JP7210393B2 - Design support method and design support device for soundproof building - Google Patents
Design support method and design support device for soundproof building Download PDFInfo
- Publication number
- JP7210393B2 JP7210393B2 JP2019123094A JP2019123094A JP7210393B2 JP 7210393 B2 JP7210393 B2 JP 7210393B2 JP 2019123094 A JP2019123094 A JP 2019123094A JP 2019123094 A JP2019123094 A JP 2019123094A JP 7210393 B2 JP7210393 B2 JP 7210393B2
- Authority
- JP
- Japan
- Prior art keywords
- vibration
- sound pressure
- machine
- predicted
- sound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
Description
本発明は、防音建屋の設計段階で、起振機械の動特性に基づく振動及び当該振動に伴って生じる音の実測値を利用して、起振機械から周囲へ伝搬していく音を予測することが可能で、予測された音を防音建屋の設計要素として利用して、的確な防音建屋の設計に資する防音建屋の設計支援方法及び設計支援装置に関する。 In the design stage of a soundproof building, the present invention uses vibrations based on the dynamic characteristics of the vibration generator and actual measurements of the sound generated by the vibration to predict the sound that propagates from the vibration generator to the surroundings. The present invention relates to a soundproof building design support method and design support device that contributes to accurate soundproof building design by using predicted sound as a design element of a soundproof building.
防音性能を有する防音施設に関する技術として、例えば、特許文献1~3が知られている。特許文献1の「低周波音低減装置」は、特定周波数の音を吸収することで知られているヘルムホルツ共鳴器を設け、薄型で効率的な吸音を可能とするパネルを用いた低周波音低減装置を提供することを課題とし、パネルで音源を囲う低周波音低減装置において、パネルには音源側に設けられた首部と、その背後の空洞部より構成されるヘルムホルツ共鳴器が設けられ、ヘルムホルツ共鳴器の共鳴周波数は音源の低周波振動数に実質的に一致する値とし、音源から低周波音を吸音するように構成されている。
For example,
特許文献2の「超低周波音透過低減方法及び超低周波音透過低減装置」は、常時開放した超低周波防音ハウスの開口から超低周波音が漏れるのを抑制する超低周波音透過低減方法と、超低周波音透過低減装置を提供することを課題とし、超音波音源を覆う超低周波防音ハウスと、超低周波防音ハウスの常時開放した開口に設けられた超低周波音用リアクタンス型消音器とを備え、開口部から外界に放射される超低周波音を低減する超低周波音透過低減方法と超低周波音透過低減装置であって、超低周波音用リアクタンス型消音器が音響インピーダンスのみかけの抵抗成分と比例させた所定長さのぬれぶち長さを有する入口部と出口部を備え、ぬれぶち長さに比例して音響境界層を発達させてみかけの抵抗成分を増加し、音響エネルギーを熱エネルギーに変換して超低周波音を低減するように構成されている。
特許文献3の「超低周波音低減装置及びその超低周波音低減装置を備えた防音ハウス」は、超低周波音を効果的に低減するための装置及びその装置を備えた防音ハウスを提供することを課題とし、超低周波音を発する音源を覆う防音ハウスの開口部に設けられる超低周波音低減装置であって、前記超低周波音低減装置が、前記開口部の縁部に沿って前記防音ハウスの内側に突出して設けられ、筒状の形状を有し、前記防音ハウスと一体に設けられて構成されている。 Patent Document 3, "Infrasound reduction device and soundproof house equipped with the infrasound reduction device" provides a device for effectively reducing infrasound and a soundproof house equipped with the device. An infrasound reduction device provided in an opening of a soundproof house covering a sound source that emits infrasound, wherein the infrasound reduction device extends along the edge of the opening It is provided so as to protrude inside the soundproof house, has a cylindrical shape, and is configured to be integrally provided with the soundproof house.
一般に、運転状態で振動が生じる起振機械では、振動に伴って騒音が発生する。この騒音によって周辺環境が害されないように、起振機械は、防音ハウスなどの防音建屋によって包囲され、騒音が周辺に伝搬してしまうことを抑制している。 In general, a vibrating machine that vibrates during operation generates noise along with the vibration. In order to prevent the noise from harming the surrounding environment, the vibration machine is surrounded by a soundproof building such as a soundproof house to prevent the noise from propagating to the surroundings.
起振機械が発生する振動の振幅が特定方向で特に大きいなど、3次元空間における振動特性に指向性があり、かつまたその振動が周期的である場合、振動に伴う騒音には、指向性があって、もっぱら大きな音圧の音が伝搬する方向と比較的音圧の小さい音が伝搬する方向は異なり、当該騒音の方向特性は一様でない。 When vibration characteristics in three-dimensional space have directivity, such as when the amplitude of vibration generated by a vibrating machine is particularly large in a specific direction, and the vibration is periodic, the noise accompanying the vibration has directivity. Therefore, the direction in which sound with high sound pressure propagates differs from the direction in which sound with relatively low sound pressure propagates, and the directional characteristics of the noise are not uniform.
防音建屋に設備用開口など、常開の開口部を設ける必要がある場合に、当該開口部が、大きな音圧の音が伝搬する方向に形成されると、防音建屋で起振機械を覆ったとしても、防音効果は著しく損なわれてしまう。 When it is necessary to provide a normally open opening, such as an opening for equipment, in a soundproof building, if the opening is formed in the direction in which sound with a large sound pressure propagates, the vibration generating machine is covered with the soundproof building. However, the soundproofing effect is significantly impaired.
従来にあっては、防音建屋を建て、その内部に起振機械を設置した後でなければ、防音建屋による防音効果を確認することができなかった。そして、十分な防音効果が得られていない場合には、防音建屋の補修や改修の工事を行わなければならず、この工事に大変な手間を要していた。 In the past, the soundproofing effect of the soundproof building could not be confirmed until after the soundproof building was built and the vibration generating machine was installed inside. If a sufficient soundproof effect is not obtained, the soundproof building must be repaired or refurbished, and this work requires a great deal of time and effort.
防音建屋の設計の段階で、起振機械の動特性、具体的には指向性のある周期的な振動に伴って発生する騒音の伝搬状態を予測することができれば、大きな音圧の音が伝搬する方向を事前に避けて、開口部を形成することが可能となるため、このような予測が設計段階で可能となる方法及び装置の案出が望まれていた。 At the stage of designing a soundproof building, if it were possible to predict the dynamic characteristics of the vibrating machine, specifically the propagation of noise generated by directional periodic vibrations, it would be possible to predict the propagation of large sound pressure. Since it is possible to form an opening while avoiding the direction in which it is formed, it has been desired to devise a method and apparatus that enable such prediction at the design stage.
本発明は上記従来の課題に鑑みて創案されたものであって、防音建屋の設計段階で、起振機械の動特性に基づく振動及び当該振動に伴って生じる音の実測値を利用して、起振機械から周囲へ伝搬していく音を予測することが可能で、予測された音を防音建屋の設計要素として利用して、的確な防音建屋の設計に資する防音建屋の設計支援方法及び設計支援装置を提供することを目的とする。 The present invention was devised in view of the above-mentioned conventional problems. It is possible to predict the sound that propagates from the vibration machine to the surroundings, and by using the predicted sound as a design element of the soundproof building, a soundproof building design support method and design that contributes to the accurate design of the soundproof building. The purpose is to provide a support device.
本発明にかかる防音建屋の設計支援方法は、指向性のある周期的な振動に伴って音を発生する起振機械を包囲する防音建屋の設計を支援する方法であって、上記起振機械の近傍に設けた音圧測定器を用いて、該起振機械から、振動に起因して放出される音圧を、3次元直交座標系の各座標面について実測し、上記起振機械に設けた振動加速度測定器を用いて、該起振機械の振動加速度を、3次元直交座標系の各座標面について実測し、演算装置により、これら音圧及び振動加速度の実測値を用いる時間領域差分法で演算処理し、上記起振機械の位置を起点として、時間経過に従って3次元空間の座標位置へ伝搬していくと予測される予測音圧値を、上記防音建屋の設計要素として取得することを特徴とする。 A soundproof building design support method according to the present invention is a method for supporting the design of a soundproof building that encloses a vibration machine that generates sound in conjunction with directional periodic vibrations. Using a sound pressure measuring instrument provided nearby, the sound pressure emitted from the vibration machine due to vibration was actually measured for each coordinate plane of a three-dimensional orthogonal coordinate system, and provided to the vibration machine. Using a vibration acceleration measuring instrument, the vibration acceleration of the vibrating machine is actually measured for each coordinate plane of a three-dimensional orthogonal coordinate system, and a calculation device is used to measure the sound pressure and vibration acceleration using the time domain finite difference method. Arithmetic processing is performed, and a predicted sound pressure value predicted to propagate from the position of the vibration generating machine as a starting point to a coordinate position in a three-dimensional space over time is obtained as a design element of the soundproof building. and
前記予測音圧値は、瞬間ごとに予測される瞬間予測音圧値の相加平均値であることを特徴とする。 The predicted sound pressure value is an arithmetic mean value of instantaneous predicted sound pressure values predicted for each instant.
前記演算装置の演算処理により、前記予測音圧値を用いて、前記起振機械の周囲に広がる3次元空間における予測音圧分布を取得することを特徴とする。 A predicted sound pressure distribution in a three-dimensional space that spreads around the vibration machine is obtained using the predicted sound pressure value through arithmetic processing of the arithmetic unit.
前記音圧及び前記振動加速度の実測は、測定タイミングが一致するように行われることを特徴とする。 The sound pressure and the vibration acceleration are actually measured at the same timing.
本発明にかかる防音建屋の設計支援装置は、指向性のある周期的な振動に伴って音を発生する起振機械を包囲する防音建屋の設計を支援する装置であって、上記起振機械の近傍に設けられ、該起振機械から、振動に起因して放出される音圧を、3次元直交座標系の各座標面について実測する音圧測定器と、上記起振機械に設けられ、該起振機械の振動加速度を、3次元直交座標系の各座標面について実測する振動加速度測定器と、上記音圧測定器及び上記振動加速度測定器で実測された音圧及び振動加速度の実測値を用いて時間領域差分法で演算処理し、上記起振機械を起点として時間経過に従って3次元空間へ伝搬していくと予測される予測音圧値を、上記防音建屋の設計要素として取得する演算装置とを備えたことを特徴とする。 A soundproof building design support device according to the present invention is a device that supports the design of a soundproof building that encloses a vibration machine that generates sound in conjunction with directional periodic vibration. a sound pressure measuring device provided in the vicinity of the vibration excitation machine for actually measuring sound pressure emitted from the vibration excitation machine due to vibration on each coordinate plane of a three-dimensional orthogonal coordinate system; A vibration acceleration measuring device that actually measures the vibration acceleration of a vibrating machine on each coordinate plane of a three-dimensional orthogonal coordinate system, and the actual values of the sound pressure and vibration acceleration measured by the sound pressure measuring device and the vibration acceleration measuring device. A computing device that performs computational processing by the time-domain finite difference method using the above-mentioned soundproof building, and obtains, as a design element of the above-mentioned soundproof building, a predicted sound pressure value that is predicted to propagate in a three-dimensional space over time starting from the vibration-exciting machine. and
本発明にかかる防音建屋の設計支援方法及び設計支援装置にあっては、防音建屋の設計段階で、起振機械の動特性に基づく振動及び当該振動に伴って生じる音の実測値を利用して、起振機械から周囲へ伝搬していく音を予測することができ、予測された音を防音建屋の設計要素として利用して、的確な防音建屋の設計に役立てることができる。 In the soundproof building design support method and design support device according to the present invention, at the stage of designing a soundproof building, the vibration based on the dynamic characteristics of the vibration machine and the actual measurement value of the sound generated by the vibration are used. , the sound propagating from the vibration machine to the surroundings can be predicted, and the predicted sound can be used as a design element of the soundproof building, which can be used for the accurate design of the soundproof building.
以下に、本発明にかかる防音建屋の設計支援方法及び設計支援装置の好適な実施形態を、添付図面を参照して詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION A preferred embodiment of a soundproof building design support method and design support device according to the present invention will be described in detail below with reference to the accompanying drawings.
指向性のある周期的な振動を生じる起振機械の一例として、振動ふるい機が知られている。振動ふるい機は例えば、シールド工法によるトンネル推進工事、連続壁工事、基礎杭打ち工事、ダム・港湾等で発生する排泥水から残土と泥水を分離するために使用される。 A vibrating sieve machine is known as an example of a vibrating machine that produces directional periodic vibrations. A vibrating sieve machine is used, for example, to separate surplus soil and muddy water from muddy water generated in shield tunneling construction, continuous wall construction, foundation piling construction, dams, harbors, and the like.
振動ふるい機1は、図1に示すように、バネ2上に支持した槽3の上に接するようにして、回転軸(図示せず)を偏心して取り付けた回転ドラム4を設け、回転ドラム4の偏心回転によって槽3を上下方向に変位させることにより、ふるい作用が得られるようにしている。
As shown in FIG. 1, the vibrating
そして、槽3内に設置した「ふるい面」となる分離用スクリーン5上方まで延設した排泥管6から、スクリーン5上に向けて、土砂や礫を含む排泥水7を投入し、スクリーン5で受けて分離した土砂や礫8は、槽3に付設した排出ダクト9からベルトコンベアに受け渡されて搬出され、スクリーン5を透過した泥水10は排水系に排出されるようになっている。
Then, from a
振動ふるい機1は、槽3の動きで空気が加振されるため、超低周波数(1~20Hz程度)の騒音を発生し、これが周囲に伝搬する。
The vibrating
振動ふるい機1から発生する超低周波の音は、回転ドラム4の偏心回転による動特性のため、指向性を持つが、振動ふるい機1自体の動特性と伝搬する超低周波の音との関係は、簡単には把握することができない。
The ultra-low frequency sound generated from the vibrating
ふるい分けした土砂や礫8をベルトコンベアで搬出する関係上、振動ふるい機1を防音建屋で包囲する場合、防音建屋には、振動ふるい機1の稼働中常開とする開口部を設ける必要がある。開口部の設置位置は、超低周波の音の指向性を把握して、音圧の大きな音が伝搬する方向を避け、比較的音圧の小さな音が伝搬してくる位置に設けることが望ましい。
When the vibrating
本実施形態にあっては、振動ふるい機1について計測される音圧及び振動加速度を用い、周知の時間領域差分法(FDTD法)により、音の伝搬状況、具体的には超低周波の音の音圧分布の時間的な変化を、事前の設計段階で予測するようにしている。
In this embodiment, using the sound pressure and vibration acceleration measured for the vibrating
まず、例えば、振動ふるい機1の製作工場などで、振動ふるい機1の振動と、振動に伴って振動ふるい機から発せられる音を計測する。
First, for example, at a manufacturing factory of the vibrating
振動ふるい機1(槽3)に、振動ふるい機1の振動加速度を時々刻々実測するための振動加速度検出器11を配設する。
A
振動加速度測定器11は、3軸計測タイプのものが用いられ、これにより、X-Y-Z3次元直交座標系の各座標面XY,YZ,XZについて、振動加速度が時間経過に従って測定される。
The vibration
また、振動ふるい機1を取り囲む仮設フレーム12などを用いて、振動ふるい機1の近傍周囲に、振動を生じる振動ふるい機1から放出される音圧を時々刻々実測するための音圧測定器13を配設する。
A sound
具体的には、振動ふるい機1の前面・後面・左右両側面及び上面に面するように位置させて音圧測定器13を設け、これにより、X-Y-Z3次元直交座標系の各座標面XY,YZ,XZについて、音圧を時間経過に従って測定できるようにする。
Specifically, a sound
図示例では、音圧測定器13は、前面及び後面に4つずつ、左右両側面及び上面に6つずつ配設されている。配設個数は、いくつであってもよい。複数設けた面については、それら音圧測定器13で実測された音圧の相加平均値が用いられる。また、実測にあたっては、振動ふるい機1から適宜離れた位置に、レファレンス用の追加の音圧測定器を設置して計測を行うことが好ましい。
In the illustrated example, four sound
図2及び図3には、実際に振動ふるい機1の振動加速度及び音圧を計測した例が示されている。音圧及び振動加速度の実測は、測定タイミングが一致するように行われ、サンプリング周波数を、音圧測定器13及び振動加速度測定器11共に、44,100Hzとした。
2 and 3 show examples of actually measuring the vibration acceleration and sound pressure of the vibrating
図2は、上記各面付近の音圧周波数特性を示すグラフ図である。すべての面の周波数特性は、約80Hz以下においてほぼ同等であり、回転ドラム4の回転数に起因する16Hz付近(=980rpm/60秒)において非常に大きな音圧の音が発生していた。
FIG. 2 is a graph showing sound pressure frequency characteristics near each surface. The frequency characteristics of all surfaces were substantially the same at about 80 Hz or less, and a very large sound pressure sound was generated near 16 Hz (=980 rpm/60 seconds) due to the rotational speed of the
図3には、3次元直交座標系の各座標面(YZ面、XZ面、XY面)における振動ふるい機1の振動加速度の時々刻々の変化が示されていてる。偏心回転する回転ドラム4の動きに追従し、振動ふるい機1(槽3)についても、偏心して回転する動きが繰り返し見られた。
FIG. 3 shows changes in the vibration acceleration of the vibrating
水平方向(X-Y方向)よりも上下方向(Z方向)の振動加速度が大きく、また左右方向(X方向)よりも前後方向(Y方向)の振動加速度が大きく、振動ふるい機1では、このように指向性のある振動が時間経過に従って周期的に発生していることが分かった。 The vibration acceleration in the vertical direction (Z direction) is greater than that in the horizontal direction (XY direction), and the vibration acceleration in the longitudinal direction (Y direction) is greater than that in the horizontal direction (X direction). It was found that the directional vibration occurred periodically as shown in the figure.
この例では、振動ふるい機1から発生する超低周波の音(騒音)は、槽3が空気を加振することで生じていて、その周期は、約16Hzであった。
In this example, the ultra-low frequency sound (noise) generated by the vibrating
次に、実測された振動ふるい機1からの音圧及びその振動加速度から、演算装置14(図1参照)の演算処理により、音の予測が行われる。演算装置14は、音圧測定器13や振動加速度測定器11から実測値を無線で取得する無線機能を備えると共に、キーボードなどの入力手段やモニターなどの出力手段と接続され、演算処理を実行して、入力データから結果を出力するパーソナルコンピュータなどで構成される。
Next, based on the actually measured sound pressure and vibration acceleration from the vibrating
演算装置14は、音圧測定器13及び振動加速度測定器11で時々刻々実測された音圧と振動加速度の値を用い、これらを入力データとして、FDTD法により、振動ふるい機1周囲に予測される音場を計算して出力する。
The
本実施形態では、FDTD法は、実測された音圧と振動加速度の実測値を初期条件として、ヘルムホルツの波動方程式を差分化し、振動ふるい機1周囲の空間(解析領域D)について、音場の状態を示す音圧と粒子速度(図4参照)を、音圧の予測値として算出する。演算装置14は、時々刻々の予測値を算出する。
In the present embodiment, the FDTD method differentiates the Helmholtz wave equation using actually measured sound pressure and vibration acceleration as initial conditions, and calculates the sound field The sound pressure and particle velocity (see FIG. 4) indicating the state are calculated as predicted values of the sound pressure. The
図4は、振動ふるい機1を起点として、すなわち座標原点として、XY座標面(X及びYは正値)の解析領域Dを示している。図示例では、図4(A)は、計算点k(座標位置)における振動ふるい機1から放出された音の、時刻t=nにおける音圧及び粒子速度が、当該計算点における「色の濃淡」と「ベクトル」の表示によって表される様子を示している。
FIG. 4 shows an analysis area D on an XY coordinate plane (where X and Y are positive values) with the vibrating
これら表示は、時間経過に従って3次元空間の座標位置へ伝搬していくと予測される予測音圧値(計算値)の図示的表示である。 These displays are graphical representations of predicted sound pressure values (calculated values) that are predicted to propagate to coordinate positions in a three-dimensional space over time.
図4(B)は、時刻t=n+1における音圧及び粒子速度を表していて、振動に伴う音が伝搬していく様子が理解される。 FIG. 4(B) shows the sound pressure and particle velocity at time t=n+1, from which it can be understood how sound propagates due to vibration.
図4(C)は、さらに時刻t=n+2における音圧及び粒子速度を表していて、振動に伴う音がさらに伝搬していく様子が理解される。 FIG. 4(C) further shows the sound pressure and particle velocity at time t=n+2, from which it can be understood how the sound accompanying the vibration propagates further.
図4(B)と図4(C)を対比すると、時刻t=n+1における計算点kPの音が、時刻t=n+2において、計算点kQ及びkRへ推移していく様子が分かる。 By comparing FIG. 4B and FIG. 4C, it can be seen that the sound at calculation point kP at time t=n+1 transitions to calculation points kQ and kR at time t=n+2.
図4は、解析領域Dの要部拡大図であり、図5には、図4を含んで、振動ふるい機1の周囲に広がる解析領域Dが計算点kと共に示されている。
FIG. 4 is an enlarged view of the main part of the analysis area D, and FIG. 5 shows the analysis area D extending around the vibrating
図4は、X及びYが正値の座標面の解析領域についての表現であり、Xが正値、Yが負値の座標面、Xが負値、Yが正値の座標面、並びにX及びYが負値の座標面における解析領域も同様に、表現することができ、これら解析領域により、振動ふるい機1周囲のXY平面における音の伝搬の様子が表現される。
FIG. 4 is a representation for the analysis domain of the coordinate planes with positive X and Y values, the coordinate plane with positive X and negative Y values, the coordinate plane with negative X and positive Y values, and the coordinate plane with positive X and Y values. , and Y can be similarly expressed in the coordinate planes with negative values, and these analysis areas express the propagation of sound in the XY plane around the vibrating
同様に、XZ座標面及びYZ座標面の解析領域も表現することができ、これにより、振動ふるい機1周囲の3次元空間について、各座標位置(計算点k)へ伝搬していくと予測される予測音圧値(計算値そのもの)及び図示的表示が取得され、防音建屋の設計要素として用いられる。
Similarly, the analysis regions of the XZ coordinate plane and the YZ coordinate plane can also be expressed, and it is predicted that the three-dimensional space around the vibrating
図6には、演算装置14の演算処理による予測音圧値を用いて、解析領域D全体(XY座標面)の音場のある瞬間の音圧分布、すなわち振動ふるい機1の周囲に広がる3次元空間における瞬時の予測音圧分布が示されている。
FIG. 6 shows the sound pressure distribution at an instant when there is a sound field in the entire analysis area D (XY coordinate plane) using the predicted sound pressure values obtained by the arithmetic processing of the
図示では、振動ふるい機1の左下方向に向かう音圧が大きい(表示される色の濃度が濃い)ことが理解される。XZ座標面及びYZ座標面に対しても、同様な瞬間予測音圧分布を取得することができる。
In the drawing, it can be understood that the sound pressure in the lower left direction of the vibrating
図7は、各計算点kにおける瞬間毎の予測音圧値(瞬間予測音圧値)の所定期間における相加平均値を用いて、XY座標面における予測音圧分布(平均予測音圧分布)を表現したもの、すなわち図6に示した瞬間予測音圧分布の時間経過に従う累積の相加平均値で予測音圧分布を表現したものである。 FIG. 7 shows a predicted sound pressure distribution (average predicted sound pressure distribution) on the XY coordinate plane using the arithmetic average value in a predetermined period of the instantaneous predicted sound pressure value (instantaneous predicted sound pressure value) at each calculation point k. , that is, the predicted sound pressure distribution is expressed by the cumulative arithmetic mean value of the instantaneous predicted sound pressure distribution shown in FIG.
XZ座標面及びYZ座標面に対しても、同様な平均予測音圧分布を取得することができる。 Similar average predicted sound pressure distributions can be obtained for the XZ coordinate plane and the YZ coordinate plane.
振動ふるい機1の動特性から、図示では、振動ふるい機1の右斜め上方向から時計回りに左方向にわたって大きな音圧の範囲が見受けられ、この範囲には、高い防音性能で防音壁15を設置するようにし、左斜め上方向に、音圧の小さな範囲が見受けられることから、この範囲に合致させて防音建屋の開口部16を形成することが好ましいことが分かる。
From the dynamic characteristics of the vibrating
以上説明したように本実施形態に係る防音建屋の設計支援方法及び設計支援装置によれば、振動ふるい機1の近傍に設けた音圧測定器13を用いて、振動ふるい機1から、振動に起因して放出される音圧を、3次元直交座標系の各座標面について実測し、振動ふるい機1に設けた振動加速度測定器11を用いて、振動ふるい機1の振動加速度を、3次元直交座標系の各座標面について実測し、演算装置14により、これら音圧及び振動加速度の実測値を用いる時間領域差分法で演算処理し、振動ふるい機1の位置を起点として、時間経過に従って3次元空間の座標位置へ伝搬していくと予測される予測音圧値を、防音建屋の設計要素として取得するようにしていて、防音建屋の設計段階で、振動ふるい機1の動特性に基づく振動及び当該振動に伴って生じる音の実測値を利用して、振動ふるい機1から周囲へ伝搬していく音を3次元空間で予測することができ、予測された音を防音建屋の設計要素として利用して、的確な防音建屋の設計に役立てることができる。
As described above, according to the design support method and the design support device for a soundproof building according to the present embodiment, the sound
1 振動ふるい機
11 振動加速度測定器
13 音圧測定器
14 演算装置
1 vibrating
Claims (5)
上記起振機械の近傍に設けた音圧測定器を用いて、該起振機械から、振動に起因して放出される音圧を、3次元直交座標系の各座標面について実測し、
上記起振機械に設けた振動加速度測定器を用いて、該起振機械の振動加速度を、3次元直交座標系の各座標面について実測し、
演算装置により、これら音圧及び振動加速度の実測値を用いる時間領域差分法で演算処理し、上記起振機械の位置を起点として、時間経過に従って3次元空間の座標位置へ伝搬していくと予測される予測音圧値を、上記防音建屋の設計要素として取得することを特徴とする防音建屋の設計支援方法。 A method for assisting the design of a soundproof building surrounding a vibrating machine that produces sound in conjunction with directional periodic vibration, comprising:
Using a sound pressure measuring instrument provided near the vibration excitation machine, the sound pressure emitted from the vibration excitation machine due to vibration is actually measured on each coordinate plane of a three-dimensional orthogonal coordinate system,
Using a vibration acceleration measuring device provided in the vibration machine, the vibration acceleration of the vibration machine is actually measured on each coordinate plane of a three-dimensional orthogonal coordinate system,
An arithmetic unit performs arithmetic processing by the time domain finite difference method using the measured values of the sound pressure and vibration acceleration, and predicts that the position of the vibration generating machine is the starting point and propagates to the coordinate position in the three-dimensional space as time passes. A design support method for a soundproof building, characterized in that a predicted sound pressure value to be estimated is acquired as a design element of the soundproof building.
上記起振機械の近傍に設けられ、該起振機械から、振動に起因して放出される音圧を、3次元直交座標系の各座標面について実測する音圧測定器と、
上記起振機械に設けられ、該起振機械の振動加速度を、3次元直交座標系の各座標面について実測する振動加速度測定器と、
上記音圧測定器及び上記振動加速度測定器で実測された音圧及び振動加速度の実測値を用いて時間領域差分法で演算処理し、上記起振機械を起点として時間経過に従って3次元空間へ伝搬していくと予測される予測音圧値を、上記防音建屋の設計要素として取得する演算装置とを備えたことを特徴とする防音建屋の設計支援装置。 A device that supports the design of a soundproof building that encloses a vibrating machine that generates sound with directional periodic vibration,
a sound pressure measuring instrument provided in the vicinity of the vibration excitation machine for actually measuring sound pressure emitted from the vibration excitation machine due to vibration on each coordinate plane of a three-dimensional orthogonal coordinate system;
a vibration acceleration measuring device provided in the vibration excitation machine for actually measuring the vibration acceleration of the vibration excitation machine on each coordinate plane of a three-dimensional orthogonal coordinate system;
Using the sound pressure and vibration acceleration actually measured by the sound pressure measuring instrument and the vibration acceleration measuring instrument, arithmetic processing is performed by the time domain finite difference method, and it propagates to the three-dimensional space according to the passage of time starting from the vibration machine. A soundproof building design support device, comprising: an arithmetic device for obtaining a predicted sound pressure value predicted as the building progresses, as a design element of the soundproof building.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019123094A JP7210393B2 (en) | 2019-07-01 | 2019-07-01 | Design support method and design support device for soundproof building |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019123094A JP7210393B2 (en) | 2019-07-01 | 2019-07-01 | Design support method and design support device for soundproof building |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021009563A JP2021009563A (en) | 2021-01-28 |
JP7210393B2 true JP7210393B2 (en) | 2023-01-23 |
Family
ID=74199402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019123094A Active JP7210393B2 (en) | 2019-07-01 | 2019-07-01 | Design support method and design support device for soundproof building |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7210393B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113282989A (en) * | 2021-05-31 | 2021-08-20 | 中铁十六局集团北京轨道交通工程建设有限公司 | Cloud model based shield tunneling real-time risk assessment method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001075574A (en) | 1999-09-02 | 2001-03-23 | Kajima Corp | Low-frequency sound decreasing device |
JP2003156388A (en) | 2001-11-22 | 2003-05-30 | Okumura Corp | Sensing method for noise environment, trial listening apparatus and information storage medium |
JP2005241608A (en) | 2004-02-27 | 2005-09-08 | Ricoh Co Ltd | Sound source probe device, sound source probe method, sound source probe program and storage medium |
JP2012014246A (en) | 2010-06-29 | 2012-01-19 | Shimizu Corp | Sound field analyzing method |
JP2016109607A (en) | 2014-12-09 | 2016-06-20 | 凸版印刷株式会社 | Strong motion seismograph, measuring system, and damage state determination method |
JP2019035628A (en) | 2017-08-10 | 2019-03-07 | 公益財団法人鉄道総合技術研究所 | Space sound analysis method and system thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2667760B2 (en) * | 1992-04-10 | 1997-10-27 | アスモ株式会社 | Machine operation noise inspection device |
JP3607763B2 (en) * | 1994-11-17 | 2005-01-05 | 松下電器産業株式会社 | Vibration combustion analysis apparatus and combustor manufacturing method |
-
2019
- 2019-07-01 JP JP2019123094A patent/JP7210393B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001075574A (en) | 1999-09-02 | 2001-03-23 | Kajima Corp | Low-frequency sound decreasing device |
JP2003156388A (en) | 2001-11-22 | 2003-05-30 | Okumura Corp | Sensing method for noise environment, trial listening apparatus and information storage medium |
JP2005241608A (en) | 2004-02-27 | 2005-09-08 | Ricoh Co Ltd | Sound source probe device, sound source probe method, sound source probe program and storage medium |
JP2012014246A (en) | 2010-06-29 | 2012-01-19 | Shimizu Corp | Sound field analyzing method |
JP2016109607A (en) | 2014-12-09 | 2016-06-20 | 凸版印刷株式会社 | Strong motion seismograph, measuring system, and damage state determination method |
JP2019035628A (en) | 2017-08-10 | 2019-03-07 | 公益財団法人鉄道総合技術研究所 | Space sound analysis method and system thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2021009563A (en) | 2021-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Squicciarini et al. | Use of a reciprocity technique to measure the radiation efficiency of a vibrating structure | |
Richter et al. | A review of time-domain impedance modelling and applications | |
JP7210393B2 (en) | Design support method and design support device for soundproof building | |
Osiński et al. | Assessment of energetistic measuring techniques and their application to diagnosis of acoustic condition of hydraulic machinery and equipment | |
Narayanan et al. | Acoustic characteristics of chamfered Hartmann whistles | |
Wijnant et al. | Development and application of a new method for the in-situ measurement of sound apsorption | |
Hajczak et al. | Landing gear interwheel tonal noise characterization with the boundary element method | |
Zhang et al. | Low-frequency fluctuations and their suppression in the 5.5 m× 4 m aeroacoustic wind tunnel at CARDC | |
JP2015094731A (en) | Elastic wave velocity measuring method and elastic wave velocity measuring system | |
Liu et al. | Demonstration of vibro-acoustic reciprocity including scale modeling | |
JP6582344B2 (en) | Ground structure exploration method and ground structure exploration device | |
Kawashima et al. | Measurements of Unsteady Force Response on Airfoils with Arbitrarily Shaped Thickness due to Incident Large-Scale Turbulence | |
JP5519912B2 (en) | Ultra-low frequency sound transmission reduction method and ultra-low frequency sound transmission reduction device | |
JP6379261B2 (en) | Elastic wave velocity measuring method and elastic wave velocity measuring system | |
JP3977671B2 (en) | Method and apparatus for measuring the depth of cracks in structures | |
JP2014222311A (en) | Noise reduction device and noise reduction method | |
Sanders et al. | Further flow and noise predictions of the Gulfstream PDCC nose landing gear on the CEDRE unstructured solver | |
Suvorov et al. | Verification of the Numerical Model in the Problem of Studying Directional Characteristics of Sound Radiation from Inhomogeneous Shells | |
Reboul et al. | Vibroacoustic prediction of mechanisms using a hybrid method | |
Brinkmeier et al. | Simulation and analysis of tire road noise using a finite element approach | |
WO2016185726A1 (en) | State assessment device, state assessment method, and program recording medium | |
Tang et al. | Stiff light composite panels for duct noise reduction | |
Lovat et al. | Calculation of the acoustic radiation of a parallelepipedic structure by using acceleration measurements. Part 1: Evaluation of inaccuracies attached to the simplifications of the model in the case of a single vibrating side | |
JP5992169B2 (en) | Method for reducing low-frequency sound generated from mechanical equipment | |
Peng et al. | Modelling and development of a resonator-based noise mitigation system for offshore pile driving |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211214 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20221208 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221220 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230111 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7210393 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |