JP7217872B2 - Noble metal separation and recovery method and precious metal fine particles recovered by the method - Google Patents

Noble metal separation and recovery method and precious metal fine particles recovered by the method Download PDF

Info

Publication number
JP7217872B2
JP7217872B2 JP2019039583A JP2019039583A JP7217872B2 JP 7217872 B2 JP7217872 B2 JP 7217872B2 JP 2019039583 A JP2019039583 A JP 2019039583A JP 2019039583 A JP2019039583 A JP 2019039583A JP 7217872 B2 JP7217872 B2 JP 7217872B2
Authority
JP
Japan
Prior art keywords
chitosan
gold
film
noble metal
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019039583A
Other languages
Japanese (ja)
Other versions
JP2020143322A (en
Inventor
由成 馬場
京平 鹿屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Miyazaki
Original Assignee
University of Miyazaki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Miyazaki filed Critical University of Miyazaki
Priority to JP2019039583A priority Critical patent/JP7217872B2/en
Publication of JP2020143322A publication Critical patent/JP2020143322A/en
Application granted granted Critical
Publication of JP7217872B2 publication Critical patent/JP7217872B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、貴金属類を溶解させた混合溶液をキトサン膜又はキトサン誘導体に接触させ、貴金属イオンのみを貴金属微粒子として分離回収する方法並びに同方法によって回収される貴金属微粒子に関する。 TECHNICAL FIELD The present invention relates to a method of contacting a mixed solution in which noble metals are dissolved with a chitosan film or a chitosan derivative to separate and recover only noble metal ions as noble metal fine particles, and noble metal fine particles recovered by the same method.

金、白金、パラジウム等の貴金属あるいはその合金は、触媒作用、磁性及び水素吸蔵を始めとする多彩な性質を持つため、日進月歩のIT・AI分野の基盤となる電子回路を構成する電子部品や磁気ディスク、更には新規の機能性材料の創製に不可欠の資源となっている。また、インジウムやガリウム等のレアメタルは、液晶パネルや太陽光発電パネル等に使用されており、我々の生活にも非常に密着したものになっている。 Precious metals such as gold, platinum, palladium, and their alloys have various properties such as catalytic action, magnetism, and hydrogen storage. It has become an indispensable resource for the creation of discs and even new functional materials. In addition, rare metals such as indium and gallium are used in liquid crystal panels, photovoltaic panels, etc., and are closely related to our lives.

通常これらの貴金属やレアメタルは、主として鉱山等の採掘により得られるが、資源的に極めて希少であり、かつ地球上の一部地域に偏在している。一方、使用済み携帯電話等の電子機器の廃棄物からは、採掘量に比べても無視できない量の貴金属が回収される。このため近年、資源の再利用と経済的観点から、使用済みの電子機器がいわゆる都市鉱山として見直されている(非特許文献1)。 These precious metals and rare metals are usually obtained mainly by mining in mines, etc., but they are extremely scarce in terms of resources and are unevenly distributed in some regions of the earth. On the other hand, a considerable amount of precious metal is recovered from the waste of electronic devices such as used mobile phones, even compared to the amount of mined. For this reason, in recent years, used electronic devices have been reconsidered as so-called urban mines from the viewpoint of resource reuse and economy (Non-Patent Document 1).

現在、貴金属やレアメタルの回収には、溶媒抽出法のほか、硫黄や窒素を配位原子とする工業用キレート樹脂やイオン交換樹脂を用いる吸着法が使用されている。後者の吸着法においては、樹脂に吸着された貴金属イオンは、脱着剤により水溶液側へ回収されるが、脱着試薬としてアンモニアのほか、チオ尿素や塩酸が用いられるため、その後の処理プロセスを更に複雑にしている。本出願の中で取り上げた金の回収過程でチオール、チオエーテル、チオ尿度等の硫黄原子系が主に用いられるのもその例である。 At present, in addition to solvent extraction methods, adsorption methods using industrial chelate resins or ion exchange resins with sulfur or nitrogen as coordinating atoms are used to recover precious metals and rare metals. In the latter adsorption method, the precious metal ions adsorbed on the resin are recovered to the aqueous solution side with a desorption agent, but since ammonia, thiourea, and hydrochloric acid are used as desorption reagents, the subsequent treatment process becomes more complicated. I have to. An example is the predominant use of sulfur atom systems such as thiols, thioethers, thiouretes, etc. in the gold recovery processes discussed in this application.

近年、このような貴金属あるいはレアメタルを回収する手段として、発明者らにより新たにキトサンを用いる回収方法が開発されている。キトサンは、カニやエビ等の甲殻類の殻を構成している多糖類のキチンを、脱アセチル化することによって得られる。例えば、特許文献1には、フェニルホスフィン酸を導入したキトサン誘導体を用いてインジウム及びガリウムを回収する方法が開示されている。 In recent years, the inventors have developed a new recovery method using chitosan as means for recovering such noble metals or rare metals. Chitosan is obtained by deacetylating chitin, a polysaccharide that constitutes the shells of crustaceans such as crabs and shrimps. For example, Patent Document 1 discloses a method of recovering indium and gallium using a chitosan derivative into which phenylphosphinic acid is introduced.

また、特許文献2には、架橋キトサン(CLAC)を含む、金属イオンの吸着材を用いることによって、モリブデン、タングステン及びバナジウムを回収する方法が開示されている。 Further, Patent Document 2 discloses a method for recovering molybdenum, tungsten and vanadium by using an adsorbent for metal ions, including crosslinked chitosan (CLAC).

また、特許文献3には、多孔質キトサン微粒子とヒドロキシキノリン又はその誘導体とアルデヒドとを反応させて得られる吸着材を用い、かつ脱離剤溶液の組成やpH等の脱離条件を変えることにより、パラジウム、金、白金、インジウム及びガリウム等の各種金属イオンを選択的に分離回収する方法が開示されている。 Further, in Patent Document 3, by using an adsorbent obtained by reacting porous chitosan fine particles, hydroxyquinoline or its derivative, and aldehyde, and by changing the desorption conditions such as the composition and pH of the desorption agent solution, , palladium, gold, platinum, indium and gallium.

即ち、これらのキトサン又はキトサン誘導体に吸着された各種金属イオンは、酸、アルカリ、チオ尿素等の各水溶液と接触させることにより、液性に依存して高選択的あるいは特異的に遊離の金属イオンとして溶液中に脱離回収されるものである(特許文献1~3)。 That is, the various metal ions adsorbed to these chitosans or chitosan derivatives are highly selectively or specifically converted into free metal ions depending on the liquid property by contacting with each aqueous solution of acid, alkali, thiourea, etc. It is desorbed and recovered in the solution as (Patent Documents 1 to 3).

特開2010-179205号公報JP 2010-179205 A 特開2010-260028号公報Japanese Patent Application Laid-Open No. 2010-260028 特開2014-4518号公報JP 2014-4518 A

芝田隼次、奥田晃彦「貴金属のリサイクル技術」資源と素材、2012年、118巻、1~8頁Junji Shibata, Akihiko Okuda, "Precious Metal Recycling Technology," Resource and Material, 2012, Vol. 118, pp. 1-8

以上のように、工業用キレート樹脂やイオン交換樹脂、あるいは従来のキトサン系吸着材を用いた貴金属の回収工程では、貴金属イオンを[AuCl、[PdCl2- 、[PtCl2-、[RhCl2-等の化学形態で取り込んだ吸着体を酸、アルカリ又はチオ尿素等の水溶液と接触させ、金属種が溶液に溶け出し、遊離イオンとして分離回収されることを共通の特徴としている。また、回収液には貴金属イオンに加えて脱離剤等の添加剤が混在しており、後処理も必要である。更に、先述した例のように、脱着剤によってはその後の処理プロセスが相当に複雑になるという問題があった。 As described above, in the process of recovering precious metals using industrial chelate resins, ion exchange resins, or conventional chitosan-based adsorbents, precious metal ions are converted into [AuCl 4 ] , [PdCl 4 ] 2− , [PtCl 6 ] 2- , [RhCl 5 ] 2- , etc., is brought into contact with an aqueous solution of acid, alkali, or thiourea, and the metal species dissolves into the solution and is separated and recovered as free ions. is characterized by In addition, the recovered liquid contains additives such as a desorbing agent in addition to the noble metal ions, and post-treatment is also required. Furthermore, as in the example described above, depending on the desorbent, there is a problem that the subsequent treatment process becomes considerably complicated.

本発明は、このような問題点に着目してなされたもので、簡便に且つ安価な方法で貴金属微粒子として回収することができる貴金属の分離回収方法を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for separating and recovering precious metals, which can be recovered as fine particles of noble metals in a simple and inexpensive manner.

前記課題を解決するために、本発明における貴金属の分離回収方法は、
キトサン又はキトサン誘導体を用いた貴金属の回収方法であって、
キトサン又はキトサン誘導体を膜状に形成しキトサン膜とする工程と、
貴金属イオンを含む溶液に前記キトサン膜を添加し、前記貴金属イオンを前記キトサン膜に吸着させる工程と、
前記キトサン膜に吸着された貴金属イオンを還元処理し、貴金属微粒子として脱離させる工程と、を含むことを特徴としている。
この特徴によれば、吸着材に補足された貴金属イオンを還元処理により貴金属微粒子として回収できるため、貴金属イオンを溶液中に脱離させる従来の手法に比べ、化学薬品の使用低減、コスト削減及び装置の腐食を低減させることができる。
また、吸着材として用いるキトサン又はキトサン誘導体は、安価で化学的にも非常に安定しているため、工業的な長期使用が可能となる。
In order to solve the above problems, the precious metal separation and recovery method of the present invention comprises:
A method for recovering precious metals using chitosan or a chitosan derivative, comprising:
a step of forming chitosan or a chitosan derivative into a film to form a chitosan film;
adding the chitosan film to a solution containing noble metal ions to adsorb the noble metal ions to the chitosan film;
and a step of subjecting the noble metal ions adsorbed to the chitosan film to reduction treatment and desorbing them as fine noble metal particles.
According to this feature, since the precious metal ions captured by the adsorbent can be recovered as fine precious metal particles by reduction treatment, compared to the conventional method of desorbing the precious metal ions into the solution, the use of chemicals can be reduced, the cost can be reduced, and the apparatus can be corrosion can be reduced.
In addition, chitosan or a chitosan derivative used as an adsorbent is inexpensive and chemically very stable, so that it can be used industrially for a long period of time.

前記還元処理において、還元剤の種類、還元剤水溶液のpH、還元時間、又は還元剤濃度を変化させることにより、前記貴金属微粒子の形態又は粒子径を制御することを特徴としている。
この特徴によれば、還元処理における還元剤の種類、還元剤水溶液のpH、還元時間、又は還元剤濃度を変化させることにより、貴金属微粒子の形態又は粒子径を制御できるため、使用目的に応じた貴金属微粒子を回収できる。
In the reduction treatment, the type of reducing agent, the pH of the reducing agent aqueous solution, the reduction time, or the concentration of the reducing agent are changed to control the morphology or particle size of the noble metal fine particles.
According to this feature, by changing the type of reducing agent in the reduction treatment, the pH of the reducing agent aqueous solution, the reduction time, or the concentration of the reducing agent, the morphology or particle diameter of the noble metal fine particles can be controlled, so that the Precious metal microparticles can be recovered.

本発明における貴金属の分離回収方法は、
キトサン又はキトサン誘導体を用いた貴金属の回収方法であって、
貴金属イオンを含む溶液に還元能を付与したキトサン又はキトサン誘導体を添加する工程と、
前記溶液中に溶解された貴金属イオンを貴金属微粒子として固化させる工程と、を含むことを特徴としている。
この特徴によれば貴金属イオンのみ選択的に吸着させ、還元剤を使用することなく固体の貴金属微粒子として回収できるため、極めて簡便な処理にて貴金属を回収でき、大幅にコストを削減させることができる。
The method for separating and recovering precious metals in the present invention comprises:
A method for recovering precious metals using chitosan or a chitosan derivative, comprising:
adding chitosan or a chitosan derivative having reducing ability to a solution containing noble metal ions;
and a step of solidifying the noble metal ions dissolved in the solution as fine noble metal particles.
According to this feature, only noble metal ions can be selectively adsorbed and recovered as solid noble metal fine particles without using a reducing agent, so the noble metal can be recovered by an extremely simple process, and the cost can be greatly reduced. .

本発明における貴金属微粒子は、前記の貴金属の分離回収方法において回収された貴金属であって、前記貴金属の形態が球状、三角形状又は六角形状であり、かつ大きさがナノサイズ又はマイクロサイズであることを特徴としている。
この特徴によれば、前記方法により分離回収された貴金属そのものを工業的に使用でき、貴金属の形態やサイズを特定し、各種電子部材や医療分野等において機能や用途を広めることができる。
The fine particles of precious metals in the present invention are precious metals recovered by the method for separating and recovering precious metals described above, wherein the shape of the noble metals is spherical, triangular or hexagonal, and the size is nano-sized or micro-sized. is characterized by
According to this feature, the precious metal itself separated and recovered by the above method can be used industrially, the form and size of the precious metal can be specified, and the functions and applications can be expanded in various electronic members, medical fields, and the like.

吸着材として用いるために調製したキトサン膜の外観写真である。1 is an appearance photograph of a chitosan film prepared for use as an adsorbent. キトサン膜に金イオンを吸着させた後、種々の還元剤による還元処理を行って得られた試料のSEM像である。Fig. 2 shows SEM images of samples obtained by adsorbing gold ions on a chitosan film and then performing reduction treatment with various reducing agents. キトサン膜を吸着材、NaEDTAを還元剤とし、還元液のpHを変えて得られた試料のSEM像である。FIG. 10 is an SEM image of a sample obtained by using a chitosan film as an adsorbent, Na 2 EDTA as a reducing agent, and changing the pH of the reducing solution. FIG. キトサン膜を吸着材、NaEDTAを還元剤とし、還元時間を変えて得られた試料のSEM像である。Fig. 4 shows SEM images of samples obtained by using a chitosan film as an adsorbent and Na 2 EDTA as a reducing agent and changing the reduction time. キトサン膜を吸着材、シュウ酸ナトリウムを還元剤とし、約24時間還元して得られた試料のSEM像である。It is an SEM image of a sample obtained by reduction for about 24 hours using a chitosan film as an adsorbent and sodium oxalate as a reducing agent. キトサン膜を吸着材、NaEDTAを還元剤とし、還元液濃度を変えて得られた試料のSEM像である。Fig. 2 shows SEM images of samples obtained by using a chitosan film as an adsorbent, Na2EDTA as a reducing agent, and varying the concentration of the reducing solution. キトサン膜を吸着材、シュウ酸ナトリウムを還元剤とし、還元液濃度を変えて得られた試料のSEM像である。Fig. 2 shows SEM images of samples obtained by using a chitosan film as an adsorbent, sodium oxalate as a reducing agent, and varying the concentration of a reducing solution. 酢酸キトサンと[AuClイオン水溶液との接触反応により得られた生成物のTEM像である。1 is a TEM image of a product obtained by a contact reaction between chitosan acetate and [AuCl 4 ] -ion aqueous solution.

本発明に係る貴金属の分離回収方法を実施するための形態を実施例に基づいて以下に説明する。 A mode for carrying out the method for separating and recovering precious metals according to the present invention will be described below based on examples.

本発明では、実施例として貴金属の代表例として金の分離回収方法を示すが、金と同様の特性を有する銀、白金、パラジウムは、金について得られたものと同様の還元処理効果があり、また、これ以外の貴金属として挙げられるロジウム、イリジウム、ルテニウム、オスミウムについても同様の処理が適用できる。 In the present invention, a method for separating and recovering gold as a representative example of precious metals is shown as an example. Silver, platinum, and palladium, which have similar properties to gold, have the same reduction treatment effect as that obtained for gold. The same treatment can also be applied to rhodium, iridium, ruthenium, and osmium, which are listed as other noble metals.

本発明で生成される金微粒子の大きさは約5nm~2.5μmであるが、還元時間等の調整により範囲が拡大されるため、本発明でいうナノサイズ又はマイクロサイズの微粒子とは、約1nm~約100μmの大きさの微粒子をいう。また、本発明で生成される金微粒の形態は、主に球状、三角形状又は六角形状の固体物であり、形態の定形又は不定形を問わず固体の凝集物をいう。 The size of the gold microparticles produced in the present invention is about 5 nm to 2.5 μm, but the range can be expanded by adjusting the reduction time or the like. It refers to fine particles with a size of 1 nm to about 100 μm. In addition, the morphology of the fine gold particles produced in the present invention is mainly spherical, triangular, or hexagonal solid matter, and refers to solid agglomerates regardless of the morphology of regular or amorphous.

本発明では、金イオン(「金イオン」の化学形態は[AuClであるが、以下、特に必要な場合を除き、単に「金イオン」あるいは「Au(III)」とする。)の吸着材として、キトサン及びその誘導体である酢酸キトサンを用いたが、これら2種類の吸着材を用いた金イオンの分離回収方法は、還元処理による吸着金イオンの脱離及び微粒子化機構が異なる。そこで、1つ目を(A)キトサンを吸着材とする金の分離回収方法、2つ目を(B)酢酸キトサンを吸着材とする金の分離回収方法とし、下記に説明する。 In the present invention, gold ions (the chemical form of "gold ions" is [AuCl 4 ] - , but hereinafter, unless otherwise required, they are simply referred to as "gold ions" or "Au(III)"). Chitosan and chitosan acetate, which is a derivative thereof, were used as the adsorbent, but methods for separating and recovering gold ions using these two kinds of adsorbents differ in the mechanism of desorption and atomization of adsorbed gold ions by reduction treatment. Therefore, the first is (A) a method for separating and recovering gold using chitosan as an adsorbent, and the second is (B) a method for separating and recovering gold using chitosan acetate as an adsorbent, which will be described below.

(A)キトサンを吸着材とする金の分離回収方法
キトサンを吸着材とする金の分離回収方法について説明する。本発明の金の回収方法の工程は、該吸着材を製膜する製膜工程、膜状の該吸着材に金イオンを接触させる接触工程、及び該吸着材を還元剤で処理し金イオンを金微粒子として吸着材から脱離させる脱離工程で構成される。
(A) Method for Separating and Recovering Gold Using Chitosan as Adsorbent A method for separating and recovering gold using chitosan as an adsorbent will be described. The steps of the gold recovery method of the present invention include a film forming step of forming the adsorbent, a contacting step of contacting the adsorbent in the form of a film with gold ions, and a process of treating the adsorbent with a reducing agent to remove gold ions. It is composed of a desorption step in which gold fine particles are desorbed from the adsorbent.

なお、本発明においては、キトサンを用いて製膜し、これを吸着材とする方法について記載するが、これに限らず、キトサン誘導体を用いて製膜し、これを吸着材とする方法も含まれる。 In the present invention, a method of forming a film using chitosan and using it as an adsorbent is described, but the present invention is not limited to this, and a method of forming a film using a chitosan derivative and using this as an adsorbent is also included. be

[製膜工程]
吸着材であるキトサン膜は、後述する実施例A-1の方法で調製する。キトサン膜の膜とは、厚みが薄く形成される状態をいうが、膜の厚さは、製膜時間や取扱い易さの観点から、0.01mm~2.0mmとすることが望ましい。
[Film forming process]
A chitosan film as an adsorbent is prepared by the method of Example A-1 described later. The chitosan film refers to a thin film, and the thickness of the film is desirably 0.01 mm to 2.0 mm from the viewpoint of film formation time and ease of handling.

[接触工程]
金イオンを溶解させた塩化ナトリウム溶液に製膜工程で製膜したキトサン膜を浸し、一定温度下で振とうすると、キトサン膜の表面に金イオンを吸着させることができる。なお、吸着材は、Au(III)1mmolに対して1g以上使用するのが望ましい。
[Contact process]
Gold ions can be adsorbed on the surface of the chitosan film by immersing the chitosan film formed in the film forming process in a sodium chloride solution in which gold ions are dissolved and shaking at a constant temperature. It is desirable to use 1 g or more of the adsorbent per 1 mmol of Au(III).

[脱離工程]
接触工程でAu(III)を吸着させたキトサン膜に還元剤水溶液を加えると、キトサン膜表面に、主には球状、還元剤の種類や還元条件によっては一部三角形状又は六角形状の形態をもち、直径50nm~400nmの金ナノ粒子が生成される。これは、従来の脱離工程では吸着した金イオンが酸あるいはアルカリ溶液中に遊離イオンとして回収されるのに対し、本発明の工程を用いると、該金イオンが固体の金微粒子として回収できることを実証するものである。
[Desorption step]
When a reducing agent aqueous solution is added to the chitosan film on which Au(III) has been adsorbed in the contacting step, the surface of the chitosan film forms mainly spherical, partially triangular or hexagonal shapes depending on the type of reducing agent and reduction conditions. Gold nanoparticles with a diameter of 50 nm to 400 nm are produced. This is because, in the conventional desorption process, the adsorbed gold ions are recovered as free ions in an acid or alkaline solution, whereas in the process of the present invention, the gold ions can be recovered as solid gold fine particles. This is to demonstrate.

還元剤は、アスコルビン酸ナトリウム、シュウ酸ナトリウム、エチレンジアミン四酢酸二ナトリウム(以下、「NaEDTA」という。)、クエン酸ナトリウム、水素化ホウ素ナトリウムを実施例として挙げるが、重亜硫酸ナトリウム、チオ硫酸ナトリウムなどが適用できる。 Examples of reducing agents include sodium ascorbate, sodium oxalate, disodium ethylenediaminetetraacetate (hereinafter referred to as “Na 2 EDTA”), sodium citrate and sodium borohydride, but sodium bisulfite and thiosulfate Sodium or the like can be applied.

以下、実施例により本発明を更に具体的に説明するが、本発明の範囲はこれらに限定されるものではない。 EXAMPLES The present invention will be described in more detail with reference to examples below, but the scope of the present invention is not limited to these examples.

[実施例A-1]キトサンを吸着材とし、種々の還元剤を用いた金の分離回収と金ナノ粒子の生成
1)キトサン膜の調製方法
キトサン粉末(キミカキトサン製)1.0 g、酢酸0.4gを蒸留水8.6gに溶解させ全量を10gとし、3時間程度攪拌し10wt%キトサン-4wt%酢酸水溶液を調製した。溶液約5mLをシャーレに広げ、二晩乾燥させた。その後、乾燥させた膜を取り出し、何れも0.1Nで10mL量の水酸化ナトリウム、アンモニア水及び炭酸水素ナトリウムをこの順番で加え、アルカリ処理を行った。2,3時間放置し、蒸留水で洗浄後、室温で乾燥させキトサン膜を得た。得られたキトサン膜は、透明であり膜厚は約1.0mmであり、シャーレ内での乾燥のため膜の縁部がやや分厚い傾向にあった。
[Example A-1] Separation and recovery of gold and production of gold nanoparticles using chitosan as an adsorbent and various reducing agents 1) Method for preparing chitosan membrane Chitosan powder (manufactured by Kimika Chitosan) 1.0 g, acetic acid 0.4 g was dissolved in 8.6 g of distilled water to make the total amount 10 g, and stirred for about 3 hours to prepare a 10 wt % chitosan-4 wt % acetic acid aqueous solution. About 5 mL of the solution was spread on a petri dish and allowed to dry for two nights. After that, the dried membrane was taken out, and 10 mL of sodium hydroxide, ammonia water and sodium hydrogen carbonate were added in this order at 0.1N to carry out alkali treatment. After standing for 2 to 3 hours, washing with distilled water and drying at room temperature, a chitosan film was obtained. The resulting chitosan film was transparent and had a thickness of about 1.0 mm, and tended to be slightly thick at the edges due to drying in the petri dish.

2)金イオンの吸着
吸着実験はバッチ法により行なった。前述の方法で得られたキトサン膜を、1000ppmのAu(III)を含む塩化ナトリウム水溶液40mLに浸し、30℃、120rpmの条件で20分間振とうした。図1に示すように、処理後のキトサン膜は透明から黄色に着色され、硬化も認められた。また、振とう終了後の水相中のAu(III)が全て固相に吸着されたことを原子吸光度分析により確認した。
2) Adsorption of gold ions Adsorption experiments were performed by a batch method. The chitosan film obtained by the method described above was immersed in 40 mL of an aqueous sodium chloride solution containing 1000 ppm of Au(III) and shaken at 30° C. and 120 rpm for 20 minutes. As shown in FIG. 1, the chitosan film after the treatment was colored from transparent to yellow, and hardening was also observed. Further, it was confirmed by atomic absorption spectrometry that all of the Au(III) in the aqueous phase after shaking had been adsorbed to the solid phase.

3)還元処理
還元剤としてアスコルビン酸ナトリウム、シュウ酸ナトリウム、NaEDTA、クエン酸ナトリウム及び水素化ホウ素ナトリウムを用いた。Au(III)吸着後のキトサン膜を蒸留水で洗浄後、還元剤の0.2molL-1水溶液を加え、30℃、120rpmの条件で24時間振とうした。還元剤を添加すると、キトサン膜が速やかに黄色から黒・暗紫色に変色することを確認した。
3) Reduction treatment Sodium ascorbate, sodium oxalate, Na2EDTA , sodium citrate and sodium borohydride were used as reducing agents. After the chitosan film after adsorption of Au(III) was washed with distilled water, a 0.2 molL −1 aqueous solution of a reducing agent was added, and the film was shaken at 30° C. and 120 rpm for 24 hours. It was confirmed that when the reducing agent was added, the chitosan film rapidly changed color from yellow to black/dark purple.

以上の操作で得られた還元処理膜の表面を走査型電子顕微鏡(SEM:S5500, 日立)で観察し、その結果を図2に示す。還元剤は、a)アスコルビン酸ナトリウム,b)クエン酸ナトリウム,c)シュウ酸ナトリウム,d)NaEDTA,e)水素化ホウ素ナトリウムを示している。 The surface of the reduction-treated film obtained by the above operation was observed with a scanning electron microscope (SEM: S5500, Hitachi), and the results are shown in FIG. Reducing agents are indicated as a) sodium ascorbate, b) sodium citrate, c) sodium oxalate, d) Na 2 EDTA, e) sodium borohydride.

図2のa)c)d)から分かるように、a)アスコルビン酸ナトリウム、c)シュウ酸ナトリウム、及びd)NaEDTAを加えた場合には、多数の金微粒子の生成が確認できた。一方、b)クエン酸ナトリウムの添加では、微量の金微粒子が確認できた。また、e)水素化ホウ素ナトリウムを用いた場合には、不規則な金の凝集体が生成されていることを確認した。 As can be seen from a), c), and d) in FIG. 2, when a) sodium ascorbate, c) sodium oxalate, and d) Na 2 EDTA were added, a large number of fine gold particles were generated. On the other hand, in b) the addition of sodium citrate, a very small amount of fine gold particles was confirmed. It was also confirmed that when e) sodium borohydride was used, irregular gold aggregates were produced.

また、SEM像を基に金微粒子のサイズを計測したところ、還元剤の種類によって生成される粒子のサイズが異なることが明らかになった。計測結果を下記表1に示す。 In addition, when the size of the fine gold particles was measured based on the SEM image, it became clear that the size of the particles generated differs depending on the type of reducing agent. The measurement results are shown in Table 1 below.

Figure 0007217872000001
Figure 0007217872000001

[実施例A-2] 還元処理におけるpHの影響
前述の「実施例A-1」で還元剤としてNaEDTAを用いた場合について、同還元剤の0.2molL-1水溶液に水酸化ナトリウム水溶液を加えて還元液のpHを6.40,7.15,8.15に調整した。以下、同様の条件で処理し、得られた膜表面のSEM観察を行った。その結果を図3に示す。計測したpHは、a)6.40,b)7.15,c)8.15を示している。還元時のpHが高くなるにつれて、生成する金ナノ粒子の粒子径は小さくなり、中性から塩基性域ではほぼ50nm程度に落ち着く傾向がみられた。粒子のサイズについての計測結果を下記表2に示す。
[Example A-2] Effect of pH on reduction treatment In the case of using Na 2 EDTA as the reducing agent in the above-described "Example A-1", a 0.2 mol L -1 aqueous solution of the reducing agent was added to an aqueous sodium hydroxide solution. was added to adjust the pH of the reducing solution to 6.40, 7.15 and 8.15. After that, the film surface obtained by processing under the same conditions was observed by SEM. The results are shown in FIG. The measured pH shows a) 6.40, b) 7.15, c) 8.15. As the pH during reduction increased, the particle size of the gold nanoparticles formed decreased, and tended to settle down to about 50 nm in the neutral to basic range. Table 2 below shows the measurement results of the particle size.

Figure 0007217872000002
Figure 0007217872000002

[実施例A-3] 還元処理における還元時間の影響
前述の[実施例A-2]と同様に、還元剤としてNaEDTAを用い、同還元剤の0.2molL-1水溶液とキトサン膜との接触時間を0.5時間から24時間の範囲で変え、得られた膜表面のSEM観察を行った。その結果を図4に示す。計測した還元時間は、a)0.5h,b)1.0h,c)2.0h,d)24hである。生成した金微粒子の粒径は、還元時間2h以下では何れも100nmとほぼ一定であるが、24hで200nmになった。このことから、微粒子は非常に短時間で生成されるものの、還元時間を長くすると粒子サイズが増大することが明らかになった。粒子のサイズについての計測結果を下記表3に示す。
[Example A-3] Effect of reduction time in reduction treatment As in [Example A-2] described above, Na 2 EDTA was used as a reducing agent, and a 0.2 molL -1 aqueous solution of the reducing agent and a chitosan film were prepared. The contact time was changed in the range of 0.5 hours to 24 hours, and the surface of the obtained film was observed by SEM. The results are shown in FIG. The measured reduction times are a) 0.5 h, b) 1.0 h, c) 2.0 h, and d) 24 h. The particle size of the produced gold microparticles was almost constant at 100 nm for all reduction times of 2 hours or less, but became 200 nm after 24 hours. From this, it was clarified that fine particles are produced in a very short time, but the particle size increases when the reduction time is lengthened. Table 3 below shows the measurement results of the particle size.

Figure 0007217872000003
Figure 0007217872000003

一方、0.2molL-1のシュウ酸ナトリウム水溶液を用いて約24時間の還元処理を行って得られた膜表面のSEM観察を行った。その結果を図5に示す。キトサン膜表面には、粒径約200nm~約500nmの球状ナノ粒子と共に、一辺約900nm~約2.5μmの三角形状あるいは最長径約700nm~1.5μmの六角形状の形態を持つ金の単結晶様粒子の生成が確認できた。 On the other hand, SEM observation of the surface of the film obtained by performing the reduction treatment for about 24 hours using a 0.2 molL -1 aqueous solution of sodium oxalate was carried out. The results are shown in FIG. On the surface of the chitosan film, gold single crystals having a triangular shape with a side of about 900 nm to about 2.5 μm or a hexagonal shape with a longest diameter of about 700 nm to 1.5 μm together with spherical nanoparticles with a particle size of about 200 nm to about 500 nm. The formation of similar particles was confirmed.

[実施例A-4] 還元処理における還元剤濃度の影響
前述の[実施例A-2]と同様に、還元剤としてNaEDTAを用い、同還元剤の濃度を0.2molL-1 から0.1molL-1~0.02molL-1の範囲に希釈し、以下同様の実験を行った。その結果を図6に示す。計測した還元剤濃度は、a)0.2,b)0.1,c)0.05,d)0.02(単位:molL-1)である。還元剤濃度が0.2molL-1から0.02molL-1まで低下するにつれて、生成する金微粒子の粒径は小さくなる傾向が認められた。粒子のサイズについての計測結果を下記表4に示す。
[Example A-4] Effect of reducing agent concentration on reduction treatment As in [Example A- 2 ] described above, Na EDTA was used as the reducing agent, and the concentration of the reducing agent was changed from 0.2 molL -1 to 0. .1 molL −1 to 0.02 molL −1 , and the same experiment was performed. The results are shown in FIG. The measured reducing agent concentrations are a) 0.2, b) 0.1, c) 0.05, and d) 0.02 (unit: molL −1 ). As the reducing agent concentration decreased from 0.2 molL −1 to 0.02 molL −1 , there was a tendency for the particle size of the generated gold microparticles to decrease. Table 4 below shows the measurement results of the particle size.

Figure 0007217872000004
Figure 0007217872000004

また、還元剤をシュウ酸ナトリウムに代え、同様にして還元剤濃度依存性を調べた結果を図7に示す。計測した還元剤濃度は、a)0.5,b)0.25,c)0.125,d)0.05(単位:molL-1)である。還元剤濃度が低下するにつれて、NaEDTAを用いた場合に類似の傾向が認められた。粒子のサイズについての計測結果を下記表5に示す。 FIG. 7 shows the results of examining the reducing agent concentration dependency in the same manner, using sodium oxalate instead of the reducing agent. The measured reducing agent concentrations are a) 0.5, b) 0.25, c) 0.125, and d) 0.05 (unit: molL −1 ). A similar trend was observed with Na 2 EDTA as the reducing agent concentration was decreased. Table 5 below shows the measurement results of the particle size.

Figure 0007217872000005
Figure 0007217872000005

以上のとおり、キトサンを膜状に加工し、Au(III)の吸着および各還元剤による微粒子化が可能となった。金の吸着は非常に迅速に行われ、1gのキトサンを用いて作成したキトサン膜で少なくとも40mgの金を吸着回収することができた。数種類の還元剤を用いて還元を行ったところ、生成する粒子のサイズは還元剤の種類に強く影響を受けている傾向がみられた。特にシュウ酸Na、NaEDTAによる還元では粒子径の揃った球体状の金ナノ粒子生成が確認できた。 As described above, it has become possible to process chitosan into a film, to adsorb Au(III), and to form fine particles using each reducing agent. Adsorption of gold was very rapid, and at least 40 mg of gold could be adsorbed and recovered with a chitosan film prepared using 1 g of chitosan. When several types of reducing agents were used for reduction, the size of the produced particles tended to be strongly affected by the type of reducing agent. In particular, the reduction with Na oxalate and Na 2 EDTA confirmed the production of spherical gold nanoparticles with a uniform particle size.

(B)酢酸キトサンを吸着材とする金の分離回収方法
次に、酢酸キトサンを吸着材とする金の分離回収方法について説明する。本方法は、金イオンを含む溶液に、還元能を有する置換基をもつキトサン誘導体を添加することにより、該金イオンを金微粒子として還元・固化させることを特徴とする金の分離回収方法である。
(B) Method for Separating and Recovering Gold Using Chitosan Acetate as Adsorbent Next, a method for separating and recovering gold using chitosan acetate as an adsorbent will be described. This method is a method for separating and recovering gold, characterized by adding a chitosan derivative having a substituent with reducing ability to a solution containing gold ions, thereby reducing and solidifying the gold ions as fine gold particles. .

本発明においては、還元能を付与したキトサンとして酢酸キトサンを吸着材とした例を記載するが、還元能を付与したキトサン誘導体には、還元能を有するCHOCOOH基、NHCOOH基、スルホン酸基、リン酸基などの官能基を一部に有するキトサン誘導体も含まれる。 In the present invention, an example in which chitosan acetate is used as an adsorbent as chitosan to which reducing ability is imparted will be described. Also included are chitosan derivatives having functional groups such as phosphate groups in part.

なお、本方法(B)の分離回収方法は、処理操作の上では、前述の(A)の分離回収方法で説明した方法における金イオンの接触工程と脱離・固化工程とが合体されたものであり、見かけ上は単一の工程として進行するものである。その結果、生成する金微粒子のサイズも数nmのレベルであり、形態も単結晶様を呈することが本方法の大きな特徴となっている。 In addition, the separation and recovery method of the present method (B) is a combination of the gold ion contact step and the desorption/solidification step in the method described in the separation and recovery method of (A) above in terms of treatment operation. , which apparently proceeds as a single process. As a result, the size of the gold microparticles produced is at the level of several nanometers, and the morphology of the gold particles is like a single crystal, which is a major feature of this method.

本発明は、下記式(I)に示した化学構造を各々の重合単位とするキトサンを用いて下記式(II)に示した化学構造を各々の重合単位とする酢酸キトサンを調製する。この酢酸キトサンを吸着材とし、溶液中からの金イオンの吸着と還元処理を段階的あるいは同時的に行うことにより、金イオンを金微粒子として回収することを可能とする。以下、本分離回収方法について詳細する。 In the present invention, chitosan acetate having a chemical structure represented by the following formula (II) is prepared by using chitosan having a chemical structure represented by the following formula (I) as each polymerized unit. By using this chitosan acetate as an adsorbent, adsorption of gold ions from the solution and reduction treatment are performed stepwise or simultaneously, making it possible to recover the gold ions as fine gold particles. The present separation and recovery method will be described in detail below.

Figure 0007217872000006
Figure 0007217872000006
Figure 0007217872000007
Figure 0007217872000007

[実施例B-1]酢酸キトサンを吸着・還元剤とする金の分離回収と金ナノ粒子の生成
1)酢酸キトサンの調製
酢酸キトサンの合成方法について説明する。キトサン2g(グレードF)を濃度10molL-1の水酸化ナトリウム水溶液20mLとイソプロパノール20mLとの混合溶液に加え、12時間撹拌した。次いで、イソプロパノール20mLに溶解させたクロロ酢酸(5当量)を30分以上かけて滴下した後、60℃で6時間反応させた。得られた反応混合物に過剰のエタノールを加えてキトサン成分を沈殿させた後、沈殿物を蒸留水とエタノールで洗浄した。該沈殿物を蒸留水に溶かして不溶成分を取り除いた後、再度エタノールを用いて沈殿させ目的生成物である酢酸キトサンを得た。
[Example B-1] Separation and Recovery of Gold and Production of Gold Nanoparticles Using Chitosan Acetate as Adsorption/Reducing Agent 1) Preparation of Chitosan Acetate A method for synthesizing chitosan acetate will be described. 2 g of chitosan (grade F) was added to a mixed solution of 20 mL of sodium hydroxide aqueous solution having a concentration of 10 molL −1 and 20 mL of isopropanol, and the mixture was stirred for 12 hours. Then, chloroacetic acid (5 equivalents) dissolved in 20 mL of isopropanol was added dropwise over 30 minutes, followed by reaction at 60° C. for 6 hours. Excess ethanol was added to the obtained reaction mixture to precipitate the chitosan component, and then the precipitate was washed with distilled water and ethanol. After the precipitate was dissolved in distilled water to remove insoluble components, ethanol was again used for precipitation to obtain the desired product, chitosan acetate.

2)酢酸キトサンと金イオン水溶液との接触反応
酢酸キトサンの1wt%水溶液50gに酢酸1mLを加えた後、濃度25mmolL-1の塩化金酸HAuClを2mL加えて、60℃で12時間撹拌した。生じた溶液は、金ナノ粒子の生成を示唆するワインレッド色を呈した。この溶液にエタノールを加え、遠心分離して得られた固相を乾燥した。
2) Contact reaction between chitosan acetate and gold ion aqueous solution After adding 1 mL of acetic acid to 50 g of a 1 wt% aqueous solution of chitosan acetate, 2 mL of chloroauric acid HAuCl 4 having a concentration of 25 mmolL -1 was added, and the mixture was stirred at 60°C for 12 hours. The resulting solution exhibited a wine red color suggesting the production of gold nanoparticles. Ethanol was added to this solution and the solid phase obtained by centrifugation was dried.

以上の操作で得られた反応生成物の透過型電子顕微鏡(TEM)による結果を図8に示す。なお、b)は得られたTEMの拡大像である。粒子のサイズは5nm~20nmであり、球状又は三角形状あるいは六角形状の形態を有する金ナノ粒子が確認できた。 FIG. 8 shows the result of a transmission electron microscope (TEM) of the reaction product obtained by the above operation. Note that b) is an enlarged TEM image obtained. The particle size was 5 nm to 20 nm, and gold nanoparticles having spherical, triangular, or hexagonal morphology were confirmed.

このように、本方法は、還元処理によって固体の貴金属粒子として貴金属を回収できるため、その後の取り扱い工程が簡素化されるだけでなく、回収操作がそのまま有用な機能をもつ貴金属粒子の創製にも繋がることになる。 Thus, in this method, since the precious metal can be recovered as solid noble metal particles by the reduction treatment, the subsequent handling steps are not only simplified, but the recovery operation can also be used to create precious metal particles having useful functions. will be connected.

本発明は、貴金属のリサイクル事業に利用できることに加え、新しい機能性をもつ貴金属微粒子の創製に資する。 INDUSTRIAL APPLICABILITY The present invention contributes to the creation of noble metal fine particles having new functionality, in addition to being applicable to the noble metal recycling business.

Claims (2)

キトサンを用いた貴金属の回収方法であって、
キトサンを膜状に形成しキトサン膜とする工程と、
貴金属イオンを含む溶液に前記キトサン膜を添加し、前記貴金属イオンを前記キトサン膜に吸着させる工程と、
前記キトサン膜に吸着された貴金属イオンをアスコルビン酸ナトリウム、シュウ酸ナトリウム又はNa EDTAで還元処理し、貴金属微粒子として脱離させる工程と、を含むことを特徴とする貴金属の分離回収方法。
A method for recovering precious metals using chitosan , comprising:
a step of forming chitosan into a film to form a chitosan film;
adding the chitosan film to a solution containing noble metal ions to adsorb the noble metal ions to the chitosan film;
and a step of subjecting the noble metal ions adsorbed to the chitosan film to a reduction treatment with sodium ascorbate, sodium oxalate or Na 2 EDTA to desorb them as noble metal fine particles.
前記還元処理において、還元剤の種類、還元剤水溶液のpH、還元時間、又は還元剤濃度を変化させることにより、前記貴金属微粒子の形態又は粒子径を制御することを特徴とする請求項1記載の貴金属の分離回収方法。 2. The method according to claim 1, wherein in the reduction treatment, the type of reducing agent, the pH of the reducing agent aqueous solution, the reduction time, or the concentration of the reducing agent is changed to control the morphology or particle size of the noble metal fine particles. A method for separating and recovering precious metals.
JP2019039583A 2019-03-05 2019-03-05 Noble metal separation and recovery method and precious metal fine particles recovered by the method Active JP7217872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019039583A JP7217872B2 (en) 2019-03-05 2019-03-05 Noble metal separation and recovery method and precious metal fine particles recovered by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019039583A JP7217872B2 (en) 2019-03-05 2019-03-05 Noble metal separation and recovery method and precious metal fine particles recovered by the method

Publications (2)

Publication Number Publication Date
JP2020143322A JP2020143322A (en) 2020-09-10
JP7217872B2 true JP7217872B2 (en) 2023-02-06

Family

ID=72353317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019039583A Active JP7217872B2 (en) 2019-03-05 2019-03-05 Noble metal separation and recovery method and precious metal fine particles recovered by the method

Country Status (1)

Country Link
JP (1) JP7217872B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276710A1 (en) * 2021-06-30 2023-01-05 株式会社ダイセル Recovery kit, recovery method and recovery apparatus for noble metal particles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000264902A (en) 1999-03-15 2000-09-26 Univ Miyazaki Thiourea derivative of chitosan
JP2011001596A (en) 2009-06-18 2011-01-06 Japan Advanced Institute Of Science & Technology Hokuriku Method and apparatus for recovering metal
WO2012102286A1 (en) 2011-01-26 2012-08-02 丸善石油化学株式会社 Metallic nanoparticle composite and method for producing the same
JP2014004518A (en) 2012-06-22 2014-01-16 Univ Of Miyazaki Metal ion adsorbing material
JP2016040032A (en) 2014-08-12 2016-03-24 株式会社クラレ Adsorbent comprising cellulose derivative and/or cross-linked chitosan derivative and adsorption method and recovery method for metal ion
JP2016125110A (en) 2015-01-07 2016-07-11 住友ベークライト株式会社 Noble metal recovery agent and method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287211A (en) * 1988-05-12 1989-11-17 Tanaka Kikinzoku Kogyo Kk Manufacture of silver fine oarticle
JPH0436425A (en) * 1990-05-31 1992-02-06 Tanaka Kikinzoku Kogyo Kk Method for recovering rhodium
JPH06145727A (en) * 1992-11-10 1994-05-27 Mitsubishi Materials Corp Production of spheroidal palladium powder
JPH09165404A (en) * 1995-12-15 1997-06-24 Nippon Paper Ind Co Ltd Chitosan molding with its surface being n-thiocarbamoylated and its production
KR102172032B1 (en) * 2017-05-11 2020-10-30 주식회사 에이엔폴리 Precious metal recovery matrix and method for recovering precious metal using thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000264902A (en) 1999-03-15 2000-09-26 Univ Miyazaki Thiourea derivative of chitosan
JP2011001596A (en) 2009-06-18 2011-01-06 Japan Advanced Institute Of Science & Technology Hokuriku Method and apparatus for recovering metal
WO2012102286A1 (en) 2011-01-26 2012-08-02 丸善石油化学株式会社 Metallic nanoparticle composite and method for producing the same
JP2014004518A (en) 2012-06-22 2014-01-16 Univ Of Miyazaki Metal ion adsorbing material
JP2016040032A (en) 2014-08-12 2016-03-24 株式会社クラレ Adsorbent comprising cellulose derivative and/or cross-linked chitosan derivative and adsorption method and recovery method for metal ion
JP2016125110A (en) 2015-01-07 2016-07-11 住友ベークライト株式会社 Noble metal recovery agent and method

Also Published As

Publication number Publication date
JP2020143322A (en) 2020-09-10

Similar Documents

Publication Publication Date Title
Arrascue et al. Gold sorption on chitosan derivatives
JP4231307B2 (en) Metal colloid and catalyst using the metal colloid as a raw material
KR20100105845A (en) Method for preparing dispersions of precious metal nanoparticles and for isolating such nanoparticles from said dispersions
Yang et al. Amyloid-like aggregates of bovine serum albumin for extraction of gold from ores and electronic waste
JP2007050333A (en) Adsorbent and its manufacturing method
CN102430391A (en) Preparation method of metal ion imprinted chitosan crosslinked membrane adsorbent and application thereof
Dwivedi et al. Mechanistic investigation on the green recovery of ionic, nanocrystalline, and metallic gold by two anionic nanocelluloses
CN109706315B (en) Method for adsorbing noble metal complex ions in thiosulfate leaching solution by using molybdenum disulfide
CN109652647B (en) Process for recovering noble metals from molybdenum disulfide based on thiosulfate leaching method
JP2013541640A (en) Silver particles and method for producing the same
JP6083077B2 (en) Metal ion adsorbent
JP7217872B2 (en) Noble metal separation and recovery method and precious metal fine particles recovered by the method
CN109852816A (en) A kind of method that sulphide ore adsorbs noble metal complex ion in thiosulfate leaching liquid
Lin et al. Development of polyethylenimine-functionalized cellulose fibers for recovery of Au (0) from Au (III)-containing acidic solutions through an adsorption–reduction–detachment–aggregation mechanism
Sakti et al. Adsorption of gold (III) on ionic imprinted amino-silica hybrid prepared from rice hull ash
CN109652658B (en) Method for recovering noble metal complex ions from thiosulfate leaching solution by utilizing sulfide ore
CN109433161B (en) ZIF-8 composite powder material coated with fly ash as well as preparation method and application thereof
JP2016040032A (en) Adsorbent comprising cellulose derivative and/or cross-linked chitosan derivative and adsorption method and recovery method for metal ion
CN106861598B (en) CuS nanocrystalline adsorbent, preparation method thereof and application thereof in copper electroplating wastewater treatment
CN109852815B (en) Method for recovering noble metal complex ions from thiosulfate leaching solution by utilizing molybdenum disulfide
CN109926028B (en) Thiourea imprinted resin, preparation method thereof and application thereof in gold adsorption
JP2006299329A (en) Method for producing metal nanoparticle
Guo et al. Control of the separation order of Au (III), Pd (II), and Pt (IV) achieved by site-controllable carboxyl-functionalized diethylaminoethyl celluloses
CN116689773A (en) Method for preparing zero-valent iron from iron tailings based on liquid phase reduction
CN111453829B (en) Magnetic heavy metal trapping agent and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230113

R150 Certificate of patent or registration of utility model

Ref document number: 7217872

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150