JP7214690B2 - Positive electrode active material and lithium ion secondary battery - Google Patents

Positive electrode active material and lithium ion secondary battery Download PDF

Info

Publication number
JP7214690B2
JP7214690B2 JP2020145148A JP2020145148A JP7214690B2 JP 7214690 B2 JP7214690 B2 JP 7214690B2 JP 2020145148 A JP2020145148 A JP 2020145148A JP 2020145148 A JP2020145148 A JP 2020145148A JP 7214690 B2 JP7214690 B2 JP 7214690B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
ion secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020145148A
Other languages
Japanese (ja)
Other versions
JP2022040431A (en
Inventor
雄治 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prime Planet Energy and Solutions Inc
Original Assignee
Prime Planet Energy and Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prime Planet Energy and Solutions Inc filed Critical Prime Planet Energy and Solutions Inc
Priority to JP2020145148A priority Critical patent/JP7214690B2/en
Publication of JP2022040431A publication Critical patent/JP2022040431A/en
Application granted granted Critical
Publication of JP7214690B2 publication Critical patent/JP7214690B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、正極活物質に関する。本発明はまた、当該正極活物質を用いたリチウムイオン二次電池に関する。 The present invention relates to positive electrode active materials. The present invention also relates to a lithium ion secondary battery using the positive electrode active material.

近年、リチウムイオン二次電池は、パソコン、携帯端末等のポータブル電源や、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両駆動用電源などに好適に用いられている。 In recent years, lithium-ion secondary batteries have been suitably used as portable power sources for personal computers, mobile terminals, etc., and power sources for driving vehicles such as electric vehicles (EV), hybrid vehicles (HV), and plug-in hybrid vehicles (PHV). ing.

リチウムイオン二次電池は、その普及に伴い、さらなる高性能化が要求されている。リチウムイオン二次電池の高性能化を目的として、正極活物質の結晶構造の検討がなされている(例えば、特許文献1参照)。特許文献1には、正極活物質であるリチウムニッケルコバルトマンガン複合酸化物にケイ素を均一に固溶させることによって、その結晶構造におけるa軸とc軸とを大きくすれば、正極活物質の結晶構造を安定化できることが記載されている。 Lithium-ion secondary batteries are required to have higher performance as they become more popular. For the purpose of improving the performance of lithium-ion secondary batteries, studies have been made on the crystal structure of the positive electrode active material (see, for example, Patent Document 1). In Patent Document 1, by uniformly dissolving silicon in a lithium-nickel-cobalt-manganese composite oxide, which is a positive electrode active material, by increasing the a-axis and c-axis in the crystal structure, the crystal structure of the positive electrode active material It is stated that the can be stabilized.

特開2018-60759号公報JP 2018-60759 A

しかしながら、近年のリチウムイオン二次電池の高性能化への要求はますます高まっており、なかでも、車載用のリチウムイオン二次電池にはより高い入出力特性が求められている。そのためには二次電池のさらなる低抵抗化が求められており、本発明者が鋭意検討した結果、従来の正極活物質を用いた場合には、リチウムイオン二次電池の低抵抗化が不十分であるという問題があるということがわかった。 However, in recent years, the demand for higher performance of lithium ion secondary batteries has been increasing more and more, and above all, higher input/output characteristics are required for lithium ion secondary batteries for vehicles. For this reason, further reduction in the resistance of the secondary battery is required, and as a result of intensive studies by the present inventors, when the conventional positive electrode active material is used, the resistance of the lithium ion secondary battery is insufficiently reduced. It was found that there was a problem that

そこで本発明は、リチウムイオン二次電池の抵抗を小さくすることができる正極活物質を提供することを目的とする。 Accordingly, an object of the present invention is to provide a positive electrode active material that can reduce the resistance of a lithium ion secondary battery.

ここに開示される正極活物質は、結晶構造が空間群R-3mに帰属される正極活物質である。c軸長の標準偏差σcは、0.025Å≦σc≦0.045Åを満たす。このような構成によれば、リチウムイオン二次電池の抵抗を小さくすることができる正極活物質が提供される。 The positive electrode active material disclosed herein is a positive electrode active material whose crystal structure belongs to space group R-3m. The standard deviation σc of the c-axis length satisfies 0.025 Å≦σc≦0.045 Å. Such a configuration provides a positive electrode active material capable of reducing the resistance of a lithium ion secondary battery.

ここに開示される正極活物質の好ましい一態様では、a軸長の標準偏差σaは、0.005Å≦σa≦0.02Åを満たす。このような構成によれば、リチウムイオン二次電池をより低抵抗化することができる。 In a preferred embodiment of the positive electrode active material disclosed herein, the standard deviation σa of the a-axis length satisfies 0.005 Å≦σa≦0.02 Å. With such a configuration, the resistance of the lithium ion secondary battery can be further reduced.

ここに開示される正極活物質の好ましい一態様では、正極活物質は、層状岩塩型構造を有し、結晶子径は、950Å以上1450Å以下である。このような構成によれば、リチウムイオン二次電池をより低抵抗化することができる。 In a preferred embodiment of the positive electrode active material disclosed herein, the positive electrode active material has a layered rock salt structure and a crystallite diameter of 950 Å or more and 1450 Å or less. With such a configuration, the resistance of the lithium ion secondary battery can be further reduced.

別の側面から、ここに開示されるリチウムイオン二次電池は、正極と、負極と、を備える。前記正極は、上記の正極活物質を含む。このような構成によれば、抵抗が小さいリチウムイオン二次電池が提供される。 From another aspect, the lithium ion secondary battery disclosed herein includes a positive electrode and a negative electrode. The positive electrode includes the positive electrode active material described above. Such a configuration provides a lithium-ion secondary battery with low resistance.

本発明の一実施形態に係る正極活物質を用いて構築されるリチウムイオン二次電池の構成を模式的に示す断面図である。1 is a cross-sectional view schematically showing the configuration of a lithium ion secondary battery constructed using a positive electrode active material according to one embodiment of the present invention; FIG. 本発明の一実施形態に係る正極活物質を用いて構築されるリチウムイオン二次電池の捲回電極体の構成を示す模式分解図である。1 is a schematic exploded view showing the configuration of a wound electrode body of a lithium ion secondary battery constructed using a positive electrode active material according to one embodiment of the present invention; FIG.

以下、図面を参照しながら本発明に係る実施の形態を説明する。なお、本明細書において言及していない事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、以下の図面においては、同じ作用を奏する部材・部位には同じ符号を付して説明している。また、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。 Hereinafter, embodiments according to the present invention will be described with reference to the drawings. Matters not mentioned in this specification but necessary for the implementation of the present invention can be grasped as design matters by those skilled in the art based on the prior art in the relevant field. The present invention can be implemented based on the contents disclosed in this specification and common general technical knowledge in the field. Further, in the following drawings, members and portions having the same function are denoted by the same reference numerals. Also, the dimensional relationships (length, width, thickness, etc.) in each drawing do not reflect the actual dimensional relationships.

なお、本明細書において「二次電池」とは、繰り返し充放電可能な蓄電デバイスをいい、いわゆる蓄電池、および電気二重層キャパシタ等の蓄電素子を包含する用語である。また、本明細書において「リチウムイオン二次電池」とは、電荷担体としてリチウムイオンを利用し、正負極間におけるリチウムイオンに伴う電荷の移動により充放電が実現される二次電池をいう。 In this specification, the term "secondary battery" refers to an electricity storage device that can be repeatedly charged and discharged, and is a term that includes so-called storage batteries and electricity storage elements such as electric double layer capacitors. In this specification, the term “lithium ion secondary battery” refers to a secondary battery that utilizes lithium ions as a charge carrier and is charged/discharged by the transfer of charge associated with the lithium ions between the positive and negative electrodes.

本実施形態に係る正極活物質は、空間群R-3mに帰属される結晶構造を有する。c軸長の標準偏差σcは、0.025Å≦σc≦0.045Åを満たす。 The positive electrode active material according to this embodiment has a crystal structure belonging to the space group R-3m. The standard deviation σc of the c-axis length satisfies 0.025 Å≦σc≦0.045 Å.

R-3mに帰属される正極活物質の結晶構造の例としては、層状岩塩型結晶構造、および擬スピネル型結晶構造が挙げられる。 Examples of the crystal structure of the positive electrode active material assigned to R-3m include a layered rocksalt crystal structure and a pseudo-spinel crystal structure.

層状岩塩型結晶構造を有する正極活物質としては、一般式LiMO(Mは、Li以外の1種または2種以上の金属元素である)で表されるリチウム複合酸化物が挙げられる。リチウム複合酸化物としては、上記Mとして、Ni、Co、Mnのうちの少なくとも1種を含むリチウム遷移金属酸化物が好ましく、その具体例としては、リチウムニッケル系複合酸化物、リチウムコバルト系複合酸化物、リチウムマンガン系複合酸化物、、リチウムニッケルコバルトマンガン系複合酸化物、リチウムニッケルコバルトアルミニウム系複合酸化物、リチウム鉄ニッケルマンガン系複合酸化物等が挙げられる。なかでも、より小さい抵抗の観点から、リチウムニッケルコバルトマンガン系複合酸化物が好ましい。 Examples of positive electrode active materials having a layered rock salt crystal structure include lithium composite oxides represented by the general formula LiMO 2 (M is one or more metal elements other than Li). As the lithium composite oxide, a lithium transition metal oxide containing at least one of Ni, Co, and Mn is preferable as M, and specific examples thereof include lithium-nickel-based composite oxides and lithium-cobalt-based composite oxides. lithium-manganese composite oxides, lithium-nickel-cobalt-manganese-based composite oxides, lithium-nickel-cobalt-aluminum-based composite oxides, lithium-iron-nickel-manganese composite oxides, and the like. Among them, lithium-nickel-cobalt-manganese-based composite oxides are preferable from the viewpoint of lower resistance.

なお、本明細書において「リチウムニッケルコバルトマンガン系複合酸化物」とは、Li、Ni、Co、Mn、Oを構成元素とする酸化物の他に、それら以外の1種または2種以上の添加的な元素を含んだ酸化物をも包含する用語である。かかる添加的な元素の例としては、Mg、Ca、Al、Ti、V、Cr、Y、Zr、Nb、Mo、Hf、Ta、W、Na、Fe、Zn、Sn等の遷移金属元素や典型金属元素等が挙げられる。また、添加的な元素は、B、C、Si、P等の半金属元素や、S、F、Cl、Br、I等の非金属元素であってもよい。このことは、上記したリチウムニッケル系複合酸化物、リチウムコバルト系複合酸化物、リチウムマンガン系複合酸化物、リチウムニッケルコバルトアルミニウム系複合酸化物、リチウム鉄ニッケルマンガン系複合酸化物等についても同様である。 In this specification, the term "lithium-nickel-cobalt-manganese-based composite oxide" refers to an oxide containing Li, Ni, Co, Mn, and O as constituent elements, and one or more of these oxides. It is a term that also includes oxides containing such elements. Examples of such additive elements include transition metal elements such as Mg, Ca, Al, Ti, V, Cr, Y, Zr, Nb, Mo, Hf, Ta, W, Na, Fe, Zn and Sn, and typical A metal element etc. are mentioned. Also, the additive elements may be metalloid elements such as B, C, Si and P, and nonmetal elements such as S, F, Cl, Br and I. The same applies to the above-described lithium-nickel-based composite oxide, lithium-cobalt-based composite oxide, lithium-manganese-based composite oxide, lithium-nickel-cobalt-aluminum-based composite oxide, lithium-iron-nickel-manganese-based composite oxide, and the like. .

本実施形態に係る正極活物質の結晶構造においては、c軸長の標準偏差σcが0.025Å≦σc≦0.045Åを満たす。このc軸長の標準偏差σcは、空間群R-3mに帰属される結晶構造を有する通常の正極活物質のc軸長の標準偏差の値よりも小さいものである。 In the crystal structure of the positive electrode active material according to this embodiment, the standard deviation σc of the c-axis length satisfies 0.025 Å≦σc≦0.045 Å. The standard deviation σc of the c-axis length is smaller than the standard deviation of the c-axis length of a normal positive electrode active material having a crystal structure belonging to the space group R-3m.

正極活物質の結晶内でのLiイオンの拡散、すなわち固相内でのLiイオンの拡散は、正極活物質の結晶構造においてLi層の中にあるLiのホッピングにより引き起こされている。c軸長は、結晶内でLiイオンが通過するトンネルの太さに関わっており、c軸長の小さい部分では、Liイオンの通過速度が落ちてしまう。そこで、c軸長のばらつきを小さくする、すなわち標準偏差σcで0.045Å以下とすることで、Liイオンが通過しやすいトンネルが形成される。しかしながら一方で、c軸長のバラつきがそろいすぎると、正極活物質が単結晶ライクになって微小欠陥からのLiイオンの三次元拡散が無くなり、抵抗が増加する。そこで、標準偏差σcで0.025Å以上とすることで、Liイオンを三次元に拡散させることができる。よって、0.025Å≦σc≦0.045Åである場合に、正極活物質の結晶内でのLiイオンの拡散性が特に高くなり、当該正極活物質を用いた二次電池を低抵抗化することができる。 The diffusion of Li ions within the crystal of the positive electrode active material, that is, the diffusion of Li ions within the solid phase, is caused by hopping of Li in the Li layer in the crystal structure of the positive electrode active material. The c-axis length is related to the thickness of the tunnel through which Li ions pass in the crystal, and the passage speed of Li ions decreases in portions where the c-axis length is small. Therefore, by reducing the variation in the c-axis length, that is, by setting the standard deviation σc to 0.045 Å or less, a tunnel through which Li ions can easily pass is formed. On the other hand, however, if the c-axis lengths are too uniform, the positive electrode active material becomes monocrystal-like and the three-dimensional diffusion of Li ions from minute defects disappears, resulting in an increase in resistance. Therefore, by setting the standard deviation σc to 0.025 Å or more, the Li ions can be three-dimensionally diffused. Therefore, when 0.025 Å ≤ σc ≤ 0.045 Å, the diffusibility of Li ions in the crystal of the positive electrode active material is particularly high, and the resistance of the secondary battery using the positive electrode active material is reduced. can be done.

本実施形態に係る正極活物質の結晶構造においては、a軸長の標準偏差σaが0.005Å≦σa≦0.02Åを満たすことが好ましい。a軸長のバラつきもLiのホッピング距離に関わるため、a軸長の標準偏差σaを0.005Å≦σa≦0.02Åの範囲内にすることで、、正極活物質の結晶内でのLiイオンの拡散性を高めることができ、当該正極活物質を用いた二次電池をより低抵抗化することができる。 In the crystal structure of the positive electrode active material according to this embodiment, the standard deviation σa of the a-axis length preferably satisfies 0.005 Å≦σa≦0.02 Å. Variation in the a-axis length is also related to the hopping distance of Li. can be enhanced, and the resistance of a secondary battery using the positive electrode active material can be further reduced.

なお、上記のc軸長の標準偏差σcおよび上記のa軸長の標準偏差σaは、例えば次のようにして求めることができる。正極活物質を原子分解能分析電子顕微鏡にて観察する。正極活物質が既に正極に含まれている場合には、FIB加工によって正極を薄片化した試料を準備し、これを当該電子顕微鏡で観察してよい。電子顕微鏡の視野中の任意の一次粒子を選択し、その粒子内で10点以上の電子回折像を測定する。取得した画像から空間群R-3mに帰属される結晶構造の正極活物質のその組成(すなわち、LiNi1/3Co1/3Mn1/3、LiNi0.80Co0.15Al0.05など)に帰属した際の格子定数を測定し、c軸長およびa軸長を求める。この作業を3個以上の一次粒子に対して行う。一次粒子内の10点以上のc軸長およびa軸長のそれぞれについて、標準偏差を求める。格子定数を測定した3個以上の各一次粒子について、c軸長の標準偏差およびa軸長の標準偏差を求め、これらの標準偏差の平均値を算出する。算出したc軸長の標準偏差の平均値を、c軸長の標準偏差σcとし、算出したa軸長の標準偏差の平均値を、a軸長の標準偏差σaとする。 The standard deviation σc of the c-axis length and the standard deviation σa of the a-axis length can be obtained, for example, as follows. The positive electrode active material is observed with an atomic resolution analysis electron microscope. When the positive electrode active material is already contained in the positive electrode, a sample obtained by slicing the positive electrode by FIB processing may be prepared and observed with the electron microscope. An arbitrary primary particle is selected in the field of view of the electron microscope, and 10 or more electron diffraction images are measured within the particle. From the acquired image, the composition of the positive electrode active material with a crystal structure assigned to the space group R-3m (that is, LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.80 Co 0.15 Al 0 .05 O 2 etc.) is measured, and the c-axis length and the a-axis length are obtained. This operation is performed for three or more primary particles. A standard deviation is obtained for each of the c-axis length and the a-axis length at 10 or more points in the primary particles. The standard deviation of the c-axis length and the standard deviation of the a-axis length are determined for each of three or more primary particles whose lattice constants are measured, and the average value of these standard deviations is calculated. Let the average value of the calculated standard deviations of the c-axis lengths be the standard deviation σc of the c-axis lengths, and let the average value of the calculated standard deviations of the a-axis lengths be the standard deviation σa of the a-axis lengths.

本実施形態に係る正極活物質は、層状岩塩型構造を有し、かつその結晶子径が950Å以上1450Å以下であることが好ましい。結晶子径も、結晶内でのLiイオンの拡散性に関係し、層状岩塩型構造において、結晶子径が950Å以上1450Å以下であることによって、正極活物質の結晶内でのLiイオンの拡散性を高めることができ、当該正極活物質を用いた二次電池をより低抵抗化することができる。 The positive electrode active material according to the present embodiment preferably has a layered rock salt structure and a crystallite diameter of 950 Å or more and 1450 Å or less. The crystallite diameter is also related to the diffusivity of Li ions within the crystal. can be increased, and the resistance of the secondary battery using the positive electrode active material can be further reduced.

なお、上記の結晶子径は、例えば、正極活物質の粉体に対して、公知のX線回折(XRD)装置を用いて測定することにより求めることができる。具体的に例えば、(003)面の半価幅(半値幅)と2θ値とシェラー(Scherrer)の式を用いて、結晶子径を求めることができる。なお、正極活物質が既に正極に含まれている場合には、公知方法に従って正極活物質のみを単離し、これを測定試料としてよい。 The above crystallite size can be determined, for example, by measuring the positive electrode active material powder using a known X-ray diffraction (XRD) apparatus. Specifically, for example, the crystallite diameter can be determined using the half-value width (half-value width) of the (003) plane, the 2θ value, and the Scherrer formula. In addition, when the positive electrode active material is already contained in the positive electrode, only the positive electrode active material may be isolated according to a known method and used as a measurement sample.

正極活物質は、一次粒子から構成されていてもよく、一次粒子が凝集した二次粒子から構成されていてもよい。正極活物質の平均粒子径(D50)は、特に制限はないが、例えば、0.05μm以上であり、好ましくは1.0μm以上である。一方、正極活物質の平均粒子径(D50)は、例えば、20μm以下であり、好ましくは15μm以下である。なお、正極活物質の平均粒子径(D50)は、例えば、レーザー回折散乱法により求めることができる。正極活物質が二次粒子の形態にある場合には、この平均粒子径は、二次粒子の平均粒子径である。 The positive electrode active material may be composed of primary particles, or may be composed of secondary particles in which primary particles are agglomerated. The average particle size (D50) of the positive electrode active material is not particularly limited, but is, for example, 0.05 μm or more, preferably 1.0 μm or more. On the other hand, the average particle size (D50) of the positive electrode active material is, for example, 20 μm or less, preferably 15 μm or less. Note that the average particle size (D50) of the positive electrode active material can be obtained by, for example, a laser diffraction scattering method. When the positive electrode active material is in the form of secondary particles, this average particle size is the average particle size of the secondary particles.

正極活物質、特にリチウム複合酸化物は、通常、前駆体としてリチウム以外の金属元素を含有する水酸化物粒子を晶析法によって作製し、これをリチウム化合物と混合して焼成することにより製造される。この前駆体は、通常、乾燥のために加熱される。ここで、前駆体の乾燥条件および焼成後の降温条件を変化させることによって、c軸長のばらつき(すなわち、標準偏差σc)を調整することができる。具体的には、前駆体を乾燥のために加熱処理すると、脱水によって金属層(特に遷移金属層)に歪みが生じ、c軸長のばらつき(すなわち、標準偏差σc)が大きくなる。そこで、前駆体の乾燥を真空乾燥等によって加熱することなく行うことにより、c軸長のばらつき(すなわち、標準偏差σc)を小さくすることができる。さらに、焼成後の昇温速度が大きいと、内部欠陥が生じてc軸長のばらつき(すなわち、標準偏差σc)が大きくなる傾向にある。そこで、焼成後の降温を長時間かけることにより(すなわち、降温速度を小さくすることにより)、c軸長のばらつき(すなわち、標準偏差σc)を小さくすることができる。 A positive electrode active material, especially a lithium composite oxide, is usually produced by preparing hydroxide particles containing a metal element other than lithium as a precursor by a crystallization method, mixing this with a lithium compound, and sintering it. be. This precursor is usually heated for drying. Here, the variation in the c-axis length (that is, the standard deviation σc) can be adjusted by changing the conditions for drying the precursor and the conditions for lowering the temperature after firing. Specifically, when the precursor is heat-treated for drying, the dehydration causes strain in the metal layer (particularly the transition metal layer), increasing the c-axis length variation (ie, the standard deviation σc). Therefore, by drying the precursor by vacuum drying or the like without heating, the variation in the c-axis length (that is, the standard deviation σc) can be reduced. Furthermore, when the heating rate after firing is high, internal defects tend to occur and the variation in the c-axis length (that is, the standard deviation σc) tends to increase. Therefore, the variation in the c-axis length (ie, the standard deviation σc) can be reduced by increasing the temperature drop after firing for a long time (ie, by decreasing the rate of temperature drop).

また、a軸長のばらつき(すなわち、標準偏差σa)は、焼成を2段階で行い、2段階目の焼成の温度を変化させることによって調整することができる。具体的には、2段階目の焼成の温度を小さくすることにより、核成長を停止させて欠陥排除を選択的に行うことができ、a軸長のばらつき(すなわち、標準偏差σa)を小さくすることができる。例えば、1段階目の焼成を800~950℃で行い、2段階目の焼成をそこから約100℃低い温度で行うことにより、a軸長のばらつき(すなわち、標準偏差σa)を十分に小さくすることができる。 Also, the variation in the a-axis length (that is, the standard deviation σa) can be adjusted by performing two stages of firing and changing the temperature of the second stage of firing. Specifically, by lowering the temperature of the second-stage firing, it is possible to selectively eliminate defects by stopping the growth of nuclei, thereby reducing the variation in the a-axis length (that is, the standard deviation σa). be able to. For example, the first-stage firing is performed at 800 to 950° C., and the second-stage firing is performed at a temperature about 100° C. lower than that to sufficiently reduce the variation in the a-axis length (that is, the standard deviation σa). be able to.

また、結晶子径は、焼成温度を変化させることによって、調整することができる。このとき、焼成温度が高い方が、結晶子径が大きくなる傾向がある。 Also, the crystallite size can be adjusted by changing the firing temperature. At this time, the higher the firing temperature, the larger the crystallite size tends to be.

本実施形態に係る正極活物質を用いてリチウムイオン二次電池を構築した場合には、当該リチウムイオン二次電池は、抵抗が小さいものとなり、よって、出力特性に優れたものとなる。したがって、本実施形態に係る正極活物質は、好適には、リチウムイオン二次電池の正極活物質である。 When a lithium-ion secondary battery is constructed using the positive electrode active material according to the present embodiment, the lithium-ion secondary battery has a low resistance and, therefore, excellent output characteristics. Therefore, the positive electrode active material according to this embodiment is preferably a positive electrode active material for a lithium ion secondary battery.

したがって、別の側面から、ここに開示されるリチウムイオン二次電池は、正極と、負極と、を備える。当該正極は、上記説明した本実施形態に係る正極活物質を含む。以下、当該リチウムイオン二次電池の具体的な構成例を、図面を参照しながら説明する。 Accordingly, from another aspect, the lithium ion secondary battery disclosed herein includes a positive electrode and a negative electrode. The positive electrode includes the positive electrode active material according to the present embodiment described above. A specific configuration example of the lithium ion secondary battery will be described below with reference to the drawings.

図1に示すリチウムイオン二次電池100は、扁平形状の捲回電極体20と非水電解質(図示せず)とが扁平な角形の電池ケース(即ち外装容器)30に収容されることにより構築される密閉型電池である。電池ケース30には、外部接続用の正極端子42および負極端子44と、電池ケース30の内圧が所定レベル以上に上昇した場合に該内圧を開放するように設定された薄肉の安全弁36とが設けられている。正負極端子42,44はそれぞれ正負極集電板42a,44aと電気的に接続されている。電池ケース30の材質には、例えば、アルミニウム等の軽量で熱伝導性の良い金属材料が用いられる。 The lithium ion secondary battery 100 shown in FIG. 1 is constructed by housing a flat wound electrode body 20 and a non-aqueous electrolyte (not shown) in a flat rectangular battery case (that is, an outer container) 30. It is a sealed battery that is The battery case 30 is provided with a positive terminal 42 and a negative terminal 44 for external connection, and a thin safety valve 36 that is set to release the internal pressure of the battery case 30 when it rises above a predetermined level. It is The positive and negative terminals 42 and 44 are electrically connected to the positive and negative current collecting plates 42a and 44a, respectively. As the material of the battery case 30, for example, a metal material such as aluminum that is lightweight and has good thermal conductivity is used.

捲回電極体20は、図1および図2に示すように、正極シート50と、負極シート60とが、2枚の長尺状のセパレータシート70を介して重ね合わされて長手方向に捲回された形態を有する。正極シート50は、長尺状の正極集電体52の片面または両面(ここでは両面)に長手方向に沿って正極活物質層54が形成された構成を有する。負極シート60は、長尺状の負極集電体62の片面または両面(ここでは両面)に長手方向に沿って負極活物質層64が形成されている構成を有する。正極活物質層非形成部分52a(すなわち、正極活物質層54が形成されずに正極集電体52が露出した部分)および負極活物質層非形成部分62a(すなわち、負極活物質層64が形成されずに負極集電体62が露出した部分)は、捲回電極体20の捲回軸方向(すなわち、上記長手方向に直交するシート幅方向)の両端から外方にはみ出すように形成されている。正極活物質層非形成部分52aおよび負極活物質層非形成部分62aには、それぞれ正極集電板42aおよび負極集電板44aが接合されている。 As shown in FIGS. 1 and 2, the wound electrode body 20 is formed by stacking a positive electrode sheet 50 and a negative electrode sheet 60 with two long separator sheets 70 interposed therebetween and winding them in the longitudinal direction. morphology. The positive electrode sheet 50 has a configuration in which a positive electrode active material layer 54 is formed along the longitudinal direction on one side or both sides (here, both sides) of a long positive electrode current collector 52 . The negative electrode sheet 60 has a configuration in which a negative electrode active material layer 64 is formed along the longitudinal direction on one side or both sides (here, both sides) of a long negative electrode current collector 62 . The positive electrode active material layer non-formed portion 52a (that is, the portion where the positive electrode current collector 52 is exposed without the positive electrode active material layer 54 being formed) and the negative electrode active material layer non-formed portion 62a (that is, the negative electrode active material layer 64 is formed). The portion where the negative electrode current collector 62 is exposed without being wound) is formed so as to protrude outward from both ends of the wound electrode body 20 in the winding axial direction (that is, the sheet width direction orthogonal to the longitudinal direction). there is A positive collector plate 42a and a negative collector plate 44a are joined to the positive electrode active material layer non-formed portion 52a and the negative electrode active material layer non-formed portion 62a, respectively.

正極シート50を構成する正極集電体52としては、例えばアルミニウム箔等が挙げられる。正極活物質層54は、少なくとも上述の本実施形態に係る正極活物質を含む。また正極活物質層54は、導電材、バインダ等をさらに含み得る。導電材としては、例えばアセチレンブラック(AB)等のカーボンブラックやその他(グラファイト等)の炭素材料を好適に使用し得る。バインダとしては、例えばポリフッ化ビニリデン(PVDF)等を使用し得る。 Examples of the positive electrode current collector 52 forming the positive electrode sheet 50 include aluminum foil. The positive electrode active material layer 54 contains at least the positive electrode active material according to the present embodiment described above. Also, the positive electrode active material layer 54 may further include a conductive material, a binder, and the like. As the conductive material, for example, carbon black such as acetylene black (AB) and other carbon materials (such as graphite) can be suitably used. As the binder, for example, polyvinylidene fluoride (PVDF) or the like can be used.

負極シート60を構成する負極集電体62としては、例えば銅箔等が挙げられる。負極活物質層64は、負極活物質を含む。負極活物質としては、例えば黒鉛、ハードカーボン、ソフトカーボン等の炭素材料を使用し得る。負極活物質層64は、バインダ、増粘剤等をさらに含み得る。バインダとしては、例えばスチレンブタジエンラバー(SBR)等を使用し得る。増粘剤としては、例えばカルボキシメチルセルロース(CMC)等を使用し得る。 Examples of the negative electrode current collector 62 forming the negative electrode sheet 60 include copper foil. The negative electrode active material layer 64 contains a negative electrode active material. Carbon materials such as graphite, hard carbon, and soft carbon can be used as the negative electrode active material. The negative electrode active material layer 64 may further contain binders, thickeners, and the like. As the binder, for example, styrene-butadiene rubber (SBR) or the like can be used. As a thickening agent, for example, carboxymethyl cellulose (CMC) or the like can be used.

セパレータ70としては、従来からリチウムイオン二次電池に用いられるものと同様の各種多孔質シートを用いることができ、その例としては、ポリエチレン(PE)、ポリプロピレン(PP)等の樹脂から成る多孔質樹脂シートが挙げられる。かかる多孔質樹脂シートは、単層構造であってもよく、二層以上の複層構造(例えば、PE層の両面にPP層が積層された三層構造)であってもよい。セパレータ70は、耐熱層(HRL)を備えていてもよい。 As the separator 70, various porous sheets similar to those conventionally used in lithium ion secondary batteries can be used. A resin sheet is mentioned. Such a porous resin sheet may have a single-layer structure or a multi-layer structure of two or more layers (for example, a three-layer structure in which PP layers are laminated on both sides of a PE layer). The separator 70 may comprise a heat resistant layer (HRL).

非水電解質は従来のリチウムイオン二次電池と同様のものを使用可能であり、典型的には有機溶媒(非水溶媒)中に、支持塩を含有させたものを用いることができる。非水溶媒としては、カーボネート類、エステル類、エーテル類等の非プロトン性溶媒を用いることができる。なかでも、正極材料による低温抵抗の低減効果が特に高くなることから、カーボネート類が好ましい。カーボネート類の例としては、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、モノフルオロエチレンカーボネート(MFEC)、ジフルオロエチレンカーボネート(DFEC)、モノフルオロメチルジフルオロメチルカーボネート(F-DMC)、トリフルオロジメチルカーボネート(TFDMC)等が挙げられる。このような非水溶媒は、1種を単独で、あるいは2種以上を適宜組み合わせて用いることができる。支持塩としては、例えば、LiPF、LiBF、リチウムビス(フルオロスルホニル)イミド(LiFSI)等のリチウム塩を好適に用いることができる。支持塩の濃度は、0.7mol/L以上1.3mol/L以下が好ましい。 The same non-aqueous electrolyte as used in conventional lithium ion secondary batteries can be used, and typically an organic solvent (non-aqueous solvent) containing a supporting electrolyte can be used. Aprotic solvents such as carbonates, esters and ethers can be used as the non-aqueous solvent. Among them, carbonates are preferable because the effect of reducing the low-temperature resistance by the positive electrode material is particularly high. Examples of carbonates include ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), monofluoroethylene carbonate (MFEC), difluoroethylene carbonate (DFEC), monofluoromethyl difluoromethyl carbonate (F-DMC), trifluorodimethyl carbonate (TFDMC) and the like. Such non-aqueous solvents can be used singly or in combination of two or more. Lithium salts such as LiPF 6 , LiBF 4 and lithium bis(fluorosulfonyl)imide (LiFSI) can be suitably used as supporting salts. The concentration of the supporting salt is preferably 0.7 mol/L or more and 1.3 mol/L or less.

なお、上記非水電解質は、本発明の効果を著しく損なわない限りにおいて、上述した非水溶媒および支持塩以外の成分、例えば、ガス発生剤、被膜形成剤、分散剤、増粘剤等の各種添加剤を含み得る。 In addition, the non-aqueous electrolyte includes various components other than the non-aqueous solvent and the supporting salt, such as gas generating agents, film-forming agents, dispersing agents, and thickening agents, as long as the effects of the present invention are not significantly impaired. It may contain additives.

リチウムイオン二次電池100は、初期抵抗が小さく、出力特性に優れるという利点を有する。 The lithium ion secondary battery 100 has advantages of low initial resistance and excellent output characteristics.

リチウムイオン二次電池100は、各種用途に利用可能である。好適な用途としては、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両に搭載される駆動用電源が挙げられる。また、リチウムイオン二次電池100は、小型電力貯蔵装置等の蓄電池として使用することができる。リチウムイオン二次電池100は、典型的には複数個を直列および/または並列に接続してなる組電池の形態でも使用され得る。 The lithium ion secondary battery 100 can be used for various purposes. Suitable applications include drive power supplies mounted in vehicles such as electric vehicles (EV), hybrid vehicles (HV), and plug-in hybrid vehicles (PHV). Moreover, the lithium ion secondary battery 100 can be used as a storage battery such as a small power storage device. The lithium ion secondary battery 100 can also be used typically in the form of an assembled battery in which a plurality of batteries are connected in series and/or in parallel.

以上、例として扁平形状の捲回電極体を備える角型のリチウムイオン二次電池について説明した。しかしながら、本実施形態に係る正極活物質は、公知方法に従い、他の種類のリチウムイオン二次電池にも使用可能である。例えば、本実施形態に係る正極活物質を用いて、積層型電極体(すなわち、複数の正極と、複数の負極とが交互に積層された電極体)を備えるリチウムイオン二次電池を構築することもできる。また、本実施形態に係る正極活物質を用いて、円筒型リチウムイオン二次電池、コイン型リチウムイオン二次電池、ラミネート型リチウムイオン二次電池等を構築することもできる。さらに、電解質を固体電解質とした全固体二次電池を構築することもできる。 The prismatic lithium ion secondary battery including the flattened wound electrode assembly has been described above as an example. However, the positive electrode active material according to this embodiment can also be used for other types of lithium ion secondary batteries according to known methods. For example, using the positive electrode active material according to the present embodiment, constructing a lithium ion secondary battery including a laminated electrode body (that is, an electrode body in which a plurality of positive electrodes and a plurality of negative electrodes are alternately laminated) can also Moreover, a cylindrical lithium ion secondary battery, a coin type lithium ion secondary battery, a laminate type lithium ion secondary battery, or the like can be constructed using the positive electrode active material according to the present embodiment. Furthermore, it is also possible to construct an all-solid secondary battery in which the electrolyte is a solid electrolyte.

以下、本発明に関する実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。 EXAMPLES Examples relating to the present invention will be described below, but the present invention is not intended to be limited to those shown in the examples.

<正極活物質の作製>
〔実施例1~9および比較例1,2〕
硫酸ニッケル、硫酸コバルト、および硫酸マンガンを原料に用いて常法に従い、晶析法によって、ニッケルとコバルトとマンガンとを1:1:1のモル比で含有する複合水酸化物を前駆体として得た。この複合水酸化物と、炭酸リチウムとを、ニッケル、コバルトおよびマンガンの合計に対するリチウムのモル比が1:1となるように乳鉢で混合した。混合物をアルミナ製のるつぼに移し、マッフル炉内で焼成した。このようにして、正極活物質粒子である層状岩塩型結晶構造のリチウム複合酸化物(LiNi1/3Co1/3Mn1/3)粒子を得た。ここで、前駆体の乾燥温度を室温~400℃の範囲で変化させ、また焼成後の降温にかける時間を2時間~12時間の範囲で変化させることにより、c軸長の標準偏差を変化させた。また、焼成を2段階で行い、2段階目の焼成温度を変化させることで、a軸長の標準偏差を変化させた。さらに、1段階目の焼成温度を800℃~950℃の範囲で変化させることにより、結晶子径を変化させた。
<Preparation of positive electrode active material>
[Examples 1 to 9 and Comparative Examples 1 and 2]
Using nickel sulfate, cobalt sulfate, and manganese sulfate as raw materials, a composite hydroxide containing nickel, cobalt, and manganese in a molar ratio of 1:1:1 is obtained as a precursor by crystallization according to a conventional method. rice field. This composite hydroxide and lithium carbonate were mixed in a mortar so that the molar ratio of lithium to the sum of nickel, cobalt and manganese was 1:1. The mixture was transferred to an alumina crucible and fired in a muffle furnace. In this way, lithium composite oxide (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) particles with a layered rock salt type crystal structure, which are positive electrode active material particles, were obtained. Here, the standard deviation of the c-axis length was changed by changing the drying temperature of the precursor in the range of room temperature to 400° C. and changing the time for cooling after firing in the range of 2 hours to 12 hours. rice field. Moreover, the standard deviation of the a-axis length was changed by performing firing in two steps and changing the firing temperature in the second step. Furthermore, the crystallite size was changed by changing the firing temperature in the first stage within the range of 800°C to 950°C.

〔実施例10および比較例3〕
硫酸ニッケル、硫酸コバルト、および硫酸アルミニウムを原料に用いて常法に従い、晶析法によって、ニッケルとコバルトとアルミニウムとを80:15:5のモル比で含有する複合水酸化物を前駆体として得た。この複合水酸化物と、水酸化リチウムとを、ニッケル、コバルトおよびアルミニウムの合計に対するリチウムのモル比が1:1となるように乳鉢で混合した。混合物をアルミナ製のるつぼに移し、マッフル炉内で焼成した。このようにして、正極活物質粒子である層状構造のリチウム複合酸化物(LiNi0.80Co0.15Al0.05)粒子を得た。ここで、実施例10では複合水酸化物を室温で乾燥し、比較例3では複合水酸化物を加熱して乾燥し、さらに、焼成後の降温にかける時間を実施例10では長くして、c軸長の標準偏差を変化させた。
[Example 10 and Comparative Example 3]
Using nickel sulfate, cobalt sulfate, and aluminum sulfate as raw materials, a composite hydroxide containing nickel, cobalt, and aluminum in a molar ratio of 80:15:5 is obtained as a precursor by crystallization according to a conventional method. rice field. This composite hydroxide and lithium hydroxide were mixed in a mortar so that the molar ratio of lithium to the sum of nickel, cobalt and aluminum was 1:1. The mixture was transferred to an alumina crucible and fired in a muffle furnace. In this manner, layered structure lithium composite oxide (LiNi 0.80 Co 0.15 Al 0.05 O 2 ) particles, which are positive electrode active material particles, were obtained. Here, in Example 10, the composite hydroxide was dried at room temperature, and in Comparative Example 3, the composite hydroxide was heated and dried. The standard deviation of the c-axis length was varied.

<正極活物質のc軸長の標準偏差、a軸長の標準偏差の測定>
上記作製した各実施例および各比較例の正極活物質を、原子分解能分析電子顕微鏡「JEM-ARM300F」(JEOL社製)を用いて観察した。電子顕微鏡の視野中の任意の一次粒子を選択し、その粒子内で10点以上の電子回折像を測定した。取得した画像から、実施例1~9および比較例1,2では、LiNi1/3Co1/3Mn1/3に帰属した際の格子定数を測定し、c軸長およびa軸長を求めた。実施例10および比較例3では、LiNi0.80Co0.15Al0.05に帰属した際の格子定数を測定し、c軸長およびa軸長を求めた。この作業を3個以上の一次粒子に対して行い、一次粒子内の10点以上のc軸長およびa軸長のそれぞれについて、標準偏差を求めた。格子定数を測定した3個以上の各一次粒子について、c軸長の標準偏差およびa軸長の標準偏差を求め、これらの標準偏差の平均値を算出し、それらの平均値をそれぞれ、c軸長の標準偏差σcおよびa軸長の標準偏差σaとした。なお、解析には。解析ソフトウェア「INDEX」(Nanomegas社製)を用いた。結果を表1に示す。
<Measurement of standard deviation of c-axis length and standard deviation of a-axis length of positive electrode active material>
The positive electrode active material of each example and each comparative example prepared above was observed using an atomic resolution analysis electron microscope "JEM-ARM300F" (manufactured by JEOL). An arbitrary primary particle was selected in the field of view of the electron microscope, and electron diffraction images at 10 or more points within the particle were measured. From the acquired images, in Examples 1 to 9 and Comparative Examples 1 and 2, the lattice constant when assigned to LiNi 1/3 Co 1/3 Mn 1/3 O 2 was measured, and the c-axis length and a-axis length were measured. asked for In Example 10 and Comparative Example 3, the lattice constant when assigned to LiNi 0.80 Co 0.15 Al 0.05 O 2 was measured to obtain the c-axis length and the a-axis length. This operation was performed for 3 or more primary particles, and the standard deviation was determined for each of the c-axis length and the a-axis length at 10 or more points within the primary particles. The standard deviation of the c-axis length and the standard deviation of the a-axis length are obtained for each of three or more primary particles whose lattice constants are measured, the average value of these standard deviations is calculated, and the average value is The standard deviation σc of the length and the standard deviation σa of the a-axis length were used. In addition, for analysis. Analysis software "INDEX" (manufactured by Nanomegas) was used. Table 1 shows the results.

<結晶子径の測定>
上記作製した各実施例および各比較例の正極活物質を、XRD装置「smart Lab」(Rigaku社製)および解析ソフトウェア「PDXL2」(Rigaku社製)を用いて分析し、(003)面の半価幅と2θ値とシェラーの式を用いて、結晶子径を求めた。結果を表1に示す。
<Measurement of crystallite size>
The positive electrode active material of each example and each comparative example prepared above was analyzed using an XRD device "smart Lab" (manufactured by Rigaku) and analysis software "PDXL2" (manufactured by Rigaku). The crystallite size was determined using the value width, 2θ value, and Scherrer's formula. Table 1 shows the results.

<評価用リチウムイオン二次電池の作製>
上記作製した各実施例および各比較例の正極活物質と、導電材としてのアセチレンブラック(AB)と、バインダとしてのポリフッ化ビニリデン(PVDF)とを、正極活物質:AB:PVDF=85:10:5の質量比でN-メチルピロリドン(NMP)中で混合し、正極活物質層形成用ペーストを調製した。このペーストを、厚さ15μmのアルミニウム箔上に塗布し乾燥することにより正極シートを作製した。
<Production of lithium-ion secondary battery for evaluation>
The positive electrode active material of each example and each comparative example prepared above, acetylene black (AB) as a conductive material, and polyvinylidene fluoride (PVDF) as a binder were combined into a positive electrode active material: AB:PVDF=85:10. : 5 in N-methylpyrrolidone (NMP) to prepare a paste for forming a positive electrode active material layer. A positive electrode sheet was produced by applying this paste onto an aluminum foil having a thickness of 15 μm and drying it.

負極活物質としての天然黒鉛(C)と、バインダとしてのスチレンブタジエンラバー(SBR)と、増粘剤としてのカルボキシメチルセルロース(CMC)とを、C:SBR:CMC=98:1:1の質量比でイオン交換水中で混合して、負極活物質層形成用ペーストを調製した。このペーストを、厚さ10μmの銅箔上に塗布し、乾燥することにより負極シートを作製した。 Natural graphite (C) as a negative electrode active material, styrene-butadiene rubber (SBR) as a binder, and carboxymethyl cellulose (CMC) as a thickener were mixed at a mass ratio of C: SBR: CMC = 98: 1: 1. were mixed in ion-exchanged water to prepare a paste for forming a negative electrode active material layer. This paste was applied onto a copper foil having a thickness of 10 μm and dried to prepare a negative electrode sheet.

また、セパレータシートとして、PP/PE/PPの三層構造を有する厚さ20μmの多孔性ポリオレフィンシートを用意した。 As a separator sheet, a 20 μm thick porous polyolefin sheet having a three-layer structure of PP/PE/PP was prepared.

上記の正極シートと、負極シートと、セパレータシートとを重ね合わせ、電極端子を取り付けてラミネートケースに収容した。続いて、ラミネートケース内に非水電解液を注入し、ラミネートケースを気密に封止した。なお、非水電解液には、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)とを3:4:3の体積比で含む混合溶媒に、支持塩としてのLiPFを1.0mol/Lの濃度で溶解させたものを用いた。以上のようにして、容量10mAhの各実施例および各比較例の評価用リチウムイオン二次電池を得た。 The positive electrode sheet, the negative electrode sheet, and the separator sheet were superimposed, electrode terminals were attached, and the stack was housed in a laminate case. Subsequently, a non-aqueous electrolyte was injected into the laminate case, and the laminate case was hermetically sealed. The non-aqueous electrolyte contains a mixed solvent containing ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in a volume ratio of 3:4:3, and LiPF 6 as a supporting electrolyte. A solution dissolved at a concentration of 1.0 mol/L was used. As described above, lithium ion secondary batteries for evaluation of each example and each comparative example having a capacity of 10 mAh were obtained.

<初期抵抗測定>
各評価用リチウムイオン二次電池を、SOC(State of charge)50%に調整した後、25℃の環境下に置いた。100mAの電流値で10秒間の放電を行い、放電開始から10秒後の電圧値を測定し、初期の電池抵抗を算出した。実施例1~9および比較例1,2については、比較例1の評価用リチウムイオン二次電池の抵抗を100とした場合の、他の評価用リチウムイオン二次電池の抵抗の比を求めた。実施例10および比較例3については、比較例3の評価用リチウムイオン二次電池の抵抗を100とした場合の、実施例10の評価用リチウムイオン二次電池の抵抗の比を求めた。結果を表1に示す。
<Initial resistance measurement>
Each lithium-ion secondary battery for evaluation was adjusted to an SOC (State of charge) of 50%, and then placed in an environment of 25°C. The battery was discharged at a current value of 100 mA for 10 seconds, the voltage value was measured 10 seconds after the start of discharge, and the initial battery resistance was calculated. For Examples 1 to 9 and Comparative Examples 1 and 2, the ratio of the resistance of the other lithium ion secondary batteries for evaluation was determined when the resistance of the lithium ion secondary battery for evaluation of Comparative Example 1 was set to 100. . For Example 10 and Comparative Example 3, the ratio of the resistance of the lithium ion secondary battery for evaluation of Example 10 to the resistance of the lithium ion secondary battery for evaluation of Comparative Example 3 as 100 was obtained. Table 1 shows the results.

Figure 0007214690000001
Figure 0007214690000001

LiNi1/3Co1/3Mn1/3およびLiNi0.80Co0.15Al0.05は、その結晶構造が空間群R-3mに帰属される正極活物質である。表1の結果より、結晶構造が空間群R-3mに帰属される正極活物質において、そのc軸長の標準偏差σcが0.025Å≦σc≦0.045Åを満たす場合に、リチウムイオン二次電池の抵抗が有意に小さくなっていることがわかる。したがって、ここに開示される正極活物質によれば、リチウムイオン二次電池の抵抗を小さくすることができることがわかる。 LiNi 1/3 Co 1/3 Mn 1/3 O 2 and LiNi 0.80 Co 0.15 Al 0.05 O 2 are cathode active materials whose crystal structures belong to space group R-3m. From the results of Table 1, in the positive electrode active material whose crystal structure belongs to the space group R-3m, when the standard deviation σc of the c-axis length satisfies 0.025 Å ≤ σc ≤ 0.045 Å, lithium ion secondary It can be seen that the resistance of the battery is significantly reduced. Therefore, according to the positive electrode active material disclosed here, it turns out that the resistance of a lithium ion secondary battery can be made small.

また、実施例1および実施例3~5の比較より、a軸長の標準偏差σaが0.005Å≦σa≦0.02Åを満たす場合に、リチウムイオン二次電池の抵抗が特に小さくなっていることがわかる。さらに、実施例5~9の比較より、結晶子径が950Å以上1450Å以下である場合に、リチウムイオン二次電池の抵抗が特に小さくなっていることがわかる。 Further, from a comparison of Example 1 and Examples 3 to 5, the resistance of the lithium ion secondary battery is particularly small when the standard deviation σa of the a-axis length satisfies 0.005 Å≦σa≦0.02 Å. I understand. Furthermore, from a comparison of Examples 5 to 9, it can be seen that the resistance of the lithium ion secondary battery is particularly small when the crystallite diameter is 950 Å or more and 1450 Å or less.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Although specific examples of the present invention have been described in detail above, these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

20 捲回電極体
30 電池ケース
36 安全弁
42 正極端子
42a 正極集電板
44 負極端子
44a 負極集電板
50 正極シート(正極)
52 正極集電体
52a 正極活物質層非形成部分
54 正極活物質層
60 負極シート(負極)
62 負極集電体
62a 負極活物質層非形成部分
64 負極活物質層
70 セパレータシート(セパレータ)
100 リチウムイオン二次電池
20 Wound electrode assembly 30 Battery case 36 Safety valve 42 Positive electrode terminal 42a Positive electrode current collector 44 Negative electrode terminal 44a Negative electrode current collector 50 Positive electrode sheet (positive electrode)
52 positive electrode current collector 52a positive electrode active material layer non-formed portion 54 positive electrode active material layer 60 negative electrode sheet (negative electrode)
62 Negative electrode current collector 62a Negative electrode active material layer non-formation portion 64 Negative electrode active material layer 70 Separator sheet (separator)
100 Lithium ion secondary battery

Claims (3)

結晶構造が空間群R-3mに帰属される正極活物質であって、
c軸長の標準偏差σcが0.025Å≦σc≦0.045Åを満たし、
a軸長の標準偏差σaが、0.005Å≦σa≦0.02Åを満たし、
層状岩塩型構造を有し、
X線回折測定によって得られる(003)面の半値幅からシェラーの式を用いて求まる結晶子径が950Å以上1450Å以下である、
正極活物質。
A positive electrode active material whose crystal structure belongs to the space group R-3m,
The standard deviation σc of the c-axis length satisfies 0.025 Å ≤ σc ≤ 0.045 Å,
The standard deviation σa of the a-axis length satisfies 0.005 Å ≤ σa ≤ 0.02 Å,
It has a layered rock salt structure,
The crystallite diameter obtained by using the Scherrer formula from the half-value width of the (003) plane obtained by X-ray diffraction measurement is 950 Å or more and 1450 Å or less.
Positive electrode active material.
前記正極活物質が、LiNi 1/3 Co 1/3 Mn 1/3 で表される組成のリチウム複合酸化物である、請求項1に記載の正極活物質。 The positive electrode active material according to claim 1, wherein the positive electrode active material is a lithium composite oxide having a composition represented by LiNi1 / 3Co1/ 3Mn1 / 3O2 . 正極と、負極と、を含み、
前記正極が、請求項1または2に記載の正極活物質を含む、
リチウムイオン二次電池。
including a positive electrode and a negative electrode,
The positive electrode comprises the positive electrode active material according to claim 1 or 2 ,
Lithium-ion secondary battery.
JP2020145148A 2020-08-31 2020-08-31 Positive electrode active material and lithium ion secondary battery Active JP7214690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020145148A JP7214690B2 (en) 2020-08-31 2020-08-31 Positive electrode active material and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020145148A JP7214690B2 (en) 2020-08-31 2020-08-31 Positive electrode active material and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2022040431A JP2022040431A (en) 2022-03-11
JP7214690B2 true JP7214690B2 (en) 2023-01-30

Family

ID=80499288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020145148A Active JP7214690B2 (en) 2020-08-31 2020-08-31 Positive electrode active material and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP7214690B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003203633A (en) 2001-10-25 2003-07-18 Matsushita Electric Ind Co Ltd Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP2014130781A (en) 2012-12-28 2014-07-10 Jgc Catalysts & Chemicals Ltd Producing device and producing method for lithium composite oxide, lithium composite oxide obtained by producing method, secondary battery positive electrode active material including the same, secondary battery positive electrode including the same, and lithium ion secondary battery using the same as positive electrode
JP2015026454A (en) 2013-07-24 2015-02-05 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, manufacturing method thereof, and nonaqueous electrolyte secondary battery
JP2016026981A (en) 2014-06-27 2016-02-18 旭硝子株式会社 Lithium-containing composite oxide and production method of the same
JP2018060759A (en) 2016-10-07 2018-04-12 住友金属鉱山株式会社 Method for manufacturing nickel cobalt manganese-containing composite hydroxide, positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery arranged by use of positive electrode active material hereof
JP2020031058A (en) 2018-08-22 2020-02-27 三星エスディアイ株式会社Samsung SDI Co., Ltd. Cathode active material, manufacturing method of the same, and cathode containing them and lithium secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003203633A (en) 2001-10-25 2003-07-18 Matsushita Electric Ind Co Ltd Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP2014130781A (en) 2012-12-28 2014-07-10 Jgc Catalysts & Chemicals Ltd Producing device and producing method for lithium composite oxide, lithium composite oxide obtained by producing method, secondary battery positive electrode active material including the same, secondary battery positive electrode including the same, and lithium ion secondary battery using the same as positive electrode
JP2015026454A (en) 2013-07-24 2015-02-05 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, manufacturing method thereof, and nonaqueous electrolyte secondary battery
JP2016026981A (en) 2014-06-27 2016-02-18 旭硝子株式会社 Lithium-containing composite oxide and production method of the same
JP2018060759A (en) 2016-10-07 2018-04-12 住友金属鉱山株式会社 Method for manufacturing nickel cobalt manganese-containing composite hydroxide, positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery arranged by use of positive electrode active material hereof
JP2020031058A (en) 2018-08-22 2020-02-27 三星エスディアイ株式会社Samsung SDI Co., Ltd. Cathode active material, manufacturing method of the same, and cathode containing them and lithium secondary battery

Also Published As

Publication number Publication date
JP2022040431A (en) 2022-03-11

Similar Documents

Publication Publication Date Title
JP7157252B2 (en) Positive electrode additive for lithium secondary battery, manufacturing method thereof, positive electrode for lithium secondary battery containing same, and lithium secondary battery containing same
US20200058938A1 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using said positive electrode active material
JP7211900B2 (en) Positive electrode material for secondary battery, and secondary battery using the same
JP7482945B2 (en) Lithium composite oxide and lithium secondary battery containing the same
JP7152360B2 (en) Positive electrode of secondary battery, and secondary battery using the same
JP7201539B2 (en) Positive electrode material for lithium secondary battery, and lithium secondary battery using the same
JP2022122997A (en) Positive electrode active material and lithium secondary battery including the same
JP7111638B2 (en) Cathode material for lithium secondary batteries
CN109802101B (en) Positive electrode material for lithium secondary battery
CN110544764A (en) Positive electrode material
JP7208274B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery using the positive electrode active material
JP7214690B2 (en) Positive electrode active material and lithium ion secondary battery
JP7135040B2 (en) Positive electrode active material, manufacturing method thereof, and lithium ion secondary battery
JP7225288B2 (en) Positive electrode active material and lithium ion secondary battery
CN115084432B (en) Positive electrode and nonaqueous electrolyte secondary battery provided with same
JP7503536B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery using the same
JP7507257B2 (en) Positive electrode active material and lithium secondary battery including the same
JP7191070B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and its use
JP7275092B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery comprising said positive electrode active material
JP7191071B2 (en) Positive electrode active material and secondary battery comprising the positive electrode active material
JP7191072B2 (en) Positive electrode active material and secondary battery comprising the positive electrode active material
JP7275180B2 (en) Positive electrode active material and lithium ion secondary battery comprising the positive electrode active material
JP5926746B2 (en) Oxide and method for producing the same
JP2023091567A (en) Positive electrode active material and nonaqueous electrolyte secondary battery using the same
JP2024091863A (en) Positive electrode active material, positive electrode, and lithium secondary battery including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230118

R150 Certificate of patent or registration of utility model

Ref document number: 7214690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150