

図11に示すように、流体動圧軸受80の組み立て状態において、下側円錐軸受部材100は、下側上部円錐軸受部材60と下側下部円錐軸受部材101との間に、下側下部円錐軸受部材101が半径方向内側から半径方向外側に向かって切り欠かれて形成された油溜まり部102を更に有している。具体的に、油溜まり部102は、下側上部円錐軸受部材60の円錐対向面60bと下側下部円錐軸受部材101の連結面101udとの間に形成された円環状の空間である。油溜まり部102は、下側上部円錐軸受部材60の円錐対向面60bと離間しており、半径方向内側から半径方向外側に向かうに連れて軸Y1方向における幅が大きくなっている。 As shown in FIG. 11 , in the assembled state of the fluid dynamic bearing 80 , the lower conical bearing member 100 is positioned between the lower upper conical bearing member 60 and the lower lower conical bearing member 101 . The member 101 further has an oil reservoir 102 formed by notching from the inner side in the radial direction toward the outer side in the radial direction. Specifically, the oil reservoir 102 is an annular space formed between the conical facing surface 60 b of the lower upper conical bearing member 60 and the connecting surface 101 ud of the lower lower conical bearing member 101 . The oil reservoir 102 is separated from the conical facing surface 60b of the lower upper conical bearing member 60, and its width in the direction of the axis Y1 increases from the radially inner side to the radially outer side.

このように、本発明の第2の実施の形態に係る流体動圧軸受80では、上側円錐軸受部材90が、上側下部円錐軸受部材40と上側上部円錐軸受部材91との間に、上側上部円錐軸受部材91が半径方向内側から半径方向外側に向かって切り欠かれて形成された油溜まり部92を有している。また、流体動圧軸受80では、下側円錐軸受部材100が、下側上部円錐軸受部材60と下側下部円錐軸受部材101との間に、下側下部円錐軸受部材101が半径方向内側から半径方向外側に向かって切り欠かれて形成された油溜まり部102を更に有している。このため、油溜まり部92,102の領域の分だけ循環油Gを多く溜めておくことができ、循環油Gが枯渇することによる流体動圧軸受80の故障を抑制して、流体動圧軸受80の寿命を向上することができる。 Thus, in the fluid dynamic pressure bearing 80 according to the second embodiment of the present invention, the upper conical bearing member 90 is disposed between the upper lower conical bearing member 40 and the upper upper conical bearing member 91. The bearing member 91 has an oil reservoir portion 92 formed by notching from the radially inner side toward the radially outer side. Further, in the fluid dynamic pressure bearing 80, the lower conical bearing member 100 is arranged between the lower upper conical bearing member 60 and the lower lower conical bearing member 101, and the lower lower conical bearing member 101 is arranged radially inward from the radial direction. It further has an oil reservoir portion 102 formed by notching outward in the direction. Therefore, a large amount of the circulating oil G can be stored in the areas of the oil reservoirs 92 and 102, and failure of the fluid dynamic pressure bearing 80 due to depletion of the circulating oil G can be suppressed. 80 life can be improved.

また、本発明の第2の実施の形態に係る流体動圧軸受80では、上側円錐軸受部材90が、上側下部円錐軸受部材40と、上側上部円錐軸受部材91との2つの円錐軸受部材により構成されている。このため、油溜まり部92を溝加工ではなく上側上部円錐軸受部材91の切削加工により形成することができる。従って、油溜まり部92を加工する加工時間を削減することができ、上側円錐軸受部材90を作製するコストを削減することができる。 Further, in the fluid dynamic pressure bearing 80 according to the second embodiment of the present invention, the upper conical bearing member 90 is composed of two conical bearing members, the upper lower conical bearing member 40 and the upper upper conical bearing member 91. It is Therefore, the oil reservoir portion 92 can be formed by cutting the upper upper conical bearing member 91 instead of grooving. Therefore, the processing time for processing the oil reservoir portion 92 can be reduced, and the cost for manufacturing the upper conical bearing member 90 can be reduced.

また、本発明の第2の実施の形態に係る流体動圧軸受80では、下側円錐軸受部材100が、下側上部円錐軸受部材60と、下側下部円錐軸受部材101との2つの円錐軸受部材により構成されている。このため、油溜まり部102を溝加工ではなく下側下部円錐軸受部材101の切削加工により形成することができる。従って、油溜まり部102を加工する加工時間を削減することができ、下側円錐軸受部材100を作製するコストを削減することができる。 Further, in the fluid dynamic pressure bearing 80 according to the second embodiment of the present invention, the lower conical bearing member 100 consists of two conical bearings, the lower upper conical bearing member 60 and the lower lower conical bearing member 101. It is composed of members. Therefore, the oil reservoir portion 102 can be formed by cutting the lower lower conical bearing member 101 instead of grooving. Therefore, the processing time for processing the oil reservoir portion 102 can be reduced, and the cost of manufacturing the lower conical bearing member 100 can be reduced.

次に、本発明の第3の実施の形態に係る流体動圧軸受110の構成を説明する。図12は、本発明の第3の実施の形態に係る流体動圧軸受110の上側円錐軸受部材90付近の部分の構成を概略的に示す部分拡大断面図である。図13は、図12に示す上側円錐軸受部材90の油溜まり部111付近の部分の構成を概略的に示す部分拡大断面図である。以下、上述の第2の実施の形態に係る流体動圧軸受80と同一のまたは類似する構成に対しては同一の符号を付してその説明を省略し、異なる構成についてのみ説明する。 Next, the configuration of the fluid dynamic pressure bearing 110 according to the third embodiment of the invention will be described. FIG. 12 is a partially enlarged cross-sectional view schematically showing the configuration of a portion near upper conical bearing member 90 of fluid dynamic pressure bearing 110 according to the third embodiment of the present invention. FIG. 13 is a partially enlarged cross-sectional view schematically showing the structure of the upper conical bearing member 90 shown in FIG. 12 near the oil reservoir 111. As shown in FIG. Hereinafter, the same reference numerals will be given to the same or similar configurations as those of the fluid dynamic pressure bearing 80 according to the above-described second embodiment, and the description thereof will be omitted, and only the different configurations will be described.

本発明の第3の実施の形態に係る流体動圧軸受110は、上述の本発明の第2の実施の形態に係る流体動圧軸受80に対して油溜まり部の構成が異なる。具体的に、流体動圧軸受110においては、油溜まり部92に代えて油溜まり部111が設けられている。 A fluid dynamic pressure bearing 110 according to the third embodiment of the present invention differs in the configuration of an oil reservoir from the fluid dynamic pressure bearing 80 according to the above-described second embodiment of the present invention. Specifically, fluid dynamic pressure bearing 110 is provided with oil reservoir 111 instead of oil reservoir 92 .

本発明の第3の実施の形態に係る上側上部円錐軸受部材91は、円錐対向面91bcおよび連結面91bdが本発明の第2の実施の形態に係る円錐対向面91bcおよび連結面91bdと異なることを除いて第2の実施の形態に係る上側上部円錐軸受部材91と同様に構成されている。すなわち、本発明の第3の実施の形態に係る円錐対向面91bcの半径方向における幅は、本発明の第2の実施の形態に係る円錐対向面91bcの半径方向における幅よりも大きくなっている。また、本発明の第3の実施の形態に係る連結面91bdの半径方向における幅は、本発明の第2の実施の形態に係る連結面91bdの半径方向における幅よりも小さくなっている。 The upper conical bearing member 91 according to the third embodiment of the present invention has a conical facing surface 91bc and a connecting surface 91bd that differ from the conical facing surface 91bc and the connecting surface 91bd according to the second embodiment of the present invention. It is constructed in the same manner as the upper upper conical bearing member 91 according to the second embodiment except for the above. That is, the radial width of the conical facing surface 91bc according to the third embodiment of the present invention is larger than the radial width of the conical facing surface 91bc according to the second embodiment of the present invention. . Further, the radial width of the connecting surface 91bd according to the third embodiment of the present invention is smaller than the radial width of the connecting surface 91bd according to the second embodiment of the present invention.

図12に示すように、流体動圧軸受110の組み立て状態において、上側円錐軸受部材90は、上側下部円錐軸受部材40と上側上部円錐軸受部材91との間に、上側上部円錐軸受部材91が半径方向内側から半径方向外側に向かって切り欠かれて形成された油溜まり部111を有している。具体的に、油溜まり部111は、上側下部円錐軸受部材40の円錐対向面40uと上側上部円錐軸受部材91の連結面91bdとの間に形成された円環状の空間である。油溜まり部111は、上側下部円錐軸受部材40の円錐対向面40uと離間しており、半径方向内側から半径方向外側に向かうに連れて軸Y1方向における幅が大きくなっている。 As shown in FIG. 12, in the assembled state of the fluid dynamic bearing 110, the upper conical bearing member 90 is positioned between the upper lower conical bearing member 40 and the upper upper conical bearing member 91 so that the upper upper conical bearing member 91 has a radial It has an oil reservoir portion 111 formed by notching from the inner side toward the outer side in the radial direction. Specifically, the oil reservoir 111 is an annular space formed between the conical facing surface 40u of the upper and lower conical bearing member 40 and the connecting surface 91bd of the upper and lower conical bearing member 91 . The oil reservoir portion 111 is separated from the conical facing surface 40u of the upper and lower conical bearing member 40, and its width in the direction of the axis Y1 increases from the radially inner side to the radially outer side.

図12に示すように、油溜まり部111は、上側下部円錐軸受部材40の一対の上側溝部41の底面41tよりも上側に位置している。具体的に、油溜まり部111は、油溜まり部92の軸Y1方向における下側の部分である上側下部円錐軸受部材40の円錐対向面40uとの当接部分Pが、上側下部円錐軸受部材40の一対の上側溝部41の底面41tの半径方向外側の縁E1よりも軸Y1方向において上側に配置されている。このため、上側円錐軸受部材90では、油溜まり部111の領域の分だけ循環油Gを確保することができ、循環油Gが枯渇することによる流体動圧軸受80の故障を抑制して、流体動圧軸受80の寿命を更に向上することができる。 As shown in FIG. 12 , the oil reservoir 111 is positioned above the bottom surfaces 41 t of the pair of upper grooves 41 of the upper and lower conical bearing member 40 . Specifically, the oil pool portion 111 has a contact portion P with the cone facing surface 40u of the upper and lower conical bearing member 40, which is the lower portion of the oil pool portion 92 in the direction of the axis Y1. 41t of the pair of upper groove portions 41 are arranged above the radially outer edge E1 of the bottom surface 41t in the direction of the axis Y1. Therefore, in the upper conical bearing member 90, it is possible to secure the circulating oil G for the area of the oil reservoir portion 111, thereby suppressing failure of the fluid dynamic pressure bearing 80 due to depletion of the circulating oil G, The life of the hydrodynamic bearing 80 can be further improved.

図13に示すように、油溜まり部111の半径方向外側の幅は、油溜まり部111の上側の縁とロータ部材31との間の幅よりも小さくなっている。具体的に、油溜まり部111の半径方向外側の縁における幅(開口幅)W1は、油溜まり部111の上側の縁E2と上側上部円錐軸受部材50の円錐面50dに対向するロータ部材31の内周面との間の幅W2よりも小さくなっている。このため、上側円錐軸受部材90は、油溜まり部111内に気泡が留まることを抑制することができ、気泡を循環油Gの界面に排出することができる。 As shown in FIG. 13 , the radially outer width of oil pool portion 111 is smaller than the width between the upper edge of oil pool portion 111 and rotor member 31 . Specifically, the width (opening width) W1 at the radially outer edge of the oil pool portion 111 is the width of the rotor member 31 facing the upper edge E2 of the oil pool portion 111 and the conical surface 50d of the upper upper conical bearing member 50. It is smaller than the width W2 between the inner peripheral surface. Therefore, the upper conical bearing member 90 can prevent air bubbles from remaining in the oil reservoir 111 and discharge the air bubbles to the interface of the circulating oil G. As shown in FIG.

なお、流体動圧軸受110においては、下側円錐軸受部材100の油溜まり部102に代えて油溜まり部111と同一の構造を有する油溜まり部が設けられている。 In fluid dynamic pressure bearing 110 , an oil reservoir having the same structure as oil reservoir 111 is provided in place of oil reservoir 102 of lower conical bearing member 100 .

次に、本発明の第4の実施の形態に係る流体動圧軸受120の構成を説明する。図14は、本発明の第4の実施の形態に係る流体動圧軸受120の上側円錐軸受部材90付近の部分の構成を概略的に示す部分拡大断面図である。以下、上述の第3の実施の形態に係る流体動圧軸受110と同一のまたは類似する構成に対しては同一の符号を付してその説明を省略し、異なる構成についてのみ説明する。 Next, the configuration of the fluid dynamic pressure bearing 120 according to the fourth embodiment of the invention will be described. FIG. 14 is a partially enlarged cross-sectional view schematically showing the configuration of the portion near the upper conical bearing member 90 of the fluid dynamic pressure bearing 120 according to the fourth embodiment of the present invention. Hereinafter, the same reference numerals are given to the same or similar configurations as those of the fluid dynamic pressure bearing 110 according to the above-described third embodiment, and the description thereof will be omitted, and only the different configurations will be described.

本発明の第4の実施の形態に係る流体動圧軸受120は、上述の本発明の第3の実施の形態に係る流体動圧軸受110に対して上側下部円錐軸受部材の一対の上側溝部の構成が異なる。具体的に、流体動圧軸受120においては、上側下部円錐軸受部材40の一対の上側溝部41に代えて上側下部円錐軸受部材121の一対の上側溝部122が設けられている。 The fluid dynamic pressure bearing 120 according to the fourth embodiment of the present invention has a pair of upper groove portions of the upper and lower conical bearing members in contrast to the fluid dynamic pressure bearing 110 according to the above-described third embodiment of the present invention. configuration is different. Specifically, in the fluid dynamic pressure bearing 120 , a pair of upper groove portions 122 of an upper lower conical bearing member 121 are provided in place of the pair of upper groove portions 41 of the upper and lower conical bearing member 40 .

一対の上側溝部122は、本発明の第3の実施の形態に係る一対の上側溝部41よりも軸Y1方向における幅(高さ)が小さくなっていることを除いて、本発明の第3の実施の形態に係る一対の上側溝部41と同様に構成されている。すなわち、一対の上側溝部122は、一対の上側溝部122の一対の側面122pの軸Y1方向における高さが一対の上側溝部41の一対の側面41pよりも小さくなっている。このため、一対の上側溝部122と上側上部円錐軸受部材91の円錐対向面91bcおよび連結面91bdとにより画定された潤滑油循環孔に溜まる潤滑油Gを少なくすることができる。従って、循環油Gが枯渇することによる流体動圧軸受80の故障を少量の潤滑油Gにより抑制して、流体動圧軸受80の寿命を更に向上することができる。 The pair of upper groove portions 122 have a width (height) in the direction of the axis Y1 smaller than that of the pair of upper groove portions 41 according to the third embodiment of the present invention, except that the width (height) thereof is smaller than that of the pair of upper groove portions 122 according to the third embodiment of the present invention. It is constructed in the same manner as the pair of upper groove portions 41 according to the third embodiment. That is, in the pair of upper groove portions 122, the height of the pair of side surfaces 122p of the pair of upper groove portions 122 in the direction of the axis Y1 is smaller than the height of the pair of side surfaces 41p of the pair of upper groove portions 41. As shown in FIG. Therefore, the lubricating oil G accumulated in the lubricating oil circulation hole defined by the pair of upper groove portions 122 and the conical facing surface 91bc and the connecting surface 91bd of the upper upper conical bearing member 91 can be reduced. Therefore, failure of the fluid dynamic pressure bearing 80 due to depletion of the circulating oil G can be suppressed with a small amount of lubricating oil G, and the life of the fluid dynamic pressure bearing 80 can be further improved.

また、本発明の第4の実施の形態に係る流体動圧軸受120では、上側円錐軸受部材90が、上側下部円錐軸受部材121と、上側上部円錐軸受部材91との2つの円錐軸受部材により構成されている。このため、上側下部円錐軸受部材121の一対の上側溝部122と上側上部円錐軸受部材91の円錐対向面91bcおよび連結面91bdとにより潤滑油循環孔を画成することができ、潤滑油循環孔をドリルによる孔加工ではなく、溝加工により形成することができる。従って、簡易な加工により上側円錐軸受部材22の潤滑油循環孔を一対の上側溝部122の軸Y1方向における幅(高さ)を小さくすることができる。 Further, in the fluid dynamic pressure bearing 120 according to the fourth embodiment of the present invention, the upper conical bearing member 90 is composed of two conical bearing members, an upper lower conical bearing member 121 and an upper upper conical bearing member 91. It is Therefore, the pair of upper groove portions 122 of the upper and lower conical bearing member 121 and the conical facing surface 91bc and the connecting surface 91bd of the upper and upper conical bearing member 91 can define a lubricating oil circulation hole. can be formed by grooving instead of drilling. Therefore, the width (height) of the pair of upper groove portions 122 in the direction of the axis Y1 of the lubricating oil circulation hole of the upper conical bearing member 22 can be reduced by simple processing.

なお、流体動圧軸受120においては、下側上部円錐軸受部材60の一対の下側溝部61に代えて上側下部円錐軸受部材121の一対の上側溝部122と同一の構造を有する一対の下側溝部が設けられている。 In the fluid dynamic pressure bearing 120, instead of the pair of lower grooves 61 of the lower upper conical bearing member 60, a pair of lower grooves having the same structure as the pair of upper grooves 122 of the upper lower conical bearing member 121 are provided. department is provided.

次に、本発明の第5の実施の形態に係る流体動圧軸受130の構成を説明する。図15は、本発明の第5の実施の形態に係る流体動圧軸受130の上側円錐軸受部材131付近の部分の構成を概略的に示す部分拡大断面図である。以下、上述の第1の実施の形態に係るスピンドルモータ1と同一のまたは類似する構成に対しては同一の符号を付してその説明を省略し、異なる構成についてのみ説明する。 Next, the configuration of the fluid dynamic pressure bearing 130 according to the fifth embodiment of the invention will be described. FIG. 15 is a partially enlarged cross-sectional view schematically showing the configuration of the portion near the upper conical bearing member 131 of the fluid dynamic pressure bearing 130 according to the fifth embodiment of the present invention. Hereinafter, the same reference numerals will be given to the same or similar configurations as those of the spindle motor 1 according to the first embodiment described above, and the description thereof will be omitted, and only the different configurations will be described.

本発明の第5の実施の形態に係る流体動圧軸受130は、上述の本発明の第1の実施の形態に係るスピンドルモータ1に対して上側円錐軸受部材の構成が異なる。具体的に、流体動圧軸受130においては、上側円錐軸受部材22の上側下部円錐軸受部材40および上側上部円錐軸受部材50に代えて上側円錐軸受部材131の上側下部円錐軸受部材132および上側上部円錐軸受部材133が設けられている。 A fluid dynamic pressure bearing 130 according to the fifth embodiment of the present invention differs from the above-described spindle motor 1 according to the first embodiment of the present invention in the configuration of the upper conical bearing member. Specifically, in the fluid dynamic pressure bearing 130, the upper lower conical bearing member 132 and the upper upper conical bearing member 132 of the upper conical bearing member 131 are replaced with the upper lower conical bearing member 40 and the upper upper conical bearing member 50 of the upper conical bearing member 22. A bearing member 133 is provided.

上側下部円錐軸受部材132は、上側上部円錐軸受部材133よりも硬度が高い材料により形成されている。上側上部円錐軸受部材133は例えばプラスチック(樹脂)により形成されているこのため、本発明の第5の実施の形態に係る流体動圧軸受130では、上側上部円錐軸受部材133を上側下部円錐軸受部材132よりもコストの低い材料で作製するため、上側円錐軸受部材131を作製するコストを削減することができる。例えば、上側下部円錐軸受部材132および上側上部円錐軸受部材133は、種々の金属や樹脂により形成することができる。 The upper lower conical bearing member 132 is made of a material having a higher hardness than the upper upper conical bearing member 133 . The upper upper conical bearing member 133 is made of, for example, plastic (resin). Since it is made of a material that costs less than 132, the cost of making the upper conical bearing member 131 can be reduced. For example, the upper lower conical bearing member 132 and the upper upper conical bearing member 133 can be made of various metals or resins.

上側下部円錐軸受部材132には、摩耗を抑えるためや下側円錐外面40bの変形を抑えるために、真鍮や銅合金、鉄系や銅系の焼結金属、アルミニウム、アルミニウム合金、ステンレス鋼等の金属が用いられる。また、上側下部円錐軸受部材132には、硬度を向上させるために無電解ニッケルメッキが施されてもよい。 The upper and lower conical bearing member 132 is made of brass, copper alloy, iron-based or copper-based sintered metal, aluminum, aluminum alloy, stainless steel, or the like, in order to suppress wear and deformation of the lower conical outer surface 40b. Metal is used. The upper and lower conical bearing members 132 may also be plated with electroless nickel to improve hardness.

また、上側下部円錐軸受部材132の下側円錐外面40bにDLC(diamond-like carbon)、鍍金、二硫化モリブデン、フッ素樹脂等の表面処理や窒化処理を施してもよい。このような表面処理や窒化処理により、接触抵抗を小さくして起動負荷トルクを低減でき、高速耐久性を向上することができ、また、回転時のブレが発生しても摩擦、傷、打痕の発生を防止でき、円滑な回転を可能にすることができる。 Further, the lower conical outer surface 40b of the upper lower conical bearing member 132 may be subjected to surface treatment such as DLC (diamond-like carbon), plating, molybdenum disulfide, fluorine resin, or nitriding treatment. Through such surface treatment and nitriding treatment, it is possible to reduce contact resistance, reduce starting load torque, and improve high-speed durability. can be prevented from occurring, and smooth rotation can be enabled.

上側上部円錐軸受部材133には、例えば、熱可塑性樹脂が用いられる。熱可塑性樹脂としては、例えば、ポリアセタール、ポリアミド、ポリアミドイミド(PAI)、ポリエーテルエーテルケトン(PEEK)、熱可塑性ポリイミド(TPI)、ポリテトラフルオロエチレン(PTFE)、ポリフェニレンサルファイド(PPS)、ポリブチレンテレフタレート(PBT)、ポリエーテルイミド(PEI)等を用いることができる。また、2種類以上の熱可塑性樹脂を混合させた材料を用いることもできる。 A thermoplastic resin, for example, is used for the upper upper conical bearing member 133 . Examples of thermoplastic resins include polyacetal, polyamide, polyamideimide (PAI), polyetheretherketone (PEEK), thermoplastic polyimide (TPI), polytetrafluoroethylene (PTFE), polyphenylene sulfide (PPS), and polybutylene terephthalate. (PBT), polyetherimide (PEI) and the like can be used. A material in which two or more thermoplastic resins are mixed can also be used.

また、上側上部円錐軸受部材133は、必ずしも熱可塑性樹脂のみにより形成されたものである必要はなく、熱可塑性樹脂と熱硬化性樹脂との混合物であってもよい。熱硬化性樹脂としては、例えばフェノール樹脂を使用することが可能である。 Also, the upper upper conical bearing member 133 does not necessarily have to be made of thermoplastic resin only, and may be a mixture of thermoplastic resin and thermosetting resin. As a thermosetting resin, it is possible to use, for example, a phenolic resin.

また、上側上部円錐軸受部材133としては、液晶ポリマー等も広く利用することができる。 Further, as the upper conical bearing member 133, a liquid crystal polymer or the like can be widely used.

なお、流体動圧軸受130においては、下側円錐軸受部材23の下側上部円錐軸受部材60および下側下部円錐軸受部材70に代えて上側円錐軸受部材131の上側下部円錐軸受部材132および上側上部円錐軸受部材133と同一の材料の下側上部円錐軸受部材および下側下部円錐軸受部材を用いることができる。また、本発明の第5の実施の形態に係る流体動圧軸受130の上側円錐軸受部材131の上側下部円錐軸受部材132および上側上部円錐軸受部材133の材料は、本発明の第1~4の実施の形態に係るスピンドルモータの上側円錐軸受部材および下側円錐部材にも適用することができる。 In the fluid dynamic pressure bearing 130 , instead of the lower upper conical bearing member 60 and the lower lower conical bearing member 70 of the lower conical bearing member 23 , the upper lower conical bearing member 132 and the upper upper conical bearing member 132 of the upper conical bearing member 131 are replaced. Lower upper and lower conical bearing members of the same material as conical bearing member 133 can be used. In addition, the materials of the upper lower conical bearing member 132 and the upper upper conical bearing member 133 of the upper conical bearing member 131 of the fluid dynamic pressure bearing 130 according to the fifth embodiment of the present invention are the same as those of the first to fourth aspects of the present invention. It can also be applied to the upper conical bearing member and the lower conical member of the spindle motor according to the embodiment.

以上、本発明の実施の形態について説明したが、本発明は上記実施の形態に限定されるものではなく、本発明の概念および特許請求の範囲に含まれるあらゆる態様を含む。また、上述した課題および効果の少なくとも一部を奏するように、各構成を適宜選択的に組み合わせてもよい。例えば、上記実施の形態における、各構成要素の形状、材料、配置、サイズ等は、本発明の具体的使用態様によって適宜変更され得る。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and includes all aspects included in the concept of the present invention and the scope of claims. Moreover, each configuration may be selectively combined as appropriate so as to achieve at least part of the above-described problems and effects. For example, the shape, material, arrangement, size, etc. of each component in the above embodiment may be changed as appropriate according to the specific usage of the present invention.

例えば、本発明の第1の実施の形態に係る流体動圧軸受20においては、上側下部円錐軸受部材40の円錐対向面40uに、半径方向内側から半径方向外側に向かって背向して半径方向に延びる一対の上側溝部41が形成されている場合を一例に本発明の実施の形態について説明した。しかし、本発明はこれに限らず、溝部は、上側上部円錐軸受部材50の円錐対向面50bに形成されていてもよい。すなわち、上側上部円錐軸受部材50と対向する上側下部円錐軸受部材40の円錐対向面40uおよび上側下部円錐軸受部材40と対向する上側上部円錐軸受部材50の円錐対向面50bの少なくともいずれかに半径方向に延在する溝部が形成されていればよい。 For example, in the fluid dynamic pressure bearing 20 according to the first embodiment of the present invention, radial The embodiment of the present invention has been described by taking as an example the case where the pair of upper groove portions 41 are formed. However, the present invention is not limited to this, and the groove portion may be formed in the conical facing surface 50b of the upper upper conical bearing member 50 . That is, at least one of the conical facing surface 40u of the upper lower conical bearing member 40 facing the upper upper conical bearing member 50 and the conical facing surface 50b of the upper upper conical bearing member 50 facing the upper lower conical bearing member 40 has radial It suffices if a groove portion extending to .

また、本発明の第1の実施の形態に係る流体動圧軸受20においては、下側上部円錐軸受部材60の円錐対向面60bに、半径方向内側から半径方向外側に向かって背向して半径方向に延びる一対の下側溝部61が形成されている場合を一例に本発明の実施の形態について説明した。しかし、本発明はこれに限らず、溝部は、下側下部円錐軸受部材70の円錐対向面70uに形成されていてもよい。すなわち、下側下部円錐軸受部材70と対向する下側上部円錐軸受部材60の円錐対向面60bおよび下側上部円錐軸受部材60と対向する下側下部円錐軸受部材70の円錐対向面70uの少なくともいずれかに半径方向に延在する溝部が形成されていればよい。 In addition, in the fluid dynamic pressure bearing 20 according to the first embodiment of the present invention, the conical facing surface 60b of the lower upper conical bearing member 60 is radially outwardly facing from the radially inner side. The embodiment of the present invention has been described by taking as an example the case where the pair of lower groove portions 61 extending in the direction is formed. However, the present invention is not limited to this, and the groove portion may be formed in the conical facing surface 70u of the lower lower conical bearing member 70 . That is, at least one of the conical facing surface 60b of the lower upper conical bearing member 60 facing the lower conical bearing member 70 and the conical facing surface 70u of the lower lower conical bearing member 70 facing the lower upper conical bearing member 60 It suffices that a groove extending in the radial direction is formed.

1…スピンドルモータ、10…ステータ、11…ベースプレート、11a…貫通孔、11b…円周壁部、12…ステータコア、13…コイル、20,80,110,120,130…流体動圧軸受、21…軸部材、21a…軸孔、21d…外周面、22,90,131…上側円錐軸受部材、23,100…下側円錐軸受部材、30…ロータ、31…ロータ部材、31a…貫通孔、31b…動圧溝部、31c…ヨーク取付部、31du,31db…円錐内面、32…ヨーク、33…ロータマグネット、34…エンドキャップ、40,121,132…上側下部円錐軸受部材、40a…貫通孔、40b…下側円錐外面、40d…円錐面、40u…円錐対向面、41,122…一対の上側溝部、41p,122p…一対の側面、41t…底面、42…フランジ部、50,91,133…上側上部円錐軸受部材、50a…貫通孔、50b…円錐対向面、50d…円錐面、50u…上面、60…下側上部円錐軸受部材、60a…貫通孔、60b…円錐対向面、60d…円錐面、60u…上側円錐外面、61…一対の下側溝部、61p…一対の側面、61t…底面、62…フランジ部、70,101…下側下部円錐軸受部材、70a…貫通孔、70b…下面、70d…円錐面、70u…円錐対向面、91bc,101uc…円錐対向面、91bd,101ud…連結面、92,102,111…油溜まり部、200…ハードディスク駆動装置、201…ハウジング、201a…底部、202…ハードディスク、203…軸受装置、204…スイングアーム、205…ヘッド部、D…動圧溝、DB…動圧軸受部、E1,E2…縁、G…潤滑油、P…当接部分、S…空間、T…テーパシール部、W1,W2…幅、Y1…軸 DESCRIPTION OF SYMBOLS 1... Spindle motor 10... Stator 11... Base plate 11a... Through hole 11b... Circumferential wall part 12... Stator core 13... Coil 20, 80, 110, 120, 130... Fluid dynamic pressure bearing, 21... Shaft Members 21a... Shaft hole 21d... Peripheral surface 22, 90, 131... Upper conical bearing member 23, 100... Lower conical bearing member 30... Rotor 31... Rotor member 31a... Through hole 31b... Movement Pressure groove portion 31c Yoke mounting portion 31du, 31db Conical inner surface 32 Yoke 33 Rotor magnet 34 End cap 40, 121, 132 Upper and lower conical bearing member 40a Through hole 40b Bottom Side conical outer surface 40d Conical surface 40u Conical opposing surface 41, 122 Pair of upper groove portions 41p, 122p Pair of side surfaces 41t Bottom surface 42 Flange portion 50, 91, 133 Upper upper portion Conical bearing member 50a through hole 50b facing conical surface 50d conical surface 50u upper surface 60 lower upper conical bearing member 60a through hole 60b facing conical surface 60d conical surface 60u Upper conical outer surface 61 Pair of lower grooves 61p Pair of side surfaces 61t Bottom surface 62 Flanges 70, 101 Lower lower conical bearing member 70a Through hole 70b Lower surface 70d Conical surface 70u Conical opposing surface 91bc, 101uc Conical opposing surface 91bd, 101ud Connection surface 92, 102, 111 Oil reservoir 200 Hard disk drive 201 Housing 201a Bottom 202 Hard disk 203 Bearing device 204 Swing arm 205 Head portion D Dynamic pressure groove DB Dynamic pressure bearing portion E1, E2 Edge G Lubricating oil P Contact portion S Space , T... Taper seal portion, W1, W2... Width, Y1... Axis

Claims (7)

軸部材と、
前記軸部材固定される第1円錐軸受部材および第2円錐軸受部材と、
前記第1円錐軸受部材および前記第2円錐軸受部材を介して前記軸部材に回転自在な状態で支持されるとともに、前記軸部材が挿通された貫通孔を備えるロータ部材と、
を備え、
前記第2円錐軸受部材は、前記第1円錐軸受部材よりも前記貫通孔の開口側に位置するとともに、前記貫通孔の開口に向かうに連れて縮径されており、
前記第1円錐軸受部材は、前記貫通孔の開口に向かうに連れて拡径されており、
前記第1円錐軸受部材と前記第2円錐軸受部材とは、径が拡径する側を対向させて互いに当接し、
前記第2円錐軸受部材の前記縮径を規定する円錐面と前記ロータ部材との間で潤滑油を保持するテーパシール部が形成され、
前記第1円錐軸受部材の前記第2円錐軸受部材側とは反対側の円錐軸受面と前記ロータ部材との間で前記潤滑油による動圧が発生する動圧軸受部が設けられていることを特徴とする流体動圧軸受。
a shaft member;
a first conical bearing member and a second conical bearing member fixed to the shaft member;
a rotor member rotatably supported by the shaft member via the first conical bearing member and the second conical bearing member and having a through hole through which the shaft member is inserted ;
with
The second conical bearing member is positioned closer to the opening of the through hole than the first conical bearing member, and has a diameter that decreases toward the opening of the through hole,
The diameter of the first conical bearing member increases toward the opening of the through hole,
the first conical bearing member and the second conical bearing member are in contact with each other with their diameter-enlarged sides facing each other ;
A tapered seal portion for retaining lubricating oil is formed between the conical surface defining the reduced diameter of the second conical bearing member and the rotor member,
A dynamic pressure bearing portion is provided in which dynamic pressure is generated by the lubricating oil between the conical bearing surface of the first conical bearing member opposite to the second conical bearing member side and the rotor member. A fluid dynamic bearing characterized by:
前記第1円錐軸受部材と前記第2円錐軸受部材とは、前記軸部材に圧入されており、
前記第2円錐軸受部材は、前記第1円錐軸受部材よりも圧入代が大きいことを特徴とする請求項1記載の流体動圧軸受。
The first conical bearing member and the second conical bearing member are press-fitted into the shaft member,
2. The fluid dynamic bearing according to claim 1, wherein said second conical bearing member has a greater press-fit allowance than said first conical bearing member.
前記第2円錐軸受部材と対向する前記第1円錐軸受部材の第1対向面および前記第1円錐軸受部材と対向する前記第2円錐軸受部材の第2対向面の少なくともいずれかには半径方向に延在する溝部が形成されていることを特徴とする請求項1または2記載の流体動圧軸受。 At least one of the first facing surface of the first conical bearing member facing the second conical bearing member and the second facing surface of the second conical bearing member facing the first conical bearing member has a radial 3. A fluid dynamic pressure bearing according to claim 1, wherein an extending groove is formed. 前記第1円錐軸受部材の前記第1対向面には、前記溝部が形成されており、
前記第2円錐軸受部材の前記第2対向面と前記円錐面との間には、前記第1対向面と離間して対向する環状の連結面が形成されており、
前記第1対向面と前記連結面との間には、前記溝部と連通する環状の油溜まり部が形成されていることを特徴とする請求項3記載の流体動圧軸受。
The groove is formed in the first facing surface of the first conical bearing member,
between the second facing surface and the conical surface of the second conical bearing member, an annular connecting surface facing the first facing surface with a gap therebetween is formed;
4. The fluid dynamic bearing according to claim 3, wherein an annular oil reservoir communicating with said groove is formed between said first opposing surface and said connecting surface.
前記第1円錐軸受部材は、前記第2円錐軸受部材よりも硬度が高い材料により形成されていることを特徴とする請求項1乃至4のいずれか1項記載の流体動圧軸受。 5. The fluid dynamic bearing according to claim 1, wherein said first conical bearing member is made of a material having higher hardness than said second conical bearing member. 前記第2円錐軸受部材は、樹脂により形成されていることを特徴とする請求項5記載の流体動圧軸受。 6. The fluid dynamic bearing according to claim 5, wherein said second conical bearing member is made of resin. 請求項1乃至6のいずれか1項記載の流体動圧軸受を備えたスピンドルモータ。 A spindle motor comprising the fluid dynamic pressure bearing according to any one of claims 1 to 6.
JP2018248589A 2018-12-28 2018-12-28 Fluid dynamic bearings and spindle motors Active JP7224182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018248589A JP7224182B2 (en) 2018-12-28 2018-12-28 Fluid dynamic bearings and spindle motors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018248589A JP7224182B2 (en) 2018-12-28 2018-12-28 Fluid dynamic bearings and spindle motors

Publications (2)

Publication Number Publication Date
JP2020110018A JP2020110018A (en) 2020-07-16
JP7224182B2 true JP7224182B2 (en) 2023-02-17

Family

ID=71570529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018248589A Active JP7224182B2 (en) 2018-12-28 2018-12-28 Fluid dynamic bearings and spindle motors

Country Status (1)

Country Link
JP (1) JP7224182B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004360590A (en) 2003-06-05 2004-12-24 Nissin Kogyo Co Ltd Pump-driving motor and method for fixing bearing member to rotary shaft of pump-driving motor
JP2009216183A (en) 2008-03-11 2009-09-24 Nippon Densan Corp Fluid dynamic bearing device, spindle motor, and disc drive device
JP2018155292A (en) 2017-03-16 2018-10-04 ミネベアミツミ株式会社 Fluid dynamic pressure bearing and spindle motor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100189929B1 (en) * 1996-07-27 1999-06-01 윤종용 Fluidic bearing with a spacer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004360590A (en) 2003-06-05 2004-12-24 Nissin Kogyo Co Ltd Pump-driving motor and method for fixing bearing member to rotary shaft of pump-driving motor
JP2009216183A (en) 2008-03-11 2009-09-24 Nippon Densan Corp Fluid dynamic bearing device, spindle motor, and disc drive device
JP2018155292A (en) 2017-03-16 2018-10-04 ミネベアミツミ株式会社 Fluid dynamic pressure bearing and spindle motor

Also Published As

Publication number Publication date
JP2020110018A (en) 2020-07-16

Similar Documents

Publication Publication Date Title
JP4531584B2 (en) Fluid dynamic bearing device and motor provided with the same
US20070154123A1 (en) Hydrodynamic bearing device and a recording disk drive equipped with it
US8370868B2 (en) Spindle motor and disk driver having the same
US7612476B2 (en) Motor
US7059771B2 (en) Motors with oil dynamic pressure bearing, oil dynamic pressure bearing devices and method for manufacturing the same
JP2010138992A (en) Bearing device, spindle motor, and disk drive unit
CN100420866C (en) Dynamic pressure bearing device
US20140268413A1 (en) Spindle motor and hard disc drive including the same
JP2009204019A (en) Fluid dynamic bearing device, spindle motor, and disc drive mechanism
US8879203B2 (en) Spindle motor having lower thrust member with insertion protrusion and hard disk drive including the same
KR100638667B1 (en) A spindle motor having a hydrodynamic prerssure bearing
JP7224182B2 (en) Fluid dynamic bearings and spindle motors
US6815854B2 (en) Low power spindle motor with a fixed shaft
JP4689283B2 (en) Hydrodynamic bearing device
JP2005016556A (en) Conical dynamic pressure bearing device, and recording disk drive device having the same
JP2006112614A (en) Dynamic pressure bearing device
US8908322B1 (en) Spindle motor having base member with fitting protrusions and hard disk drive including the same
JP4302462B2 (en) DYNAMIC PRESSURE BEARING DEVICE, ITS MANUFACTURING METHOD, AND RECORDING DISC DRIVE DEVICE
JP2009158029A (en) Spindle motor for disk drive device, information recording and reproducing device using the same
US20150214808A1 (en) Spindle motor and hard disk drive including the same
US20150194181A1 (en) Spindle motor and hard disk drive including the same
JP2005337341A (en) Dynamic pressure bearing device and motor using the same
JP2005048899A (en) Conical dynamic pressure bearing and recording disk drive device therewith
JP3984756B2 (en) Air dynamic pressure bearing device
JP3782961B2 (en) Magnetic disk drive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210917

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20220209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230207

R150 Certificate of patent or registration of utility model

Ref document number: 7224182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150