JP7215481B2 - Computer Executed Programs, Information Processing Devices, and Computer Executed Methods - Google Patents

Computer Executed Programs, Information Processing Devices, and Computer Executed Methods Download PDF

Info

Publication number
JP7215481B2
JP7215481B2 JP2020525494A JP2020525494A JP7215481B2 JP 7215481 B2 JP7215481 B2 JP 7215481B2 JP 2020525494 A JP2020525494 A JP 2020525494A JP 2020525494 A JP2020525494 A JP 2020525494A JP 7215481 B2 JP7215481 B2 JP 7215481B2
Authority
JP
Japan
Prior art keywords
resident
trajectory data
trajectory
living room
walking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020525494A
Other languages
Japanese (ja)
Other versions
JPWO2019244647A1 (en
Inventor
寛 古川
武士 阪口
海里 姫野
恵美子 寄▲崎▼
修 遠山
浩一 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPWO2019244647A1 publication Critical patent/JPWO2019244647A1/en
Application granted granted Critical
Publication of JP7215481B2 publication Critical patent/JP7215481B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/22Social work
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/04Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using a single signalling line, e.g. in a closed loop

Description

本開示はデータ処理に関し、より特定的には、歩行軌跡に基づくデータ処理に関する。 The present disclosure relates to data processing, and more particularly to data processing based on walking trajectories.

居住者を見守る技術が知られている。例えば、特開2015-215711号公報(特許文献1)は、『居住者の生活に寄り添う形で居住者の行動や生態の相対的な変化を見守るべく、個人差が著しい「老い」の進行を、その居住者の能力や環境に応じて相対的に評価しその評価に合った見守りの仕様を提示できる見守りシステム』を開示している([要約]の[課題]参照)。 Techniques for watching over residents are known. For example, Japanese Unexamined Patent Application Publication No. 2015-215711 (Patent Document 1) discloses that “In order to monitor the relative changes in the behavior and ecology of residents in a way that is close to the lives of residents, the progress of “aging”, which has significant individual differences, can be monitored. , a watching system that can relatively evaluate according to the ability and environment of the resident and present specifications of watching that match the evaluation” (see [Problem] in [Summary]).

特開2017-117423号公報(特許文献2)は、『見守り対象者の歩速を含む日常行動を把握可能な見守りシステム』を開示している。当該見守りシステムは、『住居Hに設置された複数の子機2(2A~2G)と親機3とを備える。各子機2は、対象者を感知すると通知信号を親機3に送信する。親機3は、子機2Dからの通知信号の時刻データと子機2Eからの通知信号の時刻データとに基づいて、見守り対象者の寝室PDからトイレPDまでの移動時間を算出し、当該移動時間に基づき見守り対象者の歩速を算出する。』という構成を備える([要約]参照)。 Japanese Patent Laying-Open No. 2017-117423 (Patent Document 2) discloses a “watching system capable of grasping daily behavior including walking speed of a person being watched over”. The monitoring system "includes a plurality of slave units 2 (2A to 2G) and a master unit 3 installed in a residence H. Each slave device 2 transmits a notification signal to the master device 3 when it senses the target person. Based on the time data of the notification signal from child device 2D and the time data of the notification signal from child device 2E, master device 3 calculates the movement time of the watching target from bedroom PD to toilet PD, The walking speed of the person being watched over is calculated based on the time. ] (See [Abstract]).

特開2017-151676号公報(特許文献3)は、「より業務効率を向上できる被監視者監視装置、該方法および該システム」を開示している。この被監視者監視装置は、「監視対象である被監視者に関わる所定のイベントの内容を表すイベント情報を収容した、前記イベントを通知するためのイベント通知通信信号を、通信可能に接続された端末装置へ通知する装置である。その一例としての管理サーバ装置SVは、センサ装置からネットワークを介して取得した画像に基づいて被監視者Obが自立できるか否かを判定する自立判定処理部223と、自立判定処理部223で前記被監視者Obが自立できないと判定された場合に、警告を表す警告情報を収容した警告通知通信信号を所定の端末装置へ送信する警告通知処理部224とを備える。」という構成を備える([要約]参照)。 Japanese Patent Laying-Open No. 2017-151676 (Patent Document 3) discloses “monitored person monitoring device, method and system capable of further improving work efficiency”. This monitored person monitoring apparatus is communicably connected to an event notification communication signal containing event information representing the content of a predetermined event related to a monitored person to be monitored and for notifying the event. The management server device SV as an example thereof includes an independence determination processing unit 223 that determines whether or not the monitored person Ob can become independent based on the image acquired from the sensor device via the network. and a warning notification processing unit 224 that transmits a warning notification communication signal containing warning information indicating a warning to a predetermined terminal device when the independence determination processing unit 223 determines that the monitored person Ob cannot stand on its own. It has a configuration of "Prepared." (See [Abstract]).

特開2015-215711号公報JP 2015-215711 A 特開2017-117423号公報JP 2017-117423 A 特開2017-151676号公報JP 2017-151676 A

見守りや介護を必要とする人について、介護認定は、例えば、対象者、介護者への聞き取りや主治医の意見等に基づいて行なわれ、定量的な測定ができず、要介護度の判定に時間がかかる場合がある。したがって、定量的な測定が可能で、判定に時間がかからない技術が必要とされている。 For those who need watching over or nursing care, certification of long-term care is based on, for example, interviews with the subject and caregivers, opinions of the attending physician, etc., and quantitative measurement is not possible. It may take Therefore, there is a need for a technique that enables quantitative measurement and does not take much time for determination.

本開示は上述のような背景に鑑みてなされたものであって、ある局面における目的は、介護度の認定のために使用可能な定量的な情報を導出する技術を提供することである。 The present disclosure has been made in view of the background as described above, and an object in one aspect is to provide a technique for deriving quantitative information that can be used for certifying the level of care.

ある実施の形態に従うと、コンピューターで実行されるプログラムが提供される。このプログラムはコンピューターに、居室における人の歩行軌跡を表わし、異なる日に取得された複数の軌跡データを取得するステップと、居室の入居者の歩行特性または入居者以外の歩行特性に基づいて、取得された複数の軌跡データの中から居室における入居者以外の軌跡データと、入居者の軌跡データとを判別するステップと、判別後の入居者の軌跡データを用いて、居室の入居者の歩行速度を算出するステップとを実行させる。 According to one embodiment, a computer-executable program is provided. The program instructs the computer to represent the walking trajectory of a person in the living room, obtain a plurality of trajectory data obtained on different days, and based on the walking characteristics of the resident in the living room or the walking characteristics of non-residents, the acquired a step of discriminating trajectory data of a resident other than a resident in a living room from the trajectory data of a resident from a plurality of trajectory data obtained; and the step of calculating .

ある実施の形態に従うと、判別するステップは、複数の軌跡データのうち、当該軌跡の始点および終点が居室に配置されているベッドの近傍にある軌跡データを、当該入居者の軌跡データとして判別することを含む。 According to an embodiment, the discriminating step discriminates, from among the plurality of trajectory data, trajectory data whose starting point and end point of the trajectory are near the bed arranged in the living room as the trajectory data of the resident. Including.

ある実施の形態に従うと、判別するステップは、取得された複数の軌跡データの中から、入居者以外の歩行速度として規定された歩行速度に対応する軌跡データを複数の軌跡データから除外することを含む。 According to an embodiment, the step of determining excludes, from among the plurality of acquired trajectory data, the trajectory data corresponding to the walking speed defined as the walking speed of those other than the resident from the plurality of trajectory data. include.

ある実施の形態に従うと、判別するステップは、取得された複数の軌跡データのうち、入居者のみが居室にいる時間帯として予め定められた時間の軌跡データを、当該入居者の軌跡データとして判別することを含む。 According to an embodiment, in the determining step, among the plurality of pieces of acquired trajectory data, trajectory data for a predetermined time as a time period in which only the resident is in the living room is discriminated as trajectory data for the resident. including doing

ある実施の形態に従うと、プログラムはコンピューターに、歩行速度の算出の結果に基づいて入居者の介護度の見直しを促す提案を出力するステップをさらに実行させる。 According to one embodiment, the program further causes the computer to output a recommendation to review the resident's level of care based on the results of the walking speed calculation.

他の実施の形態に従うと、メモリーと、メモリーに結合されたプロセッサーとを備える情報処理装置が提供される。プロセッサーは、居室における人の歩行軌跡を表わし、異なる日に取得された複数の軌跡データを取得し、居室の入居者の歩行特性または入居者以外の歩行特性に基づいて、取得された複数の軌跡データの中から居室における入居者以外の軌跡データと、入居者の軌跡データとを判別し、判別後の入居者の軌跡データを用いて、居室の入居者の歩行速度を算出するように構成されている。 According to another embodiment, an information processing apparatus is provided that includes a memory and a processor coupled to the memory. The processor represents the walking trajectory of a person in the living room, acquires a plurality of trajectory data acquired on different days, and calculates the plurality of trajectories acquired based on the gait characteristics of the occupants of the living room or the gait characteristics of non-residents. The trajectory data of non-residents in the living room and the trajectory data of the resident are discriminated from the data, and the walking speed of the resident in the living room is calculated using the discriminated trajectory data of the resident. ing.

ある実施の形態に従うと、プロセッサーは、複数の軌跡データのうち、当該軌跡の始点および終点が居室に配置されているベッドの近傍にある軌跡データを、当該入居者の軌跡データとして判別する。 According to one embodiment, the processor determines, among the plurality of trajectory data, trajectory data whose starting and ending points of the trajectory are near the bed placed in the living room as trajectory data of the resident.

ある実施の形態に従うと、プロセッサーは、取得された複数の軌跡データの中から、入居者以外の歩行速度として予め計測された歩行速度に対応する軌跡データを複数の軌跡データから除外する。 According to one embodiment, the processor excludes the trajectory data corresponding to the previously measured walking speed as the walking speed of a person other than the resident from the plurality of acquired trajectory data.

ある実施の形態に従うと、プロセッサーは、取得された複数の軌跡データのうち、入居者のみが居室にいる時間帯として予め定められた時間の軌跡データを、当該入居者の軌跡データとして判別する。 According to one embodiment, the processor determines the trajectory data for a predetermined time period during which only the resident is in the living room among the acquired trajectory data as the trajectory data for the resident.

ある実施の形態に従うと、プロセッサーは、歩行速度の算出の結果に基づいて入居者の介護度の見直しを促す提案を出力するようにさらに構成されている。 According to an embodiment, the processor is further configured to output a recommendation to review the resident's level of care based on the results of the walking speed calculation.

さらに他の実施の形態に従うと、コンピューターで実行される方法が提供される。この方法は、居室における人の歩行軌跡を表わし、異なる日に取得された複数の軌跡データを取得するステップと、居室の入居者の歩行特性または入居者以外の歩行特性に基づいて、取得された複数の軌跡データの中から居室における入居者以外の軌跡データと、入居者の軌跡データとを判別するステップと、判別後の入居者の軌跡データを用いて、居室の入居者の歩行速度を算出するステップとを含む。 According to yet another embodiment, a computer-implemented method is provided. This method represents the walking trajectory of a person in a living room, acquiring a plurality of trajectory data acquired on different days; The walking speed of the resident in the living room is calculated using the step of discriminating the trajectory data of the resident other than the resident in the room from among the plurality of trajectory data and the trajectory data of the resident after the discrimination. and the step of

ある実施の形態に従うと、判別するステップは、複数の軌跡データのうち、当該軌跡の始点および終点が居室に配置されているベッドの近傍にある軌跡データを、当該入居者の軌跡データとして判別することを含む。 According to an embodiment, the discriminating step discriminates, from among the plurality of trajectory data, trajectory data whose starting point and end point of the trajectory are near the bed arranged in the living room as the trajectory data of the resident. Including.

ある実施の形態に従うと、判別するステップは、取得された複数の軌跡データの中から、入居者以外の歩行速度として規定された歩行速度に対応する軌跡データを複数の軌跡データから除外することとを含む。 According to an embodiment, the determining step excludes, from among the plurality of acquired trajectory data, the trajectory data corresponding to the walking speed defined as the walking speed of those other than the resident from the plurality of trajectory data. including.

ある実施の形態に従うと、判別するステップは、取得された複数の軌跡データのうち、入居者のみが居室にいる時間帯として予め定められた時間の軌跡データを、当該入居者の軌跡データとして判別することを含む。 According to an embodiment, in the determining step, among the plurality of pieces of acquired trajectory data, trajectory data for a predetermined time as a time period in which only the resident is in the living room is discriminated as trajectory data for the resident. including doing

ある実施の形態に従うと、方法は、歩行速度の算出の結果に基づいて入居者の介護度の見直しを促す提案を出力するステップをさらに含む。 According to an embodiment, the method further includes outputting a suggestion to review the resident's level of care based on the results of the walking speed calculation.

ある局面において、要介護度の認定のために使用可能な定量的な情報が導出され得る。
この発明の上記および他の目的、特徴、局面および利点は、添付の図面と関連して理解されるこの発明に関する次の詳細な説明から明らかとなるであろう。
In one aspect, quantitative information can be derived that can be used for certification of care level.
The above and other objects, features, aspects and advantages of the present invention will become apparent from the following detailed description of the invention taken in conjunction with the accompanying drawings.

見守りシステム100の構成の一例を示す図である。It is a figure which shows an example of a structure of the watching system 100. FIG. 見守りシステム100の構成の概要を示すブロック図である。It is a block diagram which shows the outline of a structure of the watching system 100. FIG. クラウドサーバー150として機能するコンピューターシステム300のハードウェア構成を表わすブロック図である。3 is a block diagram showing the hardware configuration of computer system 300 functioning as cloud server 150. FIG. センサーボックス119を用いた見守りシステム100の装置構成の概略の一例を示す図である。It is a figure which shows an example of an outline of an apparatus structure of the watching system 100 using the sensor box 119. FIG. ある局面に従う居室110の入居者の歩行軌跡と入居者の歩行軌跡との相違を表わす図である。FIG. 10 is a diagram representing the difference between a resident's walking trajectory and a resident's walking trajectory in living room 110 according to an aspect; クラウドサーバー150が備えるハードディスク5におけるデータの格納の一態様を表わす図である。4 is a diagram showing one mode of data storage in hard disk 5 provided in cloud server 150. FIG. 軌跡ごとに算出された人の移動速度の分布を表わす図である。FIG. 10 is a diagram showing a distribution of a person's moving speed calculated for each trajectory; クラウドサーバー150のCPU1が実行する処理の一部を表わすフローチャートである。4 is a flowchart showing part of the processing executed by CPU 1 of cloud server 150. FIG. ある介護施設における5人の入居者の歩行速度の6ヵ月の推移を表わす図である。It is a figure showing the transition of the walking speed of 5 residents in a certain nursing facility for 6 months. 入居者の平均移動速度と介護度との関係を表わす図である。It is a figure showing the relationship between a resident|tenant's average moving speed and care level.

以下、図面を参照しつつ、本開示に係る技術思想の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。 Hereinafter, embodiments of the technical concept according to the present disclosure will be described with reference to the drawings. In the following description, the same parts are given the same reference numerals. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated.

[技術思想]
まず、本明細書に開示にされる技術思想の概要について説明する。ある局面において、施設の入居者等の対象者の移動速度が測定され、対象者の日頃の状態を正確に把握することができる。測定は、対象者が測定していることを意識していない状態で行なわれる。例えば、対象者が移動中に立ち止まる、速度が遅くなる、という場合があり得る。そこで、対象者の移動により得られる軌跡情報(例えば歩行軌跡)のうち、一定値以上の距離がある軌跡のみが、観測の対象とされ得る。ある局面において、連続した軌跡が観察され、軌跡の起点および終点が、ベッドあるいはベッドの近傍にあるものが、観測対象とされる。
[Technical concept]
First, an outline of the technical idea disclosed in this specification will be described. In a certain aspect, the movement speed of a subject such as a resident of a facility is measured, and the daily state of the subject can be accurately grasped. Measurements are taken without the subject being aware that they are measuring. For example, the subject may stop or slow down while moving. Therefore, of the trajectory information (for example, walking trajectory) obtained by the movement of the subject, only trajectories having a distance equal to or greater than a certain value can be observed. In one aspect, continuous trajectories are observed, and trajectories whose starting and ending points are on or near the bed are taken as observation targets.

別の局面において、入居者以外の人(例えば、介護者、看護師その他スタッフ、家族等)の軌跡情報を除外するために、施設の各居室に入室する可能性がある入居者以外の人の歩行速度が予め測定され、一定速度以上の歩行が観測される軌跡情報を観測対象から除外され得る。 In another aspect, people other than residents who may enter each room of the facility in order to exclude trajectory information of people other than residents (for example, caregivers, nurses and other staff, family members, etc.) The walking speed is measured in advance, and trajectory information in which walking at a certain speed or more is observed can be excluded from observation targets.

さらに別の局面において、入居者以外の人(例えば、スタッフ、家族等)が入室する場合に、当該人が、信号発信器を装着し得る。信号発信器は、予め規定された識別番号を発信し得る。その信号は、その時の人の歩行軌跡に関連付けられ得る。このようにすると、当該識別番号が付された歩行軌跡は、入居者の歩行軌跡から除外され得るので、入居者の歩行軌跡を抽出することができる。なお、歩行軌跡に関連付けられる情報は、当該識別番号に限られず、入室を表わすフラグとして予め定められたデータでもよい。 In yet another aspect, when a person other than the resident (eg, staff, family member, etc.) enters the room, the person may wear the signal transmitter. The signal emitter may emit a predefined identification number. The signal can be related to the person's walking trajectory at that time. In this way, the walking trajectory to which the identification number is attached can be excluded from the resident's walking trajectory, so the resident's walking trajectory can be extracted. Information associated with the walking trajectory is not limited to the identification number, and may be predetermined data as a flag indicating entry into the room.

[見守りシステムの構成]
図1は、見守りシステム100の構成の一例を示す図である。見守り対象は、例えば、施設の居室領域180に設けられた各居室内の入居者である。図1の見守りシステム100では、居室領域180に、居室110,120が設けられている。居室110は、入居者111に割り当てられている。居室120は、入居者121に割り当てられている。図1の例では、見守りシステム100に含まれる居室の数は2であるが、当該数はこれに限定されない。
[Configuration of monitoring system]
FIG. 1 is a diagram showing an example of the configuration of the watching system 100. As shown in FIG. The watching target is, for example, a resident in each living room provided in the living room area 180 of the facility. In the monitoring system 100 of FIG. 1 , living rooms 110 and 120 are provided in a living room area 180 . A living room 110 is assigned to a resident 111 . A living room 120 is assigned to a resident 121 . In the example of FIG. 1, the number of living rooms included in the watching system 100 is two, but the number is not limited to this.

見守りシステム100では、居室110,120にそれぞれ設置されたセンサーボックス119と、管理センター130に設置された管理サーバー200と、アクセスポイント140とが、ネットワーク190を介して接続される。ネットワーク190は、イントラネットおよびインターネットのいずれをも含み得る。 In monitoring system 100 , sensor boxes 119 installed in living rooms 110 and 120 , management server 200 installed in management center 130 , and access point 140 are connected via network 190 . Network 190 may include both intranets and the Internet.

見守りシステム100では、介護者141が携帯する携帯端末143、および、介護者142が携帯する携帯端末144は、アクセスポイント140を介してネットワーク190に接続可能である。さらに、センサーボックス119、管理サーバー200、および、アクセスポイント140は、ネットワーク190を介して、クラウドサーバー150と通信可能である。 In the watching system 100 , a mobile terminal 143 carried by a caregiver 141 and a mobile terminal 144 carried by a caregiver 142 can be connected to a network 190 via an access point 140 . Furthermore, sensor box 119 , management server 200 and access point 140 can communicate with cloud server 150 via network 190 .

居室110,120は、それぞれ、設備として、タンス112、ベッド113、および、トイレ114を含む。居室110のドアには、当該ドアの開閉を検出するドアセンサー118が設置されている。トイレ114のドアには、トイレ114の開閉を検出するトイレセンサー116が設置されている。ベッド113には、各入居者111,121の臭いを検出する臭いセンサー117が設置されている。各入居者111,121は、当該入居者111,121のバイタル情報を検出するバイタルセンサー290を装着している。検出されるバイタル情報は、入居者の体温、呼吸、心拍数等を含む。居室110,120では、各入居者111,121は、それぞれ、ケアコール子機115を操作することができる。 Living rooms 110 and 120 each include a wardrobe 112, a bed 113, and a toilet 114 as equipment. A door sensor 118 is installed on the door of the living room 110 to detect opening and closing of the door. A toilet sensor 116 for detecting opening and closing of the toilet 114 is installed on the door of the toilet 114 . A bed 113 is provided with an odor sensor 117 that detects the odor of each of the residents 111 and 121 . Each resident 111,121 is equipped with a vital sensor 290 for detecting vital information of the resident 111,121. The detected vital information includes the resident's body temperature, respiration, heart rate, and the like. In living rooms 110 and 120, each resident 111 and 121 can operate a care call slave device 115, respectively.

センサーボックス119は、居室110,120内の物体の挙動を検出するためのセンサーを内蔵している。センサーの一例は、物体の動作を検出するためのドップラーセンサーである。他の例は、カメラである。センサーボックス119は、センサーとしてドップラーセンサーとカメラの双方を含んでもよい。 The sensor box 119 incorporates sensors for detecting behavior of objects in the living rooms 110 and 120 . One example of a sensor is a Doppler sensor for detecting motion of an object. Another example is a camera. Sensor box 119 may include both a Doppler sensor and a camera as sensors.

図2を参照して、見守りシステム100の構成要素について説明する。図2は、見守りシステム100の構成の概要を示すブロック図である。 The constituent elements of the watching system 100 will be described with reference to FIG. 2 . FIG. 2 is a block diagram showing an overview of the configuration of the watching system 100. As shown in FIG.

[センサーボックス119]
センサーボックス119は、制御装置101と、ROM(Read Only Memory)102と、RAM(Random Access Memory)103と、通信インターフェイス104と、カメラ105と、ドップラーセンサー106と、無線通信装置107と、記憶装置108とを備える。
[Sensor box 119]
The sensor box 119 includes a control device 101, a ROM (Read Only Memory) 102, a RAM (Random Access Memory) 103, a communication interface 104, a camera 105, a Doppler sensor 106, a wireless communication device 107, and a storage device. 108.

制御装置101は、センサーボックス119を制御する。制御装置101は、たとえば、少なくとも1つの集積回路によって構成される。集積回路は、たとえば、少なくとも1つのCPU(Central Processing Unit)、MPU(Micro Processing Unit)その他のプロセッサー、少なくとも1つのASIC(Application Specific Integrated Circuit)、少なくとも1つのFPGA(Field Programmable Gate Array)、またはこれらの組み合わせなどによって構成される。 The control device 101 controls the sensor box 119 . The control device 101 is composed of, for example, at least one integrated circuit. Integrated circuits include, for example, at least one CPU (Central Processing Unit), MPU (Micro Processing Unit) and other processors, at least one ASIC (Application Specific Integrated Circuit), at least one FPGA (Field Programmable Gate Array), or these It is composed of a combination of

通信インターフェイス104には、アンテナ(図示しない)などが接続される。センサーボックス119は、当該アンテナを介して、外部の通信機器との間でデータをやり取りする。外部の通信機器は、たとえば、管理サーバー200、携帯端末143,144その他の端末、アクセスポイント140、クラウドサーバー150、その他の通信端末などを含む。 An antenna (not shown) and the like are connected to the communication interface 104 . The sensor box 119 exchanges data with an external communication device via the antenna. External communication devices include, for example, the management server 200, the mobile terminals 143, 144 and other terminals, the access point 140, the cloud server 150 and other communication terminals.

カメラ105は、一実現例では、近赤外カメラである。近赤外カメラは、近赤外光を投光するIR(Infrared)投光器を含む。近赤外カメラが用いられることにより、夜間でも居室110,120の内部を表わす画像が撮影され得る。他の実現例では、カメラ105は、可視光のみを受光する監視カメラである。さらに他の実現例では、カメラ105として、3Dセンサやサーモグラフィーカメラが用いられてもよい。センサーボックス119およびカメラ105は、一体として構成されてもよいし、別体で構成されてもよい。 Camera 105, in one implementation, is a near-infrared camera. A near-infrared camera includes an IR (Infrared) projector that projects near-infrared light. By using a near-infrared camera, an image representing the inside of living room 110, 120 can be captured even at night. In other implementations, camera 105 is a surveillance camera that receives only visible light. In still other implementations, camera 105 may be a 3D sensor or a thermographic camera. The sensor box 119 and the camera 105 may be configured integrally or separately.

ドップラーセンサー106は、たとえばマイクロ波ドップラーセンサーであり、電波を放射及び受信して、居室110,120内の物体の挙動(動作)を検出する。これにより、居室110,120の入居者111,121の生体情報が検出され得る。一例では、ドップラーセンサー106は、24GHz帯のマイクロ波を各居室110,120のベッド113に向けて放射し、入居者111,121で反射した反射波を受信する。反射波は、入居者111,121の動作により、ドップラーシフトしている。ドップラーセンサー106は、当該反射波から、入居者111,121の呼吸状態や心拍数を検出し得る。 The Doppler sensor 106 is, for example, a microwave Doppler sensor that emits and receives radio waves to detect the behavior (movement) of objects in the living rooms 110 and 120 . Thereby, the biological information of the residents 111 and 121 in the living rooms 110 and 120 can be detected. In one example, the Doppler sensor 106 emits microwaves in the 24 GHz band toward the beds 113 of the living rooms 110 and 120 and receives reflected waves reflected by the residents 111 and 121 . The reflected waves are Doppler-shifted by the motions of the residents 111 and 121 . The Doppler sensor 106 can detect the respiratory state and heart rate of the residents 111 and 121 from the reflected waves.

無線通信装置107は、ケアコール子機240、ドアセンサー118、トイレセンサー116、臭いセンサー117、および、バイタルセンサー290からの信号を受信し、当該信号を制御装置101へ送信する。たとえば、ケアコール子機240は、ケアコールボタン241を備える。当該ボタンが操作されると、ケアコール子機240は、当該操作があったことを示す信号を無線通信装置107へ送信する。ドアセンサー118、トイレセンサー116、臭いセンサー117、および、バイタルセンサー290は、それぞれの検出結果を無線通信装置107へ送信する。 Wireless communication device 107 receives signals from care call slave device 240 , door sensor 118 , toilet sensor 116 , odor sensor 117 , and vital sensor 290 and transmits the signals to control device 101 . For example, care call slave device 240 has care call button 241 . When the button is operated, care call slave device 240 transmits a signal indicating that the operation has been performed to wireless communication device 107 . Door sensor 118 , toilet sensor 116 , odor sensor 117 , and vital sensor 290 transmit their detection results to wireless communication device 107 .

記憶装置108は、たとえば、フラッシュメモリーまたはハードディスク等の固定記憶装置、あるいは、外付けの記憶装置などの記録媒体である。記憶装置108は、制御装置101によって実行されるプログラム、および、当該プログラムの実行に利用される各種のデータを格納する。各種のデータは、入居者111,121の行動情報を含んでいてもよい。行動情報の詳細は後述する。 The storage device 108 is, for example, a fixed storage device such as a flash memory or hard disk, or a recording medium such as an external storage device. The storage device 108 stores programs executed by the control device 101 and various data used for executing the programs. Various data may include the behavior information of residents 111 and 121 . Details of the action information will be described later.

上記のプログラムおよびデータのうち少なくとも一方は、制御装置101がアクセス可能な記憶装置であれば、記憶装置108以外の記憶装置(たとえば、制御装置101の記憶領域(たとえば、キャッシュメモリーなど)、ROM102、RAM103、外部機器(たとえば、管理サーバー200や携帯端末143,144等)に格納されていてもよい。 At least one of the programs and data described above can be stored in a storage device other than the storage device 108 (for example, a storage area of the control device 101 (eg, cache memory), ROM 102, etc.) as long as the storage device can be accessed by the control device 101. It may be stored in the RAM 103, external equipment (for example, the management server 200, mobile terminals 143, 144, etc.).

[行動情報]
上記の行動情報について、説明する。行動情報は、たとえば入居者111,121が所定の行動を実行したことを表わす情報である。一例では、所定の行動は、入居者111,121が起きたことを表わす「起床」、入居者111,121がベッド(寝具)113から離れたことを表わす「離床」、入居者111,121がベッド(寝具)113から落ちたことを表わす「転落」、および、入居者111,121が倒れたことを表わす「転倒」の4つの行動を含む。
[Action information]
The above action information will be explained. Action information is, for example, information indicating that residents 111 and 121 have performed a predetermined action. In one example, the predetermined actions are "get up" indicating that the residents 111 and 121 have woken up, "leave the bed" indicating that the residents 111 and 121 have left the bed (bedding) 113, and the residents 111 and 121 It includes four actions of "falling" indicating falling from the bed (bedding) 113 and "falling" indicating that the residents 111 and 121 have fallen.

一実施の形態では、制御装置101が、各居室110,120に設置されたカメラ105が撮像した画像に基づいて、各居室110,120に関連付けられた入居者111,121の各行動情報を生成する。制御装置101は、たとえば、上記画像から入居者111,121の頭部を検出し、この検出した入居者111,121の頭部における大きさの時間変化に基づいて、入居者111,121の「起床」、「離床」、「転倒」および「転落」を検出する。以下、行動情報の生成の一具体例を、より詳細に説明する。 In one embodiment, the control device 101 generates each action information of the residents 111 and 121 associated with each living room 110 and 120 based on the images captured by the cameras 105 installed in each living room 110 and 120. do. For example, the control device 101 detects the heads of the residents 111 and 121 from the above images, and determines the " Detects "Getting up", "Getting out of bed", "Falling" and "Falling". A specific example of generating behavior information will be described in more detail below.

まず、記憶装置108に、居室110,120における各ベッド113の所在領域、第1閾値Th1、第2閾値Th2、および、第3閾値Th3が格納される。第1閾値Th1は、ベッド113の所在領域内において、横臥姿勢にあるときと座位姿勢にあるときとの間で入居者の頭部の大きさを識別する。第2閾値Th2は、ベッド113の所在領域を除く居室110,120内において、入居者の頭部の大きさに基づいて、当該入居者が立位姿勢にあるか否かを識別する。第3閾値Th3は、ベッド113の所在領域を除く居室110,120内において、入居者の頭部の大きさに基づいて、当該入居者が横臥姿勢にあるか否かを識別する。 First, the storage device 108 stores the location area of each bed 113 in the rooms 110 and 120, the first threshold Th1, the second threshold Th2, and the third threshold Th3. The first threshold Th1 distinguishes the size of the resident's head between the lying posture and the sitting posture within the location area of the bed 113 . The second threshold Th2 identifies whether or not the resident is in a standing posture in the living rooms 110 and 120 excluding the area where the bed 113 is located, based on the size of the resident's head. The third threshold Th3 identifies whether or not the resident is lying down based on the head size of the resident in the living rooms 110 and 120 excluding the area where the bed 113 is located.

制御装置101は、対象画像から、例えば背景差分法やフレーム差分法によって、入居者111,121の人物の領域として、動体領域を抽出する。制御装置101は、さらに、当該抽出した動体領域から、例えば円形や楕円形のハフ変換によって、予め用意された頭部のモデルを用いたパターンマッチングによって、頭部検出用に学習したニューラルネットワークによって導出された閾値を用いて、入居者111,121の頭部領域を抽出する。制御装置101は、当該抽出された頭部の位置および大きさから、「起床」、「離床」、「転倒」および「転落」を検知する。 The control device 101 extracts a moving body region as a human region of the residents 111 and 121 from the target image by, for example, a background subtraction method or a frame subtraction method. The control device 101 further derives from the extracted moving object region, for example, a circular or elliptical Hough transform, pattern matching using a head model prepared in advance, and a neural network trained for head detection. The head regions of the residents 111 and 121 are extracted using the threshold values thus obtained. The control device 101 detects "getting up", "getting out of bed", "falling", and "falling" from the extracted position and size of the head.

制御装置101は、上記のように抽出された頭部の位置がベッド113の所在領域内にあり、かつ、上記のように抽出された頭部の大きさが第1閾値Th1を用いることによって横臥姿勢の大きさから座位姿勢の大きさへと変化したことを検出した場合に、行動「起床」が発生したことを決定してもよい。 The control device 101 determines that the position of the head extracted as described above is within the location area of the bed 113 and the size of the head extracted as described above is determined by using the first threshold value Th1. It may be determined that the action "wake up" has occurred when it detects a change from posture magnitude to sitting posture magnitude.

制御装置101は、上記のように抽出された頭部の位置がベッド113の所在領域内からベッド113の所在領域外へ移動した場合において、上記のように抽出された頭部の大きさに対して第2閾値Th2を適用することにより、頭部がある大きさから立位姿勢の大きさへと変化したことを検出したときには、行動「離床」が発生したと判定してもよい。 When the position of the head extracted as described above moves from within the location area of the bed 113 to outside the location area of the bed 113, the control device 101 controls the size of the head extracted as described above. By applying the second threshold Th2 to the head position, it may be determined that the action "getting out of bed" has occurred when it is detected that the size of the head has changed from a certain size to the size of the standing posture.

制御装置101は、上記のように抽出された頭部の位置がベッド113の所在領域内からベッド113の所在領域外へ移動した場合において、上記のように抽出された頭部の大きさに対して第3閾値Th3を適用することにより、頭部がある大きさから横臥姿勢の大きさへと変化したことを検出したときには、行動「転落」が発生したと判定してもよい。 When the position of the head extracted as described above moves from within the location area of the bed 113 to outside the location area of the bed 113, the control device 101 controls the size of the head extracted as described above. By applying the third threshold value Th3 to , it may be determined that the action "fall" has occurred when it is detected that the head has changed from a certain size to the size of the lying posture.

制御装置101は、上記のように抽出された頭部の位置がベッド113の所在領域を除く居室110,120内に位置し、かつ、抽出された頭部の大きさが第3閾値Th3を用いることによって或る大きさから横臥姿勢の大きさへと変化したことを検出した場合には、行動「転倒」が発生したと決定してもよい。 The control device 101 determines that the position of the head extracted as described above is located in the living room 110 or 120 excluding the location area of the bed 113, and the size of the extracted head uses the third threshold value Th3. It may be determined that the action "fall" has occurred if it detects a change from a size to a lying size by .

以上説明されたように、一具体例では、センサーボックス119の制御装置101が、入居者111,121の各行動情報を生成する。なお、他の局面に従う見守りシステム100では、居室110,120内の画像を用いて、制御装置101以外の他の要素(例えば、クラウドサーバー150)が入居者111,121の行動情報を生成してもよい。 As described above, in one specific example, the control device 101 of the sensor box 119 generates each action information of the residents 111 and 121 . In addition, in the monitoring system 100 according to another aspect, an element other than the control device 101 (for example, the cloud server 150) generates the behavior information of the residents 111 and 121 using the images in the living rooms 110 and 120. good too.

[携帯端末143,144]
携帯端末143,144は、制御装置221と、ROM222と、RAM223と、通信インターフェイス224と、ディスプレイ226と、記憶装置228と、入力デバイス229とを含む。ある局面において、携帯端末143,144は、例えば、スマートフォン、タブレット端末、腕時計型端末その他のウェアラブル装置等として実現される。
[Portable terminals 143, 144]
The mobile terminals 143 , 144 include a control device 221 , a ROM 222 , a RAM 223 , a communication interface 224 , a display 226 , a storage device 228 and an input device 229 . In one aspect, the mobile terminals 143 and 144 are implemented as, for example, smart phones, tablet terminals, wristwatch-type terminals, and other wearable devices.

制御装置221は、携帯端末143,144を制御する。制御装置221は、たとえば、少なくとも1つの集積回路によって構成される。集積回路は、たとえば、少なくとも1つのCPU、少なくとも1つのASIC、少なくとも1つのFPGA、またはそれらの組み合わせなどによって構成される。 The control device 221 controls the mobile terminals 143 and 144 . The control device 221 is composed of, for example, at least one integrated circuit. An integrated circuit is composed of, for example, at least one CPU, at least one ASIC, at least one FPGA, or a combination thereof.

通信インターフェイス224には、アンテナ(図示しない)などが接続される。携帯端末143,144は、当該アンテナおよびアクセスポイント140を介して、外部の通信機器との間でデータをやり取りする。外部の通信機器は、たとえば、センサーボックス119、管理サーバー200などを含む。 An antenna (not shown) and the like are connected to the communication interface 224 . Mobile terminals 143 and 144 exchange data with external communication devices via the antenna and access point 140 . External communication equipment includes, for example, the sensor box 119, management server 200, and the like.

ディスプレイ226は、たとえば液晶ディスプレイ、有機EL(Electro Luminescence)ディスプレイ等によって実現される。入力デバイス229は、たとえばディスプレイ226に設けられたタッチセンサーによって実現される。当該タッチセンサーは、携帯端末143,144に対するタッチ操作を受け付け、当該タッチ操作に応じた信号を制御装置221へ出力する。 The display 226 is implemented by, for example, a liquid crystal display, an organic EL (Electro Luminescence) display, or the like. The input device 229 is implemented by a touch sensor provided on the display 226, for example. The touch sensor receives a touch operation on the mobile terminals 143 and 144 and outputs a signal corresponding to the touch operation to the control device 221 .

記憶装置228は、たとえば、フラッシュメモリー、ハードディスクその他の固定記憶装置、あるいは、着脱可能なデータ記録媒体等により実現される。 The storage device 228 is implemented by, for example, a flash memory, a hard disk or other fixed storage device, or a removable data recording medium.

[クラウドサーバーの構成]
図3を参照して、クラウドサーバー150の構成について説明する。図3は、クラウドサーバー150として機能するコンピューターシステム300のハードウェア構成を表わすブロック図である。
[Cloud server configuration]
The configuration of the cloud server 150 will be described with reference to FIG. FIG. 3 is a block diagram showing the hardware configuration of computer system 300 that functions as cloud server 150. As shown in FIG.

コンピューターシステム300は、主たる構成要素として、プログラムを実行するCPU1と、コンピューターシステム300の使用者による指示の入力を受けるマウス2およびキーボード3と、CPU1によるプログラムの実行により生成されたデータ、又はマウス2若しくはキーボード3を介して入力されたデータを揮発的に格納するRAM4と、データを不揮発的に格納するハードディスク5と、光ディスク駆動装置6と、通信インターフェイス(I/F)7と、モニター8とを含む。各構成要素は、相互にデータバスによって接続されている。光ディスク駆動装置6には、CD-ROM9その他の光ディスクが装着される。 The computer system 300 has, as main components, a CPU 1 that executes a program, a mouse 2 and a keyboard 3 that receive instructions input by the user of the computer system 300, data generated by the execution of the program by the CPU 1, or the mouse 2 Alternatively, a RAM 4 for volatilely storing data input via a keyboard 3, a hard disk 5 for nonvolatilely storing data, an optical disk drive 6, a communication interface (I/F) 7, and a monitor 8 are provided. include. Each component is connected to each other by a data bus. The optical disc drive device 6 is loaded with a CD-ROM 9 or other optical discs.

コンピューターシステム300における処理は、各ハードウェアおよびCPU1により実行されるソフトウェアによって実現される。このようなソフトウェアは、ハードディスク5に予め記憶されている場合がある。また、ソフトウェアは、CD-ROM9その他の記録媒体に格納されて、コンピュータープログラムとして流通している場合もある。あるいは、ソフトウェアは、いわゆるインターネットに接続されている情報提供事業者によってダウンロード可能なアプリケーションプログラムとして提供される場合もある。このようなソフトウェアは、光ディスク駆動装置6その他の読取装置によりその記録媒体から読み取られて、あるいは、通信インターフェイス7を介してダウンロードされた後、ハードディスク5に一旦格納される。そのソフトウェアは、CPU1によってハードディスク5から読み出され、RAM4に実行可能なプログラムの形式で格納される。CPU1は、そのプログラムを実行する。 Processing in the computer system 300 is implemented by each piece of hardware and software executed by the CPU 1 . Such software may be stored in the hard disk 5 in advance. Also, the software may be stored in a CD-ROM 9 or other recording medium and distributed as a computer program. Alternatively, the software may be provided as a downloadable application program by a so-called information provider connected to the Internet. Such software is temporarily stored in the hard disk 5 after being read from the recording medium by the optical disk drive 6 or other reading device, or downloaded via the communication interface 7 . The software is read from the hard disk 5 by the CPU 1 and stored in the RAM 4 in the form of an executable program. CPU1 executes the program.

図3に示されるコンピューターシステム300を構成する各構成要素は、一般的なものである。したがって、本開示に係る技術思想の本質的な部分の一つは、RAM4、ハードディスク5、CD-ROM9その他の記録媒体に格納されたソフトウェア、あるいはネットワークを介してダウンロード可能なソフトウェアであるともいえる。記録媒体は、一時的でない、コンピューター読取可能なデータ記録媒体を含み得る。なお、コンピューターシステム300の各ハードウェアの動作は周知であるので、詳細な説明は繰り返さない。 Each component that makes up the computer system 300 shown in FIG. 3 is conventional. Therefore, it can be said that one of the essential parts of the technical idea according to the present disclosure is software stored in RAM 4, hard disk 5, CD-ROM 9 or other recording media, or software that can be downloaded via a network. Recording media may include non-transitory computer-readable data recording media. Since the operation of each piece of hardware in computer system 300 is well known, detailed description will not be repeated.

なお、記録媒体としては、CD-ROM、FD(Flexible Disk)、ハードディスクに限られず、磁気テープ、カセットテープ、光ディスク(MO(Magnetic Optical Disc)/MD(Mini Disc)/DVD(Digital Versatile Disc))、IC(Integrated Circuit)カード(メモリーカードを含む)、光カード、マスクROM、EPROM(Electronically Programmable Read-Only Memory)、EEPROM(Electronically Erasable Programmable Read-Only Memory)、フラッシュROMなどの半導体メモリー等の固定的にプログラムを担持する媒体でもよい。 The recording medium is not limited to CD-ROM, FD (Flexible Disk), hard disk, magnetic tape, cassette tape, optical disk (MO (Magnetic Optical Disc) / MD (Mini Disc) / DVD (Digital Versatile Disc)). , IC (Integrated Circuit) card (including memory card), optical card, mask ROM, EPROM (Electronically Programmable Read-Only Memory), EEPROM (Electronically Erasable Programmable Read-Only Memory), flash ROM and other semiconductor memories It may be a medium that literally carries the program.

ここでいうプログラムとは、CPUにより直接実行可能なプログラムだけでなく、ソースプログラム形式のプログラム、圧縮処理されたプログラム、暗号化されたプログラム等を含む。 The program here includes not only a program that can be directly executed by the CPU, but also a program in source program format, a compressed program, an encrypted program, and the like.

[見守りシステム100の装置構成]
図4を参照して、見守りシステム100を用いた見守りについて説明する。図4は、センサーボックス119を用いた見守りシステム100の装置構成の概略の一例を示す図である。
[Device configuration of watching system 100]
Watching using the watching system 100 will be described with reference to FIG. FIG. 4 is a diagram showing an example of a schematic device configuration of the monitoring system 100 using the sensor box 119. As shown in FIG.

見守りシステム100は、見守り対象者(監視対象者)である入居者111,121その他の入居者を見守るために利用される。図4に示されるように、居室110の天井には、センサーボックス119が取り付けられている。他の居室にも同様にセンサーボックス119が取り付けられている。 The watching system 100 is used to watch over residents 111 and 121 who are watching targets (monitoring targets) and other residents. As shown in FIG. 4, a sensor box 119 is attached to the ceiling of living room 110 . Sensor boxes 119 are similarly installed in other living rooms.

範囲410は、センサーボックス119による検出範囲を表わす。センサーボックス119が前述のドップラーセンサーを有する場合、当該ドップラーセンサーは、範囲410内で生じた人の挙動を検出する。センサーボックス119がセンサーとしてカメラを有する場合、当該カメラは、範囲410内の画像を撮影する。 Range 410 represents the detection range by sensor box 119 . If the sensor box 119 has a Doppler sensor as described above, the Doppler sensor detects human behavior occurring within the range 410 . If sensor box 119 has a camera as a sensor, the camera takes an image within range 410 .

センサーボックス119は、たとえば、介護施設、医療施設、宅内などに設置される。図4の例では、センサーボックス119は、天井に取り付けられており、入居者111およびベッド113を天井から撮影している。センサーボックス119の取り付け場所は天井に限られず、居室110の側壁に取り付けられてもよい。 Sensor box 119 is installed, for example, in nursing homes, medical facilities, homes, and the like. In the example of FIG. 4, the sensor box 119 is attached to the ceiling and photographs the resident 111 and the bed 113 from the ceiling. The mounting location of the sensor box 119 is not limited to the ceiling, and may be mounted on the side wall of the living room 110 .

見守りシステム100は、カメラ105から得られた一連の画像(すなわち、映像)に基づいて入居者111に生じている危険を検知する。一例として、検知可能な危険は、入居者111の転倒や、危険個所(たとえば、ベッドの柵など)に入居者111がいる状態などを含む。 The watching system 100 detects a danger to the resident 111 based on a series of images (that is, video) obtained from the camera 105 . By way of example, detectable hazards include resident 111 falling, resident 111 being in a hazardous area (eg, bed rails, etc.), and the like.

見守りシステム100は、入居者111に危険が生じていることを検知した場合に、そのことを介護者141,143等に報知する。報知方法の一例として、見守りシステム100は、入居者111の危険を介護者141,142の携帯端末143,144に通知する。携帯端末143,144は、当該通知を受信すると、入居者111の危険をメッセージ、音声、振動等で介護者141,142に報知する。これにより、介護者141,142は、入居者111に危険が生じていることを即座に把握でき、入居者111の元に素早く駆け付けることができる。 When the watching system 100 detects that the resident 111 is in danger, the monitoring system 100 notifies the caregivers 141, 143, etc. of the fact. As an example of the notification method, the watching system 100 notifies the mobile terminals 143 and 144 of the caregivers 141 and 142 of the danger of the resident 111 . Upon receiving the notification, the portable terminals 143 and 144 notify the caregivers 141 and 142 of the danger of the resident 111 by message, voice, vibration, or the like. As a result, the caregivers 141 and 142 can immediately grasp that the resident 111 is in danger, and can quickly rush to the resident 111 .

なお、図4には、見守りシステム100が1つのセンサーボックス119を備えている例が示されているが、見守りシステム100は、複数のセンサーボックス119を備えてもよい。また、図4には、見守りシステム100が複数の携帯端末143,144を備えている例が示されているが、見守りシステム100は、一つの携帯端末でも実現され得る。 Note that FIG. 4 shows an example in which the monitoring system 100 includes one sensor box 119 , but the monitoring system 100 may include a plurality of sensor boxes 119 . Moreover, although FIG. 4 shows an example in which the monitoring system 100 includes a plurality of mobile terminals 143 and 144, the monitoring system 100 can also be realized by a single mobile terminal.

[軌跡の分類]
図5を参照して、居室における軌跡の種類について説明する。図5は、ある局面に従う居室110の入居者の歩行軌跡と入居者以外の歩行軌跡との相違を表わす図である。居室110には、タンス112と、ベッド113と、トイレ114と、洗面台51と、机52とが配置されている。
[Trajectory classification]
The types of trajectories in the living room will be described with reference to FIG. FIG. 5 is a diagram showing the difference between the walking trajectory of a resident in living room 110 and the walking trajectory of a non-resident according to a certain aspect. A closet 112 , a bed 113 , a toilet 114 , a washbasin 51 and a desk 52 are arranged in the room 110 .

図5のシーン(A)に示されるように、二つの歩行軌跡510,520が、ある日の一定時間の間に観察された画像処理の結果から検出されている。そのうち、歩行軌跡510は、ベッド113を起点とし、トイレ114に至り、再びベッド113に戻っている。歩行軌跡520は、ドア109を起点とし、ベッド113に向かい、再びドア109に戻っている。 As shown in scene (A) of FIG. 5, two walking trajectories 510 and 520 are detected from the results of image processing observed during a certain period of time on a certain day. Among them, the walking locus 510 starts from the bed 113, reaches the toilet 114, and returns to the bed 113 again. The walking trajectory 520 starts from the door 109, goes to the bed 113, and returns to the door 109 again.

したがって、ある局面において、歩行軌跡の起点、目的地(あるいは折り返し地点)または終点に応じて、当該歩行軌跡に示される歩行を行なった人を分類することができる。例えば、シーン(B)に示されるように、ベッド113からスタートしトイレ114に到達しベッド113に戻る軌跡として示される歩行を行なった人は、入居者と推定される。シーン(C)に示されるように、ドア109からスタートしてベッド113に到達し、ドア109に戻る軌跡として示される歩行を行なった人は、介護スタッフのように入居者以外の人と推定される。 Therefore, in a certain aspect, it is possible to classify a person who has walked along a walking trajectory according to the starting point, destination (or turning point), or end point of the trajectory. For example, as shown in scene (B), a person who starts walking from bed 113, reaches toilet 114, and walks back to bed 113 is presumed to be a resident. As shown in scene (C), a person who started from door 109, reached bed 113, and walked back to door 109, is presumed to be someone other than the resident, such as a caregiver. be.

[データ構造]
図6を参照して、クラウドサーバー150のデータ構造について説明する。図6は、クラウドサーバー150が備えるハードディスク5におけるデータの格納の一態様を表わす図である。
[data structure]
The data structure of the cloud server 150 will be described with reference to FIG. FIG. 6 is a diagram showing one mode of data storage in hard disk 5 included in cloud server 150. As shown in FIG.

ハードディスク5は、テーブル60を保持している。テーブル60は、各居室に設けられた各センサーから送信されるデータを逐次保存している。より具体的には、テーブル60は、部屋ID(Identification)61と、日時62と、X座標値63と、Y座標値64とを含む。部屋ID61は、入居者の居室を識別する。日時62は、センサーから送られた信号が取得された日時を識別する。X座標値63は、当該日時において検出された点のX座標値を表わす。Y座標値64は、当該日時において検出された点のY座標値を表わす。ある局面において、X座標値およびY座標値の元となる座標軸は、例えば、当該居室の端点(例えば、部屋の片隅)を基準として規定される。別の局面において、当該座標軸は、各居室が設けられた施設におけるある一点を基準として規定されてもよい。 The hard disk 5 holds a table 60. FIG. The table 60 sequentially stores data transmitted from each sensor provided in each living room. More specifically, table 60 includes room ID (Identification) 61 , date and time 62 , X coordinate value 63 , and Y coordinate value 64 . The room ID 61 identifies the room of the resident. Date and time 62 identifies the date and time when the signal sent from the sensor was acquired. The X-coordinate value 63 represents the X-coordinate value of the point detected at the date and time. Y-coordinate value 64 represents the Y-coordinate value of the point detected at the date and time. In one aspect, the coordinate axes from which the X coordinate value and the Y coordinate value are based are defined, for example, with reference to the end point of the living room (for example, one corner of the room). In another aspect, the coordinate axes may be defined with reference to a certain point in the facility where each living room is provided.

例えば、センサーボックス119においてドップラーセンサー106またはカメラ105からの出力に基づいて取得されたXY座標値と、その取得日時とは、定期的に、クラウドサーバー150に送信される。別の局面において、センサーボックス119から送信されたデータは、管理サーバー200にも格納され得る。 For example, the XY coordinate values acquired based on the output from the Doppler sensor 106 or the camera 105 in the sensor box 119 and the acquisition date and time are periodically transmitted to the cloud server 150 . In another aspect, data transmitted from sensor box 119 may also be stored on management server 200 .

[CPU1の動作概要]
ある局面において、CPU1は、居室における人の歩行軌跡を表わし、異なる日に取得された複数の軌跡データを取得する。CPU1は、居室の入居者の歩行特性またはスタッフなどの入居者以外の歩行特性に基づいて、取得された複数の軌跡データの中から居室における入居者以外の軌跡データと、入居者の軌跡データとを判別する。CPU1は、判別後の入居者の軌跡データを用いて、居室の入居者の歩行速度を算出する。
[Overview of operation of CPU 1]
In one aspect, the CPU 1 acquires a plurality of trajectory data representing a person's walking trajectory in a living room and acquired on different days. Based on the walking characteristics of the residents of the living room or the walking characteristics of the staff and other persons other than the residents, the CPU 1 selects the trajectory data of the residents other than the residents in the living room and the trajectory data of the residents from among the plurality of acquired trajectory data. determine. The CPU 1 calculates the walking speed of the resident in the living room using the trajectory data of the resident after determination.

ある局面において、CPU1は、軌跡の始点終点がベッドの近傍である場合に、当該軌跡を入居者の軌跡と判定し得る。より具体的には、CPU1は、複数の軌跡データのうち、当該軌跡の始点および終点が居室に配置されているベッド113の近傍にある軌跡データを、当該入居者の軌跡データとして判別する。 In a certain aspect, the CPU 1 can determine the trajectory to be the resident's trajectory when the starting and ending points of the trajectory are in the vicinity of the bed. More specifically, the CPU 1 determines the trajectory data whose starting point and end point of the trajectory are near the bed 113 arranged in the room as the trajectory data of the resident.

ある局面において、CPU1は、取得された複数の軌跡データの中から、入居者以外の歩行速度として予め計測された歩行速度に対応する軌跡データを複数の軌跡データから除外する。これにより、CU1は、入居者の歩行軌跡を抽出することができる。 In one aspect, the CPU 1 excludes, from among the plurality of acquired locus data, the locus data corresponding to the walking speed that is measured in advance as the walking speed of a person other than the resident from the plurality of locus data. Thereby, CU1 can extract the resident's walking locus.

ある局面において、CPU1は、取得された複数の軌跡データのうち、入居者のみが居室にいる時間帯として予め定められた時間の軌跡データを、当該入居者の軌跡データとして判別する。 In a certain aspect, the CPU 1 determines the trajectory data of a predetermined time period during which only the resident is in the room among the acquired trajectory data as the trajectory data of the resident.

ある局面において、CPU1は、歩行速度の算出の結果に基づいて入居者の介護度の見直しを促す提案を出力する。例えば、CPU1は、各入居者について、歩行軌跡の変化を示す数値あるいはグラフをモニター8に提示し、あるいは、プリンター(図示しない)に出力し得る。これにより、介護者、ケアマネジャーその他の管理者は、例えば、各入居者について、介護判定の見直しを客観的なデータに基づいて行なうことができるので、判定の内容に公平性および納得性が担保され得る。 In one aspect, the CPU 1 outputs a proposal prompting the resident to review the level of nursing care based on the result of the walking speed calculation. For example, the CPU 1 can present on the monitor 8 numerical values or graphs showing changes in walking trajectories for each resident, or output them to a printer (not shown). As a result, caregivers, care managers and other administrators can, for example, review the nursing care judgment for each resident based on objective data, ensuring fairness and convincingness in the judgment content. obtain.

[入居者およびスタッフの移動速度]
図7を参照して、入居者とスタッフの移動速度の相違について説明する。図7は、軌跡ごとに算出された人の移動速度の分布を表わす図である。図7では、20人の歩行軌跡が特定され、各歩行軌跡のデータから平均の移動速度が算出されている。このうち、軌跡番号5,7,11,14,16および19で特定される移動速度は、それぞれ、800ミリメートル/秒よりも早く、他の軌跡番号1~4,6,8~10,12,13,15,17、18および20で特定される移動速度は、それぞれ、600ミリメートル/秒よりも遅い。したがって、介護スタッフのような入居者以外の人の移動速度の分布と、入居者の移動速度の分布との間には、違いがあることが明らかとなり、各分布を隔てる速度を閾値として規定し得る。例えば、図7の例では、700ミリメートル/秒が、閾値の候補となり得る。
[Movement speed of residents and staff]
The difference in moving speed between residents and staff will be described with reference to FIG. FIG. 7 is a diagram showing the distribution of the moving speed of a person calculated for each trajectory. In FIG. 7, the walking trajectories of 20 people are specified, and the average moving speed is calculated from the data of each walking trajectory. Of these, the moving speeds specified by trajectory numbers 5, 7, 11, 14, 16 and 19 are faster than 800 mm/sec, respectively, and the other trajectory numbers 1-4, 6, 8-10, 12, Travel speeds identified at 13, 15, 17, 18 and 20 are each less than 600 mm/sec. Therefore, it became clear that there is a difference between the distribution of movement speeds of people other than residents such as care staff and the distribution of movement speeds of residents. obtain. For example, in the example of FIG. 7, 700 mm/sec may be a candidate threshold.

ある局面において、管理サーバ―200は、クラウドサーバー150によって算出された平均の歩行速度データに基づいて、図7に示されるような分布図を表示し得る。管理サーバ―200のユーザー(例えば、介護施設の管理者、あるいは、ケアマネジャー等)は、当該分布図を見ながら、各入居者の歩行能力の推移を客観的に確認することができる。 In one aspect, management server-200 can display a distribution chart as shown in FIG. 7 based on the average walking speed data calculated by cloud server 150. FIG. A user of the management server 200 (for example, an administrator of a nursing care facility, a care manager, etc.) can objectively confirm changes in the walking ability of each resident while viewing the distribution map.

[データ処理]
図8を参照して、クラウドサーバー150におけるデータ処理について説明する。図8は、クラウドサーバー150のCPU1が実行する処理の一部を表わすフローチャートである。
[Data processing]
Data processing in the cloud server 150 will be described with reference to FIG. FIG. 8 is a flow chart showing part of the processing executed by CPU 1 of cloud server 150 .

ステップS810にて、CPU1は、データ処理モードの入力を検知する。例えば、スタッフが、管理サーバ―200を操作して、データ処理モードを選択した場合に、その選択結果は、クラウドサーバー150に送られ、クラウドサーバー150は、動作モードをデータ処理モードに切り替える。 At step S810, CPU 1 detects the input of the data processing mode. For example, when the staff operates the management server-200 to select the data processing mode, the selection result is sent to the cloud server 150, and the cloud server 150 switches the operation mode to the data processing mode.

ステップS820にて、CPU1は、居室における人の歩行軌跡を表わし、異なる日に取得された複数の軌跡データを読み出す。例えば、スタッフが、日時を指定して、歩行軌跡の抽出を指示すると、CPU1は、ハードディスク5のテーブル60から、指定された日時に検出された歩行軌跡のデータを抽出する。 In step S820, CPU 1 reads out a plurality of trajectory data representing the walking trajectory of a person in the living room and obtained on different days. For example, when the staff designates a date and time and instructs extraction of a walking locus, the CPU 1 extracts data of a walking locus detected on the designated date and time from the table 60 of the hard disk 5 .

ステップS830にて、CPU1は、居室の入居者の歩行特性または入居者以外の歩行特性に基づいて、取得された複数の軌跡データの中から居室における入居者以外の軌跡データと、入居者の軌跡データとを判別する。より詳しくは、CPU1は、各入居者および各スタッフの歩行軌跡から、当該歩行軌跡の起点に基づいて、入居者の歩行軌跡とスタッフの歩行軌跡とを判別する(例えば、図5参照)。 In step S830, the CPU 1 selects the trajectory data of the resident other than the resident in the living room and the trajectory of the resident from among the plurality of acquired trajectory data based on the gait characteristics of the resident in the living room or the gait characteristics of the resident other than the resident. data and discriminate. More specifically, the CPU 1 distinguishes between the resident's walking trajectory and the staff's walking trajectory from the walking trajectories of each resident and each staff member based on the starting point of the walking trajectory (see FIG. 5, for example).

ステップS840にて、CPU1は、判別後の入居者の軌跡データを用いて、居室の入居者の歩行速度を算出する。例えば、CPU1は、歩行軌跡を構成する各点の座標値と、当該点が抽出された日時とに基づいて、平均の歩行速度を算出する。 At step S840, the CPU 1 calculates the walking speed of the resident in the living room using the trajectory data of the resident after determination. For example, the CPU 1 calculates the average walking speed based on the coordinate values of the points forming the walking trajectory and the dates and times when the points were extracted.

ステップS850にて、CPU1は、入居者の識別情報と歩行速度とを出力する。例えば、CPU1は、各歩行速度を算出すると、入居者の識別情報および算出結果を、管理サーバ―200に送信する。管理サーバ―200は、識別情報および算出結果を受信すると、これらのデータをモニター8に表示する(例えば、図7)。あるいは、管理サーバ―200は、これらのデータが含まれる帳票をプリンター又はファイルに出力し得る。スタッフその他の介護関係者は、出力されたデータを見て、各入居者の歩行能力の推移を客観的に判断し得る。 At step S850, the CPU 1 outputs identification information and walking speed of the resident. For example, after calculating each walking speed, the CPU 1 transmits the resident's identification information and the calculation result to the management server-200. When the management server-200 receives the identification information and the calculation result, it displays these data on the monitor 8 (eg, FIG. 7). Alternatively, the management server-200 can output a form containing these data to a printer or a file. Staff and other caregivers can view the output data and objectively judge the transition of each resident's walking ability.

[歩行速度の低下]
図9を参照して、ある局面に従う歩行速度の推移について説明する。図9は、ある介護施設における5人の入居者の歩行速度の6ヵ月の推移を表わす図である。ある局面において、管理サーバ―200のモニター8あるいは携帯端末143,144のディスプレイ226が、図9に示されるグラフを表示し得る。
[Decrease in walking speed]
With reference to FIG. 9, transition of walking speed according to a certain situation will be described. FIG. 9 is a diagram showing six-month changes in walking speed of five residents in a nursing care facility. In one aspect, the monitor 8 of the management server 200 or the display 226 of the mobile terminals 143, 144 can display the graph shown in FIG.

例えば、入居者910については、2017年6月から2017年8月に急激に歩行速度が低下した後、低下の程度が緩やかになっていることが分かる。入居者920,930および940については、歩行速度が一定の割合で低下している一方、低下の割合は入居者によって異なることが分かる。入居者950については、歩行速度が2017年6月から7月まで一旦上昇した後、2017年10月まで低下し、その後再び上昇している。したがって、例えば、歩行訓練等により歩行の低下速度が抑制されている可能性が推定される。そこで、スタッフは、入居者950のような事例を用いて、例えば、他の入居者向けに対してもリハビリの推薦を行なってもよい。 For example, for the resident 910, it can be seen that the walking speed suddenly decreased from June 2017 to August 2017, and then the degree of decrease slowed down. As for the residents 920, 930 and 940, it can be seen that the walking speed decreases at a constant rate, while the rate of decrease differs depending on the residents. Regarding the resident 950, the walking speed once increased from June to July 2017, then decreased until October 2017, and then increased again. Therefore, for example, it is estimated that the decrease in walking speed is suppressed by walking training or the like. Therefore, the staff may use a case like the resident 950 to recommend rehabilitation for other residents, for example.

[歩行速度と介護度]
図10を参照して、平均移動速度と介護度との関係について説明する。図10は、入居者の平均移動速度と介護度との関係を表わす図である。ある局面において、介護度と平均移動速度との間には、何らかの相関関係があると推定される。例えば、介護度が大きくなれば、歩行が不自由になりがちであり平均移動速度も低下すると考えられる。そこで、各入居者について、既に認定されている介護度別に、当該入居者の平均移動速度をプロットすることにより、介護関係者は、現在の介護度の認定が妥当であるか否かを客観的に判断することができる。例えば、グループ1010に含まれる入居者の平均速度は、閾値1020を下回っており、歩行速度が低下していると推定される。したがって、管理サーバ―200は、一つの提案として、グループ1010に含まれる入居者の介護度の認定を変更することをモニター8に表示し得る。
[Walking speed and level of care]
The relationship between the average moving speed and the level of care will be described with reference to FIG. 10 . FIG. 10 is a diagram showing the relationship between a resident's average moving speed and the level of care. In a certain aspect, it is estimated that there is some correlation between the degree of care and the average moving speed. For example, if the degree of nursing care increases, walking tends to become more difficult, and the average moving speed is considered to decrease. Therefore, for each resident, by plotting the average moving speed of the resident according to the level of care that has already been certified, caregivers can objectively determine whether the current level of care is appropriate. can be judged. For example, the average speed of residents included in group 1010 is below threshold 1020, and it is estimated that their walking speed is decreasing. Therefore, the management server-200 can display on the monitor 8 as a proposal to change the certification of the level of care of the residents included in the group 1010 .

以上のようにして、本実施の形態によれば、施設の居室において観察される歩行軌跡は、入居者の歩行軌跡と入居者以外の人の歩行軌跡とに分けられる。入居者の歩行軌跡を用いることにより、歩行速度の変化を客観的に把握することができる。介護に必要とされる情報が客観的に提供されるので、公平で納得性の高い判定が可能となる。また、歩行軌跡は日々集計されたデータを用いて導出されるので、速やかなデータ処理が可能となり、判定に必要な情報を短時間で提供することができる。 As described above, according to the present embodiment, the walking trajectory observed in the room of the facility is divided into the walking trajectory of the resident and the walking trajectory of the person other than the resident. By using the resident's walking trajectory, it is possible to objectively grasp changes in walking speed. Since the information required for nursing care is provided objectively, it is possible to make fair and highly convincing judgments. In addition, since the walking trajectory is derived using data collected daily, rapid data processing is possible, and information necessary for determination can be provided in a short period of time.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments disclosed this time are illustrative in all respects and not restrictive. The scope of the present invention is indicated by the scope of the claims rather than the above description, and is intended to include all changes within the scope and meaning equivalent to the scope of the claims.

本技術は、病院、老人ホーム、養護施設その他の施設で取得される情報に適用可能である。 The technology is applicable to information obtained in hospitals, nursing homes, nursing homes and other facilities.

100 システム、101,221 制御装置、106 ドップラーセンサー、107 無線通信装置、108 記憶装置、109 ドア、110,120 居室、111,121,910,920,930,950 入居者、112 タンス、113 ベッド、114 トイレ、115 ケアコール子機、116 トイレセンサー、117 センサー、118 ドアセンサー、119 センサーボックス、130 管理センター、140 アクセスポイント、141,142 介護者、143,144 携帯端末、150 クラウドサーバー、190 ネットワーク、200 管理サーバー、226 ディスプレイ、229 入力デバイス、241 ケアコールボタン、290 バイタルセンサー、300 コンピューターシステム、410 範囲、51 洗面台、52 机、60 テーブル、510,520 歩行軌跡。 100 system, 101,221 control device, 106 Doppler sensor, 107 wireless communication device, 108 storage device, 109 door, 110,120 living room, 111,121,910,920,930,950 resident, 112 chest, 113 bed, 114 toilet, 115 care call child device, 116 toilet sensor, 117 sensor, 118 door sensor, 119 sensor box, 130 management center, 140 access point, 141, 142 caregiver, 143, 144 mobile terminal, 150 cloud server, 190 network, 200 management server, 226 display, 229 input device, 241 care call button, 290 vital sensor, 300 computer system, 410 range, 51 washstand, 52 desk, 60 table, 510,520 walking trajectory.

Claims (15)

コンピューターで実行されるプログラムであって、前記プログラムは前記コンピューターに、
居室における人の歩行軌跡を表わし、異なる日に取得された複数の軌跡データを取得するステップと、
前記居室の入居者の歩行特性または入居者以外の歩行特性に基づいて、取得された前記複数の軌跡データの中から前記居室における入居者以外の軌跡データと、前記入居者の軌跡データとを判別するステップと、
前記判別後の入居者の軌跡データを用いて、前記居室の入居者の歩行速度を算出するステップとを実行させる、プログラム。
A program running on a computer, said program causing said computer to:
obtaining a plurality of trajectory data representing a person's walking trajectory in a living room and obtained on different days;
Based on the walking characteristics of the resident in the living room or the walking characteristics of the non-resident, the trajectory data of the resident other than the resident in the living room and the trajectory data of the resident are discriminated from the plurality of acquired trajectory data. and
and calculating the walking speed of the resident in the living room using the trajectory data of the resident after the determination.
前記判別するステップは、前記複数の軌跡データのうち、当該軌跡の始点および終点が前記居室に配置されているベッドの近傍にある軌跡データを、当該入居者の軌跡データとして判別することを含む、請求項1に記載のプログラム。 In the determining step, among the plurality of trajectory data, trajectory data whose starting point and end point of the trajectory are in the vicinity of the bed arranged in the living room are discriminated as trajectory data of the resident, A program according to claim 1. 前記判別するステップは、取得された前記複数の軌跡データの中から、入居者以外の歩行速度として規定された歩行速度に対応する軌跡データを前記複数の軌跡データから除外することとを含む、請求項1に記載のプログラム。 The determining step includes excluding, from the plurality of acquired trajectory data, trajectory data corresponding to a walking speed defined as a walking speed of a person other than the resident from the plurality of trajectory data. Item 1. The program according to item 1. 前記判別するステップは、取得された前記複数の軌跡データのうち、前記入居者のみが前記居室にいる時間帯として予め定められた時間の軌跡データを、当該入居者の軌跡データとして判別することを含む、請求項1に記載のプログラム。 In the step of determining, among the plurality of acquired trajectory data, trajectory data for a predetermined time period during which only the resident is in the living room is discriminated as trajectory data for the resident. 2. The program of claim 1, comprising: 前記プログラムは前記コンピューターに、前記歩行速度の算出の結果に基づいて入居者の介護度の見直しを促す提案を出力するステップをさらに実行させる、請求項1に記載のプログラム。 2. The program according to claim 1, wherein said program further causes said computer to output a proposal prompting a resident's level of care to be reviewed based on the result of said walking speed calculation. メモリーと、
前記メモリーに結合されたプロセッサーとを備え、
前記プロセッサーは、
居室における人の歩行軌跡を表わし、異なる日に取得された複数の軌跡データを取得し、
前記居室の入居者の歩行特性または入居者以外の歩行特性に基づいて、取得された前記複数の軌跡データの中から前記居室における入居者以外の軌跡データと、前記入居者の軌跡データとを判別し、
前記判別後の入居者の軌跡データを用いて、前記居室の入居者の歩行速度を算出するように構成されている、情報処理装置。
a memory;
a processor coupled to the memory;
The processor
Representing the walking trajectory of a person in a living room, acquiring multiple trajectory data acquired on different days,
Based on the walking characteristics of the resident in the living room or the walking characteristics of the non-resident, the trajectory data of the resident other than the resident in the living room and the trajectory data of the resident are discriminated from the plurality of acquired trajectory data. death,
An information processing apparatus configured to calculate the walking speed of the resident in the living room using the trajectory data of the resident after the determination.
前記プロセッサーは、前記複数の軌跡データのうち、当該軌跡の始点および終点が前記居室に配置されているベッドの近傍にある軌跡データを、当該入居者の軌跡データとして判別する、請求項6に記載の情報処理装置。 7. The processor according to claim 6, wherein among the plurality of trajectory data, the trajectory data whose starting point and end point of the trajectory are near the bed arranged in the living room are identified as the trajectory data of the resident. information processing equipment. 前記プロセッサーは、取得された前記複数の軌跡データの中から、入居者以外の歩行速度として予め計測された歩行速度に対応する軌跡データを前記複数の軌跡データから除外する、請求項6に記載の情報処理装置。 7. The processor according to claim 6, wherein from among the plurality of acquired trajectory data, trajectory data corresponding to a walking speed previously measured as a walking speed of a person other than the resident is excluded from the plurality of trajectory data. Information processing equipment. 前記プロセッサーは、取得された前記複数の軌跡データのうち、前記入居者のみが前記居室にいる時間帯として予め定められた時間の軌跡データを、当該入居者の軌跡データとして判別する、請求項6に記載の情報処理装置。 7. The processor determines, from among the plurality of acquired trajectory data, trajectory data for a predetermined time period during which only the resident is in the living room, as trajectory data for the resident. The information processing device according to . 前記プロセッサーは、前記歩行速度の算出の結果に基づいて入居者の介護度の見直しを促す提案を出力するようにさらに構成されている、請求項6に記載の情報処理装置。 7. The information processing apparatus according to claim 6, wherein the processor is further configured to output a proposal prompting a resident to review the care level based on the result of the walking speed calculation. コンピューターで実行される方法であって、
居室における人の歩行軌跡を表わし、異なる日に取得された複数の軌跡データを取得するステップと、
前記居室の入居者の歩行特性または入居者以外の歩行特性に基づいて、取得された前記複数の軌跡データの中から前記居室における入居者以外の軌跡データと、前記入居者の軌跡データとを判別するステップと、
前記判別後の入居者の軌跡データを用いて、前記居室の入居者の歩行速度を算出するステップとを含む、方法。
A computer implemented method comprising:
obtaining a plurality of trajectory data representing a person's walking trajectory in a living room and obtained on different days;
Based on the walking characteristics of the resident in the living room or the walking characteristics of the non-resident, the trajectory data of the resident other than the resident in the living room and the trajectory data of the resident are discriminated from the plurality of acquired trajectory data. and
and calculating the walking speed of the resident in the living room using the trajectory data of the resident after the determination.
前記判別するステップは、前記複数の軌跡データのうち、当該軌跡の始点および終点が前記居室に配置されているベッドの近傍にある軌跡データを、当該入居者の軌跡データとして判別することを含む、請求項11に記載の方法。 In the determining step, among the plurality of trajectory data, trajectory data whose starting point and end point of the trajectory are in the vicinity of the bed arranged in the living room are discriminated as trajectory data of the resident, 12. The method of claim 11. 前記判別するステップは、取得された前記複数の軌跡データの中から、入居者以外の歩行速度として規定された歩行速度に対応する軌跡データを前記複数の軌跡データから除外することとを含む、請求項11に記載の方法。 The determining step includes excluding, from the plurality of acquired trajectory data, trajectory data corresponding to a walking speed defined as a walking speed of a person other than the resident from the plurality of trajectory data. Item 12. The method according to Item 11. 前記判別するステップは、取得された前記複数の軌跡データのうち、前記入居者のみが前記居室にいる時間帯として予め定められた時間の軌跡データを、当該入居者の軌跡データとして判別することを含む、請求項11に記載の方法。 In the step of determining, among the plurality of acquired trajectory data, trajectory data for a predetermined time period during which only the resident is in the living room is discriminated as trajectory data for the resident. 12. The method of claim 11, comprising: 前記歩行速度の算出の結果に基づいて入居者の介護度の見直しを促す提案を出力するステップをさらに含む、請求項11に記載の方法。 12. The method according to claim 11, further comprising outputting a suggestion prompting a review of the resident's level of care based on the result of the walking speed calculation.
JP2020525494A 2018-06-20 2019-06-06 Computer Executed Programs, Information Processing Devices, and Computer Executed Methods Active JP7215481B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018116996 2018-06-20
JP2018116996 2018-06-20
PCT/JP2019/022466 WO2019244647A1 (en) 2018-06-20 2019-06-06 Computer-executable program, information processing device, and computer-executable method

Publications (2)

Publication Number Publication Date
JPWO2019244647A1 JPWO2019244647A1 (en) 2021-07-15
JP7215481B2 true JP7215481B2 (en) 2023-01-31

Family

ID=68983677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020525494A Active JP7215481B2 (en) 2018-06-20 2019-06-06 Computer Executed Programs, Information Processing Devices, and Computer Executed Methods

Country Status (2)

Country Link
JP (1) JP7215481B2 (en)
WO (1) WO2019244647A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006277048A (en) 2005-03-28 2006-10-12 Saneido Shoji:Kk In-facility movement detection system utilizing catv cable
WO2017188418A1 (en) 2016-04-28 2017-11-02 Necソリューションイノベータ株式会社 Walk vibration analyzing system, vibration analyzing device, walk vibration analyzing method, and computer-readable recording medium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3462754B2 (en) * 1998-05-21 2003-11-05 日本マイクロシステムズ株式会社 Monitoring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006277048A (en) 2005-03-28 2006-10-12 Saneido Shoji:Kk In-facility movement detection system utilizing catv cable
WO2017188418A1 (en) 2016-04-28 2017-11-02 Necソリューションイノベータ株式会社 Walk vibration analyzing system, vibration analyzing device, walk vibration analyzing method, and computer-readable recording medium

Also Published As

Publication number Publication date
JPWO2019244647A1 (en) 2021-07-15
WO2019244647A1 (en) 2019-12-26

Similar Documents

Publication Publication Date Title
JP7281457B2 (en) Vital Signs with Contactless Activity Detection Networks for Elderly Care
JP6839205B2 (en) Automated procedure determination and judgment generation
Stone et al. Fall detection in homes of older adults using the Microsoft Kinect
US9940822B2 (en) Systems and methods for analysis of subject activity
Stone et al. Unobtrusive, continuous, in-home gait measurement using the Microsoft Kinect
US9597016B2 (en) Activity analysis, fall detection and risk assessment systems and methods
US20160345832A1 (en) System and method for monitoring biological status through contactless sensing
US20150302310A1 (en) Methods for data collection and analysis for event detection
US20150248754A1 (en) Method and Device for Monitoring at Least One Interior Space of a Building, and Assistance System for at Least One Interior Space of a Building
TWI541769B (en) Falling down detecting systems and method
JPWO2020071374A1 (en) Status monitoring device and status monitoring method
JP7215481B2 (en) Computer Executed Programs, Information Processing Devices, and Computer Executed Methods
JP7327397B2 (en) Computer-implemented programs, information processing systems, and computer-implemented methods
WO2020071375A1 (en) Condition monitoring device
JP7342863B2 (en) Computer-executed programs, information processing systems, and computer-executed methods
JP7205540B2 (en) Computer Executed Programs, Information Processing Devices, and Computer Executed Methods
JP7255359B2 (en) Program, Information Notification Apparatus, and Computer Implemented Method for Posting Information
JP7276336B2 (en) Computer-implemented programs, information processing systems, and computer-implemented methods
JP7371624B2 (en) Programs that run on computers, information processing devices, and methods that run on computers
US20230326318A1 (en) Environment sensing for care systems
JP7310327B2 (en) Behavior detection device, system provided with same, behavior detection method, and program
WO2021215207A1 (en) Method performed by computer to provide information about care recipient, program, and information providing device
WO2023283834A1 (en) Information detection method and apparatus for indoor object, and storage medium and processor
JP2023105966A (en) Method and program executed by computer to detect change in state of resident, and resident state change detection device
JPWO2020137061A1 (en) Information display method, program and information display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230102

R150 Certificate of patent or registration of utility model

Ref document number: 7215481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150