JP7217488B2 - Humidity sensor and manufacturing method thereof - Google Patents

Humidity sensor and manufacturing method thereof Download PDF

Info

Publication number
JP7217488B2
JP7217488B2 JP2018072018A JP2018072018A JP7217488B2 JP 7217488 B2 JP7217488 B2 JP 7217488B2 JP 2018072018 A JP2018072018 A JP 2018072018A JP 2018072018 A JP2018072018 A JP 2018072018A JP 7217488 B2 JP7217488 B2 JP 7217488B2
Authority
JP
Japan
Prior art keywords
electrode layer
humidity
humidity sensor
polymer layer
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018072018A
Other languages
Japanese (ja)
Other versions
JP2019184291A (en
Inventor
和彦 土屋
綾子 野村
静士 時任
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamagata University NUC
Original Assignee
Yamagata University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamagata University NUC filed Critical Yamagata University NUC
Priority to JP2018072018A priority Critical patent/JP7217488B2/en
Publication of JP2019184291A publication Critical patent/JP2019184291A/en
Application granted granted Critical
Publication of JP7217488B2 publication Critical patent/JP7217488B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、湿度センサ、特に生体や物体に貼付して、湿度を半導体層や高分子層の抵抗値の湿度依存性を利用して電極で検出する場合において、湿度の経時的な変化を容易に精度よくモニタリングすることができ、柔軟な基材に形成可能なため生体や物体への貼付に好適な湿度センサに関する。 INDUSTRIAL APPLICABILITY The present invention is a humidity sensor, especially when it is attached to a living body or object and detects humidity with electrodes using the humidity dependence of the resistance value of a semiconductor layer or a polymer layer. The present invention relates to a humidity sensor capable of monitoring with high accuracy and suitable for attachment to a living body or an object because it can be formed on a flexible base material.

心臓や脳などの組織から発生する電気信号を検出する生体信号センシング装置は、生体電極を衣類に実装して身に着けて持ち運ぶことができ、常時生体信号を監視し続けることができるようになっている。生体信号センシング装置は、生体信号受信部が乾いたときに、生体信号受信部に電解質溶液もしくは非電解質液体を自動的に補充する湿気補充機構がある。湿気補充機構の湿度センサは生体信号受信部の内部または表面付近に設けられ、湿度センサの検出部が生体信号受信部と触れている。そして生体信号受信部としてPEDOT:PSSに代表される導電性高分子からなる多孔質体を用いるものが特許文献1に開示されている。 A biosignal sensing device that detects electrical signals generated from tissues such as the heart and brain can be worn and carried with bioelectrodes mounted on clothing, enabling continuous monitoring of biosignals. ing. The biosignal sensing device has a moisture replenishment mechanism that automatically replenishes the biosignal receiver with an electrolyte solution or non-electrolyte liquid when the biosignal receiver is dry. The humidity sensor of the moisture replenishment mechanism is provided inside or near the surface of the biosignal receiver, and the detection part of the humidity sensor is in contact with the biosignal receiver. Patent Document 1 discloses that a porous body made of a conductive polymer represented by PEDOT:PSS is used as a biosignal receiver.

また、一対の櫛形電極上にイオン性高分子化合物を含む湿度センサ膜を形成し、空気中の水蒸気を湿度センサ材が吸うと電気抵抗が変化する原理を利用した湿度センサが特許文献2に開示されている。 Further, Patent Document 2 discloses a humidity sensor that utilizes the principle that a humidity sensor film containing an ionic polymer compound is formed on a pair of comb-shaped electrodes, and the electrical resistance changes when the humidity sensor material absorbs water vapor in the air. It is

また、酸性基またはその塩を導入したアニリン系の導電性高分子を用いる湿度センサが特許文献3に開示されている。これによると、電気分解が発生しないため測定回路が複雑にならないので、より安価で利便性の高い直流駆動でも安定に動作する湿度センサが実現できる。 Further, Patent Document 3 discloses a humidity sensor using an aniline-based conductive polymer into which an acidic group or a salt thereof is introduced. According to this method, since electrolysis does not occur, the measurement circuit does not become complicated, so that it is possible to realize a humidity sensor that operates stably even with direct-current driving, which is inexpensive and highly convenient.

そして、有機トランジスタにも用いられる半導体高分子材料のPEDOT:PSSの湿度による抵抗値の変化については、非特許文献1に開示がなされている。 Non-Patent Document 1 discloses changes in the resistance value of PEDOT:PSS, which is a semiconducting polymer material that is also used in organic transistors, depending on humidity.

そして、紙の上に印刷する半導体高分子材料PEDOT:PSSを電極として用い、その上に塩基性型のポリアニリンを印刷した後に塩酸の雰囲気に曝すことで絶縁性を導電性に変えて抵抗の湿度依存を利用する、安価な湿度センサが非特許文献2に開示されている。 Then, a semiconductor polymer material PEDOT:PSS printed on paper is used as an electrode, and after printing basic polyaniline on it, it is exposed to an atmosphere of hydrochloric acid to change the insulating property to the conductive property and the humidity of the resistance. Non-Patent Document 2 discloses an inexpensive humidity sensor that uses dependence.

特開2014-226367号公報JP 2014-226367 A 特開2007-163449号公報JP 2007-163449 A 特開2011-232285号公報JP 2011-232285 A

M.Kus, S.Okur, Sensors and Actuators B 143 (2009) 177-181.M. Kus, S. Okur, Sensors and Actuators B 143 (2009) 177-181. R.M.Morais, et al., IEEE Sensors Journal (2018) 2647-2651.R. M. Morais, et al. , IEEE Sensors Journal (2018) 2647-2651.

特許文献1において開示される生体電極は、多孔質体からなる生体信号受信部に電解質溶液もしくは非電界質液体を含侵させている。生体信号受信部にPEDOT:PSSを用いることで、電解質溶液または非電界質液体を効率よく保持することが可能になっている。そして、生体信号受信部が皮膚の乾燥によって電極インピーダンスが高くならないように、生体と接触する面と反対側の生体信号受信部の面を覆う水分蒸発抑制用覆いや、電解質溶液もしくは非電界質液体を補充できるように湿気補充機構が構成されている。ここで、湿気補充機構には生体信号受信部の内部または表面付近に湿度センサが設けられている。しかしながら、湿度センサの構成について具体的な記載がない。 The biomedical electrode disclosed in Patent Literature 1 impregnates a biomedical signal receiving portion made of a porous material with an electrolyte solution or a non-electrolyte liquid. By using PEDOT:PSS for the biosignal receiver, it is possible to efficiently retain an electrolyte solution or a non-electrolyte liquid. Then, in order to prevent the electrode impedance of the biosignal receiving part from increasing due to drying of the skin, a moisture evaporation suppressing cover covering the face of the biosignal receiving part opposite to the side in contact with the living body, an electrolyte solution or a non-electrolyte liquid, is provided. A moisture replenishment mechanism is configured to replenish the Here, the humidity replenishment mechanism is provided with a humidity sensor inside or near the surface of the biosignal receiver. However, there is no specific description of the configuration of the humidity sensor.

電解質溶液もしくは非電界質液体を含侵させてなるPEDOT:PSSを湿度センサ膜として、特許文献2に記載される抵抗値の湿度依存性を利用して電極で検出する湿度センサを構成する場合、液体の蒸発や乾燥を防ぐ手段が必要となり装置が複雑になり大型化するので、生体や物体に貼付して湿度の経時的な変化をモニタリングする用途に適さない課題がある。 PEDOT:PSS impregnated with an electrolyte solution or a non-electrolyte liquid is used as a humidity sensor film, and when configuring a humidity sensor that detects with electrodes using the humidity dependence of the resistance value described in Patent Document 2, Since a means for preventing evaporation and drying of the liquid is required, the device becomes complicated and large-sized.

特許文献3には、導電性高分子酸性基またはその塩を導入したアニリン系の導電性高分子を用いる湿度センサが開示され、直流駆動でも安定に動作できる。しかしながら、湿度に対して文献の図1および図2で示されるように、湿度変化に対する抵抗値の相関が曲線の対数型となる。そのため、抵抗値から湿度を求める演算回路が必要になり、一般にはログアンプなどを用いるので回路が複雑になり高価になりやすく、また精度も悪くなりやすい課題がある。 Patent Document 3 discloses a humidity sensor using an aniline-based conductive polymer into which an acidic group of a conductive polymer or a salt thereof is introduced, and which can stably operate even when driven by direct current. However, as shown in FIGS. 1 and 2 of the literature for humidity, the correlation of resistance to humidity change is logarithmic in form of the curve. Therefore, an arithmetic circuit is required to determine the humidity from the resistance value, and since a log amp is generally used, the circuit becomes complicated and tends to be expensive, and the accuracy tends to deteriorate.

一方で、半導体高分子材料PEDOT:PSSの単体での湿度変化に対する直流抵抗値の相関は、非特許文献1のFig.6で示されるように、湿度上昇時と湿度下降時とで同じ湿度でも抵抗値に差が生じ、そのため正確な湿度変化をモニタリングすることができていない。 On the other hand, the correlation of the DC resistance value with respect to the humidity change of the single semiconductor polymer material PEDOT:PSS is shown in Fig. As indicated by 6, there is a difference in resistance value between when the humidity rises and when the humidity falls, even if the humidity is the same.

また、非特許文献2に開示される湿度センサは、ポリアニリンの湿度変化に対する抵抗値を利用するもので、PEDOT:PSSの抵抗値を湿度センサ膜として用いていない。さらに、低周波数の記載はあるものの直流駆動で不安定な動作になりやすい。 Further, the humidity sensor disclosed in Non-Patent Document 2 utilizes the resistance value of polyaniline against changes in humidity, and does not use the resistance value of PEDOT:PSS as a humidity sensor film. Furthermore, although there is a description of a low frequency, DC drive tends to cause unstable operation.

本発明の目的は上記の課題を解決し、有機半導体を用いて形成するセンシング回路や無線通信回路等との一体化に適している半導体高分子層を感湿体として、可撓性の基材上に塗布により薄くて柔軟に形成ができ生体や物体への貼付に優れ、直流電圧の測定で湿度上昇時と湿度下降時とで抵抗値の差を抑制し、湿度変化に対する抵抗値の相関が直線型になるので、湿度の経時的な変化を容易に精度よくモニタリングするのに好適な湿度センサを提供する。 An object of the present invention is to solve the above problems, and a semiconductor polymer layer suitable for integration with a sensing circuit, a wireless communication circuit, etc. formed using an organic semiconductor is used as a moisture sensitive body, and a flexible substrate is used. It can be formed thinly and flexibly by coating on top, making it excellent for sticking to living bodies and objects.It suppresses the difference in resistance value when measuring DC voltage when the humidity rises and when the humidity falls, and the correlation between the resistance value and the humidity change is improved. To provide a humidity sensor suitable for easily and accurately monitoring changes in humidity over time because it becomes a linear type.

本発明は、湿度センサであって、プラスチックを含む可撓性の基材と、基材上にパターン形成された第一電極層と、基材上に第一電極層から離間してパターン形成された第二電極層と、平面視で第一電極層と第二電極層とに重畳する半導体高分子層と、半導体高分子層の少なくとも一部が覆われる絶縁性ポリアニリン高分子層と、から構成され、第一電極層と第二電極層との間に直流電圧を印加して、第一電極層と第二電極層の間の電流を計測して抵抗値を算出することを特徴とする。 The present invention is a humidity sensor comprising a flexible substrate comprising plastic; a first electrode layer patterned on the substrate; a second electrode layer, a semiconductor polymer layer overlapping the first electrode layer and the second electrode layer in plan view, and an insulating polyaniline polymer layer covering at least a portion of the semiconductor polymer layer. A DC voltage is applied between the first electrode layer and the second electrode layer, and the current between the first electrode layer and the second electrode layer is measured to calculate the resistance value.

本湿度センサにあっては、半導体高分子層の少なくとも一部が覆われる絶縁性ポニアニリン高分子層を設けることにより、湿度上昇時と湿度下降時とで生じる抵抗値の差を抑制するため、正確な湿度変化をモニタリングすることができる。 In this humidity sensor, by providing an insulating ponyaniline polymer layer that covers at least a part of the semiconductor polymer layer, the difference in resistance value that occurs when the humidity rises and when the humidity falls is suppressed. humidity changes can be monitored.

半導体高分子層のみを感湿膜に用いた場合、高湿度な領域において膜中水分の堆積により急峻な抵抗値の上昇が認められるが、半導体高分子層と絶縁性ポリアニリン膜からなる積層構造とした場合には、半導体高分子層への水分の浸透が調整され、高湿度領域での急峻な抵抗上昇が抑制され、直線的な抵抗値変化を示すものと推察される。 When only the semiconducting polymer layer is used as the moisture-sensitive film, a sharp rise in resistance value is observed in a high-humidity region due to the accumulation of moisture in the film. In this case, it is presumed that the permeation of moisture into the semiconductor polymer layer is adjusted, a steep increase in resistance is suppressed in a high humidity region, and a linear resistance value change is exhibited.

本発明は、湿度センサであって、半導体高分子層はポリ-4-スチレンスルホン酸をドープしたポリ-3,4-エチレンジオキシチオフェン(PEDOT:PSS)膜からなり、絶縁性ポリアニリン高分子層は塩基性型ポリアニリンからなることを特徴とする。 The present invention is a humidity sensor, wherein the semiconducting polymer layer consists of poly-3,4-ethylenedioxythiophene (PEDOT:PSS) film doped with poly-4-styrenesulfonic acid, and the insulating polyaniline polymer layer is characterized by consisting of basic polyaniline.

特に、親水性のPEDOT:PSS膜と絶縁性の塩基性型ポリアニリン膜からなる積層構造とした場合には、これらの積層界面近傍において、PEDOT:PSSが塩基性型ポリアニリンにより中和されて疎水化し、絶縁性の塩基性型ポリアニリンの親水性層、積層界面の疎水性層、および伝導体となるPEDOT:PSSの3層構造が形成される。その結果、PEDOT:PSSへの水分の浸透が調整され、高湿度領域での急峻な抵抗上昇が抑制され、直線的な抵抗値変化をするものと考える。 In particular, in the case of a laminated structure consisting of a hydrophilic PEDOT:PSS film and an insulating basic polyaniline film, the PEDOT:PSS is neutralized by the basic polyaniline in the vicinity of the lamination interface to make it hydrophobic. , a hydrophilic layer of insulating basic polyaniline, a hydrophobic layer at the lamination interface, and a three-layer structure of PEDOT:PSS serving as a conductor is formed. As a result, the permeation of moisture into PEDOT:PSS is adjusted, a steep increase in resistance is suppressed in a high-humidity region, and the resistance value changes linearly.

さらに、本温度センサにあっては、半導体高分子層はPEDOT:PSS膜からなり、絶縁膜ポリアニリン高分子層は塩基性型ポリアニリンからなることにより、塗布による工程で薄く柔軟な膜を形成できるので好ましい。 Furthermore, in this temperature sensor, the semiconductor polymer layer is made of PEDOT:PSS film, and the insulating film polyaniline polymer layer is made of basic polyaniline. preferable.

本発明の湿度センサは、感湿体として半導体高分子層を用いるので、有機半導体を用いて形成するセンシング回路や無線通信回路等との一体化に適している。可撓性の基材上に塗布により薄くて柔軟な湿度センサが形成できるので、生体や物体への貼付に優れ、直流電圧の測定で湿度上昇時と湿度下降時とで抵抗値の差を抑制し、湿度変化に対する抵抗値の相関が直線型になるので、湿度の経時的な変化を容易に精度よくモニタリングすることができる。 Since the humidity sensor of the present invention uses a semiconductor polymer layer as a moisture sensitive element, it is suitable for integration with a sensing circuit, a wireless communication circuit, or the like formed using an organic semiconductor. A thin and flexible humidity sensor can be formed by coating on a flexible base material, so it is excellent for attaching to living organisms and objects, and by measuring DC voltage, the difference in resistance value is suppressed between when the humidity rises and when the humidity falls. In addition, since the correlation of the resistance value with respect to the humidity change becomes linear, it is possible to easily and accurately monitor the change in humidity over time.

本発明にかかる湿度センサの構成を説明するための断面図。1 is a cross-sectional view for explaining the configuration of a humidity sensor according to the present invention; FIG. 本発明にかかる湿度センサの湿度変化に対する抵抗値の時間変化を示す図。FIG. 4 is a diagram showing the time change of the resistance value with respect to the humidity change of the humidity sensor according to the present invention; 本発明にかかる湿度センサの湿度変化と抵抗値の相関を示す図。FIG. 4 is a diagram showing the correlation between humidity change and resistance value of the humidity sensor according to the present invention; 比較例として半導体高分子層のみの湿度センサの構成を説明するための断面図。FIG. 4 is a cross-sectional view for explaining the configuration of a humidity sensor having only a semiconductor polymer layer as a comparative example. 比較例として半導体高分子層のみの湿度センサの湿度変化に対する抵抗値の時間変化を示す図。FIG. 4 is a diagram showing the time change of the resistance value with respect to the humidity change of a humidity sensor having only a semiconductor polymer layer as a comparative example. 比較例として半導体高分子層のみの湿度センサの湿度変化と抵抗値の相関を示す図。FIG. 4 is a diagram showing the correlation between humidity change and resistance value of a humidity sensor having only a semiconductor polymer layer as a comparative example. 比較例として半導体高分子層のみの湿度センサの湿度変化と抵抗値の相関を片対数で示す図。FIG. 4 is a graph showing the correlation between the humidity change and the resistance value of a humidity sensor having only a semiconductor polymer layer as a comparative example in semi-logarithm.

以下、本発明の実施の形態について説明する。本発明にかかる湿度センサは、プラスチックを含む可撓性の基材と、基材上にパターン形成された第一電極層と、基材上に第一電極層から離間してパターン形成された第二電極層と、平面視で第一電極層と第二電極層とに重畳する半導体高分子層と、半導体高分子層の少なくとも一部が覆われる絶縁性ポリアニリン高分子層と、から構成され、第一電極層と第二電極層との間に直流電圧を印加して、第一電極層と第二電極層の間の電流を計測して抵抗値を算出する。 BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. A humidity sensor according to the present invention comprises a flexible substrate comprising plastic, a first electrode layer patterned on the substrate, and a second electrode layer patterned on the substrate spaced apart from the first electrode layer. Consists of a two-electrode layer, a semiconductor polymer layer overlapping the first electrode layer and the second electrode layer in plan view, and an insulating polyaniline polymer layer covering at least a portion of the semiconductor polymer layer, A DC voltage is applied between the first electrode layer and the second electrode layer, and the current between the first electrode layer and the second electrode layer is measured to calculate the resistance value.

図1に、本発明にかかる湿度センサの基本的な構成を例示する。基材1の表面に第一電極層2と第二電極層3とが形成され、第一電極層2と第二電極層3とに重畳する半導体高分子層4、最後に半導体高分子層4を覆う絶縁性ポリアニリン高分子層5を形成することで、湿度センサを構成している。 FIG. 1 illustrates the basic configuration of a humidity sensor according to the present invention. A first electrode layer 2 and a second electrode layer 3 are formed on the surface of a base material 1, a semiconductor polymer layer 4 overlapping the first electrode layer 2 and the second electrode layer 3, and finally a semiconductor polymer layer 4. A humidity sensor is constructed by forming an insulating polyaniline polymer layer 5 covering the .

第一電極層2と第二電極層3とは、図示しない電源を介して直流電圧が印加され、検知した電流値から抵抗値を算出し湿度に対応させる。 A DC voltage is applied to the first electrode layer 2 and the second electrode layer 3 via a power source (not shown), and the resistance value is calculated from the detected current value to correspond to the humidity.

基材1の材料としては、例えば、ポリエチレンナフタレート、ポリエチレンテレフタレート、ポリエチレン、ポリイミド、ポリパラキシリレン(パリレン(登録商標))等の樹脂、紙等を用いることができる。 Examples of materials for the base material 1 include resins such as polyethylene naphthalate, polyethylene terephthalate, polyethylene, polyimide, and polyparaxylylene (parylene (registered trademark)), paper, and the like.

第一電極層2および第二電極層3の材料としては、例えば、金、銀、銅、白金、アルミニウム、炭素、酸化インジウム錫(ITO)等を用いることができる。金からなることにより、金含有物を真空蒸着する工程で薄く柔軟な膜を形成でき、かつ酸化還元にも安定なので好ましい。あるいは、銀からなることにより、銀ナノ粒子分散インクを印刷し低温の工程で膜を形成できるので基材の選択が広がり、かつ量産性にも優れるので好ましい。 Examples of materials that can be used for the first electrode layer 2 and the second electrode layer 3 include gold, silver, copper, platinum, aluminum, carbon, and indium tin oxide (ITO). By using gold, it is possible to form a thin and flexible film in the process of vacuum-depositing the gold-containing material, and it is stable against oxidation-reduction, which is preferable. Alternatively, by using silver, it is possible to print a silver nanoparticle-dispersed ink to form a film in a low-temperature process, which broadens the selection of substrates, and is also excellent in mass productivity, which is preferable.

半導体高分子層4の材料としては、例えば、ポリ-4-スチレンスルホン酸をドープしたポリ-3,4-エチレンジオキシチオフェン(PEDOT:PSS)、ポリアニリン、ポリピロール等を用いることができる。PEDOT:PSSは有機半導体を用いて形成する回路との一体化に適し、また塗布または印刷による成膜が容易にできるので好ましい。 As a material for the semiconductor polymer layer 4, for example, poly-3,4-ethylenedioxythiophene (PEDOT:PSS) doped with poly-4-styrenesulfonic acid, polyaniline, polypyrrole, or the like can be used. PEDOT:PSS is suitable for integration with a circuit formed using an organic semiconductor, and can be easily formed into a film by coating or printing, so it is preferable.

絶縁性ポリアニリン高分子層5の材料としては、PEDOT:PSSとの界面における中和による疎水化の効果が期待できる塩基性型ポリアニリンが好ましい。 As the material for the insulating polyaniline polymer layer 5, basic polyaniline is preferable because it can be expected to have a hydrophobizing effect by neutralization at the interface with PEDOT:PSS.

以下、本発明を実施例に基づきさらに具体的に説明するが、本発明は下記の実施例により制限されるものではない。 EXAMPLES The present invention will now be described in more detail based on examples, but the present invention is not limited to the following examples.

図1は本発明にかかる湿度センサの構成を説明するための断面図である。基材1のポリエチレンナフタレート(PEN)フィルム(厚さ120μm)上に、真空蒸着装置を用い、スルーホールマスクを介して金(厚さ50nm)を蒸着することで第一電極層2と第二電極層3とのパターンを作製した。電極のパターンの形状はこれに限定されないが、第一電極層2と第二電極層3との電極幅はそれぞれ1~3mm、第一電極層2と第二電極層3との離間する間隔2mmとした。 FIG. 1 is a cross-sectional view for explaining the configuration of a humidity sensor according to the present invention. Gold (thickness: 50 nm) was vapor-deposited on a polyethylene naphthalate (PEN) film (thickness: 120 μm) of the base material 1 using a vacuum vapor deposition apparatus through a through-hole mask to form the first electrode layer 2 and the second electrode layer 2 . A pattern with the electrode layer 3 was produced. The shape of the electrode pattern is not limited to this, but the electrode width of the first electrode layer 2 and the second electrode layer 3 is 1 to 3 mm, and the distance between the first electrode layer 2 and the second electrode layer 3 is 2 mm. and

その第一電極層2と第二電極層3とに重畳させてディスペンサ装置(武蔵エンジニアリング社製)を用い、ポリ-4-スチレンスルホン酸をドープしたポリ-3,4-エチレンジオキシチオフェン(PEDOT:PSS)を塗布し、120℃で60分焼成することで厚さ5μmの半導体高分子層4を形成した。最後に半導体高分子層4を覆うようにディスペンサ装置(武蔵エンジニアリング社製)を用い、塩基性型ポリアニリンを塗布し、100~120℃で60分焼成することで厚さ1~5μmの絶縁性ポリアニリン高分子層5を形成した。 Poly-4-styrenesulfonic acid-doped poly-3,4-ethylenedioxythiophene (PEDOT :PSS) and baked at 120° C. for 60 minutes to form a semiconductor polymer layer 4 having a thickness of 5 μm. Finally, using a dispenser device (manufactured by Musashi Engineering Co., Ltd.) so as to cover the semiconductor polymer layer 4, basic polyaniline is applied and baked at 100 to 120° C. for 60 minutes to form an insulating polyaniline having a thickness of 1 to 5 μm. A polymer layer 5 was formed.

本湿度センサにあっては、半導体高分子層4がPEDOT:PSS、絶縁性ポリアニリン高分子層5が塩基性型ポリアニリンであることにより、塗布または印刷による積層化成膜が容易にできるので好ましい。 In this humidity sensor, the semiconductor polymer layer 4 is made of PEDOT:PSS, and the insulating polyaniline polymer layer 5 is made of basic polyaniline.

第一電極層2と第二電極層3とが、金の蒸着で形成されていることにより、熱、湿気、酸素及び酸、アルカリ等による化学的腐食に対し非常に安定で、熱伝導と電気伝導に優れた電極を形成することができるので好ましい。 Since the first electrode layer 2 and the second electrode layer 3 are formed by vapor deposition of gold, they are very stable against heat, humidity, oxygen, and chemical corrosion caused by acids, alkalis, etc. It is preferable because an electrode with excellent conductivity can be formed.

図4は比較例としての湿度センサの構成を説明するための断面図である。図1に示す湿度センサの実施例との違いは、絶縁性ポリアニリン高分子層5が設けられていないのみである。 FIG. 4 is a cross-sectional view for explaining the configuration of a humidity sensor as a comparative example. The only difference from the embodiment of the humidity sensor shown in FIG. 1 is that the insulating polyaniline polymer layer 5 is not provided.

次に、本発明の湿度センサを用いた検出方法を詳細に説明する。第一電極層2と第二電極層3との間の電圧の制御および第一電極層2と第二電極層3の間の電流の計測は、2400 Source Meter装置(KEITHLEY社製)を用いて行った。印加する電圧にあっては直流電圧とした。直流電圧とすることにより、回路構成がより単純化できるのでより安価で利便性が高く、素子の小型化、しいてはウェアラブル化ができるので好ましい。 Next, a detection method using the humidity sensor of the present invention will be described in detail. Control of the voltage between the first electrode layer 2 and the second electrode layer 3 and measurement of the current between the first electrode layer 2 and the second electrode layer 3 were performed using a 2400 Source Meter device (manufactured by KEITHLEY). gone. A DC voltage was used as the voltage to be applied. By using a direct current voltage, the circuit configuration can be simplified, which is advantageous because it is cheaper and more convenient, and the device can be made smaller and wearable.

図2は実施例の湿度センサの湿度変化に対する抵抗値の時間変化を示す図、図3は本発明にかかる湿度センサの湿度変化と抵抗値の相関を示す図、図5は比較例として半導体高分子層のみの湿度センサの湿度変化に対する抵抗値の時間変化を示す図、図6は比較例として半導体高分子層のみの湿度センサの湿度変化と抵抗値の相関を示す図、図7は比較例として半導体高分子層のみの湿度センサの湿度変化と抵抗値の相関を片対数で示す図である。いずれも環境温度は35℃での測定データを示す。 FIG. 2 is a diagram showing the time change of the resistance value with respect to the humidity change of the humidity sensor of the embodiment, FIG. 3 is a diagram showing the correlation between the humidity change and the resistance value of the humidity sensor according to the present invention, and FIG. FIG. 6 is a graph showing the time change of the resistance value with respect to the humidity change of the humidity sensor with only the molecular layer, FIG. 6 is a graph showing the correlation between the humidity change and the resistance value of the humidity sensor with only the semiconductor polymer layer as a comparative example, and FIG. 7 is the comparative example. is a diagram showing the correlation between the humidity change and the resistance value of the humidity sensor having only the semiconductor polymer layer as a semi-logarithm. All show measurement data at an environmental temperature of 35°C.

まず、図2と図5について詳細に説明する。実施例および比較例からなる湿度センサをTemperature & Hiumidity Chamber装置(ESPEC社製)に設置し、20%rhから80%rhまで10%rhの間隔で湿度上昇し、次いで80%rhから20%rhまで10%rhの間隔で湿度下降した。第一電極層2と第二電極層3との間には0.1Vの直流電圧が印加され、第一電極層2と第二電極層3の間の電流を計測して抵抗値を算出した。 First, FIGS. 2 and 5 will be described in detail. The humidity sensors of Examples and Comparative Examples were installed in a Temperature & Humidity Chamber device (manufactured by ESPEC), the humidity was increased from 20%rh to 80%rh at intervals of 10%rh, and then from 80%rh to 20%rh. Humidity was lowered at intervals of 10%rh to . A DC voltage of 0.1 V was applied between the first electrode layer 2 and the second electrode layer 3, and the current between the first electrode layer 2 and the second electrode layer 3 was measured to calculate the resistance value. .

実施例と比較例における抵抗値の桁が異なるため、20%rhでの湿度上昇時と湿度下降時の抵抗値の差を下記の式を用いて比率で表わし比較した。
H=(|Rr-Rf| / Rr)×100
H:比率、Rr:上昇時20%rhの抵抗値、Rf:下降時20%rhの抵抗値
Since the digits of the resistance value differ between the example and the comparative example, the difference in the resistance value when the humidity rises and when the humidity falls at 20%rh is expressed as a ratio using the following formula for comparison.
H = (|Rr−Rf|/Rr)×100
H: ratio, Rr: resistance value of 20%rh when rising, Rf: resistance value of 20%rh when falling

その結果、図5に示す比較例の湿度センサでは、湿度上昇時と湿度下降時における抵抗値の差の比率は20.9であるのに対して、図2に示す実施例の湿度センサでは、湿度上昇時と湿度下降時において2.3の差まで縮小した。このことは、実施例の湿度センサは、絶縁性ポリアニリン高分子層5が設けられたことにより、半導体高分子層4が湿度上昇時と湿度下降時とで抵抗値に差が生じるのを抑制でき、換言すれば湿度による抵抗の変化が不安定になるのを防止できることが分かる。したがって、湿度上昇時と湿度下降時とで抵抗値の差を抑制できるので、湿度の経時的な変化を精度よくモニタリングすることができる。 As a result, with the humidity sensor of the comparative example shown in FIG. It was reduced to a difference of 2.3 when the humidity was increased and when the humidity was decreased. This means that, in the humidity sensor of the embodiment, by providing the insulating polyaniline polymer layer 5, it is possible to suppress the difference in the resistance value of the semiconductor polymer layer 4 between when the humidity rises and when the humidity falls. In other words, it can be seen that the change in resistance due to humidity can be prevented from becoming unstable. Therefore, since it is possible to suppress the difference in the resistance value between when the humidity rises and when the humidity falls, it is possible to accurately monitor changes in humidity over time.

次に、図3と図6について詳細に説明する。実施例および比較例からなる湿度センサの湿度上昇時と湿度下降時における湿度変化と抵抗値の相関を示している。図6に示す比較例の湿度センサは、湿度に対する抵抗値の変化が湿度上昇時と湿度下降時において異なる曲率の曲線を示す。湿度変化に対する抵抗値の相関が曲線の対数型となっているので、抵抗値の片対数化により図7に示すように線形化することはできるが、その際の相関係数は0.924と0.999となり、湿度上昇時と湿度下降時における相関が良くない。このため、抵抗値から湿度を求める演算回路が必要になり、一般にはログアンプなどを用いるので回路が複雑になり高価になり精度も悪くなりやすい。一方、図3に示す実施例の湿度センサの抵抗値は直線の線形型を示し、湿度上昇時と湿度下降時において相関係数0.999を示す等、湿度と抵抗値との間で良好な相関が認められた。したがって、湿度変化に対する抵抗値の相関が直線型になるので、抵抗値から湿度を簡単な回路で容易に精度よく求めることができる。 3 and 6 will now be described in detail. 2 shows the correlation between the humidity change and the resistance value when the humidity rises and when the humidity falls for the humidity sensors of the example and the comparative example. The humidity sensor of the comparative example shown in FIG. 6 shows a curve with a different curvature when the humidity rises and when the humidity falls when the change in resistance value with respect to humidity changes. Since the correlation of the resistance value with respect to the humidity change is a logarithmic curve, it can be linearized as shown in FIG. 7 by semi-logarithmizing the resistance value. The result is 0.999, and the correlation between when the humidity rises and when the humidity falls is not good. For this reason, an arithmetic circuit for obtaining the humidity from the resistance value is required, and since a log amp or the like is generally used, the circuit becomes complicated, expensive, and tends to deteriorate in accuracy. On the other hand, the resistance value of the humidity sensor of the embodiment shown in FIG. A correlation was observed. Therefore, since the correlation of the resistance value with respect to the humidity change becomes linear, the humidity can be obtained easily and accurately from the resistance value with a simple circuit.

以上説明したように、実施例の湿度センサは、絶縁性ポリアニリン高分子層5が設けられたことにより、半導体高分子層4が湿度上昇時と湿度下降時とで抵抗値に差が生じるのを抑制でき、かつ湿度変化に対する抵抗値の相関が直線型になるので、湿度の経時的な変化を精度よくモニタリングできるとともに、抵抗値から湿度を簡単な回路で容易に精度よく求めることができる。 As described above, in the humidity sensor of the embodiment, by providing the insulating polyaniline polymer layer 5, the resistance of the semiconductor polymer layer 4 is prevented from being different between when the humidity rises and when the humidity falls. Since the resistance value can be suppressed and the correlation of the resistance value to the humidity change becomes linear, the change in humidity over time can be monitored with high accuracy, and the humidity can be easily and accurately obtained from the resistance value with a simple circuit.

ここで、第一電極層2と第二電極層3とが、銀ナノ粒子分散インクの印刷で形成されていること、基材1にポリエチレンナフタレート(PEN)よりも耐熱性が低いポリエチレンテレフタレート(PET)を使用していること以外は上記の実施例と同様に湿度センサを作製した。この湿度センサにおいても、湿度上昇時と湿度下降時とで抵抗値に差が生じるのを実施例の場合と同様に抑制でき、湿度変化と抵抗値の相関も実施例の場合と同様に良好な直線型になることが確認できた。 Here, the first electrode layer 2 and the second electrode layer 3 are formed by printing silver nanoparticle-dispersed ink, and the substrate 1 is made of polyethylene terephthalate (PEN), which has lower heat resistance than polyethylene naphthalate (PEN). A humidity sensor was produced in the same manner as in the above example, except that PET) was used. Also in this humidity sensor, it is possible to suppress the difference in the resistance value between when the humidity rises and when the humidity falls, as in the case of the embodiment, and the correlation between the humidity change and the resistance value is also good as in the case of the embodiment. It was confirmed that it was linear.

第一電極層2と第二電極層3とを銀ナノ粒子分散インクの印刷で形成することにより、工程での処理温度を低くできるので基材1の耐熱性の制約が緩和され、ポリエチレンテレフタレート(PET)フィルム等が使用でき、安価に提供することができる。 By forming the first electrode layer 2 and the second electrode layer 3 by printing silver nanoparticle-dispersed ink, the treatment temperature in the process can be lowered, so the heat resistance restriction of the base material 1 is relaxed, and polyethylene terephthalate ( PET) film or the like can be used, and can be provided at a low cost.

以上、説明した湿度センサは、可撓性の基材1上に形成することができるので生体や物体への貼付に優れ、直流電圧の測定で湿度上昇時と湿度下降時とで抵抗値の差を抑制し、湿度変化に対する抵抗値の相関が直線型になるので、湿度の経時的な変化を容易に精度よくモニタリングすることができる。また、湿度センサの基材1上に有機半導体を用いるセンシング回路や無線通信回路等との一体化にも有効な手段となる等、それらの効果は大なるものである。 Since the humidity sensor described above can be formed on the flexible base material 1, it is excellent in attachment to a living body or object, and the difference in resistance value when the humidity rises and when the humidity falls is measured by DC voltage measurement. is suppressed, and the correlation of the resistance value with respect to the humidity change becomes linear, so the change in humidity over time can be monitored easily and accurately. In addition, the humidity sensor substrate 1 can be effectively integrated with a sensing circuit, a wireless communication circuit, or the like using an organic semiconductor.

1 基材
2 第一電極層
3 第二電極層
4 半導体高分子層
5 絶縁性ポリアニリン高分子層
1 base material 2 first electrode layer 3 second electrode layer 4 semiconductor polymer layer 5 insulating polyaniline polymer layer

Claims (4)

基材上に第一電極層と第二電極層との間に直流電圧が印加され、
前記第一電極層と前記第二電極層の間の電流を計測して半導体高分子層の抵抗値を算出する湿度センサであって
プラスチックを含む可撓性の基材と、
前記基材上にパターン形成された第一電極層と、
前記基材上に前記第一電極層から離間してパターン形成された第二電極層と、
平面視で前記第一電極層と前記第二電極層とに重畳する半導体高分子層と、
前記半導体高分子層の少なくとも一部が覆われる絶縁性ポリアニリン高分子層と、
からなる湿度センサ。
A DC voltage is applied between the first electrode layer and the second electrode layer on the base material,
A humidity sensor for calculating a resistance value of a semiconductor polymer layer by measuring a current between the first electrode layer and the second electrode layer,
a flexible substrate comprising plastic;
a first electrode layer patterned on the substrate;
a second electrode layer patterned on the substrate spaced apart from the first electrode layer;
a semiconductor polymer layer overlapping the first electrode layer and the second electrode layer in plan view;
an insulating polyaniline polymer layer covering at least a portion of the semiconductor polymer layer;
A humidity sensor consisting of:
請求項1に記載の湿度センサにおいて、
前記半導体高分子層はポリ-4-スチレンスルホン酸をドープしたポリ-3,4-エチレンジオキシチオフェン(PEDOT:PSS)膜からなり、
前記絶縁性ポリアニリン高分子層は塩基性型ポリアニリンからなる湿度センサ。
The humidity sensor of claim 1, wherein
The semiconducting polymer layer consists of a poly-3,4-ethylenedioxythiophene (PEDOT:PSS) film doped with poly-4-styrenesulfonic acid,
The humidity sensor, wherein the insulating polyaniline polymer layer is made of basic polyaniline.
基材上に第一電極層と第二電極層との間に直流電圧が印加され、
前記第一電極層と前記第二電極層の間の電流を計測して半導体高分子層の抵抗値を算出する湿度センサの製造方法であって
プラスチックを含む可撓性の基材上に、パターン形成された第一電極層を形成する工程と、
前記第一電極層から離間してパターン形成された第二電極層を形成する工程と、
平面視で前記第一電極層と前記第二電極層とに重畳する半導体高分子層を形成する工程と、
前記半導体高分子層の少なくとも一部が覆われる絶縁性ポリアニリン高分子層を形成する工程と、
を含む湿度センサの製造方法。
A DC voltage is applied between the first electrode layer and the second electrode layer on the base material,
A humidity sensor manufacturing method for calculating a resistance value of a semiconductor polymer layer by measuring a current between the first electrode layer and the second electrode layer,
forming a patterned first electrode layer on a flexible substrate comprising plastic;
forming a patterned second electrode layer spaced apart from the first electrode layer;
forming a semiconductor polymer layer overlapping the first electrode layer and the second electrode layer in plan view;
forming an insulating polyaniline polymer layer covering at least a portion of the semiconductor polymer layer;
A method of manufacturing a humidity sensor comprising:
請求項3に記載の湿度センサの製造方法において、
前記半導体高分子層を形成する工程は、ポリ-4-スチレンスルホン酸をドープしたポリ-3,4-エチレンジオキシチオフェン(PEDOT:PSS)を塗布する工程を含み、
前記絶縁性ポリアニリン高分子層を形成する工程は、塩基性型ポリアニリンを塗布する工程を含む湿度センサの製造方法。
In the method for manufacturing a humidity sensor according to claim 3,
The step of forming the semiconductor polymer layer includes applying poly-3,4-ethylenedioxythiophene (PEDOT:PSS) doped with poly-4-styrenesulfonic acid,
The method for manufacturing a humidity sensor, wherein the step of forming the insulating polyaniline polymer layer includes the step of applying basic polyaniline.
JP2018072018A 2018-04-04 2018-04-04 Humidity sensor and manufacturing method thereof Active JP7217488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018072018A JP7217488B2 (en) 2018-04-04 2018-04-04 Humidity sensor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018072018A JP7217488B2 (en) 2018-04-04 2018-04-04 Humidity sensor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2019184291A JP2019184291A (en) 2019-10-24
JP7217488B2 true JP7217488B2 (en) 2023-02-03

Family

ID=68340690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018072018A Active JP7217488B2 (en) 2018-04-04 2018-04-04 Humidity sensor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP7217488B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102248653B1 (en) * 2020-02-24 2021-05-04 성균관대학교산학협력단 Variable resistor device, preparing method of the same, and water-level sensor including the same
CN112683956B (en) * 2021-01-13 2022-08-23 山东交通学院 Gas humidity detection system based on potential difference
KR102614100B1 (en) * 2021-08-27 2023-12-15 광운대학교 산학협력단 Extremely high sensitive flexible gas sensor and manufacturing method of the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214858A (en) 2005-02-03 2006-08-17 National Institute Of Advanced Industrial & Technology Water vapor sensor and its manufacturing method, water vapor measuring instrument, and transpiration amount measuring method
JP2008076086A (en) 2006-09-19 2008-04-03 Fujitsu Ltd Polymer membrane and environmental component evaluation sensor
CN106383149A (en) 2016-08-31 2017-02-08 中国科学院半导体研究所 Perovskite nanosheet array-based humidity sensor and production method thereof
JP2017531163A (en) 2014-07-22 2017-10-19 ブルーワー サイエンス アイ エヌ シー. Thin film resistance sensor
JP2019532272A (en) 2016-09-05 2019-11-07 ブルーワー サイエンス アイ エヌシー. Clear processing of high energy pulses in thin film devices with high environmental sensitivity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214858A (en) 2005-02-03 2006-08-17 National Institute Of Advanced Industrial & Technology Water vapor sensor and its manufacturing method, water vapor measuring instrument, and transpiration amount measuring method
JP2008076086A (en) 2006-09-19 2008-04-03 Fujitsu Ltd Polymer membrane and environmental component evaluation sensor
JP2017531163A (en) 2014-07-22 2017-10-19 ブルーワー サイエンス アイ エヌ シー. Thin film resistance sensor
CN106383149A (en) 2016-08-31 2017-02-08 中国科学院半导体研究所 Perovskite nanosheet array-based humidity sensor and production method thereof
JP2019532272A (en) 2016-09-05 2019-11-07 ブルーワー サイエンス アイ エヌシー. Clear processing of high energy pulses in thin film devices with high environmental sensitivity

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Chang-Hung Lee,A Printable Humidity Sensing Material Based on Conductive Polymer and Nanoparticles Composites,Japanese Journal of Applied Physics,2013年,Vol.52,pp.05DA08-1~05DA08-4
Morais Rogerio M.,Low Cost Humidity Sensor Based on PANI/PEDOT:PSS Printed on Paper,IEEE Sensors Journal,2018年04月01日,Vol.18 No.7,pp.2647-2651

Also Published As

Publication number Publication date
JP2019184291A (en) 2019-10-24

Similar Documents

Publication Publication Date Title
JP7217488B2 (en) Humidity sensor and manufacturing method thereof
US10575780B2 (en) Measuring of a physiological parameter using a wearable sensor
Cai et al. Review on flexible photonics/electronics integrated devices and fabrication strategy
US20170059434A1 (en) Capacitive Pressure Sensing using Ionic Film Sensors
JP2021051765A5 (en)
Jung et al. Point-of-care temperature and respiration monitoring sensors for smart fabric applications
US20120053439A1 (en) Sensor for measuring biosignals
JP2022508683A (en) Ion selection sensor
CN110068397B (en) Flexible body temperature sensor and preparation method thereof
US20240049483A1 (en) Pressure sensor device with organic electrochemical transistors
CN110006966A (en) A kind of non-intrusion type flexible sensor detecting dopamine
US20130345534A1 (en) Electrodes with Conductive Polymer Underlayer
Khan et al. Printing sensors on biocompatible substrates for selective detection of glucose
Borghetti et al. Electrical characterization of PEDOT: PSS strips deposited by inkjet printing on plastic foil for sensor manufacturing
EP3570019A1 (en) Sensor
Noushin et al. Kirigami-patterned highly stable and strain insensitive sweat pH and temperature sensors for long-term wearable applications
Conti et al. Hybrid flexible NFC sensor on paper
US20220085309A1 (en) Organic electrochemical transistor having an improved conductive channel
JP7046356B2 (en) Temperature sensor and its manufacturing method
JP7046357B2 (en) Temperature sensor and its manufacturing method
Fu et al. A flexible WO 3-based pH sensor array for 2-D pH monitoring using CPLoP technique
CN103688220A (en) Process for the production of a layered body and layered bodies without masking obtainable therefrom
CN110579295A (en) Pressure sensor and method for manufacturing the same
Delibozov et al. Inkjet-printing in development of flexible and wearable sensing electronics
Gumyusenge et al. Organic‐Based Transistors and Sensors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220519

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230117

R150 Certificate of patent or registration of utility model

Ref document number: 7217488

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150