JP7215979B2 - Fuel pump - Google Patents

Fuel pump Download PDF

Info

Publication number
JP7215979B2
JP7215979B2 JP2019157365A JP2019157365A JP7215979B2 JP 7215979 B2 JP7215979 B2 JP 7215979B2 JP 2019157365 A JP2019157365 A JP 2019157365A JP 2019157365 A JP2019157365 A JP 2019157365A JP 7215979 B2 JP7215979 B2 JP 7215979B2
Authority
JP
Japan
Prior art keywords
pump
fuel
depth
impeller
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019157365A
Other languages
Japanese (ja)
Other versions
JP2021032238A (en
Inventor
聡 田中
篤 浦山
遼 泉原
智樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Astemo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Astemo Ltd filed Critical Hitachi Astemo Ltd
Priority to JP2019157365A priority Critical patent/JP7215979B2/en
Publication of JP2021032238A publication Critical patent/JP2021032238A/en
Application granted granted Critical
Publication of JP7215979B2 publication Critical patent/JP7215979B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、モータ部と、そのモータ部で駆動されるポンプ部とを備えた燃料ポンプ、特にポンプ部が、相互間にインペラ収容室を画成するようにして互いに接合されるポンプケース本体およびポンプカバーよりなるポンプケースと、インペラ収容室に回転摺動可能に収容され且つモータ部で回転駆動される円板状のインペラとを備えていて、そのインペラが、インペラの外周部又は外周端寄りの径方向中間部位に周方向に並ぶ複数の放射状の羽根を有しており、ポンプカバーが、インペラの回転軸線に略沿うよう延びて外部の燃料を吸入可能な燃料吸入口と、その燃料吸入口に一端が連なり且つインペラの羽根の配列方向に沿うようにポンプカバーのインペラとの摺動面に凹設され、燃料吸入口からの吸入燃料を羽根と協働して加圧する溝状のポンプ流路と、そのポンプ流路を流れる燃料中の気泡を排出可能な脱気孔とを有していて、ポンプ流路を流れる加圧燃料がポンプケースの燃料吐出口からモータ部内に吐出可能である燃料ポンプに関する。 The present invention provides a fuel pump having a motor section and a pump section driven by the motor section, particularly a pump case body and a pump case body in which the pump section is joined to each other so as to define an impeller housing chamber therebetween. A pump case comprising a pump cover and a disk-shaped impeller rotatably and slidably housed in the impeller housing chamber and rotationally driven by a motor section are provided, and the impeller is located at or near the outer periphery of the impeller. The pump cover has a plurality of radial vanes arranged in the circumferential direction at a radially intermediate portion of the impeller, and the pump cover has a fuel intake port extending substantially along the rotation axis of the impeller and capable of sucking external fuel, and the fuel suction port. A groove-shaped pump that is recessed in the sliding surface of the pump cover with the impeller so that one end continues to the mouth and along the arrangement direction of the impeller blades, and pressurizes the fuel sucked from the fuel inlet in cooperation with the blades. It has a channel and a degassing hole capable of discharging air bubbles in the fuel flowing through the pump channel, and the pressurized fuel flowing through the pump channel can be discharged into the motor section from the fuel discharge port of the pump case. Regarding the fuel pump.

上記燃料ポンプは、例えば特許文献1に開示されるように従来公知であり、このものでは、ポンプカバーのインペラとの摺動面に設けられた溝状のポンプ流路が、溝底面の深さが燃料吸入口からインペラの回転方向前側に向かって徐々に浅くなる溝勾配を有する深さ変化流路部と、その深さ変化流路部の下流端に連なり且つ溝底面の深さが流路方向全域に亘り一定である深さ一定流路部とを備えていて、深さ一定流路部の途中に脱気孔が開口している。 The above-mentioned fuel pump is conventionally known, for example, as disclosed in Patent Document 1. In this fuel pump, a groove-shaped pump flow path provided on the sliding surface of the pump cover with the impeller extends to the depth of the bottom surface of the groove. has a groove gradient that gradually becomes shallower from the fuel intake toward the front side in the rotational direction of the impeller, and the depth-changing flow path continues to the downstream end of the depth-changing flow path and the depth of the groove bottom surface is the flow path. A constant-depth channel portion that is constant over the entire direction is provided, and a degassing hole is opened in the middle of the constant-depth channel portion.

特開2002-276581号公報JP-A-2002-276581

特許文献1の燃料ポンプでは、ポンプカバーに設けた上記ポンプ流路の、燃料吸入口に連なる上流側部分が、インペラの回転方向前側に向かって徐々に浅くなる深さ変化流路部とされるため、燃料吸入口からポンプ流路に向かう燃料の流れ方向が、インペラの回転軸線に沿う方向からインペラの回転方向へと方向変化する際に、その変化が比較的緩やかなものとなる。これにより、燃料が急減速したり激しい乱流を生じたりすることが極力抑えられて、燃料中のベーパー発生が抑制される。この場合、ポンプ流路の溝底面において、深さ変化流路部の下流端と、深さ一定流路部の上流端とは高低差無く接続されていて、溝底面に沿って燃料がスムーズに流れるようになっている。 In the fuel pump of Patent Document 1, the upstream portion of the pump flow path provided in the pump cover, which is connected to the fuel suction port, is a depth-changing flow path portion that gradually becomes shallower toward the front in the rotational direction of the impeller. Therefore, when the direction of fuel flow from the fuel inlet to the pump flow path changes from the direction along the rotation axis of the impeller to the direction of rotation of the impeller, the change is relatively gentle. As a result, the rapid deceleration of the fuel and the generation of violent turbulence are suppressed as much as possible, and the generation of vapor in the fuel is suppressed. In this case, the downstream end of the variable-depth channel portion and the upstream end of the constant-depth channel portion are connected to each other without any height difference on the bottom surface of the groove of the pump channel, so that the fuel flows smoothly along the bottom surface of the groove. flowing.

ところで高温時には、例えば燃料吸入口の上流側に配置されるフィルタを燃料が通過する場合等に、大量のベーパーが発生し、大量のベーパーが燃料吸入口からポンプ流路側に一時に流入する事態が起きる可能性がある。この場合には、例えば図6に例示したように、大量のベーパーがインペラの羽根溝内に充満することで、インペラの羽根溝(即ち隣接する羽根間の溝)内に液体燃料を導入できなくなって、インペラによる燃料加圧、延いては燃料ポンプからの燃料吐出が困難となる虞れがある。 By the way, when the temperature is high, for example, when the fuel passes through a filter arranged upstream of the fuel inlet, a large amount of vapor is generated, and a large amount of vapor may flow from the fuel inlet into the pump channel at one time. could happen. In this case, as illustrated in FIG. 6, for example, a large amount of vapor fills the impeller blade grooves, making it impossible to introduce liquid fuel into the impeller blade grooves (that is, the grooves between adjacent blades). As a result, it may become difficult to pressurize the fuel by the impeller and, in turn, to discharge the fuel from the fuel pump.

本発明は、上記に鑑み提案されたもので、大量のベーパーがポンプ流路に流入しても、インペラによる燃料加圧を支障なく行えるようし、併せて、十分なポンプ容量を確保可能とした燃料ポンプを提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been proposed in view of the above. The object is to provide a fuel pump.

上記目的を達成するために、本発明は、モータ部と、そのモータ部で駆動されるポンプ部とを備え、前記ポンプ部は、相互間にインペラ収容室を画成するようにして互いに接合されるポンプケース本体およびポンプカバーよりなるポンプケースと、前記インペラ収容室に回転摺動可能に収容され且つ前記モータ部で回転駆動される円板状のインペラとを備えていて、そのインペラが、該インペラの外周部又は外周端寄りの径方向中間部位に周方向に並ぶ複数の放射状の羽根を有しており、前記ポンプカバーは、インペラの回転軸線に略沿うよう延びて外部の燃料を吸入可能な燃料吸入口と、その燃料吸入口に一端が連なり且つ前記羽根の配列方向に沿うように前記ポンプカバーの前記インペラとの摺動面に凹設され、該燃料吸入口からの吸入燃料を前記羽根と協働して加圧する溝状のポンプ流路と、そのポンプ流路を流れる燃料中の気泡を排出可能な脱気孔とを有していて、前記ポンプ流路を流れる加圧燃料が前記ポンプケースの燃料吐出口から前記モータ部内に吐出可能である燃料ポンプにおいて、前記ポンプ流路は、溝底面の深さが前記燃料吸入口から前記インペラの回転方向前側に向かって徐々に浅くなる溝勾配を有する深さ変化流路部と、その深さ変化流路部の下流端に連なり且つ溝底面の深さが流路方向全域に亘り一定である深さ一定流路部とを備えていて、前記深さ変化流路部の下流端部には、該深さ変化流路部のうち溝底面の深さが最も浅く且つ前記深さ一定流路部の溝底面の深さよりも浅い最浅部分が形成され、前記最浅部分の下流に形成され且つ該最浅部分の溝底面の深さよりも深い前記深さ一定流路部の途中、又はその深さ一定流路部よりも下流側の前記ポンプ流路に、前記脱気孔の入口が開口していることを第1の特徴とする。
To achieve the above object, the present invention comprises a motor section and a pump section driven by the motor section, the pump sections being joined together so as to define an impeller housing chamber therebetween. a pump case comprising a pump case main body and a pump cover; and a disk-shaped impeller rotatably and slidably accommodated in the impeller accommodation chamber and driven to rotate by the motor section. The impeller has a plurality of radial blades arranged in the circumferential direction at the outer peripheral portion of the impeller or at a radially intermediate portion near the outer peripheral end, and the pump cover extends substantially along the rotation axis of the impeller and can suck external fuel. a fuel inlet, and one end of which is continuous with the fuel inlet and recessed in the sliding surface between the impeller and the pump cover along the arrangement direction of the blades. It has a groove-shaped pump channel that pressurizes in cooperation with the vanes, and a degassing hole that can discharge air bubbles in the fuel flowing through the pump channel. In the fuel pump capable of discharging fuel into the motor section from a fuel discharge port of a pump case, the depth of the groove bottom surface of the pump channel is a groove that gradually becomes shallower from the fuel suction port toward the front side in the rotational direction of the impeller. A variable depth channel portion having a slope, and a constant depth channel portion connected to the downstream end of the variable depth channel portion and having a constant depth of the bottom surface of the groove throughout the direction of the channel. , at the downstream end of the variable-depth channel portion, the groove bottom surface of the variable-depth channel portion has the shallowest depth and is shallower than the constant-depth channel portion. A shallow portion is formed in the middle of the constant-depth channel portion formed downstream of the shallowest portion and deeper than the depth of the groove bottom surface of the shallowest portion, or downstream of the constant-depth channel portion. The first feature is that the inlet of the degassing hole is open to the pump flow path of the.

また本発明は、第1の特徴に加えて、前記深さ変化流路部の下流端部には、該深さ変化流路部の流路方向中間部の溝底面よりも前記溝勾配が急峻な急勾配部が、前記最浅部分に連ねて形成されることを第2の特徴とする。 In the present invention, in addition to the first feature, the groove gradient is steeper at the downstream end portion of the variable depth channel portion than at the bottom surface of the groove at the intermediate portion in the channel direction of the variable depth channel portion. A second feature is that a steep slope portion is formed continuously with the shallowest portion.

また本発明は、第1又は第2の特徴に加えて、前記インペラの回転軸線と直交する投影面で見て、該回転軸線と前記燃料吸入口の中心とを結ぶ仮想直線と、該回転軸線と前記脱気孔の中心とを結ぶ仮想直線とがなす角度が、120度以上であることを第3の特徴とする。 Further, in addition to the first or second feature, the present invention includes an imaginary straight line connecting the rotational axis of the impeller and the center of the fuel inlet when viewed in a projection plane orthogonal to the rotational axis of the impeller, and the rotational axis. A third feature is that an angle formed by an imaginary straight line connecting the center of the air-releasing hole and the center of the air-releasing hole is 120 degrees or more.

また、本発明は、第1~第3の何れかの特徴に加えて、前記最浅部分の溝底面の深さが0.6mm以下に設定されていることを第4の特徴とする。 Further, according to the present invention, in addition to any one of the first to third features, a fourth feature is that the depth of the bottom surface of the groove at the shallowest portion is set to 0.6 mm or less.

本発明及び本明細書において、「溝底面の深さ」とは、溝の横断面で見た底面のうち最も深い部位での、ポンプカバーのインペラとの摺動面(実施形態でポンプカバー上面)からの深さをいう。例えば、実施形態のように流路溝の底面が横断面円弧状の溝である場合には、溝底面の幅方向中央部の、上記摺動面からの深さをいう。 In the present invention and this specification, the "depth of the bottom surface of the groove" means the sliding surface of the pump cover with the impeller at the deepest part of the bottom surface of the groove as viewed in cross section (in the embodiment, the top surface of the pump cover ). For example, when the bottom surface of the flow channel groove is a groove having an arcuate cross section as in the embodiment, it refers to the depth of the widthwise central portion of the bottom surface of the groove from the sliding surface.

本発明において、「外周端寄りの径方向中間部位」とは、インペラの径方向中央位置(即ちインペラの半径の1/2を半径とする仮想円)よりも径方向外方側の部位をいう。 In the present invention, the “radial intermediate portion near the outer peripheral end” refers to a portion radially outward from the radial center position of the impeller (i.e., a virtual circle having a radius of 1/2 of the impeller radius). .

第1の特徴によれば、ポンプカバーのインペラとの摺動面に凹設されてインペラの羽根配列方向に沿って延びる溝状のポンプ流路は、溝底面の深さが燃料吸入口からインペラの回転方向前側に向かって徐々に浅くなる溝勾配を有する深さ変化流路部と、その深さ変化流路部の下流端に連なり且つ溝底面の深さが流路方向全域に亘り一定である深さ一定流路部とを備えるので、燃料吸入口からポンプ流路に向かう燃料の流れ方向が、インペラの回転軸線に沿う方向からインペラの回転方向へと転向する際に、その方向変化が比較的緩やかなものとなって、燃料が急減速したり激しい乱流を生じたりすることが抑えられ、これにより、燃料中のベーパー発生が抑制可能となる。 According to the first feature, the groove-shaped pump flow path, which is recessed in the sliding surface of the pump cover with the impeller and extends along the blade arrangement direction of the impeller, has a depth of the groove bottom surface extending from the fuel suction port to the impeller. A depth-changing channel portion having a groove gradient that gradually becomes shallower toward the front in the direction of rotation, and a bottom surface of the groove that continues to the downstream end of the variable-depth channel portion and has a constant depth throughout the channel direction. Since the constant depth channel portion is provided, when the direction of fuel flow from the fuel suction port to the pump channel changes from the direction along the rotation axis of the impeller to the direction of rotation of the impeller, the change in direction is minimized. It becomes relatively gentle, suppressing sudden deceleration of the fuel and severe turbulence, thereby suppressing the generation of vapor in the fuel.

また、燃料ポンプの運転環境によっては、大量のベーパーが燃料吸入口からインペラの羽根溝内に流入、充満することで羽根溝内に液体燃料を導入できなくなって、インペラによる燃料加圧が困難となることがあるが、第1の特徴によれば、深さ変化流路部の下流端部には、深さ変化流路部のうち溝底面の深さが最も浅く且つ深さ一定流路部の溝底面の深さよりも浅い最浅部分が形成され、その最浅部分の下流に形成され且つ該最浅部分の溝底面の深さよりも深い深さ一定流路部の途中、又はその深さ一定流路部よりも下流側のポンプ流路に脱気孔の入口が開口しているので、その深さ変化流路部の溝底面に沿って流れる液体燃料をインペラ側に効果的に寄せながら絞ることができ、その絞り効果で液体燃料を加速し且つインペラの羽根側に強く押し出すことができる。従って、その羽根溝内に導入された液体燃料で羽根溝内が加圧されて、羽根溝内のベーパーが脱気孔より徐々に排出され、その排出に伴い羽根溝内の液体燃料量が増えて、より多くの液体燃料が羽根溝内に導入され、最終的には羽根溝内が液体燃料で満たされるようになるため、大量のベーパー流入に因る燃料ポンプの加圧不良を解消可能となる。
かを外部から確認することができる。
Also, depending on the operating environment of the fuel pump, a large amount of vapor may flow into the impeller blade grooves from the fuel inlet and fill the impeller blade grooves. However, according to the first feature, at the downstream end of the variable depth channel portion, the constant depth channel portion having the shallowest depth of the groove bottom surface among the variable depth channel portions is provided. A shallowest portion that is shallower than the depth of the bottom of the groove is formed, and is formed downstream of the shallowest portion and is deeper than the depth of the bottom of the groove of the shallowest portion. Since the inlet of the degassing hole is open in the pump channel downstream of the constant channel portion, the liquid fuel flowing along the groove bottom surface of the depth varying channel portion is effectively drawn toward the impeller and throttled. The throttling effect accelerates the liquid fuel and pushes it strongly toward the blade side of the impeller. Therefore, the inside of the blade groove is pressurized by the liquid fuel introduced into the blade groove, and the vapor in the blade groove is gradually discharged from the degassing hole. , more liquid fuel is introduced into the blade grooves, and the blade grooves are finally filled with liquid fuel, so that it is possible to solve the pressurization failure of the fuel pump due to the inflow of a large amount of vapor. .
can be checked from the outside.

その上、深さ一定流路部の溝底面の深さを深さ変化流路部の最浅部分よりも深くしたことで、十分なポンプ吐出容量を確保可能となる。 Moreover, by making the depth of the bottom surface of the groove of the constant-depth channel portion deeper than the shallowest portion of the variable-depth channel portion, it is possible to secure a sufficient pump discharge capacity.

また第2の特徴によれば、深さ変化流路部の下流端部には、深さ変化流路部の流路方向中間部の溝底面よりも溝勾配が急峻な急勾配部が、最浅部分に連ねて形成されるので、この急勾配部により、深さ変化流路部の溝底面に沿って流れる液体燃料を、インペラの近傍においてより効果的にインペラ側に寄せることができる。従って、液体燃料をインペラの羽根側により強く押し出すことができるから、上記した大量のベーパー流入に因る燃料ポンプの加圧不良をより効果的に解消可能となる。 According to the second feature, the downstream end portion of the variable depth channel portion has a steeper groove slope than the bottom surface of the groove in the intermediate portion in the channel direction of the variable depth channel portion. Since it is formed continuously with the shallow portion, the liquid fuel flowing along the bottom surface of the groove of the depth-changing channel portion can be more effectively brought to the impeller side in the vicinity of the impeller by the steep slope portion. Therefore, the liquid fuel can be pushed out more strongly toward the blades of the impeller, so that it is possible to more effectively eliminate the pressurization failure of the fuel pump caused by the inflow of a large amount of vapor.

また、インペラの羽根溝内のベーパーの気泡は、インペラの回転に伴い羽根溝内の圧力が上昇するにつれて徐々に分割され、小さい気泡へと変化するが、特に第3の特徴によれば、インペラの回転軸線と直交する投影面で見て、該回転軸線と燃料吸入口の中心とを結ぶ仮想直線と、該回転軸線と脱気孔の中心とを結ぶ仮想直線とがなす角度が、120度以上に設定されるため、脱気孔の近傍では羽根溝内の圧力上昇が進んでベーパーの気泡が十分小さくなっている。従って、その小さくなったベーパーの気泡を脱気孔からスムーズに排出することができるから、上記した大量のベーパー流入に因る燃料ポンプの加圧不良を、より効果的に且つ迅速に解消可能となる。 Also, the vapor bubbles in the blade grooves of the impeller are gradually divided into small bubbles as the pressure inside the blade grooves increases as the impeller rotates. The angle formed by an imaginary straight line connecting the rotation axis and the center of the fuel inlet and an imaginary straight line connecting the rotation axis and the center of the vent hole is 120 degrees or more when viewed on a projection plane perpendicular to the rotation axis of , the pressure in the blade groove increases in the vicinity of the vent hole, and the bubbles in the vapor become sufficiently small. Therefore, the reduced vapor bubbles can be smoothly discharged from the degassing holes, so that the pressurization failure of the fuel pump due to the inflow of a large amount of vapor can be eliminated more effectively and quickly. .

また第4の特徴によれば、深さ変化流路部の下流端部は、これの最浅部分の溝底面の深さが0.6mm以下に設定されるので、上記最浅部分の溝底面をインペラの羽根に適度に近接させることができて、深さ変化流路部の溝底面に沿って流れる液体燃料を、より効果的にインペラ側に寄せながら絞ることができ、その絞り効果で液体燃料をより加速し且つインペラの羽根側により強く押し出すことができる。これにより、上記した大量のベーパー流入に因る燃料ポンプの加圧不良をより効果的に且つ迅速に解消可能となる。 According to the fourth characteristic, since the depth of the groove bottom surface of the shallowest portion of the downstream end portion of the depth-changing channel portion is set to 0.6 mm or less, the depth of the groove bottom surface of the shallowest portion can be appropriately brought close to the blades of the impeller, and the liquid fuel flowing along the bottom surface of the groove of the depth change flow passage can be more effectively squeezed toward the impeller side. The fuel can be accelerated more and pushed harder towards the blade side of the impeller. As a result, it is possible to more effectively and quickly solve the pressurization failure of the fuel pump caused by the inflow of a large amount of vapor.

本発明の第1実施形態に係る燃料ポンプを示す全体縦断面図1 is an overall longitudinal sectional view showing a fuel pump according to a first embodiment of the invention; (A)は、ポンプケース本体の底面図(図1の2A-2A線拡大断面図)、(B)は、ポンプカバーの上面図(図1の2B-2B線拡大断面図)(A) is a bottom view of the pump case body (enlarged cross-sectional view along line 2A-2A in FIG. 1), and (B) is a top view of the pump cover (enlarged cross-sectional view along line 2B-2B in FIG. 1). インペラの上面図top view of impeller 燃料吸入口及び第1,第2ポンプ流路を通る縦断面で示すポンプ部の縦断面図と、それの一部領域を拡大して示す部分拡大断面図(特に大量のベーパーがインペラの羽根溝内に流入、充満した場合の様子を示す)A vertical cross-sectional view of the pump part shown in a vertical cross-section passing through the fuel inlet and the first and second pump passages, and a partially enlarged cross-sectional view showing an enlarged partial region thereof (especially a large amount of vapor is the impeller blade groove It shows the state when it flows into and is filled inside) (a)は、第2実施形態を示す、図4部分拡大断面図に対応した断面図、(b)は、第3実施形態を示す、図4部分拡大断面図に対応した断面図(a) is a cross-sectional view corresponding to the partially enlarged cross-sectional view of FIG. 4 showing the second embodiment, and (b) is a cross-sectional view corresponding to the partially enlarged cross-sectional view of FIG. 4 showing the third embodiment. 比較例を示す、図4部分拡大図に対応した拡大断面図Enlarged cross-sectional view corresponding to the partially enlarged view of FIG. 4, showing a comparative example

本発明の実施形態を添付図面に基づいて以下に説明する。 An embodiment of the present invention will be described below based on the accompanying drawings.

先ず、図1~図4を参照して、第1実施形態について説明する。燃料ポンプPUは、車両(例えば自動車、自動二輪車等)に搭載のエンジンの燃料供給系に設けられて燃料をエンジンの燃料噴射装置に圧送するために使用されるものであって、例えば車載の燃料タンク(図示せず)内に、図1に示すような起立姿勢で設置、固定される。 First, a first embodiment will be described with reference to FIGS. 1 to 4. FIG. The fuel pump PU is provided in a fuel supply system of an engine mounted on a vehicle (for example, an automobile, a motorcycle, etc.) and is used to pump fuel to a fuel injection device of the engine. It is installed and fixed in a tank (not shown) in an upright position as shown in FIG.

燃料ポンプPUの一例を説明するに、それは、上下両端が開放した略円筒状に形成された金属製のハウジング10と、このハウジング10の開放上端を閉塞する合成樹脂製のカバー部材11と、ハウジング10の下部内周に嵌装されるポンプ部20と、そのポンプ部20の上側に隣接配置されると共にハウジング10の中間部の内周に嵌装されるモータ部30とを備えている。次にポンプ部20およびモータ部30について、順に具体的に説明する。 To explain an example of the fuel pump PU, it comprises a substantially cylindrical metal housing 10 with both upper and lower ends open, a synthetic resin cover member 11 closing the open upper end of the housing 10, a housing 10 , and a motor section 30 which is arranged above and adjacent to the pump section 20 and which is fitted to the inner circumference of the middle portion of the housing 10 . Next, the pump section 20 and the motor section 30 will be specifically described in order.

ポンプ部20としては、従来周知のカスケードポンプが採用され、それは、例えばハウジング10の下方側の開放端を閉じるようにハウジング10の下端部内周に嵌合、固定されるポンプケース21と、ポンプケース21内に回転摺動可能に収納されると共に後述するモータ軸31に連動回転する円板状のインペラ24とを備える。そのインペラ24の中心孔24h1には、モータ軸31の、回り止め用面取り31cを施された下端部が相対回転不能且つ抜差可能に挿入される。而して、モータ軸31の回転軸線Xは、インペラ24の回転軸線と一致する。 A conventionally well-known cascade pump is employed as the pump section 20. It includes, for example, a pump case 21 fitted and fixed to the inner circumference of the lower end portion of the housing 10 so as to close the open end on the lower side of the housing 10; A disk-shaped impeller 24 is rotatably slidably housed in the interior 21 and rotates in conjunction with a motor shaft 31, which will be described later. A lower end portion of the motor shaft 31 provided with a detent chamfer 31c is inserted into the center hole 24h1 of the impeller 24 so as to be non-rotatable and removable. Therefore, the rotation axis X of the motor shaft 31 coincides with the rotation axis of the impeller 24 .

ポンプケース21は、例えば円盤状のポンプケース本体22と、ポンプケース本体22の下面に隣接する円盤状のポンプカバー23とで分割構成されており、その両者22,23の相互の接合面間に、インペラ24を回転摺動可能に収容したインペラ収容室25が画成される。 The pump case 21 is divided into, for example, a disc-shaped pump case main body 22 and a disc-shaped pump cover 23 adjacent to the lower surface of the pump case main body 22. , an impeller housing chamber 25 in which the impeller 24 is rotatably and slidably housed is defined.

ポンプケース21は、例えばハウジング10下部の下向き内周段部10sと、ハウジング10の開放下端を上向きにカシメ加工して形成された係止爪部10aとの間で、軸方向に挟圧、固定されており、その挟圧力でポンプケース本体22とポンプカバー23との接合面間が油密にシールされる。尚、その接合面間には、シール性を高めるために必要に応じて環状シールを介装してもよい。 The pump case 21 is axially clamped and fixed, for example, between a downward inner peripheral stepped portion 10s at the bottom of the housing 10 and a locking claw portion 10a formed by caulking the open lower end of the housing 10 upward. The pressure between the joint surfaces of the pump case main body 22 and the pump cover 23 is oil-tightly sealed. An annular seal may be interposed, if necessary, between the joint surfaces in order to improve the sealing performance.

インペラ24は、これの外周端寄りの径方向中間部位に、周方向に並ぶ多数の放射状の羽根24bを一体に有しており、相隣なる羽根24b間に放射状の羽根溝gが形成される。各羽根24bは、例えばインペラ24の径方向外方側から見てインペラ24の回転方向a前側に拡開するV字状(図4参照)に形成され、従って、各羽根溝gは、インペラ24の両側面に開口する傾斜溝となる。即ち、その溝gの開口方向は、インペラ24の回転方向aに向かってインペラ24の外側方側に傾斜した向きとなる。 The impeller 24 integrally has a large number of radial blades 24b arranged in the circumferential direction at a radially intermediate portion near the outer peripheral end of the impeller 24, and radial blade grooves g are formed between the adjacent blades 24b. . Each blade 24b is formed, for example, in a V shape (see FIG. 4) that widens forward in the rotational direction a of the impeller 24 when viewed from the radially outer side of the impeller 24. becomes an inclined groove that opens on both sides of the That is, the opening direction of the groove g is inclined toward the outer side of the impeller 24 toward the rotation direction a of the impeller 24 .

尚、インペラ24の羽根24bは、図示例ではインペラ24の外周端寄りの径方向中間部位に設けたが、インペラ24の外周部に設けてもよい。またインペラ24の羽根24bは、図示例ではインペラ24の回転方向aに対し傾斜させたものを示したが、その回転方向aに対し直交させた羽根を用いてもよい。 In the illustrated example, the blades 24b of the impeller 24 are provided at a radially intermediate portion near the outer peripheral end of the impeller 24, but they may be provided at the outer peripheral portion of the impeller 24. FIG. In the illustrated example, the blades 24b of the impeller 24 are inclined with respect to the rotational direction a of the impeller 24, but blades perpendicular to the rotational direction a may be used.

ポンプカバー23は、インペラ24の回転軸線Xに略沿うよう延びて外部燃料(即ち燃料タンク内の燃料)を吸入可能な燃料吸入口23iと、その燃料吸入口23iに一端が連なり且つインペラ24の羽根24bの配列方向に沿うようポンプカバー23のインペラ24との摺動面(図示例では上面)に凹設されるC字溝状の第1ポンプ流路P1と、その第1ポンプ流路P1の途中に入口が開口する脱気孔26とを有する。脱気孔26の出口は、第1ポンプ流路P1を流れる燃料中の気泡を外部(即ち燃料ポンプPU外)に排出できるようにポンプカバー23の外面に開口する。而して、第1ポンプ流路P1は、本発明のポンプ流路の一例である。 The pump cover 23 includes a fuel suction port 23i extending substantially along the rotation axis X of the impeller 24 and capable of sucking external fuel (that is, fuel in the fuel tank). A C-shaped groove-shaped first pump passage P1 recessed in the sliding surface (upper surface in the illustrated example) of the pump cover 23 with the impeller 24 along the arrangement direction of the blades 24b, and the first pump passage P1. and a degassing hole 26 having an open entrance in the middle of the air. The outlet of the degassing hole 26 opens to the outer surface of the pump cover 23 so that air bubbles in the fuel flowing through the first pump flow path P1 can be discharged to the outside (that is, outside the fuel pump PU). Thus, the first pump channel P1 is an example of the pump channel of the present invention.

一方、ポンプケース本体22は、第1ポンプ流路P1とインペラ24を挟んで対向するようにポンプケース本体22のインペラ24との摺動面に凹設される、C字溝状の第2ポンプ流路P2と、その第2ポンプ流路P2の下流端部をハウジング10内(特にモータ部30の内部空間)に連通させる燃料吐出口22oとを有する。第1,第2ポンプ流路P1,P2は、何れも横断面が略円弧状をなす溝形態に形成される。 On the other hand, the pump case main body 22 is recessed in the sliding surface of the pump case main body 22 with the impeller 24 so as to face the first pump flow path P1 with the impeller 24 interposed therebetween. It has a flow path P2 and a fuel discharge port 22o that communicates the downstream end of the second pump flow path P2 with the inside of the housing 10 (in particular, the internal space of the motor section 30). Each of the first and second pump passages P1 and P2 is formed in a groove shape having a substantially arcuate cross section.

後述するように第1,第2ポンプ流路P1,P2は、回転するインペラ24の羽根24bと協働して、燃料吸入口23iからの吸入燃料を燃料吐出口22o側に押し込むように加圧するための加圧流路として機能する。そして、第1,第2ポンプ流路P1,P2内を流れる加圧燃料は、燃料吐出口22oからモータ部30内に導入される。 As will be described later, the first and second pump passages P1 and P2 cooperate with the blades 24b of the rotating impeller 24 to pressurize the fuel sucked from the fuel inlet 23i toward the fuel outlet 22o. It functions as a pressurized flow path for The pressurized fuel flowing through the first and second pump flow paths P1 and P2 is introduced into the motor portion 30 through the fuel discharge port 22o.

また第1ポンプ流路P1は、溝底面の深さが燃料吸入口23iからインペラ24の回転方向a前側に向かって徐々に浅くなる溝勾配を有する深さ変化流路部27と、その深さ変化流路部27の下流端に連なり且つ溝底面の深さd1が流路方向全域に亘り一定(例えば、本実施形態ではd1=0.6mm)である深さ一定流路部28とを備える。 Further, the first pump flow path P1 includes a depth changing flow path portion 27 having a groove gradient in which the depth of the groove bottom surface gradually becomes shallower toward the front side in the rotational direction a of the impeller 24 from the fuel suction port 23i. A constant-depth channel portion 28 connected to the downstream end of the variable channel portion 27 and having a constant depth d1 of the bottom surface of the groove over the entire channel direction (for example, d1=0.6 mm in this embodiment). .

尚、本実施形態の深さ一定流路部28は、深さ変化流路部27の下流端から第1ポンプ流路P1の下流端近傍まで、溝底面の深さd1が流路方向全域に亘り一定となるように形成され、その深さ一定流路部28の途中に脱気孔26の入口が開口しているが、第1ポンプ流路P1の、脱気孔26近くの流路部分や脱気孔26より下流側の流路部分を、溝底面の深さが下流端に向かうにつれて徐々に浅く変化するように形成してもよい。 In addition, in the constant depth channel portion 28 of the present embodiment, the depth d1 of the groove bottom surface extends from the downstream end of the variable depth channel portion 27 to the vicinity of the downstream end of the first pump channel P1. The inlet of the degassing hole 26 is opened in the middle of the constant depth channel portion 28, but the channel portion near the degassing hole 26 and the degassing portion of the first pump channel P1 The channel portion on the downstream side of the pores 26 may be formed such that the depth of the groove bottom gradually decreases toward the downstream end.

また本実施形態では、深さ変化流路部27は、溝幅(即ち溝を横切る方向での溝開口面の幅)が燃料吸入口23iとの連通部で最大幅とされ、そこから下流側に向かうにつれて徐々に狭まるように形成される。一方、深さ一定流路部28は、横断面が略半円弧状に形成され、しかもその溝幅が深さ一定流路部28の流路方向略全域に亘り一定に形成されている。 Further, in the present embodiment, the groove width (that is, the width of the groove opening surface in the direction across the groove) of the depth-changing flow passage portion 27 is the maximum width at the portion communicating with the fuel suction port 23i, and the downstream side from there. formed so as to gradually narrow toward On the other hand, the constant-depth channel portion 28 has a substantially semicircular cross-section, and the width of the groove is constant over substantially the entire channel direction of the constant-depth channel portion 28 .

そして、深さ変化流路部27の下流端部27dと、深さ一定流路部28の上流端部28uとの間には、深さ一定流路部28の溝底面の深さよりも下流端部27dの溝底面の深さを浅く変化させる段差部Sが介設される。しかも深さ変化流路部27の下流端部27dには、溝底面の深さが深さ変化流路部27の中で最も浅く且つそれの下流に形成された深さ一定流路部28の溝底面の深さよりも段差部S分だけ浅い最浅部分27dtが、段差部Sの高位側に連続して形成される。
Between the downstream end portion 27d of the variable-depth channel portion 27 and the upstream end portion 28u of the constant-depth channel portion 28, the depth of the groove bottom surface of the constant-depth channel portion 28 is greater than the depth of the bottom surface of the groove. A stepped portion S is interposed to shallowly change the depth of the groove bottom surface of the portion 27d. Moreover, at the downstream end portion 27d of the variable depth channel portion 27, the constant depth channel portion 28 formed downstream of the variable depth channel portion 27 and having the shallowest groove bottom depth is provided. A shallowest portion 27dt shallower than the depth of the groove bottom surface by the step portion S is formed continuously on the high side of the step portion S.

さらに本実施形態の深さ変化流路部27の下流端部27dには、深さ変化流路部27の流路方向中間部の溝底面よりも上記溝勾配が急峻である急勾配部Zが、最浅部分27dtの上流端に連なるように形成されている。 Furthermore, at the downstream end portion 27d of the variable depth channel portion 27 of the present embodiment, there is a steep slope portion Z having a steeper groove gradient than the bottom surface of the groove at the intermediate portion in the channel direction of the variable depth channel portion 27. , to the upstream end of the shallowest portion 27dt.

また、ポンプケース本体22の中心孔には金属(例えば洋白)製の第1軸受51が嵌着(例えば圧入)される。その第1軸受51には、モータ軸31の下端部が抜差可能に嵌合支持される。また、モータ軸31の上端部は、カバー部材11の内壁中央部に第2軸受52を介して回転自在に嵌合、支持される。 A first bearing 51 made of metal (for example, nickel silver) is fitted (for example, press-fitted) into the center hole of the pump case main body 22 . The lower end of the motor shaft 31 is fitted and supported in the first bearing 51 so as to be removable. The upper end of the motor shaft 31 is rotatably fitted to and supported by the central portion of the inner wall of the cover member 11 via the second bearing 52 .

更にポンプケース本体22及びポンプカバー23の相対向面の中央部には、インペラ24を挟んで相対向する中央凹部22a,23aがそれぞれ形成される。それら中央凹部22a,23aは、インペラ24を上下に貫通する連通孔24h2を通して相互間が連通し、またモータ軸31の下端部や第1軸受51の下端部とも連通する。 Further, central recesses 22a and 23a facing each other with the impeller 24 interposed therebetween are formed in the central portions of the opposing surfaces of the pump case main body 22 and the pump cover 23, respectively. The central recesses 22 a and 23 a communicate with each other through a communication hole 24 h 2 vertically penetrating the impeller 24 , and also communicate with the lower end of the motor shaft 31 and the lower end of the first bearing 51 .

次にモータ部30の一例について説明する。モータ部30としては、従来周知のブラシレスモータが採用され、それは、例えばハウジング10に外周部が固定(例えば圧入)された金属製のステータコア32と、そのステータコア32に固定されてステータコア32の少なくとも両端部を被覆する合成樹脂製のインシュレータ33と、そのインシュレータ33を介してステータコア32に巻回されたコイル34と、それらステータコア32及びコイル34と協働して回転力を生じさせる磁石35付きのロータ36と、そのロータ36と共に回転する前記モータ軸31とを備える。 Next, an example of the motor section 30 will be described. A conventionally well-known brushless motor is adopted as the motor unit 30. It includes, for example, a metallic stator core 32 whose outer peripheral portion is fixed (for example, press-fitted) to the housing 10, and at least both ends of the stator core 32 are fixed to the stator core 32. A synthetic resin insulator 33 covering the part, a coil 34 wound around the stator core 32 via the insulator 33, and a rotor with a magnet 35 that cooperates with the stator core 32 and the coil 34 to generate a rotational force. 36 and the motor shaft 31 that rotates with the rotor 36 .

ロータ36は、磁石35とモータ軸31間に介在して磁石35をモータ軸31に一体的に結合する合成樹脂製の円筒状の中間部材37を備える。この中間部材37としては、耐摩耗性に優れた合成樹脂材、例えばポリアセタール(POM)樹脂が選定される。 The rotor 36 is provided with a synthetic resin cylindrical intermediate member 37 interposed between the magnet 35 and the motor shaft 31 to integrally couple the magnet 35 to the motor shaft 31 . As the intermediate member 37, a synthetic resin material excellent in abrasion resistance, such as polyacetal (POM) resin, is selected.

磁石35は、周方向で交互に並ぶN極・S極を有していて、中間部材37にこれの外周部を取り囲むように装着される。また中間部材37の内周部はモータ軸31の外周に固定され、その固定手段としては、例えば、圧入、接着、インサート成形等が適宜、採用可能である。 The magnet 35 has north and south poles arranged alternately in the circumferential direction, and is attached to the intermediate member 37 so as to surround the outer periphery thereof. Further, the inner peripheral portion of the intermediate member 37 is fixed to the outer periphery of the motor shaft 31, and as the fixing means, for example, press fitting, adhesion, insert molding, etc. can be appropriately adopted.

また中間部材37と第1軸受51との相対向面間には金属(例えばステンレス)製のワッシャ40が所定の挟持力(本実施形態では磁石35付きロータ36およびモータ軸31の総重量に相当するスラスト力)で挟持される。 Between the opposing surfaces of the intermediate member 37 and the first bearing 51, a washer 40 made of metal (for example, stainless steel) is provided with a predetermined clamping force (corresponding to the total weight of the rotor 36 with the magnet 35 and the motor shaft 31 in this embodiment). It is clamped by the thrust force).

また上部のインシュレータ33からは、コイル34に通じる接続端子38が上方に延出している。そして、この接続端子38は、中間部がカバー部材11の貫通孔に圧入され、且つ上端部がカバー部材11の上方に突出して不図示の外部配線に着脱可能に接続できるようになっている。 A connection terminal 38 leading to the coil 34 extends upward from the upper insulator 33 . The connecting terminal 38 has an intermediate portion press-fitted into a through hole of the cover member 11 and an upper end projecting upward from the cover member 11 so as to be detachably connected to an external wiring (not shown).

またカバー部材11の上面には、モータ部30内の加圧燃料をエンジンの前記燃料噴射装置側に外部配管を介して吐出可能な燃料出口筒11oが上向きに突設される。この燃料出口筒11o内には、モータ部30内から外部配管側への一方向のみの燃料流動を許容する逆止弁41が設けられる。 On the upper surface of the cover member 11, a fuel outlet pipe 11o is projected upward, which can discharge the pressurized fuel in the motor portion 30 to the fuel injection device side of the engine through an external pipe. A check valve 41 is provided in the fuel outlet tube 11o to allow the fuel to flow in only one direction from the inside of the motor portion 30 to the external piping side.

カバー部材11は、これの下端がハウジング10上部の上向き内周段部10s′に係合するまでハウジング10の上部内周に油密に嵌合、固定(例えば圧入)される。そして、ハウジング10の開放上端を下向きにカシメ加工して形成された係止爪部10a′が、カバー部材11の外周段部に係合することで、カバー部材11のハウジング10からの離脱が阻止される。 The cover member 11 is oil-tightly fitted and fixed (for example, press-fitted) to the upper inner periphery of the housing 10 until the lower end of the cover member 11 engages the upward inner peripheral step 10s' of the upper portion of the housing 10. As shown in FIG. A locking claw portion 10a' formed by crimping the open upper end of the housing 10 downward engages with the outer peripheral stepped portion of the cover member 11, thereby preventing the cover member 11 from being detached from the housing 10. be done.

次に、第1実施形態の作用を説明する。 Next, the operation of the first embodiment will be described.

燃料ポンプPUのモータ部30に通電してモータ軸31を回転させると、ポンプ部20では、モータ軸31に連動してインペラ24が回転駆動される。すると、インペラ24の各羽根24bが燃料に及ぼす回転方向押圧力や遠心力により、第1,第2ポンプ流路P1,P2内では燃料が渦流を発生させながら下流側に流動すると共に徐々に加圧される。それに伴い、燃料吸入口23iに負圧が生じて、燃料タンク内の燃料が燃料吸入口23iから第1,第2ポンプ流路P1,P2の上流部に連続的に吸入され、これまたインペラ24により加圧される。 When the motor portion 30 of the fuel pump PU is energized to rotate the motor shaft 31 , the impeller 24 of the pump portion 20 is rotationally driven in conjunction with the motor shaft 31 . Then, in the first and second pump passages P1 and P2, the fuel flows downstream while generating swirl and is gradually accelerated by the rotational direction pressing force and centrifugal force exerted by the blades 24b of the impeller 24 on the fuel. pressured. As a result, a negative pressure is generated at the fuel inlet 23i, and the fuel in the fuel tank is continuously drawn from the fuel inlet 23i into the upstream portions of the first and second pump flow paths P1 and P2. is pressurized by

かくして、モータ部30でポンプ部20のインペラ24を回転駆動すれば、燃料タンク内の燃料が燃料吸入口23iからポンプケース21内に吸入され、第1,第2ポンプ流路P1,P2を流れる間に徐々に加圧される。そして、その加圧燃料は、燃料吐出口22oよりモータ部30内へ吐出され、そこから更に逆止弁41を経て燃料出口筒11oより外部配管、延いてはエンジンの燃料噴射装置に圧送される。 Thus, when the impeller 24 of the pump section 20 is rotationally driven by the motor section 30, the fuel in the fuel tank is sucked into the pump case 21 from the fuel suction port 23i and flows through the first and second pump flow paths P1 and P2. gradually pressurized. Then, the pressurized fuel is discharged from the fuel discharge port 22o into the motor portion 30, from which it passes through the check valve 41 and is pressure-fed from the fuel outlet tube 11o to the external pipe and eventually to the fuel injection device of the engine. .

本実施形態のポンプ部20において、ポンプカバー23のインペラ24との摺動面に凹設されてインペラ24の羽根配列方向に沿って延びる溝状の第1ポンプ流路P1は、溝底面の深さが燃料吸入口23iからインペラ24の回転方向前側に向かって徐々に浅くなる溝勾配を有する深さ変化流路部27と、その深さ変化流路部27の下流端に連なり且つ溝底面の深さが流路方向全域に亘り一定である深さ一定流路部28とを備える。そのため、ポンプ部20の作動中、燃料吸入口23iから第1ポンプ流路P1に向かう燃料の流れ方向が、インペラ24の回転軸線Xに沿う方向からインペラ24の回転方向aへと転向する際に、その方向変化が比較的緩やかなものとなるので、燃料が急減速したり激しい乱流を生じたりすることが抑えられる。これにより、燃料中のベーパー発生が抑制可能となり、また万一、発生したベーパーは脱気孔26より速やかに排出可能である。 In the pump portion 20 of the present embodiment, the groove-shaped first pump flow path P1 is recessed in the sliding surface of the pump cover 23 with the impeller 24 and extends along the blade arrangement direction of the impeller 24. A depth-changing channel portion 27 having a groove gradient that gradually becomes shallower toward the front side in the rotational direction of the impeller 24 from the fuel intake port 23i, and a groove bottom surface connected to the downstream end of the depth-changing channel portion 27. A constant-depth channel portion 28 having a constant depth over the entire channel direction is provided. Therefore, during operation of the pump portion 20, when the flow direction of the fuel from the fuel suction port 23i toward the first pump flow path P1 changes from the direction along the rotation axis X of the impeller 24 to the rotation direction a of the impeller 24, , the direction change is relatively gradual, so that sudden fuel deceleration and severe turbulence are suppressed. As a result, it is possible to suppress the generation of vapor in the fuel, and in the unlikely event that vapor is generated, it can be quickly discharged from the degassing hole 26 .

ところで燃料ポンプPUの運転環境によっては(例えば高温時には)、ポンプ運転中に、燃料タンク内の例えばフィルタ等で発生した大量のベーパーが燃料吸入口23iからインペラ24の羽根溝g内に一時に流入、充満することで、羽根溝g内に液体燃料を導入できなくなって、インペラ24による燃料加圧が困難となることがある。 However, depending on the operating environment of the fuel pump PU (for example, when the temperature is high), a large amount of vapor generated in the fuel tank, for example, in a filter or the like, may flow into the blade grooves g of the impeller 24 from the fuel inlet 23i at one time during pump operation. As a result, the impeller 24 may become difficult to pressurize the fuel because the impeller 24 may become unable to introduce the liquid fuel into the blade groove g.

この事態を、例えば図6で示す比較例を参照して説明すると、大量のベーパーが、燃料吸入口23iからインペラ24の羽根溝g内に一時に流入したときに、その流入圧や比重差等により大量のベーパーが、図6に示すように羽根溝g内に流入、充満する一方、燃料吸入口23iからの流入液体燃料は、深さ変化流路部27及び深さ一定流路部28の溝底面に沿うよう層状に分布して羽根溝g内には流入しない流動態様となることがある。このとき、液体の液層とインペラ24との間にはベーパーの気泡層が介在していて、羽根溝g内にはベーパーの気泡のみが充満するため、インペラ24の回転によるも羽根溝g内は有効に加圧されず、羽根溝g内のベーパーはいつまでも排出されない。従って、インペラ24の回転に基づく燃料加圧、延いては燃料吐出口22oからの燃料吐出が困難となる。 This situation will be explained with reference to the comparative example shown in FIG. 6, for example. As a result, a large amount of vapor flows into and fills the blade groove g as shown in FIG. In some cases, the fluid is distributed in layers along the bottom surface of the groove and does not flow into the blade groove g. At this time, a vapor bubble layer exists between the liquid layer and the impeller 24, and the blade grooves g are filled only with vapor bubbles. is not effectively pressurized, and the vapor in the blade groove g is never discharged. Therefore, it becomes difficult to pressurize the fuel based on the rotation of the impeller 24 and, in turn, to discharge the fuel from the fuel discharge port 22o.

これに対し、本実施形態では、図4の部分拡大図に示すように、深さ変化流路部27の下流端部27dと深さ一定流路部28との間に段差部Sが介設され、深さ変化流路部27の下流端部27dには、溝底面の深さが深さ変化流路部27の中で最も浅く且つその下流に形成された深さ一定流路部28の溝底面の深さよりも浅い最浅部分27dtが、段差部Sの高位側に連続して形成される。
On the other hand, in this embodiment, as shown in the partial enlarged view of FIG. At the downstream end portion 27d of the variable depth channel portion 27, the constant depth channel portion 28 formed downstream of the variable depth channel portion 27 and having the shallowest groove bottom depth is provided. A shallowest portion 27dt shallower than the depth of the bottom of the groove is formed continuously on the high side of the stepped portion S.

これにより、深さ変化流路部27の下流端部27dの溝勾配を、段差部Sのない従来構造(図6参照)と比べて大きく設定可能となり、また従来構造と比べて深さ変化流路部27の下流端部27dの溝底面の深さを浅くできるため、その深さ変化流路部27の溝底面に沿って流れる液体燃料を、よりインペラ24側に効果的に寄せながら(即ちインペラ24側に偏向させつつ)絞ることができ、その絞り効果で液体燃料を加速し且つインペラ24の羽根24b側に強く押し出すことができる。 As a result, the groove gradient of the downstream end portion 27d of the depth-changing flow passage portion 27 can be set larger than in the conventional structure (see FIG. 6) without the stepped portion S, and the depth-changing flow is greater than that in the conventional structure. Since the depth of the bottom surface of the groove of the downstream end portion 27d of the passage portion 27 can be made shallow, the liquid fuel flowing along the bottom surface of the groove of the depth changing passage portion 27 can be effectively brought closer to the impeller 24 side (that is, The liquid fuel can be throttled (while being deflected toward the impeller 24), and the throttle effect can accelerate the liquid fuel and push it strongly toward the blades 24b of the impeller 24.例文帳に追加

よって、その羽根溝g内に押し出された液体燃料で羽根溝g内が加圧されて、羽根溝g内のベーパーが脱気孔26より徐々に排出され、その排出に伴い羽根溝g内の液体燃料量が徐々に増えて(換言すれば、燃料液面が徐々に上昇して)、より多くの液体燃料が羽根溝g内に導入されるようになる。そして、最終的には羽根溝g内が液体燃料で満たされるようになるため、大量のベーパー流入に起因した燃料ポンプPUの加圧不良を解消可能して、燃料吐出が可能となる。 Therefore, the inside of the blade groove g is pressurized by the liquid fuel pushed out into the blade groove g, and the vapor in the blade groove g is gradually discharged from the degassing hole 26, and the liquid in the blade groove g is accompanied by the discharge. As the amount of fuel gradually increases (in other words, the fuel surface gradually rises), more liquid fuel is introduced into the blade groove g. Finally, the inside of the blade groove g is filled with the liquid fuel, so that the pressurization failure of the fuel pump PU caused by the inflow of a large amount of vapor can be eliminated, and the fuel can be discharged.

また仮に上記段差部Sを無くして、深さ一定流路部28の溝深さを上記最浅部分27dtと同様に浅くした場合でも、大量のベーパー流入に因る燃料ポンプPUの加圧不良の解消が或る程度は期待できるが、この場合は、深さ一定流路部28の溝深さが相対的に浅くなってポンプ吐出容量の低下を来たす不都合を来たす虞れがある。 Further, even if the stepped portion S is eliminated and the groove depth of the constant-depth flow passage portion 28 is made as shallow as the shallowest portion 27dt, insufficient pressurization of the fuel pump PU due to the inflow of a large amount of vapor may occur. Although the problem can be expected to be resolved to some extent, in this case, the groove depth of the constant-depth flow path portion 28 becomes relatively shallow, and there is a possibility that the pump discharge capacity may be reduced.

これに対して、本実施形態では、深さ一定流路部28の最浅部分27dtと深さ変化流路部27との間に上記段差部S(即ち、高低差)が存することで、深さ一定流路部28の溝深さを相対的に深く形成可能となるから、深さ一定流路部28の溝深さが過度に浅くなり過ぎることに起因したポンプ吐出容量の低下が回避され、即ちポンプ吐出容量を十分に確保可能となる。 On the other hand, in the present embodiment, the stepped portion S (that is, height difference) exists between the shallowest portion 27dt of the constant-depth channel portion 28 and the variable-depth channel portion 27. Since the groove depth of the constant-depth flow passage portion 28 can be formed relatively deep, a decrease in pump discharge capacity caused by excessively shallow groove depth of the constant-depth flow passage portion 28 can be avoided. That is, it becomes possible to sufficiently secure the pump discharge capacity.

また特に本実施形態では、深さ変化流路部27の下流端部27dには、深さ変化流路部27の流路方向中間部の溝底面よりも溝勾配が急峻な急勾配部Zが、最浅部分27dtの上流端に連ねて設けられている。従って、この急勾配部Zの特設により、深さ変化流路部27の溝底面に沿って流れる液体燃料を、インペラ24の近傍において、より効果的にインペラ24側に寄せることができ、液体燃料をインペラ24の羽根24b側により強く押し出すことができる。これにより、上記した大量のベーパー流入に因る燃料ポンプPUの加圧不良をより効果的に解消することができる。 In particular, in the present embodiment, the downstream end portion 27d of the variable depth channel portion 27 has a steep slope portion Z having a steeper groove gradient than the bottom surface of the groove in the intermediate portion of the variable depth channel portion 27 in the channel direction. , the upstream end of the shallowest portion 27dt. Therefore, by specially providing the steep slope portion Z, the liquid fuel flowing along the bottom surface of the groove of the depth-changing flow passage portion 27 can be more effectively brought toward the impeller 24 in the vicinity of the impeller 24, and the liquid fuel can be pushed out more strongly toward the blades 24b of the impeller 24. As a result, it is possible to more effectively eliminate the pressurization failure of the fuel pump PU caused by the inflow of a large amount of vapor.

また、インペラ24の羽根溝g内のベーパーの気泡は、インペラ24の回転に伴い羽根溝g内の圧力が上昇するにつれて徐々に分割され、小さい気泡へと変化するところ、本実施形態では、インペラ24の回転軸線Xと直交する投影面で見て、回転軸線Xと燃料吸入口23iの中心とを結ぶ仮想直線L1と、回転軸線Xと脱気孔26の中心とを結ぶ仮想直線L2とがなす角度αが、120度以上に設定されている。これにより、脱気孔26の近傍では羽根溝g内の圧力上昇が進んでいてベーパーの気泡を十分小さくできるから、そのベーパーの気泡を脱気孔26からスムーズに排出することが可能となり、その結果、上記した大量のベーパー流入に因る燃料ポンプPUの加圧不良をより効果的に且つ迅速に解消可能となる。 Further, the vapor bubbles in the blade grooves g of the impeller 24 are gradually divided into small bubbles as the pressure in the blade grooves g increases as the impeller 24 rotates. 24, an imaginary straight line L1 connecting the rotation axis X and the center of the fuel inlet 23i and an imaginary straight line L2 connecting the rotation axis X and the center of the vent hole 26 are formed. The angle α is set to 120 degrees or more. As a result, the pressure in the blade grooves g increases in the vicinity of the degassing holes 26, and the vapor bubbles can be made sufficiently small, so that the vapor bubbles can be smoothly discharged from the degassing holes 26. As a result, It is possible to more effectively and quickly eliminate the pressurization failure of the fuel pump PU caused by the inflow of a large amount of vapor.

また本実施形態では、深さ変化流路部27の下流端部27dは、上記段差部Sの高位側に連続する最浅部分27dtの溝底面の深さd2が0.6mm以下(例えば、本実施形態では、d2=0.5mm)に設定されることが望ましい。その場合には、深さ変化流路部27の下流端部27dの最浅部分27dtの溝底面を、インペラ24の羽根24bに適度に近接させることができて、深さ変化流路部27の溝底面に沿って流れる液体燃料をより効果的にインペラ24側に寄せながら絞ることができ、その絞り効果で、液体燃料をより加速し且つインペラ24の羽根24b側により強く押し出すことができる。これにより、上記した大量のベーパー流入に因る燃料ポンプPUの加圧不良をより効果的に且つ迅速に解消可能となる。 Further, in the present embodiment, the depth d2 of the groove bottom surface of the shallowest portion 27dt continuous to the high side of the stepped portion S is 0.6 mm or less (for example, the downstream end portion 27d of the depth-changing channel portion 27 is In the embodiment, it is desirable to set d2=0.5 mm). In that case, the groove bottom surface of the shallowest portion 27dt of the downstream end portion 27d of the variable depth channel portion 27 can be appropriately brought close to the blades 24b of the impeller 24, so that the variable depth channel portion 27 The liquid fuel flowing along the bottom surface of the groove can be throttled while being brought closer to the impeller 24 side more effectively. As a result, it is possible to more effectively and quickly eliminate the pressurization failure of the fuel pump PU caused by the inflow of a large amount of vapor.

次に図5(a)(b)を参照して第2,第3実施形態について説明する。前述の第1実施形態では、深さ変化流路部27の下流端部27dに、深さ変化流路部27の流路方向中間部の溝底面よりも溝勾配が急峻な急勾配部Zが、最浅部分27dtの上流端に連ねて形成されるものが示された。 Next, second and third embodiments will be described with reference to FIGS. 5(a) and 5(b). In the first embodiment described above, the downstream end portion 27d of the variable depth channel portion 27 has a steep slope portion Z having a groove gradient steeper than the bottom surface of the groove in the intermediate portion of the variable depth channel portion 27 in the channel direction. , formed continuously at the upstream end of the shallowest portion 27dt.

これに対し、図5(a)に示す第2実施形態では、深さ変化流路部27の溝底面が、下流端部27dの最浅部分27dtの上流端まで一定勾配で傾斜していて、第1実施形態のような急勾配部Zが省略される。第2実施形態のその他の構成は、第1実施形態と同様であるので、第2実施形態の各構成要素には、これと対応する第1実施形態の構成要素と同じ参照符号を付すにとどめ、それ以上の説明は省略する。 On the other hand, in the second embodiment shown in FIG. 5A, the bottom surface of the groove of the variable depth channel portion 27 is inclined at a constant gradient to the upstream end of the shallowest portion 27dt of the downstream end portion 27d. The steep section Z as in the first embodiment is omitted. The rest of the configuration of the second embodiment is similar to that of the first embodiment, so the constituent elements of the second embodiment are given the same reference numerals as the corresponding constituent elements of the first embodiment. , further description is omitted.

而して、この第2実施形態でも、深さ変化流路部27の下流端部27dには、溝底面の深さが深さ変化流路部27の中で最も浅く且つ深さ一定流路部28の溝底面の深さよりも浅い最浅部分27dtが形成され、その最浅部分27dtと、これより深い深さ一定流路部28との間には段差部Sが存する。従って、この第2実施形態のものも、段差部Sの無い比較例(図6)と比べて深さ変化流路部27の下流端部27dの溝底面の深さを浅くでき、また深さ変化流路部27の溝底面の上り勾配が比較的大きいため、第1実施形態と略同等の作用効果が期待できる。 Therefore, in this second embodiment as well, at the downstream end 27d of the variable-depth channel portion 27, the depth of the groove bottom surface is the shallowest in the variable-depth channel portion 27 and the fixed-depth channel is provided. A shallowest portion 27dt that is shallower than the depth of the groove bottom surface of the portion 28 is formed, and a stepped portion S exists between the shallowest portion 27dt and the constant-depth flow passage portion 28 deeper than the shallowest portion 27dt. Therefore, also in the second embodiment, the depth of the groove bottom surface of the downstream end portion 27d of the depth-changing flow passage portion 27 can be made shallower than in the comparative example (FIG. 6) without the stepped portion S, and the depth Since the upward slope of the bottom surface of the groove of the variable flow path portion 27 is relatively large, substantially the same effects as those of the first embodiment can be expected.

また図5(b)に示す第3実施形態では、深さ変化流路部27の溝底面が、下流端部27dの最浅部分27dtまで一定勾配で傾斜していて、第2実施形態と同様、急勾配部Zが省略される。しかも最浅部分27dtには平坦部が無いか又は殆ど形成されない。第2実施形態のその他の構成は、第1実施形態と同様であるので、第3実施形態の各構成要素には、これと対応する第1実施形態の構成要素と同じ参照符号を付すにとどめ、それ以上の説明は省略する。 Further, in the third embodiment shown in FIG. 5(b), the bottom surface of the groove of the variable depth channel portion 27 is inclined at a constant gradient to the shallowest portion 27dt of the downstream end portion 27d, similar to the second embodiment. , the steep section Z is omitted. In addition, there is no or almost no flat portion in the shallowest portion 27dt. The rest of the configuration of the second embodiment is similar to that of the first embodiment, so the constituent elements of the third embodiment are given the same reference numerals as the corresponding constituent elements of the first embodiment. , further description is omitted.

而して、この第3実施形態でも、深さ変化流路部27の最浅部分27dtと、これより深い深さ一定流路部28との間には段差部Sが存する。従って、この第3実施形態のものも、段差部Sの無い比較例(図6)と比べて深さ変化流路部27の下流端部27dの溝底面の深さを浅くでき、また深さ変化流路部27の溝底面の上り勾配が比較的大きいため、第1,第2実施形態と同等の作用効果が期待できる。 Therefore, also in this third embodiment, there is a stepped portion S between the shallowest portion 27dt of the variable-depth channel portion 27 and the constant-depth channel portion 28, which is deeper than the shallowest portion 27dt. Therefore, also in this third embodiment, the depth of the groove bottom surface of the downstream end portion 27d of the depth-changing flow passage portion 27 can be made shallower than in the comparative example (FIG. 6) without the stepped portion S, and the depth Since the upward slope of the bottom surface of the groove of the variable flow path portion 27 is relatively large, the same effects as those of the first and second embodiments can be expected.

以上、本発明の実施形態について説明したが、本発明は、実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の設計変更が可能である。 Although the embodiment of the present invention has been described above, the present invention is not limited to the embodiment, and various design changes are possible without departing from the scope of the invention.

例えば、前記実施形態では、燃料ポンプPUを車載エンジン用の燃料噴射装置への燃料圧送に使用し且つ車載の燃料タンク内に配備したものを示したが、本発明の燃料ポンプを、車両に非搭載のエンジン用燃料噴射装置への燃料圧送に使用してもよく、また燃料タンク外に配備してもよい。 For example, in the above-described embodiment, the fuel pump PU is used for pressure-feeding fuel to a fuel injection device for an on-vehicle engine and arranged in the on-vehicle fuel tank. It may be used to pump fuel to an on-board engine fuel injector, or it may be located outside the fuel tank.

また前記実施形態では、燃料ポンプPUを起立姿勢で使用するものを示したが、本発明では、燃料ポンプPUを他の姿勢(例えば傾斜姿勢、横向き姿勢)で使用してもよい。 Further, in the above embodiment, the fuel pump PU is used in an upright posture, but in the present invention, the fuel pump PU may be used in other postures (for example, tilted posture, sideways posture).

また前記実施形態では、モータ部30がブラシレスモータで構成されるものを示したが、モータ部はブラシモータであってもよい。 Further, in the above embodiment, the motor section 30 is composed of a brushless motor, but the motor section may be a brush motor.

また前記実施形態では、深さ変化流路部27の下流端部27dと深さ一定流路部28との間に形成される段差部Sが、深さ変化流路部27の下流端部27dから深さ一定流路部28側へ下る傾斜面としたものを示したが、段差面は、曲面(即ち断面円弧状)であってもよく、或いはまた、深さ一定流路部28に対し直交する平面であってもよい。 Further, in the above-described embodiment, the stepped portion S formed between the downstream end portion 27d of the variable depth channel portion 27 and the constant depth channel portion 28 is the downstream end portion 27d of the variable depth channel portion 27. Although an inclined surface descending from the constant-depth flow path portion 28 is shown, the stepped surface may be a curved surface (that is, an arcuate cross-section), or alternatively, the step surface may be a curved surface (that is, an arcuate cross-section). They may be orthogonal planes.

PU・・・・・燃料ポンプ
P1・・・・・ポンプ流路としての第1ポンプ流路
L1,L2・・仮想直線
S・・・・・・段差部
X・・・・・・回転軸線
Z・・・・・・急勾配部
a・・・・・・インペラの回転方向
d2・・・・・最浅部分の溝底面の深さ
α・・・・・・角度
20・・・・・ポンプ部
21・・・・・ポンプケース
22・・・・・ポンプケース本体
22o・・・・燃料吐出口
23・・・・・ポンプカバー
23i・・・・燃料吸入口
24・・・・・インペラ
24b・・・・羽根
25・・・・・インペラ収容室
26・・・・・脱気孔
27・・・・・深さ変化流路部
27d・・・・深さ変化流路部の下流端部
27dt・・・下流端部の最浅部分
28・・・・・深さ一定流路部
30・・・・・モータ部
PU: Fuel pump P1: First pump flow paths L1, L2 as pump flow paths Imaginary straight line S: Stepped portion X: Rotational axis Z・・・ Steep slope part a ・・・ Rotation direction of impeller d2 ・・・・ Depth α of groove bottom surface at the shallowest part ・・・・ Angle 20 ・・・ Pump Part 21: pump case 22: pump case main body 22o: fuel discharge port 23: pump cover 23i: fuel intake port 24: impeller 24b . . . Blades 25 .. Impeller housing chamber 26 .. Degassing hole 27 . . . . Shallowest portion 28 at the downstream end portion .. Constant depth channel portion 30 .. Motor portion

Claims (4)

モータ部(30)と、そのモータ部(30)で駆動されるポンプ部(20)とを備え、 前記ポンプ部(20)は、相互間にインペラ収容室(25)を画成するようにして互いに接合されるポンプケース本体(22)およびポンプカバー(23)よりなるポンプケース(21)と、前記インペラ収容室(25)に回転摺動可能に収容され且つ前記モータ部(30)で回転駆動される円板状のインペラ(24)とを備えていて、そのインペラ(24)が、該インペラ(24)の外周部又は外周端寄りの径方向中間部位に周方向に並ぶ複数の放射状の羽根(24b)を有しており、
前記ポンプカバー(23)は、前記インペラ(24)の回転軸線(X)に略沿うよう延びて外部の燃料を吸入可能な燃料吸入口(23i)と、その燃料吸入口(23i)に一端が連なり且つ前記羽根(24b)の配列方向に沿うように前記ポンプカバー(23)の前記インペラ(24)との摺動面に凹設され、該燃料吸入口(23i)からの吸入燃料を前記羽根(24b)と協働して加圧する溝状のポンプ流路(P1)と、そのポンプ流路(P1)を流れる燃料中の気泡を排出可能な脱気孔(26)とを有していて、前記ポンプ流路(P1)を流れる加圧燃料が前記ポンプケース(21)の燃料吐出口(22o)から前記モータ部(30)内に吐出可能である燃料ポンプにおいて、
前記ポンプ流路(P1)は、溝底面の深さが前記燃料吸入口(23i)から前記インペラ(24)の回転方向(a)前側に向かって徐々に浅くなる溝勾配を有する深さ変化流路部(27)と、その深さ変化流路部(27)の下流端に連なり且つ溝底面の深さが流路方向全域に亘り一定である深さ一定流路部(28)とを備えていて、前記深さ変化流路部(27)の下流端部(27d)には、該深さ変化流路部(27)のうち溝底面の深さが最も浅く且つ前記深さ一定流路部(28)の溝底面の深さよりも浅い最浅部分(27dt)が形成され
前記最浅部分(27dt)の下流に形成され且つ該最浅部分(27dt)の溝底面の深さよりも深い前記深さ一定流路部の途中、又はその深さ一定流路部(28)よりも下流側の前記ポンプ流路(P1)に、前記脱気孔(26)の入口が開口していることを特徴とする燃料ポンプ。
It comprises a motor section (30) and a pump section (20) driven by the motor section (30), wherein the pump sections (20) define an impeller housing chamber (25) therebetween. A pump case (21) consisting of a pump case body (22) and a pump cover (23) which are joined together, is rotatably slidably accommodated in the impeller accommodation chamber (25), and is rotationally driven by the motor section (30). The impeller (24) has a plurality of radial blades arranged in the circumferential direction at the outer peripheral portion of the impeller (24) or at a radially intermediate portion near the outer peripheral end of the impeller (24). (24b),
The pump cover (23) has a fuel suction port (23i) extending substantially along the rotation axis (X) of the impeller (24) and capable of sucking external fuel, and one end of the fuel suction port (23i). It is recessed in the sliding surface of the pump cover (23) with the impeller (24) so as to be continuous and along the arrangement direction of the vanes (24b). (24b) to pressurize in cooperation with a groove-shaped pump channel (P1), and a degassing hole (26) capable of discharging air bubbles in the fuel flowing through the pump channel (P1), In a fuel pump in which pressurized fuel flowing through the pump flow path (P1) can be discharged from a fuel discharge port (22o) of the pump case (21) into the motor section (30),
The pump channel (P1) has a groove gradient in which the depth of the groove bottom surface gradually decreases from the fuel suction port (23i) toward the front side in the rotational direction (a) of the impeller (24). A channel portion (27), and a constant depth channel portion (28) connected to the downstream end of the variable depth channel portion (27) and having a constant depth of the bottom surface of the groove over the entire channel direction. At the downstream end (27d) of the variable depth channel portion (27), the constant depth stream having the shallowest depth of the groove bottom surface among the variable depth channel portions (27) is provided. A shallowest portion (27dt) shallower than the depth of the bottom of the groove of the path (28) is formed ,
In the middle of the constant-depth channel portion formed downstream of the shallowest portion (27dt) and deeper than the depth of the bottom surface of the shallowest portion (27dt), or from the constant-depth channel portion (28) A fuel pump , wherein an inlet of said degassing hole (26) opens into said pump flow path (P1) on the downstream side .
前記深さ変化流路部(27)の下流端部(27d)には、該深さ変化流路部(27)の流路方向中間部の溝底面よりも前記溝勾配が急峻な急勾配部(Z)が、前記最浅部分(27dt)に連ねて形成されることを特徴とする、請求項1に記載の燃料ポンプ。 At the downstream end (27d) of the variable depth channel portion (27), there is a steep slope portion in which the groove gradient is steeper than the bottom surface of the groove at the intermediate portion in the channel direction of the variable depth channel portion (27). 2. The fuel pump according to claim 1, wherein (Z) is formed continuously with said shallowest portion (27dt). 前記インペラ(24)の回転軸線(X)と直交する投影面で見て、該回転軸線(X)と前記燃料吸入口(23i)の中心とを結ぶ仮想直線(L1)と、該回転軸線(X)と前記脱気孔(26)の中心とを結ぶ仮想直線(L2)とがなす角度(α)が、120度以上であることを特徴とする、請求項1又は2に記載の燃料ポンプ。 An imaginary straight line (L1) connecting the rotation axis (X) and the center of the fuel inlet (23i) when viewed in a projection plane orthogonal to the rotation axis (X) of the impeller (24); 3. A fuel pump according to claim 1 or 2, characterized in that an angle ([alpha]) formed by an imaginary straight line (L2) connecting X) and the center of said vent hole (26) is 120 degrees or more. 前記最浅部分(27dt)の溝底面の深さ(d2)が0.6mm以下に設定されていることを特徴とする、請求項1~3の何れか1項に記載の燃料ポンプ。 A fuel pump according to any one of claims 1 to 3, characterized in that the depth (d2) of the groove bottom surface of said shallowest portion (27dt) is set to 0.6 mm or less.
JP2019157365A 2019-08-29 2019-08-29 Fuel pump Active JP7215979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019157365A JP7215979B2 (en) 2019-08-29 2019-08-29 Fuel pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019157365A JP7215979B2 (en) 2019-08-29 2019-08-29 Fuel pump

Publications (2)

Publication Number Publication Date
JP2021032238A JP2021032238A (en) 2021-03-01
JP7215979B2 true JP7215979B2 (en) 2023-01-31

Family

ID=74676325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019157365A Active JP7215979B2 (en) 2019-08-29 2019-08-29 Fuel pump

Country Status (1)

Country Link
JP (1) JP7215979B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002276581A (en) 2001-03-19 2002-09-25 Denso Corp Fuel pump
JP2009185692A (en) 2008-02-06 2009-08-20 Aisan Ind Co Ltd Fuel pump and fuel supply device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50138606U (en) * 1974-04-30 1975-11-14
JP3181745B2 (en) * 1993-02-02 2001-07-03 愛三工業株式会社 Fuel pump
US5375971A (en) * 1993-10-04 1994-12-27 Ford Motor Company Automotive fuel pump flow channel design

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002276581A (en) 2001-03-19 2002-09-25 Denso Corp Fuel pump
JP2009185692A (en) 2008-02-06 2009-08-20 Aisan Ind Co Ltd Fuel pump and fuel supply device

Also Published As

Publication number Publication date
JP2021032238A (en) 2021-03-01

Similar Documents

Publication Publication Date Title
JP3027186B2 (en) Fuel feed unit for supplying fuel to the internal combustion engine from a vehicle reserve tank
US9239056B2 (en) Pump impeller and submersible pump having such pump impeller
GB2311563A (en) Fuel pump for an automotive fuel delivery system
US6659713B1 (en) Fluid pumps
JP4832156B2 (en) Fuel pump
JPS59141762A (en) Fuel pump
JP4753659B2 (en) Fuel pump
JP7215979B2 (en) Fuel pump
US6547515B2 (en) Fuel pump with vapor vent
US5330319A (en) Automotive fuel pump vapor orifice and channel
JPS61175297A (en) Motor fuel pump for vehicle
JP2010144609A (en) Fuel pump
US20140169960A1 (en) Fuel pump
JP4600714B2 (en) Fuel pump
US6283704B1 (en) Circumferential flow type liquid pump
JPH073239B2 (en) Circular flow type liquid pump
US20040022652A1 (en) Low noise impeller pumps
JP4252507B2 (en) Fuel pump
US5662455A (en) Fuel pump assembly having reduced vapor discharge noise
JP7185606B2 (en) Fuel pump
JPH11218059A (en) Fuel pump
JP2536665B2 (en) Circular flow type liquid pump
KR101007013B1 (en) Friction decrease structure of Automobile with Fuel pump
KR101011366B1 (en) Impeller Case structure with Fuel Pump of Automobile
JP2783101B2 (en) Circular flow liquid pump

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230119

R150 Certificate of patent or registration of utility model

Ref document number: 7215979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150