JP7213659B2 - Recovery method of PGM - Google Patents

Recovery method of PGM Download PDF

Info

Publication number
JP7213659B2
JP7213659B2 JP2018209761A JP2018209761A JP7213659B2 JP 7213659 B2 JP7213659 B2 JP 7213659B2 JP 2018209761 A JP2018209761 A JP 2018209761A JP 2018209761 A JP2018209761 A JP 2018209761A JP 7213659 B2 JP7213659 B2 JP 7213659B2
Authority
JP
Japan
Prior art keywords
pgm
electric furnace
furnace
slag
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018209761A
Other languages
Japanese (ja)
Other versions
JP2020076121A (en
Inventor
圭一 菅原
広光 八ッ橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metals and Mining Co Ltd
Original Assignee
Dowa Metals and Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metals and Mining Co Ltd filed Critical Dowa Metals and Mining Co Ltd
Priority to JP2018209761A priority Critical patent/JP7213659B2/en
Publication of JP2020076121A publication Critical patent/JP2020076121A/en
Application granted granted Critical
Publication of JP7213659B2 publication Critical patent/JP7213659B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、白金族元素(本発明において「PGM」と記載する場合がある。)を含有する各種の部材、例えば、使用済みの自動車排ガス浄化用触媒、使用済みの電子基板やリードフレーム、使用済みの石油化学系触媒等を被処理物とし、当該PGMを含有する被処理物からのPGMの回収方法に関する。 The present invention provides various members containing a platinum group element (sometimes referred to as "PGM" in the present invention), such as used automobile exhaust gas purification catalysts, used electronic substrates and lead frames, and used The present invention relates to a method for recovering PGM from an object to be treated containing the PGM, wherein a used petrochemical catalyst or the like is an object to be treated.

従来から、使用済みの自動車排ガス浄化用触媒のように、PGMを含有する各種の部材を被処理物とし、当該PGMを含有する被処理物からPGMを回収する方法が提案されている。例えば、本発明出願人は、PGMを含有する被処理物を銅源材料と共に加熱溶融し、生成した溶融メタル中にPGMを吸収させる、効率の良いPGMの乾式回収法を開示している(特許文献1参照)。 Conventionally, various PGM-containing members, such as used catalysts for purifying automobile exhaust gas, have been proposed as objects to be treated, and methods for recovering PGM from the PGM-containing objects to be treated have been proposed. For example, the applicant of the present invention has disclosed an efficient dry recovery method for PGM, in which an object to be processed containing PGM is heated and melted together with a copper source material, and the PGM is absorbed in the resulting molten metal (Patent Reference 1).

特許文献1に係るPGMの乾式回収法においては、PGMを含有する被処理物と、酸化銅を含有する銅源材料とを、フラックス成分および還元剤と共に密閉型の電気炉に装填して溶融する。そして、生成した酸化物主体の溶融スラグ層の下方に沈降した溶融メタル中に、PGMを濃縮させてこれを回収する(本発明において「還元溶錬」と記載する場合がある)。一方、銅含有量が低下した前記溶融スラグを前記電気炉から排出し、また前記銅源材料として一定粒径を有する粒状銅源材料を用いる、という構成を有している。 In the PGM dry recovery method according to Patent Document 1, a PGM-containing material to be treated and a copper source material containing copper oxide are charged into a closed electric furnace together with a flux component and a reducing agent and melted. . Then, the PGM is concentrated in the molten metal that has settled below the molten slag layer mainly composed of oxides and recovered (in the present invention, this may be referred to as "reduction smelting"). On the other hand, the molten slag having a reduced copper content is discharged from the electric furnace, and a granular copper source material having a certain particle size is used as the copper source material.

特開2009-24263号公報JP 2009-24263 A

本発明者らは、上述の成果に満足することなく、PGMを含有する被処理物からのさらに高効率なPGM回収方法について研究を行なった。
即ち、本発明が解決しようとする課題は、PGMを含有する被処理物からの高効率なPGM回収方法を提供することである。
The inventors of the present invention have not been satisfied with the results described above, and have conducted research on a more efficient method for recovering PGM from a PGM-containing material to be treated.
That is, the problem to be solved by the present invention is to provide a highly efficient PGM recovery method from a PGM-containing material to be treated.

上述の課題を解決する為、本発明者らは、PGMを含有する被処理物からのPGM回収方法について、還元溶錬工程を初めとする各工程を詳細に検討した。そして、当該検討の結果、従来の技術に係る還元溶錬工程においては、電気炉内に溶けきらない被処理物が残留する場合があることを知見した。そして、炉内に溶けきらない被処理物が残留する場合、PGMが溶融スラグ側へ移動してしまい、PGMの回収率が低下することを知見した。 In order to solve the above-mentioned problems, the present inventors have studied in detail each step including the reduction smelting step for a method for recovering PGM from a PGM-containing material to be treated. As a result of the study, the inventors have found that in the reduction smelting process according to the conventional technology, there are cases where unmelted materials remain in the electric furnace. Further, the inventors have found that when unmelted materials to be processed remain in the furnace, the PGM moves to the molten slag side, and the recovery rate of the PGM decreases.

本発明者らは、従来技術において炉内に溶けきらない被処理物が残留する原因を研究した結果、電気炉内の温度設定において課題があることに想到した。
従来、還元溶錬工程における電気炉内の温度設定は、エネルギーコストの上昇や電気炉壁の劣化を抑制する観点から、電気炉内が過剰に高温になることを避けるように設定されていた。また、従来技術における電気炉内の温度測定は、熱電対や赤外線高温計を電気炉壁外部に設置し、間接的に炉内温度を測定することがあった。
本発明者らの検討によれば、当該電気炉壁外部からの間接的温度測定では、上述した電気炉内の温度を参照・制御しながらの還元溶錬工程を実施するには、測定精度に不足があると考えられた。
The inventors of the present invention investigated the cause of the incompletely melted material remaining in the furnace in the prior art, and found that there was a problem in setting the temperature in the electric furnace.
Conventionally, the temperature setting in the electric furnace in the reduction smelting process has been set so as to avoid excessively high temperature in the electric furnace from the viewpoint of suppressing the increase in energy cost and deterioration of the electric furnace wall. Further, in the conventional technology, the temperature inside the electric furnace is sometimes measured indirectly by installing a thermocouple or an infrared pyrometer outside the wall of the electric furnace.
According to the studies of the present inventors, in the indirect temperature measurement from the outside of the electric furnace wall, the measurement accuracy is not sufficient to perform the reduction smelting process while referring to and controlling the temperature inside the electric furnace. thought to be deficient.

即ち、PGMの回収率を向上させるには、還元溶錬工程における電気炉内温度を上昇させて、被処理物の十分な溶融を実現すればよいと考えられた。しかし、炉内温度を、単純に上昇させることは、エネルギーコストの上昇や、電気炉内部の炉壁の劣化促進につながるものである。 That is, in order to improve the recovery rate of PGM, it was considered that the temperature in the electric furnace in the reduction smelting process should be raised to achieve sufficient melting of the material to be treated. However, simply raising the temperature inside the furnace leads to an increase in energy costs and accelerated deterioration of the furnace wall inside the electric furnace.

ここで本発明者らはさらに研究を行い、電気炉の炉頂温度を測定し、当該測定された電気炉の炉頂温度によって、電気炉の温度制御を行いながら還元溶錬工程を行う構成に想到した。そして、当該構成を用いながら、電気炉の炉頂温度と、炉内の溶融物の溶け残り解消や炉壁の劣化抑制との関係を研究した。その結果、本発明者らは、エネルギーコストの上昇や炉壁の劣化を抑制しながら、炉内の溶融物の溶け残りが解消できることに想到した。 Here, the present inventors conducted further research, measured the top temperature of the electric furnace, and performed the reduction smelting process while controlling the temperature of the electric furnace according to the measured top temperature of the electric furnace. I thought of it. Using this configuration, the inventors studied the relationship between the top temperature of the electric furnace and the elimination of unmelted material in the furnace and the suppression of deterioration of the furnace wall. As a result, the present inventors have conceived that it is possible to eliminate unmelted molten material in the furnace while suppressing an increase in energy cost and deterioration of the furnace wall.

具体的には、電気炉の炉頂温度を、温度低下により被処理物の溶け残りが増加し始める温度より20℃以上高めに制御しながら還元溶錬工程を行うことにより、炉内の溶融物の溶け残りが解消できることを知見した。さらに具体的には、PGMを含有する被処理物と、Cuおよび/またはCuOと、フラックスと、C(炭素)含有材料とを電気炉に入れて還元溶錬し、これら全てを溶融して溶融スラグ層と電気炉メタル層とを形成した後の溶融スラグ層抽出時に、前記電気炉の炉頂温度を900℃以上1200℃以下に制御することで、炉内の溶融物の溶け残り解消と、炉壁の劣化抑制とを実現できることを知見し、本発明を完成した。 Specifically, the reduction smelting process is performed while controlling the furnace top temperature of the electric furnace to be 20 ° C. or more higher than the temperature at which the unmelted material starts to increase due to the temperature decrease, thereby reducing the molten material in the furnace. It was found that the undissolved residue of can be eliminated. More specifically, an object to be treated containing PGM, Cu and/or Cu 2 O, flux, and a C (carbon)-containing material are placed in an electric furnace for reduction smelting, and all of these are melted. At the time of extracting the molten slag layer after forming the molten slag layer and the electric furnace metal layer, the top temperature of the electric furnace is controlled to 900 ° C. or higher and 1200 ° C. or lower, thereby eliminating the unmelted material in the furnace. and suppression of deterioration of the furnace wall, and completed the present invention.

即ち、上述の課題を解決する為の第1の発明は、
PGMを含有する被処理物と、Cuおよび/またはCu2Oと、フラックスと、C(炭素)含有材料とを電気炉に入れて加熱し、これら溶融して溶融スラグ層と電気炉メタル層とを形成した後に前記溶融スラグを抽出し、PGMを含有する電気炉メタルを抽出して得る還元溶錬工程と、
前記電気炉メタルを酸化炉に移して酸化溶融し、Cu2Oスラグ層とPGM合金層とを形成した後に、Cu2Oスラグを抽出し、PGMが濃縮されたPGM合金を得る酸化溶錬工程と、を行うPGMの回収方法であって、
前記還元溶錬工程における溶融スラグ抽出時に、前記電気炉の炉頂温度を900℃以上1200℃以下に制御することを特徴とするPGMの回収方法である。
That is, the first invention for solving the above-mentioned problems is
An object to be treated containing PGM, Cu and/or Cu 2 O, flux, and a C (carbon)-containing material are placed in an electric furnace and heated to melt them to form a molten slag layer and an electric furnace metal layer. a reduction smelting step of extracting the molten slag after forming and extracting an electric furnace metal containing PGM;
An oxidizing smelting process for transferring the electric furnace metal to an oxidation furnace and oxidizing and melting it to form a Cu 2 O slag layer and a PGM alloy layer, and then extracting the Cu 2 O slag to obtain a PGM-enriched PGM alloy. and a PGM recovery method comprising:
The PGM recovery method is characterized in that the furnace top temperature of the electric furnace is controlled to 900° C. or more and 1200° C. or less when extracting molten slag in the reduction smelting step.

本発明によれば、電気炉の炉頂温度を制御することにより、PGMを含有する被処理物から高効率にPGM合金を回収することができる。 According to the present invention, a PGM alloy can be efficiently recovered from a PGM-containing object to be processed by controlling the furnace top temperature of the electric furnace.

本発明に係るPGMの回収方法の工程フロー図である。1 is a process flow diagram of a PGM recovery method according to the present invention. FIG. 実施例および比較例に係る炉頂の温度推移のグラフである。4 is a graph of temperature changes at the top of the furnace according to Examples and Comparative Examples.

本発明に係るPGMの回収方法について図面を参照しながら、[1]還元溶錬、[2]酸化溶錬、[3]従来の技術に係る還元溶錬の課題、[4]本発明に係る還元溶錬、[5]本発明に係る酸化溶錬、および[6]本発明に係るPGM回収方法例、の順に説明する。
図1は、本発明に係るPGMの回収方法例の工程フロー図である。
While referring to the drawings for the PGM recovery method according to the present invention, [1] reduction smelting, [2] oxidation smelting, [3] problems of reduction smelting according to the conventional technology, [4] according to the present invention Reduction smelting, [5] oxidation smelting according to the present invention, and [6] example of PGM recovery method according to the present invention will be described in this order.
FIG. 1 is a process flow diagram of an example of a PGM recovery method according to the present invention.

[1]還元溶錬
図1に示すように、PGMを含有する被処理物(2)である、例えばセラミックス製自動車触媒の粉砕物と、抽出剤(3)であるCuおよび/またはCuOと、フラックス(1)であるCaOおよび/またはSiOと、そして還元剤(4)であるC(炭素)含有材料とを、電気炉(5)内に装填する。そして電気炉(5)内の電極に通電し、前記装填物を加熱し溶融させる。
[1] Reduction smelting As shown in FIG. 1, the object to be treated (2) containing PGM, such as pulverized ceramic automobile catalyst, and the extractant (3) Cu and/or Cu 2 O , a flux (1) of CaO and/or SiO 2 and a reducing agent (4) of a C (carbon)-containing material are loaded into an electric furnace (5). Then, the electrodes in the electric furnace (5) are energized to heat and melt the charge.

すると、電気炉(5)内において、酸化物(CaO-SiO-Al)を主体とする溶融スラグ(7)層の下方に、Cu合金である電気炉メタル(6)が沈降する。このとき、当該下方に沈降した電気炉メタル(6)中にはPGMが濃縮している。この後、Cu含有量が3.0質量%以下にまで低下した溶融スラグ(7)を、当該電気炉(5)から抽出し排出する。 Then, in the electric furnace (5), the electric furnace metal (6), which is a Cu alloy, settles below the molten slag ( 7 ) layer mainly composed of oxides ( CaO-- SiO.sub.2 --Al.sub.2O.sub.3). . At this time, PGM is concentrated in the electric furnace metal (6) that has settled down. Thereafter, the molten slag (7) in which the Cu content has decreased to 3.0% by mass or less is extracted from the electric furnace (5) and discharged.

即ち、本発明において「電気炉メタル(6)」とは、被処理物(2)の粉砕物と還元剤(4)とフラックス(1)と抽出剤(3)とを、電気炉(5)で溶融した後に、生成した溶融スラグ(7)を抽出し排出して得られる、PGMを含有する銅合金主体の溶湯を示す。 That is, in the present invention, the "electric furnace metal (6)" means the pulverized material of the object (2), the reducing agent (4), the flux (1), and the extracting agent (3) in the electric furnace (5). shows a PGM-containing copper alloy-based molten metal obtained by extracting and discharging the generated molten slag (7) after melting at .

以上説明した、被処理物(2)の粉砕物他の電気炉(5)装填物を溶融した後、溶融スラグ(7)を抽出分離して排出し、電気炉メタル(6)を得るまでの工程が「還元溶錬」であり、鉄鋼製錬において高炉で酸化鉄の鉱石を還元して銑鉄を得るのと類似の手法である。 After melting the pulverized material of the material to be processed (2) and other materials charged in the electric furnace (5), the molten slag (7) is extracted, separated and discharged to obtain the electric furnace metal (6). The process is "reduction smelting", which is similar to the method used in iron and steel smelting to reduce iron oxide ore in a blast furnace to obtain pig iron.

[2]酸化溶錬
還元溶錬にて得られたPGMが濃縮した電気炉メタル(6)を電気炉(5)から抽出し、溶融状態のまま酸化炉(9)に移し替え、さらに、空気および/または酸素を吹き込んで酸化する。すると電気炉メタル(6)は、酸化物主体のCuOスラグ(11)層と、PGMがさらに濃縮したPGM合金(10)層とに層分離する。
[2] Oxidation smelting The electric furnace metal (6) enriched with PGM obtained by reduction smelting is extracted from the electric furnace (5), transferred in a molten state to the oxidation furnace (9), and further treated with air. and/or oxidized by blowing oxygen. Then, the electric furnace metal (6) separates into a Cu 2 O slag (11) layer mainly composed of oxides and a PGM alloy (10) layer in which PGM is further concentrated.

即ち、本発明において「PGM合金(10)」とは、酸化炉にて、電気炉メタル(6)へ空気および/または酸素を吹き込んで酸化した後に、生成したCuOスラグを抜き出して得られる、銅とPGMとを主成分として含む合金物質を示す。 That is, the "PGM alloy (10)" in the present invention is obtained by blowing air and/or oxygen into the electric furnace metal (6) for oxidation in an oxidation furnace, and then extracting the generated Cu 2 O slag. , shows an alloy material containing copper and PGM as main components.

このPGM合金(10)層の湯面上に生成したCuOスラグ(11)層を酸化炉(9)外に排出した後、再び、空気および/または酸素を吹き込んで、酸化物主体のCuOスラグ(11)層と、PGMがさらに濃縮したPGM合金(10)層とに層分離させる。そして、PGM合金(10)層の湯面上に生成したCuOスラグ(11)層を、再び酸化炉(9)外に排出する。 After discharging the Cu 2 O slag (11) layer formed on the surface of the PGM alloy (10) layer to the outside of the oxidation furnace (9), air and/or oxygen is blown again to form Cu mainly composed of oxides. Layer separation into a 2 O slag (11) layer and a PGM alloy (10) layer in which the PGM is further enriched. Then, the Cu 2 O slag (11) layer formed on the surface of the PGM alloy (10) layer is discharged out of the oxidation furnace (9) again.

そして、以上説明した酸化炉(9)における酸化処理と、CuOスラグ(11)層の排出処理とを繰り返すことにより、PGM合金(10)層中におけるPGM含有量をさらに濃縮させる。 By repeating the oxidation treatment in the oxidation furnace (9) and the discharge treatment of the Cu2O slag ( 11 ) layer described above, the PGM content in the PGM alloy (10) layer is further concentrated.

以上説明した、酸化炉(9)内において、濃縮されたPGMを含有するPGM合金(10)を得るまでの工程が「酸化溶錬工程」であり、鉄鋼製錬において銑鉄中の炭素,ケイ素,リンなどの不純物を酸化して除去するのと類似の工程である。 The process until the PGM alloy (10) containing concentrated PGM is obtained in the oxidation furnace (9) as described above is the "oxidation smelting process". This process is similar to removing impurities such as phosphorus by oxidation.

[3]従来の技術に係る還元溶錬の課題
従来の技術に係る還元溶錬工程においては、電気炉内の電気炉メタル(6)層と溶融スラグ(7)層との状態を目視しながら、電気炉(5)における電極の電力調整を行うことで、温度制御をしていた。すると、被処理物(2)の溶け残りが発生する場合があることが知見された。そして本発明者らは、当該溶け残りが発生するとPGMが溶融スラグ(7)層へ移動してしまい、PGMの回収率が低下することを知見した。
[3] Problems of reduction smelting according to conventional technology In the reduction smelting process according to conventional technology, while visually observing the state of the electric furnace metal (6) layer and the molten slag (7) layer in the electric furnace , the temperature was controlled by adjusting the power of the electrodes in the electric furnace (5). As a result, it has been found that undissolved material (2) may be left undissolved. The inventors of the present invention have found that when the undissolved residue is generated, the PGM moves to the molten slag (7) layer, resulting in a decrease in the recovery rate of the PGM.

上述の知見と、エネルギーコストの上昇や電気炉(5)の炉壁の劣化を抑制する観点とから、本発明者らは電気炉(5)の炉内温度の把握とその制御の重要性に想到した。
しかしながら、電気炉(5)内には、被処理物(2)、溶融スラグ(7)層、および、電気炉メタル(6)層等が存在し、かつ高温であることから、炉内温度の直接的で正確な測温は困難であった。
そこで、電気炉(5)の外壁側より測温が行われていたが、当該炉壁は、当該炉壁の劣化を抑制する観点から冷却手段を備えており、炉内温度の正確な測温は困難であった。
From the above findings and from the viewpoint of suppressing the increase in energy cost and the deterioration of the furnace wall of the electric furnace (5), the present inventors have recognized the importance of grasping and controlling the temperature inside the electric furnace (5). I thought of it.
However, in the electric furnace (5), the object to be treated (2), the molten slag (7) layer, the electric furnace metal (6) layer, etc. exist and are at a high temperature. Direct and accurate temperature measurement was difficult.
Therefore, the temperature was measured from the outer wall side of the electric furnace (5). was difficult.

[4]本発明に係る還元溶錬
ここで、本発明者らは研究の結果、電気炉(5)の炉頂温度を測温することにより、間接的ながら炉内温度の把握が可能になることに想到した。
尚、本発明に係る「炉頂」とは、電気炉(5)の炉頂部上面にある、被処理物(2)等の投入用の蓋部分のことである。
そして炉頂温度の測温は、蓋部の形状を円型としたとき、当該円の中心部を中心とする円周上の1点と、当該点と反対側の円周上1点の2ヵ所に温度計を設けたり、当該円周上に等間隔にて、複数の温度計を設ければよいことも判明した。
炉頂に設置する当該温度計としては、熱電対や赤外線センサー等が使用できる。
[4] Reduction smelting according to the present invention Here, as a result of research by the present inventors, it is possible to indirectly grasp the temperature inside the furnace by measuring the furnace top temperature of the electric furnace (5). I thought about it.
Incidentally, the "furnace top" according to the present invention is a lid portion for charging the object to be processed (2), etc., on the upper surface of the furnace top of the electric furnace (5).
When the shape of the lid is circular, the temperature at the top of the furnace is measured at two points: one point on the circumference centered on the center of the circle and one point on the circumference opposite to the point. It has also been found that thermometers may be provided at various locations, or a plurality of thermometers may be provided at equal intervals on the circumference.
A thermocouple, an infrared sensor, or the like can be used as the thermometer installed on the furnace top.

本発明者らは、還元溶錬工程において測定された炉頂温度を参照し、電気炉(5)における電極の電力調整を行うことによる電気炉(5)の最適な温度制御について検討した。その結果、炉頂温度を、温度低下により被処理物の溶け残りが増加し始める温度より20℃以上高めに制御することで、被処理物(2)の溶け残りの発生を解消できることに想到した。 The present inventors examined the optimum temperature control of the electric furnace (5) by adjusting the electric power of the electrodes in the electric furnace (5) with reference to the furnace top temperature measured in the reduction smelting process. As a result, it was conceived that by controlling the furnace top temperature to be 20° C. or more higher than the temperature at which the undissolved material to be processed begins to increase due to the temperature drop, the occurrence of undissolved material (2) to be processed can be eliminated. .

そして、温度以外は同一の条件で行う前記還元溶錬工程において、溶融スラグ(7)抽出のタイミングの炉頂温度を制御することを実施した。その結果、温度低下により被処理物の溶け残りが多くなり始める炉頂温度より120~420℃高い温度、さらに好ましくは150~400℃高い温度、一層好ましくは180~350℃高い温度に炉頂温度を設定することにより、PGMの溶融スラグ(7)層への移動を低減できることに想到した。 Then, in the reduction smelting process, which is performed under the same conditions except temperature, the furnace top temperature is controlled at the timing of extraction of the molten slag (7). As a result, the furnace top temperature is 120 to 420° C. higher, more preferably 150 to 400° C. higher, and still more preferably 180 to 350° C. higher than the furnace top temperature at which the material to be processed begins to remain undissolved due to the temperature drop. By setting , it is possible to reduce the migration of PGM to the molten slag (7) layer.

さらに具体的には、電気炉(5)の炉頂温度を、溶融スラグ(7)の抽出、排出時に900℃以上1200℃以下に調整すればよいことに想到した。
これは、炉頂温度を900℃以上に調整することで被処理物の溶け残りを解消し、スラグ側へ移行するPGM量を抑制し、さらに炉頂温度を1200℃以下に調整することで、電気炉(5)の炉壁の劣化を抑制することになるからである。
More specifically, the inventors have come up with the idea that the furnace top temperature of the electric furnace (5) should be adjusted to 900° C. or higher and 1200° C. or lower during the extraction and discharge of the molten slag (7).
This is because by adjusting the furnace top temperature to 900°C or higher, the undissolved material to be processed is eliminated, the amount of PGM that migrates to the slag side is suppressed, and the furnace top temperature is adjusted to 1200°C or lower. This is because deterioration of the furnace wall of the electric furnace (5) is suppressed.

これに対し、従来の技術に係る還元溶錬を、電気炉(5)の炉頂温度の測定結果から評価してみると、炉頂温度は780~880℃である場合が多く、この温度設定が被処理物の溶け残りの原因であると考えられた。 On the other hand, when the reduction smelting according to the conventional technology is evaluated from the measurement results of the furnace top temperature of the electric furnace (5), the furnace top temperature is often 780 to 880 ° C., and this temperature setting was considered to be the cause of undissolved material to be processed.

また、電気炉(5)の炉頂温度の測定から、当該還元溶錬工程において電気炉メタル(6)抽出時の1~3時間前に、電気炉(5)の加熱を停止することが好ましいことにも想到した。
当該時点での電気炉(5)の加熱停止により、溶融スラグ(7)を抽出し排出する時に、溶融物の温度が1300~1400℃になり得るからである。これにより、被処理物(2)の溶け残りを解消でき、溶融スラグ(7)側へのPGM移動を低減できるのでPGMの回収率が高まる。また、電気炉(5)内の温度が上がり過ぎて炉壁が劣化することを抑制することができる。
In addition, from the measurement of the furnace top temperature of the electric furnace (5), it is preferable to stop heating the electric furnace (5) 1 to 3 hours before the extraction of the electric furnace metal (6) in the reduction smelting process. I also thought about it.
This is because the temperature of the melt can reach 1300-1400° C. when the molten slag (7) is extracted and discharged by stopping the heating of the electric furnace (5) at that time. As a result, unmelted portions of the object (2) to be processed can be eliminated, and PGM migration to the molten slag (7) side can be reduced, thereby increasing the recovery rate of PGM. In addition, it is possible to prevent deterioration of the furnace wall due to excessive temperature rise in the electric furnace (5).

尚、本発明に係る還元溶錬では、被処理物(2)に対して、質量換算で0.3倍以上1.0倍以下の抽出剤(3)を投入することが好ましい。これは抽出剤(3)が0.3倍以上投入されれば、溶融スラグ(7)のPGM含有率を抑制してPGMロスを低減することができるからである。一方、抽出剤(3)の投入が1.0倍以下であれば処理できる被処理物(2)量を担保できる為、効率的だからである。 In addition, in the reduction smelting according to the present invention, it is preferable to add the extractant (3) in an amount of 0.3 to 1.0 times as much as the material to be treated (2) in terms of mass. This is because the PGM loss can be reduced by suppressing the PGM content of the molten slag (7) when the extractant (3) is added 0.3 times or more. On the other hand, if the input of the extraction agent (3) is 1.0 times or less, it is efficient because the amount of the object (2) that can be processed can be ensured.

[5]本発明に係る酸化溶錬工程
本発明に係る酸化溶錬工程におけるCuOスラグ(11)とPGM合金(10)との間の白金、ロジウム、パラジウムの分配比は、還元溶錬工程における溶融スラグ(7)と電気炉メタル(6)間の分配比の値に比べ、100倍程度大きな値を示す。この為、電気炉メタル(6)中のPGMを濃縮する過程で発生するCuOスラグ(11)中へ、相当量のPGMが分配されてしまう。即ち、PGM合金(10)としてのPGMの回収率は抑制される。
[5] Oxidative smelting process according to the present invention The distribution ratio of platinum, rhodium, and palladium between the Cu 2 O slag (11) and the PGM alloy (10) in the oxidative smelting process according to the present invention is It shows a value about 100 times larger than the value of the distribution ratio between the molten slag (7) and the electric furnace metal (6) in the process. Therefore, a considerable amount of PGM is distributed into the Cu 2 O slag (11) generated in the process of concentrating the PGM in the electric furnace metal (6). That is, the recovery rate of PGM as the PGM alloy (10) is suppressed.

そこで、当該相当量のPGMが分配されたCuOスラグ(11)を、再び、以降実施される還元溶錬工程へ抽出剤(3)として繰り返し、投入することが好ましい。当該構成により、CuOスラグ(11)中へ分配された相当量のPGMは、還元溶錬工程と酸化溶錬工程との系内を循環することになり、結果として高効率でPGMを回収できる。 Therefore, it is preferable to repeatedly feed the Cu 2 O slag (11) in which a considerable amount of PGM has been distributed as an extractant (3) to the reduction smelting process to be performed thereafter. With this configuration, a considerable amount of PGM distributed in the Cu 2 O slag (11) circulates within the system of the reduction smelting process and the oxidation smelting process, resulting in highly efficient PGM recovery. can.

また、酸化溶錬工程の際に酸化物(8)を添加し、前記溶融した電気炉メタル(6)を撹拌した後、静置することが好ましい。これにより、CuOスラグ(11)へのPGMの分配を低減することができる。 Moreover, it is preferable to add the oxide (8) during the oxidative smelting process, stir the molten electric furnace metal (6), and then leave it at rest. This can reduce the distribution of PGM to the Cu 2 O slag (11).

[6]本発明に係るPGM回収方法例
本発明に係るPGMの回収工程について、一例を挙げながら説明する。
セラミックス製自動車触媒等のPGMを含有する被処理物(2)と、抽出剤(3)であるCuおよび/またはCuOと、フラックス(1)であるCaOおよび/またはSiOと、そして還元剤(4)であるSiC等のC含有材料とを、電気炉(5)に装填して加熱する。このとき、電気炉(5)の炉頂温度の昇温速度から溶融スラグ(7)を抽出し排出するタイミングを決定し、その3時間前の炉頂温度が900℃以上1200℃以下になるように、電気炉(5)内の電極へ加える電力の調整を行う。
[6] Example of PGM recovery method according to the present invention The PGM recovery process according to the present invention will be described with an example.
An object to be treated (2) containing PGM such as a ceramic automotive catalyst, Cu and/or Cu 2 O as an extractant (3), CaO and/or SiO 2 as a flux (1), and reduction An electric furnace (5) is loaded with a C-containing material such as SiC as the agent (4) and heated. At this time, the timing of extracting and discharging the molten slag (7) is determined from the heating rate of the furnace top temperature of the electric furnace (5), and the furnace top temperature three hours before that is determined to be 900 ° C. or higher and 1200 ° C. or lower. Then, the power applied to the electrodes in the electric furnace (5) is adjusted.

その後、酸化物(CaO-SiO-Al)主体の溶融スラグ(7)層の下方にCu合金の溶融メタルを沈降させ、当該Cu合金中にPGMが濃縮した電気炉メタル(6)を得る。一方、Cu含有量が3.0質量%以下にまで低下した溶融スラグ(7)は当該電気炉から抽出し排出する。 After that, the molten metal of Cu alloy is allowed to settle below the layer of molten slag ( 7 ) mainly composed of oxides ( CaO-- SiO.sub.2 --Al.sub.2O.sub.3), and electric furnace metal (6) in which PGM is concentrated in the Cu alloy. get On the other hand, the molten slag (7) in which the Cu content has decreased to 3.0% by mass or less is extracted from the electric furnace and discharged.

そして、PGMが濃縮した電気炉メタル(6)を抽出し、溶融状態のまま酸化炉(9)に移し替える。溶融した電気炉メタル(6)を酸化溶錬する際、上述した酸化物(8)としてSiO、CaO、NaOから選択される1種以上を添加できる。電気炉メタル(6)へSiO等の酸化物(8)を添加する際は、添加量の全量を一挙に添加するのではなく、少量ずつ添加することが好ましい。これは電気炉メタル(6)へ、添加する酸化物(8)の全量を一挙に添加すると、溶融している電気炉メタル(6)の溶体温度が低下し、添加された酸化物(8)が溶解出来なくなる為である。従って、酸化物(8)の添加時間は、溶融している電気炉メタル(6)量にも依るが、20分間以上かけて添加することが好ましい。 Then, the electric furnace metal (6) enriched with PGM is extracted and transferred to the oxidation furnace (9) in a molten state. When oxidizing and smelting the molten electric furnace metal (6), one or more selected from SiO 2 , CaO and Na 2 O can be added as the oxide (8) described above. When adding the oxide (8) such as SiO 2 to the electric furnace metal (6), it is preferable to add the oxide little by little rather than adding the entire amount at once. This is because when the entire amount of the oxide (8) to be added is added to the electric furnace metal (6) at once, the solution temperature of the molten electric furnace metal (6) decreases, and the added oxide (8) This is because it becomes impossible to dissolve Therefore, the addition time of the oxide (8) depends on the amount of the molten electric furnace metal (6), but it is preferable to add the oxide (8) over 20 minutes or longer.

酸化物(8)添加後に電気炉メタル(6)を撹拌し、酸化物(8)を溶解させるが、溶体の撹拌方法としては、空気および/または酸素によるエアレーションが好ましい。 After the addition of the oxide (8), the electric furnace metal (6) is stirred to dissolve the oxide (8). As a method of stirring the solution, aeration with air and/or oxygen is preferred.

酸化物(8)が溶解後、溶体を静置する。このとき、酸化炉(9)内の溶融物の中心近傍が1200~1500℃になっていると推察できる。そして、酸化物主体のCuOスラグ(11)層と、PGMがさらに濃縮したPGM合金(10)層とに分離し、PGM合金(10)を得る。得られたPGM合金(10)から、適宜な回収方法(主に、湿式法)により、PGMを得る。 After the oxide (8) has dissolved, the solution is allowed to stand. At this time, it can be inferred that the vicinity of the center of the melt in the oxidation furnace (9) has reached 1200 to 1500°C. Then, it is separated into a Cu 2 O slag (11) layer mainly composed of oxides and a PGM alloy (10) layer in which PGM is further concentrated to obtain a PGM alloy (10). PGM is obtained from the obtained PGM alloy (10) by an appropriate recovery method (mainly a wet method).

(実施例1)
実施例1に係る還元溶錬工程においては、電気炉中へ、フラックスとしてCaOを5000kg、SiOを100kg、被処理物としてセラミック製自動車触媒の粉砕物を8500kg、還元剤としてSiCを600kg、抽出剤として前回工程から繰り返されたCuOスラグを、被処理物に対して質量比で0.6倍量の5100kg投入した。
(Example 1)
In the reduction smelting process according to Example 1, 5000 kg of CaO and 100 kg of SiO 2 as fluxes, 8500 kg of pulverized ceramic automobile catalysts as objects to be treated, 600 kg of SiC as reducing agents, and extraction 5,100 kg of Cu 2 O slag, which was repeated from the previous step, was added as an agent, which was 0.6 times the mass of the object to be treated.

溶融スラグを抽出し排出するタイミングに合わせて、電気炉の炉頂温度の昇温速度を制御し、溶融スラグを抽出するときの炉頂温度が1000℃になるように電極へ加える電力を調整した。また、溶融スラグを抽出し排出する2時間前に通電を停止した。尚、前回工程から繰り返されたCuOスラグによりCu量が充当されたので、抽出剤として新たな金属Cuは投入しなかった。 The heating rate of the furnace top temperature of the electric furnace was controlled in accordance with the timing of extracting and discharging the molten slag, and the electric power applied to the electrodes was adjusted so that the furnace top temperature when extracting the molten slag was 1000°C. . In addition, electricity was stopped two hours before the molten slag was extracted and discharged. In addition, since the Cu amount was appropriated by the Cu 2 O slag repeated from the previous step, no new metallic Cu was added as an extractant.

実施例1に係る炉頂の温度推移を、図2のグラフに実線で示す。
尚、炉頂温度は、炉頂にある上蓋の4ヵ所に穿孔し、それぞれに熱電対を設けて測定したものの平均値である。
A solid line in the graph of FIG. 2 shows the temperature change at the furnace top according to the first embodiment.
The temperature at the top of the furnace is an average value measured by piercing four holes on the upper lid on the top of the furnace and installing thermocouples in each hole.

上述の還元溶錬工程で生成した溶融スラグであるCaO-SiO-Alスラグを、電気炉から抽出し排出した。溶融スラグ温度は1455℃であった。そして、電気炉メタルを電気炉から抽出し、酸化炉へ投入した。
次に、酸化炉へ、CuOスラグ質量に対して5質量%に相当するSiOを酸化剤として添加した。このとき電気炉メタルである溶体の急激な降温を回避する為、SiOは全量を一挙に投入するのではなく、20分間かけて除々に添加した。
CaO-- SiO.sub.2 -- Al.sub.2O.sub.3 slag , which is molten slag produced in the above reduction smelting process, was extracted from the electric furnace and discharged. The molten slag temperature was 1455°C. Then, the electric furnace metal was extracted from the electric furnace and put into the oxidation furnace.
Next, SiO 2 corresponding to 5 mass % with respect to the Cu 2 O slag mass was added as an oxidizing agent to the oxidation furnace. At this time, in order to avoid a rapid temperature drop of the solution, which is the electric furnace metal, SiO 2 was added gradually over 20 minutes instead of adding the entire amount at once.

SiOの投入完了後、溶体を2時間エアレーションして撹拌し、SiOを溶体に溶解させた。エアレーションには空気と酸素との混合気体を使用し、酸素濃度20質量%で50Nm/hの速度で吹込みを行った。
エアレーション終了後、溶融した溶体を静置し生成したPGM合金を回収した。
一方、生成したCuOスラグを採取し、次回工程の還元溶錬工程へ繰り返した。
After the addition of SiO2 was completed, the solution was aerated and stirred for 2 hours to dissolve the SiO2 into the solution. A mixed gas of air and oxygen was used for aeration, and was blown at a rate of 50 Nm 3 /h with an oxygen concentration of 20% by mass.
After the aeration was completed, the PGM alloy formed by leaving the melted solution to stand was recovered.
On the other hand, the generated CuO 2 slag was collected and repeated to the next reduction smelting process.

尚、電気炉から排出した溶融スラグ中のPGMロス率をICPにて定量分析したところ0.06質量%であり、非常に小さい値であることが判明した。 Incidentally, when the PGM loss rate in the molten slag discharged from the electric furnace was quantitatively analyzed by ICP, it was found to be 0.06% by mass, which is a very small value.

(比較例1)
還元溶錬工程において電極へ加える電力量を一定とし、溶融スラグを抽出し排出するときの炉頂温度が850℃になるようにした以外は、実施例1と同様の操作を行った。
生成したPGM合金を回収し、CuOスラグを採取した。採取されたCuOスラグは、次回工程の還元溶錬工程へ繰り返した。
(Comparative example 1)
The same operation as in Example 1 was performed except that the amount of electric power applied to the electrodes in the reduction smelting process was constant, and the top temperature of the furnace when extracting and discharging the molten slag was set to 850°C.
The PGM alloy produced was recovered and the CuO2 slag was taken. The collected CuO 2 slag was repeated to the next reduction smelting step.

比較例1に係る炉頂の温度推移を、図2のグラフに破線で示す。 The graph of FIG. 2 shows the transition of the furnace top temperature according to Comparative Example 1 by a broken line.

電気炉から排出した溶融スラグ中のPGMロス率をICPにて定量分析しところ0.78質量%であり、実施例1に比較して大きな値であることが判明した。 The PGM loss rate in the molten slag discharged from the electric furnace was quantitatively analyzed by ICP and found to be 0.78% by mass, which is a large value compared to Example 1.

(比較例2)
還元溶錬工程において電極へ加える電力量を一定とし、溶融スラグを抽出し排出するときの炉頂温度を、実施例1で説明した炉頂温度より下げた以外は、実施例1と同様の操作を行った。
すると、溶融スラグの排出時の0時間前、1時間前、2時間前における炉頂温度が780℃以下になると、被処理物の溶け残りが多く発生することが判明した。
(Comparative example 2)
The same operation as in Example 1 except that the amount of electric power applied to the electrodes in the reduction smelting process is constant, and the furnace top temperature when extracting and discharging molten slag is lower than the furnace top temperature described in Example 1. did
Then, it was found that when the furnace top temperature at 0, 1, and 2 hours before discharging the molten slag was 780° C. or less, a large amount of unmelted material was generated.

(まとめ)
以上、説明した実施例および比較例の結果より、本発明の方法によれば、PGMを含有する被処理物から高効率にPGM合金を回収することができることが判明した。
(summary)
From the results of the examples and comparative examples described above, it was found that according to the method of the present invention, a PGM alloy can be recovered from a PGM-containing object to be treated with high efficiency.

Claims (3)

PGMを含有する被処理物と、Cuおよび/またはCu2Oと、フラックスと、C(炭素)含有材料とを電気炉に入れて加熱し、これら溶融して溶融スラグ層と電気炉メタル層とを形成した後に
電気炉メタル抽出時の1~3時間前に、前記電気炉の加熱を停止し、
前記溶融スラグを抽出し、PGMを含有する電気炉メタルを抽出して得る還元溶錬工程と、
前記電気炉メタルを酸化炉に移して酸化溶融し、Cu2Oスラグ層とPGM合金層とを形成した後に、Cu2Oスラグを抽出し、PGMが濃縮されたPGM合金を得る酸化溶錬工程と、を行うPGMの回収方法であって、
前記還元溶錬工程における溶融スラグ抽出時に、前記電気炉の炉頂温度を900℃以上1200℃以下に制御することを特徴とするPGMの回収方法。
An object to be treated containing PGM, Cu and/or Cu 2 O, flux, and a C (carbon)-containing material are placed in an electric furnace and heated to melt them to form a molten slag layer and an electric furnace metal layer. After forming and
1 to 3 hours before the electric furnace metal extraction, stop heating the electric furnace,
a reduction smelting step of extracting the molten slag and extracting an electric furnace metal containing PGM;
An oxidizing smelting process for transferring the electric furnace metal to an oxidation furnace and oxidizing and melting it to form a Cu 2 O slag layer and a PGM alloy layer, and then extracting the Cu 2 O slag to obtain a PGM-enriched PGM alloy. and a PGM recovery method comprising:
A method for recovering PGM, wherein the furnace top temperature of the electric furnace is controlled to 900° C. or more and 1200° C. or less when extracting molten slag in the reduction smelting step.
前記還元溶錬工程において、前記PGMを含有する被処理物量に対して、質量換算で0.3倍以上1.0倍以下の前記Cuおよび/またはCu2Oを投入することを特徴とする請求項1に記載のPGMの回収方法。 In the reduction melting step, the Cu and/or Cu 2 O is added in an amount of 0.3 to 1.0 times the amount of the material to be treated containing the PGM in terms of mass. Item 1. The method for recovering PGM according to item 1. 前記Cu2Oとして、前記Cu2Oスラグを用いることを特徴とする請求項1または2に記載のPGMの回収方法。 3. The PGM recovery method according to claim 1 , wherein said Cu2O slag is used as said Cu2O.
JP2018209761A 2018-11-07 2018-11-07 Recovery method of PGM Active JP7213659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018209761A JP7213659B2 (en) 2018-11-07 2018-11-07 Recovery method of PGM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018209761A JP7213659B2 (en) 2018-11-07 2018-11-07 Recovery method of PGM

Publications (2)

Publication Number Publication Date
JP2020076121A JP2020076121A (en) 2020-05-21
JP7213659B2 true JP7213659B2 (en) 2023-01-27

Family

ID=70723685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018209761A Active JP7213659B2 (en) 2018-11-07 2018-11-07 Recovery method of PGM

Country Status (1)

Country Link
JP (1) JP7213659B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112021001088T5 (en) 2020-04-22 2023-01-12 AGC Inc. ANTENNA DEVICE
CN115323188B (en) * 2022-07-27 2023-11-07 中南大学 Method for trapping platinum group metals in spent catalyst by copper

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004275866A (en) 2003-03-14 2004-10-07 Dowa Mining Co Ltd Dry recovering method for platinum group element
JP2012167306A (en) 2011-02-10 2012-09-06 Dowa Metals & Mining Co Ltd Method for recovering pgm from pgm-containing member to be processed
JP2017197786A (en) 2016-04-25 2017-11-02 新日鐵住金株式会社 Temperature estimation method and operation method for electric furnace
JP2018003063A (en) 2016-06-29 2018-01-11 新日鐵住金株式会社 Operation method of electric furnace

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848280B2 (en) * 1978-12-08 1983-10-27 日鐵溶接工業株式会社 Manufacturing method of fusion type welding flux
JP3222894B2 (en) * 1991-04-10 2001-10-29 田中貴金属工業株式会社 Platinum group metal recovery method
JPH06281365A (en) * 1993-03-30 1994-10-07 Besubiusu Japan Kk Continuous molten metal temperature measuring instrument of metal melting electric furnace

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004275866A (en) 2003-03-14 2004-10-07 Dowa Mining Co Ltd Dry recovering method for platinum group element
JP2012167306A (en) 2011-02-10 2012-09-06 Dowa Metals & Mining Co Ltd Method for recovering pgm from pgm-containing member to be processed
JP2017197786A (en) 2016-04-25 2017-11-02 新日鐵住金株式会社 Temperature estimation method and operation method for electric furnace
JP2018003063A (en) 2016-06-29 2018-01-11 新日鐵住金株式会社 Operation method of electric furnace

Also Published As

Publication number Publication date
JP2020076121A (en) 2020-05-21

Similar Documents

Publication Publication Date Title
JP7213659B2 (en) Recovery method of PGM
WO2009077651A1 (en) Method for refining copper concentrate
JP2008545888A (en) Separation of valuable metal from zinc leaching residue
JP5355977B2 (en) Method for treating materials containing platinum group elements, rhenium and arsenic
US6136059A (en) Process for reducing the electric steelworks dusts and facility for implementing it
US20220259697A1 (en) Method for recovering pgm
JP6516264B2 (en) Method of treating copper smelting slag
JP2006307268A (en) Method for collecting dust formed in slag fuming
JP7269754B2 (en) How to recover precious metals
JP4525453B2 (en) Slag fuming method
JP4512838B2 (en) Metal recovery method
JP2009167469A (en) Method for treating copper-containing dross
US3091524A (en) Metallurgical process
JP4274069B2 (en) Reuse method of copper alloy and mat obtained by slag fuming method
JP5614056B2 (en) Method of operating copper smelting furnace and copper smelting furnace
EA033630B1 (en) Treatment of complex sulfide concentrate
JP3865496B2 (en) Slag reforming method
SU1705379A1 (en) Method of fuming of zinc and lead containing slags
JP2016191120A (en) Non-ferrous smelting slag treatment method
JP3969522B2 (en) Operation method of copper smelting furnace
EP0216618A2 (en) Recovery of volatile metal values from metallurgical slags
JP4274067B2 (en) Method for removing impurity metal from copper alloy and slag fuming method using the same
US692310A (en) Method of treating copper ores.
US1992999A (en) Process of making iron
SU1463782A1 (en) Method of processing slags of copper production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230117

R150 Certificate of patent or registration of utility model

Ref document number: 7213659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150