JP7208182B2 - Stationary induction equipment and transformers - Google Patents

Stationary induction equipment and transformers Download PDF

Info

Publication number
JP7208182B2
JP7208182B2 JP2020025974A JP2020025974A JP7208182B2 JP 7208182 B2 JP7208182 B2 JP 7208182B2 JP 2020025974 A JP2020025974 A JP 2020025974A JP 2020025974 A JP2020025974 A JP 2020025974A JP 7208182 B2 JP7208182 B2 JP 7208182B2
Authority
JP
Japan
Prior art keywords
core
magnetic
induction device
stationary induction
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020025974A
Other languages
Japanese (ja)
Other versions
JP2021132091A (en
Inventor
直幸 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2020025974A priority Critical patent/JP7208182B2/en
Priority to PCT/JP2020/036691 priority patent/WO2021166314A1/en
Publication of JP2021132091A publication Critical patent/JP2021132091A/en
Application granted granted Critical
Publication of JP7208182B2 publication Critical patent/JP7208182B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/25Magnetic cores made from strips or ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/10Single-phase transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/12Two-phase, three-phase or polyphase transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、静止誘導機器および変圧器に関する。 The present invention relates to static induction machines and transformers.

変圧器やリアクトル等の静止誘導機器(静止電磁機器)に用いられる鉄心には、方向性電磁鋼板、アモルファス合金、ナノ結晶合金等の軟磁性材料が広く用いられている。これらの各磁性材料は、それらの損失(鉄損)、飽和磁束密度、機械的強度、コスト等の諸要因に応じて各種の静止誘導機器に使われる。静止誘導機器の一種である変圧器を例に取ると、これらの各磁性材料は、小容量の受配電向けから大容量の送配電向けの変圧器まで、その用途に合わせて使い分けがなされている。 Soft magnetic materials such as grain-oriented electrical steel sheets, amorphous alloys, and nanocrystalline alloys are widely used for iron cores used in static induction devices (static electromagnetic devices) such as transformers and reactors. Each of these magnetic materials is used in various stationary induction devices depending on factors such as their loss (iron loss), saturation magnetic flux density, mechanical strength, and cost. Taking a transformer, which is a type of static induction device, as an example, each of these magnetic materials is used differently depending on the application, from small-capacity power receiving/distribution transformers to large-capacity power transmission/distribution transformers. .

例えば、方向性電磁鋼板とアモルファス合金を比較した場合、方向性電磁鋼板は飽和磁束密度が高いので鉄心の小型化が容易であり、かつ機械的強度が高いので、大容量の送配電向けの変圧器用鉄心に好適である。これに対して、アモルファス合金は、方向性電磁鋼板より損失が小さいので変圧器の高効率化に優位性があるが、飽和磁束密度と機械的強度は方向性電磁鋼板に比べて低いため、主に、小~中容量の受配電向け変圧器用鉄心として実用化されている。 For example, when comparing grain-oriented electrical steel sheets and amorphous alloys, grain-oriented electrical steel sheets have a high saturation magnetic flux density, making it easy to reduce the size of the iron core. Suitable for iron cores for dexterity. Amorphous alloys, on the other hand, have lower losses than grain-oriented electrical steel sheets, so they are superior in improving the efficiency of transformers. In addition, it has been put to practical use as an iron core for transformers for small to medium-capacity power distribution.

ここで,前記したような2種類以上の鉄心材料を組み合わせた「複合鉄心」を使用することにより、性能が高く小型化が容易な電磁誘導機器を実現することが可能となる場合がある。例えば、方向性電磁鋼板における高い飽和磁束密度と機械的強度と、アモルファス合金の低い損失を兼ね備えた性能の高い静止誘導機器(例えば、変圧器)が実現できる可能性がある。このような考えに基づく先行技術として、特開平8-88128号公報(特許文献1)が知られている。この特許文献1には、鉄損の低減に有効なアモルファス巻鉄心を内側にし、電磁鋼板巻鉄心を外側に配置した多層変圧器鉄心の技術が開示されている。 Here, by using a "composite core" in which two or more types of core materials are combined as described above, it may be possible to realize an electromagnetic induction device with high performance and easy miniaturization. For example, it may be possible to realize a high-performance static induction device (such as a transformer) that combines the high saturation magnetic flux density and mechanical strength of a grain-oriented electrical steel sheet with the low loss of an amorphous alloy. Japanese Patent Application Laid-Open No. 8-88128 (Patent Document 1) is known as a prior art based on such an idea. This patent document 1 discloses a technique of a multi-layer transformer core in which an amorphous wound core is placed inside and an electromagnetic steel sheet wound core is arranged outside, which is effective in reducing iron loss.

また、2種類の磁性材料を組み合わせた複合鉄心を用いた変圧器に関する先行技術として、特表2018-502446号公報(特許文献2)が知られている。この特許文献2には、鉄を主成分とする軟磁性アモルファス合金と、鉄を主成分とする軟磁性ナノ結晶合金から構成される三相巻鉄心において、高い飽和磁化を有する前者の断面積比率が2~50%,好ましくは4~40%であることを満たす複合巻鉄心からなる変圧器に関する技術が開示されている。 Further, Japanese Patent Application Publication No. 2018-502446 (Patent Document 2) is known as a prior art related to a transformer using a composite core in which two types of magnetic materials are combined. In this patent document 2, in a three-phase wound core composed of a soft magnetic amorphous alloy mainly composed of iron and a soft magnetic nanocrystalline alloy mainly composed of iron, the cross-sectional area ratio of the former having high saturation magnetization is 2 to 50%, preferably 4 to 40%.

特開平8-88128号公報JP-A-8-88128 特表2018-502446号公報Japanese Patent Publication No. 2018-502446

特許文献1で開示されている技術は、方向性電磁鋼板の持つ高い機械的強度とアモルファス合金の持つ小さな鉄損を兼ね備えた静止誘導機器を実現するものである。特許文献2で開示されている技術は、ナノ結晶合金より高い飽和磁束密度を持つアモルファス合金と,アモルファス合金よりさらに小さい鉄損を持つナノ結晶合金を組み合わせて、両材料の優位な特性を兼ね備えた静止誘導機器を実現するものである。 The technology disclosed in Patent Document 1 realizes a stationary induction device that combines the high mechanical strength of grain-oriented electrical steel sheets with the low core loss of amorphous alloys. The technology disclosed in Patent Document 2 combines an amorphous alloy with a saturation magnetic flux density higher than that of a nanocrystalline alloy and a nanocrystalline alloy with a core loss that is even smaller than that of an amorphous alloy, and combines the superior properties of both materials. It realizes a stationary induction device.

一方、両文献とも,複合鉄心を構成する2つの磁性材料の利点を生かすための具体的な設計条件を定量化しておらず、複合鉄心の仕様によっては、各磁性材料の十分な特性を生かしきれず、結果的に性能の高い静止誘導機器を実現できていない可能性がある。 On the other hand, both documents do not quantify the specific design conditions for making the most of the advantages of the two magnetic materials that make up the composite core, and depending on the specifications of the composite core, the sufficient characteristics of each magnetic material cannot be fully utilized. As a result, there is a possibility that a high-performance stationary induction device cannot be realized.

そこで、本発明の目的は、性能を高め小型化を可能にした複合鉄心を用いた静止誘導機器および変圧器を提供することである。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a static induction device and a transformer using a composite iron core that has improved performance and can be miniaturized.

本発明は、その一例を挙げると、2種以上の磁性材料から構成された複合鉄心を用いる静止誘導機器であって、前記複合鉄心内で最も飽和磁束密度が高い磁性材料内の磁束密度が、前記最も飽和磁束密度が高い磁性材料のみで構成した場合の鉄心の磁束密度以下であり、かつ前記複合鉄心における前記2種以上の磁性材料の断面積の比率に応じた磁束密度の加重平均値よりも大きくなるように、前記複合鉄心内の平均磁束密度を設定した静止誘導機器である。 As an example, the present invention is a stationary induction device using a composite core composed of two or more magnetic materials, wherein the magnetic material having the highest saturation magnetic flux density in the composite core has a magnetic flux density of From the weighted average value of the magnetic flux density that is equal to or lower than the magnetic flux density of the core composed only of magnetic materials with the highest saturation magnetic flux density and according to the ratio of the cross-sectional areas of the two or more magnetic materials in the composite core In the stationary induction device, the average magnetic flux density in the composite core is set so that

本発明によれば、性能の高い複合鉄心を用いた静止誘導機器および変圧器を提供することができ、鉄心の断面積の小型化を実現した静止誘導機器および変圧器を提供することができる。 According to the present invention, it is possible to provide a static induction device and a transformer using a high-performance composite core, and to provide a static induction device and a transformer in which the cross-sectional area of the core is reduced.

本発明の実施例1における三相五脚型変圧器を示す図である。1 is a diagram showing a three-phase five-legged transformer in Example 1 of the present invention; FIG. 本発明の実施例1における複合鉄心に用いるアモルファス磁性材料とナノ結晶磁性材料の磁化曲線を示す図である。FIG. 4 is a diagram showing magnetization curves of an amorphous magnetic material and a nanocrystalline magnetic material used for the composite core in Example 1 of the present invention; 本発明の実施例1における複合鉄心の平均磁束密度とアモルファス,方向性電磁鋼板鉄心内の磁束密度の関係を示す計算結果を示す図である。FIG. 4 is a diagram showing calculation results showing the relationship between the average magnetic flux density of the composite core and the magnetic flux density in the amorphous, grain-oriented electrical steel sheet core in Example 1 of the present invention. 本発明の実施例1における,三相五脚型変圧器の複合積層鉄心に占めるアモルファス鉄心の断面積比率と、複合鉄心の平均磁束密度の関係を示す計算結果を示す図である。FIG. 4 is a diagram showing calculation results showing the relationship between the cross-sectional area ratio of the amorphous core in the composite laminated core of the three-phase five-legged transformer and the average magnetic flux density of the composite core in Example 1 of the present invention. 本発明の実施例1における,三相五脚型変圧器の複合鉄心に占めるアモルファス鉄心の断面積比率と、複合積層鉄心の外形相対体積の関係を示す計算結果を示す図である。FIG. 4 is a diagram showing calculation results showing the relationship between the cross-sectional area ratio of the amorphous core in the composite core of the three-phase five-legged transformer and the outer shape relative volume of the composite laminated core in Example 1 of the present invention. 本発明の実施例2における三相五脚型変圧器の中央横断面を示す図である。FIG. 5 is a view showing a central cross section of a three-phase five-legged transformer in Embodiment 2 of the present invention; 本発明の実施例3における単相変圧器の正面図および中央横断面図である。It is the front view and center cross-sectional view of the single-phase transformer in Example 3 of this invention. 本発明の実施例4における三相三脚型巻鉄心を用いた変圧器の正面図および中央横断面図である。FIG. 10 is a front view and a central cross-sectional view of a transformer using a three-phase tripod wound core in Example 4 of the present invention;

以下,本発明を実施するための形態(実施例)について、図面を用いて詳細に説明する。以下の実施例では、静止誘導機器の一例である「変圧器」を例にとり説明するが、本発明は変圧器に限定されるものではなく、静止誘導機器全般に適用できる発明である。なお、以下の説明では、同じ機器や、同じ動作処理などには同一符号(番号)を付し、すでに説明した機器や動作は、後に説明する図面の説明では省略する場合がある。 EMBODIMENT OF THE INVENTION Hereinafter, the form (Example) for implementing this invention is demonstrated in detail using drawing. In the following embodiments, a "transformer", which is an example of static induction equipment, will be described as an example, but the present invention is not limited to transformers, and can be applied to static induction equipment in general. In the following description, the same reference numerals (numbers) are assigned to the same devices and the same operation processes, and the devices and operations that have already been described may be omitted in the description of the drawings that will be described later.

≪実施例1≫
最初に、本発明の実施例1について、図1から図5を用いて説明する。
まず、図1により、実施例1の全体構成を説明する。図1は、実施例1における三相五脚型変圧器の断面図を示し、(a)は縦断面図を、(b)は(a)のA-A’断面に沿った横断面図を示している。
<<Example 1>>
First, Embodiment 1 of the present invention will be described with reference to FIGS. 1 to 5. FIG.
First, referring to FIG. 1, the overall configuration of the first embodiment will be described. FIG. 1 shows a cross-sectional view of a three-phase five-legged transformer in Example 1, (a) is a longitudinal cross-sectional view, and (b) is a cross-sectional view along the AA' cross section of (a). showing.

図1において、1は複合鉄心であり、この例では五脚の鉄心としている。複合鉄心1は、薄帯状のナノ結晶材料を用いたナノ結晶鉄心11とアモルファス磁性材料を用いたアモルファス鉄心12の2種の複合鉄心により構成する。さらに、複合鉄心1と、その3箇所の磁脚部に高圧巻線21と低圧巻線22を重ねて巻回した三相巻線が備えられている。ナノ結晶鉄心11およびアモルファス鉄心12は、四辺形,五角形,あるいは六角形状に切り出し、接合部15で組み合わされる。ナノ結晶鉄心11は、複合鉄心1の中央部(内側)に,アモルファス鉄心12は外側(両側の端部)にそれぞれ積層される。ナノ結晶鉄心11の厚さはa、複合鉄心1の厚さはaであり、その比率a:aは一例として75:25としている。
ここで、この実施例1における変圧器の各パラメータ示す符号の意味、および各パラメータの値は、表1に示した通りである。
In FIG. 1, reference numeral 1 denotes a composite core, which in this example has five legs. Composite core 1 is composed of two types of composite cores: nanocrystalline core 11 using ribbon-like nanocrystalline material and amorphous core 12 using amorphous magnetic material. Further, the composite core 1 and a three-phase winding in which a high-voltage winding 21 and a low-voltage winding 22 are wound in an overlapping manner on three magnetic legs of the core 1 are provided. The nanocrystalline core 11 and the amorphous core 12 are cut into a quadrilateral, pentagon, or hexagon and combined at joints 15 . The nanocrystalline core 11 is laminated on the central portion (inner side) of the composite core 1, and the amorphous core 12 is laminated on the outer side (both ends). The thickness of the nanocrystalline core 11 is a 1 , the thickness of the composite core 1 is a 2 , and the ratio a 1 :a 2 is 75:25 as an example.
Here, Table 1 shows the meaning of the symbols indicating the parameters of the transformer in Example 1 and the values of the parameters.

表1

Figure 0007208182000001
Table 1
Figure 0007208182000001

次に、表1に示すパラメータによる実施例1の複合鉄心1内の磁束密度分布の電磁界解析の結果を説明する。 Next, the results of electromagnetic field analysis of the magnetic flux density distribution in the composite core 1 of Example 1 using the parameters shown in Table 1 will be described.

図2は、電磁界解析において定義した複合鉄心1を構成する磁性材料の磁化力と磁束密度の関係を示す磁化特性である。図2において、31はアモルファス磁性材料の磁化特性であり、32はナノ結晶材料の磁化特性である。なお、この解析に用いたアモルファス磁性材料およびナノ結晶材料には、日立金属株式会社から販売されているアモルファス材料およびナノ結晶材料を用いた。
この電磁界解析では、2次巻線22の電極を開放状態とし、1次巻線21に三相50Hzの正弦波電圧を印加して、鉄心内の磁束密度分布を計算した。
FIG. 2 shows magnetization characteristics showing the relationship between the magnetizing force and the magnetic flux density of the magnetic material forming the composite core 1 defined in the electromagnetic field analysis. In FIG. 2, 31 is the magnetization properties of the amorphous magnetic material and 32 is the magnetization properties of the nanocrystalline material. The amorphous magnetic material and the nanocrystalline material used in this analysis were the amorphous material and the nanocrystalline material sold by Hitachi Metals, Ltd.
In this electromagnetic field analysis, the electrodes of the secondary winding 22 were left open, and a three-phase 50 Hz sinusoidal voltage was applied to the primary winding 21 to calculate the magnetic flux density distribution in the iron core.

次に、図3は、印加電圧V1を変化させて求めた複合鉄心全体の平均磁束密度Bと、アモルファス鉄心,およびナノ結晶鉄心内の磁束密度の関係を示している。各鉄心の計算結果は,それぞれ図中のアモルファス鉄心の磁束密度33,ナノ結晶鉄心の磁束密度34のカーブで示されている。すなわち、アモルファス鉄心の計算結果は33のようになり、ナノ結晶鉄心の計算結果は34のようになる。ここで、複合鉄心の実効断面積をA,印加電圧の周波数をfとすると、Bは次の(1)式のように表される。また、実行断面積Aは(2)式のように表される。
=V/(4.44・f・N・A) ……(1)
=b・(a・S+a・S) …………(2)
Next, FIG. 3 shows the relationship between the average magnetic flux density Bm of the entire composite core obtained by changing the applied voltage V1, and the magnetic flux densities in the amorphous core and the nanocrystalline core. The calculation results of each iron core are indicated by curves of the magnetic flux density 33 of the amorphous iron core and the magnetic flux density 34 of the nanocrystalline iron core in the figure. That is, the calculation result of the amorphous core is as shown in 33, and the calculation result of the nanocrystalline core is as shown in 34. Here, when the effective cross-sectional area of the composite core is A C and the frequency of the applied voltage is f, B m is expressed by the following equation (1). Also, the effective cross-sectional area A C is represented by the formula (2).
B m = V 1 /(4.44·f·N 1 ·A C ) (1)
A C =b.( a1.S1 + a2.S2 ) …………( 2 )

図3に示したB,およびBは,それぞれナノ結晶材のみ,アモルファス材のみで構成された鉄心を持つ静止誘導機器(静止電磁機器)における磁束密度の代表値である。そして同図中に示したBm1は、複合鉄心における両磁性材料の断面積の比率に応じた磁束密度の加重平均値であり、従来の設計方法における複合鉄心の平均磁束密度である。この複合鉄心の平均磁束密度Bm1は次の(3)式のように表される。
m1=(a・S・B+a・S・B)/(a・S+a・S
………………………………(3)
B n and B a shown in FIG. 3 are representative values of the magnetic flux density in a stationary induction device (stationary electromagnetic device) having an iron core composed only of nanocrystalline material and amorphous material, respectively. Bm1 shown in the figure is the weighted average value of the magnetic flux densities according to the ratio of the cross-sectional areas of the two magnetic materials in the composite core, which is the average magnetic flux density of the composite core in the conventional design method. The average magnetic flux density Bm1 of this composite core is represented by the following equation (3).
Bm1 = ( a1 * S1 * Bn + a2 *S2* Ba ) / (a1*S1+ a2 *S2)
………………(3)

さて、図3において、複合鉄心内の各鉄心(ナノ結晶鉄心とアモルファス鉄心)の磁束密度の変化を見ると、平均磁束密度Bの増加により、まず、アモルファス鉄心より飽和磁束密度が小さいナノ結晶鉄心の磁束密度34が磁気飽和に達して一定値になる。このとき、アモルファス鉄心の磁束密度33の傾きが大きくなることがわかる。これは、磁気飽和を起こしたナノ結晶鉄心からの漏洩磁束がアモルファス鉄心を流れることにより現れる現象であり、複合鉄心の平均磁束密度Bが(3)式に示した加重平均値Bm1を超えても、複合鉄心の外部への磁束の漏洩は起こらないという現象である。すなわち、アモルファス鉄心の磁束密度がBに達するBm2まで平均磁束密度Bを高くしても、静止誘導機器としての機能が維持される。このような新たな知見によれば、複合鉄心の平均磁束密度Bを最大でBm2になるようにしても良いことがわかる。すなわち、複合鉄心の平均磁束密度Bを図3におけるBm2以下で加重平均値Bm1よりも大きくなるようにすれば、複合鉄心の性能が向上することが期待できる。 Now, looking at the change in the magnetic flux density of each core ( nanocrystalline core and amorphous core) in the composite core in FIG. The magnetic flux density 34 of the iron core reaches magnetic saturation and becomes a constant value. At this time, it can be seen that the gradient of the magnetic flux density 33 of the amorphous core increases. This is a phenomenon that occurs when the leakage magnetic flux from the magnetically saturated nanocrystalline core flows through the amorphous core. This is a phenomenon in which the magnetic flux does not leak to the outside of the composite core even if the That is, even if the average magnetic flux density Bm is increased to Bm2 where the magnetic flux density of the amorphous iron core reaches Ba , the function as a stationary induction device is maintained. According to such new findings, it can be seen that the average magnetic flux density Bm of the composite core may be set to Bm2 at maximum. That is, if the average magnetic flux density Bm of the composite core is set to be equal to or less than Bm2 in FIG. 3 and greater than the weighted average value Bm1 , it can be expected that the performance of the composite core will be improved.

このように、2種以上の磁性材料から構成された複合鉄心を用いる静止誘導機器において,該複合鉄心内で最も飽和磁束密度が高い磁性材料内の磁束密度が,該磁性材料のみで構成した静止誘導機器の磁束密度Bm2以下となるように,前記複合鉄心内の平均磁束密度を設定し、かつ前記複合鉄心における前記2種以上の磁性材料の断面積の比率に応じた磁束密度の加重平均値Bm1よりも大きくなるように、前記複合鉄心内の平均磁束密度を設定することにより、従来よりも性能が高く小型化できる静止誘導機器を実現することが可能になる。 In this way, in a stationary induction device using a composite core composed of two or more types of magnetic materials, the magnetic flux density in the magnetic material with the highest saturation magnetic flux density in the The average magnetic flux density in the composite core is set so that the magnetic flux density of the induction device is B m2 or less, and the weighted average of the magnetic flux densities according to the ratio of the cross-sectional areas of the two or more magnetic materials in the composite core By setting the average magnetic flux density in the composite core so as to be larger than the value B m1 , it is possible to realize a static induction device that has higher performance and can be made smaller than before.

本実施例1の場合においては、複合鉄心の内磁束密度が高いアモルファス鉄心12の平均磁束密度Bm2とする。この場合の平均磁束密度Bm2は、2種以上の磁性材料の断面積の比率に応じた磁束密度の加重平均値Bm1より9%高く、平均磁束密度BをBm2とすれば、複合鉄心の実効断面積を,従来の設計方法より9%小さくすることができる。1次電圧の実効値が表1に示した3822Vのとき、BをBm1とする従来の設計方法によれば、図1中の寸法aは244mm,aは82mmである。これに対し、BをBm2とする本発明の実施例1によれば、寸法aは225mm,aは75mmとなる。これに伴い,複合鉄心の外形体積W×H×Dは,従来の設計より9%小型化される。 In the case of the first embodiment, the average magnetic flux density B m2 of the amorphous core 12 having a high internal magnetic flux density in the composite core. The average magnetic flux density B m2 in this case is 9% higher than the weighted average value B m1 of the magnetic flux densities according to the ratio of the cross-sectional areas of the two or more magnetic materials . The effective cross-sectional area of the core can be reduced by 9% compared to conventional design methods. When the effective value of the primary voltage is 3822V shown in Table 1, according to the conventional design method where Bm is Bm1 , the dimension a1 in FIG. 1 is 244mm and the dimension a2 is 82mm. On the other hand, according to Example 1 of the present invention where Bm is Bm2 , the dimension a1 is 225 mm and the dimension a2 is 75 mm. Along with this, the outer volume W×H×D of the composite core is reduced by 9% compared to the conventional design.

以上の説明における数値は、三相五脚型複合鉄心を構成するナノ結晶鉄心とアモルファス鉄心の幾何断面積比率a:aが75:25の場合の計算結果である。この比率を0:100から100:0まで変化させ、同様の計算方法により求めた平均磁束密度Bの変化を図4に示し、複合鉄心の外形体積W×H×Dの変化を図5に示す。両図の横軸は、複合鉄心全体の幾何断面積に占めるアモルファス鉄心の比率であり、0%はナノ結晶鉄心のみの場合、100%はアモルファス鉄心のみで構成した静止誘導機器の計算結果である。まず、図4に示した39は、ナノ結晶鉄心とアモルファス鉄心の断面積の比率に応じた磁束密度の加重平均値Bm1に対応し、従来の設計法における複合鉄心の磁束密度を表す。そして、40が本発明の実施例における方法により求めたBである。図から分かるように、本発明の実施例の方法は、従来の加重平均値による設計方法の場合に比べて、磁束密度を高くすることができる。次に、この結果より設計した複合鉄心の外形体積W×H×Dを求め、アモルファス変圧器を100%とした相対体積を示したのが図5である。Bが高くなることに対応し、従来の設計方法による結果41に比べて、本発明の実施例1においては外形体積42が小型化される効果が広い鉄心比率の範囲で得られることがわかる。 The numerical values in the above description are the calculation results when the geometric cross - sectional area ratio a1: a2 of the nanocrystalline core and the amorphous core constituting the three-phase five-legged composite core is 75:25. FIG. 4 shows changes in the average magnetic flux density Bm determined by the same calculation method while changing this ratio from 0:100 to 100:0, and changes in the external volume W×H×D of the composite core are shown in FIG. show. The horizontal axis of both figures is the ratio of the amorphous core to the geometric cross-sectional area of the entire composite core. . First, 39 shown in FIG. 4 corresponds to the weighted average value B m1 of the magnetic flux density according to the ratio of the cross-sectional areas of the nanocrystalline core and the amorphous core, and represents the magnetic flux density of the composite core in the conventional design method. And 40 is Bm obtained by the method in the example of the present invention. As can be seen from the figure, the method of the embodiment of the present invention can increase the magnetic flux density compared to the conventional design method based on the weighted average value. Next, the external volume W×H×D of the composite core designed from this result is obtained, and the relative volume with the amorphous transformer as 100% is shown in FIG. Corresponding to the increase in Bm , compared with the result 41 by the conventional design method, in Example 1 of the present invention, it can be seen that the effect of reducing the external volume 42 can be obtained in a wide range of iron core ratios. .

≪実施例2≫
実施例1における本発明の原理と効果は,他の形状の静止誘導機器用の複合鉄心においても広範に得ることができる。
<<Example 2>>
The principles and effects of the present invention in Embodiment 1 can be broadly obtained in composite cores for stationary induction devices of other shapes.

次に、本発明の実施例2について、図6により説明する。図6は、本発明の第2の実施例における三相五脚型変圧器の中央横断面図である。この実施例2において、実施例1と同一の構成機器には同一符号(番号)を付しており、その説明は省略する。この実施例2では、薄帯状のナノ結晶鉄心11とアモルファス鉄心12の2種の鉄心が、1枚単位,または複数枚単位で交互に積層されて複合鉄心が構成されている。このナノ結晶鉄心11とアモルファス鉄心12の断面積の比率と磁束密度を実施例1で示したと同様に設計することで、実施例1と同様の効果が得られ、複合鉄心の外形体積を小型化することができる。 Next, Embodiment 2 of the present invention will be described with reference to FIG. FIG. 6 is a central cross-sectional view of a three-phase five-legged transformer according to a second embodiment of the present invention. In this second embodiment, the same reference numerals (numbers) are given to the same constituent devices as in the first embodiment, and the description thereof will be omitted. In Example 2, a composite core is constructed by alternately stacking two types of cores, that is, a ribbon-like nanocrystalline core 11 and an amorphous core 12 in units of one sheet or in units of multiple sheets. By designing the cross-sectional area ratio and magnetic flux density of the nanocrystalline core 11 and the amorphous core 12 in the same manner as in Example 1, the same effect as in Example 1 can be obtained, and the outer volume of the composite core can be reduced. can do.

≪実施例3≫
次に、本発明の実施例3について図7により説明する。図7は、本発明の実施例3を示す単相型変圧器の断面図であり、(a)は縦断面図を,(b)は(a)のA-A’断面に沿った横断面図を示す。なお、図7の各符号(番号)に示す構成機器は、すでに説明したので、ここでは説明を省略する。
<<Example 3>>
Next, Embodiment 3 of the present invention will be described with reference to FIG. FIG. 7 is a cross-sectional view of a single-phase transformer showing Embodiment 3 of the present invention, (a) is a vertical cross-sectional view, and (b) is a cross-sectional view along the AA' cross-section of (a). Figure shows. Note that the components indicated by the respective symbols (numbers) in FIG. 7 have already been described, so description thereof will be omitted here.

この実施例では、薄帯状のナノ結晶鉄心11とアモルファス鉄心12の2種の鉄心からなる複合鉄心1と、その3箇所の磁脚部に、高圧巻線21と低圧巻線22を重ねて巻回した単相巻線が備えられている。ナノ結晶鉄心11およびアモルファス鉄心12は、台形状に切り出し、接合部15で組み合わされる。ナノ結晶鉄心11とアモルファス鉄心12の断面積の比率と磁束密度を実施例1で示したように設計することにより、実施例1と同様の効果が得られ、複合積層鉄心の外形体積を小型化することができる。 In this embodiment, a composite core 1 consisting of two types of cores, a ribbon-shaped nanocrystalline core 11 and an amorphous core 12, and a high-voltage winding 21 and a low-voltage winding 22 are wound on three magnetic legs of the composite core 1. A turned single-phase winding is provided. Nanocrystalline core 11 and amorphous core 12 are cut into trapezoidal shapes and combined at joints 15 . By designing the cross-sectional area ratio and the magnetic flux density of the nanocrystalline core 11 and the amorphous core 12 as shown in Example 1, the same effect as in Example 1 can be obtained, and the outer volume of the composite laminated core can be reduced. can do.

≪実施例4≫
次に、本発明の実施例4について、図8を用いて説明する。図8は、本発明の実施例4を示す三相三脚型変圧器の断面図であり、(a)は縦断面図を,(b)は(a)のA-A’断面に沿った横断面図を示す。なお、図8の各符号(番号)に示す構成機器は、すでに説明したので、ここでは説明を省略する。
<<Example 4>>
Next, Example 4 of the present invention will be described with reference to FIG. FIG. 8 is a cross-sectional view of a three-phase tripod type transformer showing Embodiment 4 of the present invention, (a) is a vertical cross-sectional view, and (b) is a cross section along the AA' cross section of (a). shows a plan view. It should be noted that the components indicated by the respective symbols (numbers) in FIG. 8 have already been described, so description thereof will be omitted here.

この実施例4では、薄帯状のナノ結晶材料からなるナノ結晶鉄心11とアモルファス磁性材料からなるアモルファス鉄心12の2種の鉄心からなる複合鉄心を用いている。2つの内側巻鉄心1aと、該内側巻鉄心の外周を覆う1つの外側巻鉄心1bで三相三脚型の複合鉄心が構成される。その3箇所の磁脚部には、高圧巻線21と低圧巻線22を重ねて巻回した三相巻線が備えられ、変圧器が構成されている。ナノ結晶鉄心11およびアモルファス鉄心12は既定の長さに切断・積層されており、外形を略矩形に成形して切断端同士をラップ接合部16にて接続して環状の巻鉄心としている。ナノ結晶鉄心11とアモルファス鉄心12の断面積の比率と磁束密度を実施例1で示したと同様に設計することにより、実施例1と同様の効果が得られ、複合巻鉄心の外形体積を小型化することができる。 In this embodiment 4, a composite core composed of two types of cores, namely, a nanocrystalline core 11 made of a ribbon-shaped nanocrystalline material and an amorphous core 12 made of an amorphous magnetic material is used. A three-phase tripod-type composite core is composed of two inner wound cores 1a and one outer wound core 1b covering the outer circumference of the inner wound cores. The three magnetic legs are provided with a three-phase winding in which a high-voltage winding 21 and a low-voltage winding 22 are wound in an overlapping manner to form a transformer. The nanocrystalline iron core 11 and the amorphous iron core 12 are cut and laminated to a predetermined length, and the outer shape is formed into a substantially rectangular shape, and the cut ends are connected at the lap joints 16 to form an annular wound iron core. By designing the cross-sectional area ratio and the magnetic flux density of the nanocrystalline core 11 and the amorphous core 12 in the same manner as in Example 1, the same effect as in Example 1 can be obtained, and the outer volume of the composite wound core can be reduced. can do.

≪その他の実施例≫
上述した本発明の実施例では,アモルファス材料とナノ結晶材料の2種の磁性材料からなる複合鉄心の例を示したが、方向性電磁鋼板などの他の磁性材料を含め、任意の複数の材料からなる複合鉄心についても本発明による設計方法により,鉄心の外形体積を小型化することができる。
<<Other Examples>>
In the above-described embodiments of the present invention, an example of a composite core made of two types of magnetic materials, an amorphous material and a nanocrystalline material, is shown, but any multiple materials including other magnetic materials such as grain-oriented electrical steel sheets With the design method according to the present invention, the outer volume of the core can also be reduced for a composite core composed of

また、本発明は、以上説明した複数の実施例に限定するものではなく、その技術思想の範囲内において各種の代案・変形例をも含む。 Moreover, the present invention is not limited to the above-described multiple embodiments, and includes various alternatives and modifications within the scope of its technical concept.

例えば、本発明における静止誘導機器の複合鉄心は、2種以上の薄帯状磁性材料を切断し、それぞれの薄帯状磁性材料を連続して積層した複数の鉄心同士を積層方向に重ねて構成することができる。また、本発明の静止誘導機器の複合鉄心は、2種以上の薄帯状磁性材料を切断し、交互に積層して構成することができる。また、本発明の静止誘導機器の複合鉄心は、2種以上の薄帯状磁性材料を切断,積層し、環状に成形して切断端同士をラップ接合した巻鉄心により構成することができる。また、本発明の静止電磁機器の複合鉄心は、三相巻線を備えた3本の並列した磁脚群と,該磁脚群の両外側に並列に備えられ、巻線が備えられていない2本の側脚と前記磁脚群および側脚の両端部同士を接続するヨーク部から構成される三相五脚型積層鉄心とすることができる。また、本発明の静止誘導機器の複合鉄心は,三相巻線を備えた3本の並列した磁脚群と,該磁脚群の両端部を接続するヨーク部から構成された三相三脚型積層鉄心とすることができる。また、静止誘導機器の複合鉄心は額縁状であり,該鉄心の1辺または対向する2辺に単相巻線を備えた単相型積層鉄心とすることも可能である。また、静止誘導機器の複合鉄心は、2種以上の磁性材料からなる4つの略同寸法の巻鉄心を並列させ、該巻鉄心同士が隣接する3か所の磁脚部に三相巻線が備えられた三相五脚型巻鉄心とすることもできる。また、静止誘導機器の複合鉄心は、2種以上の磁性材料からなる1つの巻鉄心からなり,該巻鉄心の1か所または2か所の磁脚部に単相巻線を備えた単相型巻鉄心とすることもできる。 For example, the composite core of the stationary induction device of the present invention is constructed by cutting two or more kinds of ribbon-shaped magnetic materials and laminating the respective ribbon-shaped magnetic materials continuously to stack a plurality of cores in the lamination direction. can be done. Moreover, the composite core of the stationary induction device of the present invention can be constructed by cutting two or more kinds of ribbon-shaped magnetic materials and laminating them alternately. Also, the composite core of the stationary induction device of the present invention can be constituted by a wound core obtained by cutting and laminating two or more kinds of ribbon-like magnetic materials, forming them into a ring shape, and lap-joining the cut ends. In addition, the composite core of the stationary electromagnetic device of the present invention is provided with three parallel magnetic leg groups having three-phase windings, and the magnetic leg groups are provided in parallel on both outer sides of the magnetic leg groups, and are not provided with windings. A three-phase five-legged laminated core composed of two side legs and a yoke portion connecting both ends of the magnetic leg group and the side legs can be provided. In addition, the composite core of the stationary induction device of the present invention is a three-phase tripod type composed of a group of three magnetic legs arranged in parallel each having a three-phase winding and a yoke portion connecting both ends of the group of magnetic legs. It can be a laminated core. In addition, the composite core of the stationary induction device is frame-shaped, and it is possible to use a single-phase laminated core with a single-phase winding on one side or two opposite sides of the core. In addition, the composite core of the stationary induction device has four wound cores of approximately the same size made of two or more kinds of magnetic materials arranged in parallel, and three-phase windings are provided at three magnetic legs where the wound cores are adjacent to each other. It can also be a three-phase five-leg wound core provided. In addition, the composite core of the stationary induction device is composed of one wound core made of two or more kinds of magnetic materials, and has a single-phase winding in one or two magnetic legs of the wound core. A wound iron core can also be used.

1…複合鉄心、11…ナノ結晶鉄心、12…アモルファス鉄心、15…接合部、21…高圧巻線、22…低圧巻線 DESCRIPTION OF SYMBOLS 1... Composite core, 11... Nanocrystalline core, 12... Amorphous core, 15... Joint part, 21... High voltage winding, 22... Low voltage winding

Claims (12)

2種以上の磁性材料から構成された複合鉄心を用いる静止誘導機器であって、
前記複合鉄心内で最も飽和磁束密度が高い磁性材料内の磁束密度が、前記飽和磁束密度が最も高い磁性材料のみで構成した鉄心の磁束密度以下であり、かつ前記複合鉄心における前記2種以上の前記磁性材料の断面積の比率に応じた磁束密度の加重平均値よりも大きくなるように、前記複合鉄心内の平均磁束密度を設定した静止誘導機器。
A stationary induction device using a composite core composed of two or more magnetic materials,
The magnetic flux density in the magnetic material with the highest saturation magnetic flux density in the composite core is less than or equal to the magnetic flux density of the core composed only of the magnetic material with the highest saturation magnetic flux density, and the two or more types in the composite core A stationary induction device in which the average magnetic flux density in the composite core is set to be larger than the weighted average value of magnetic flux densities according to the cross-sectional area ratio of the magnetic material.
請求項1に記載の静止誘導機器において、
前記複合鉄心は、2種以上の薄帯状磁性材料を切断し、それぞれの薄帯状磁性材料を連続して積層した複数の鉄心同士を積層方向に重ねて構成したことを特徴とする静止誘導機器。
In the stationary induction device according to claim 1,
A stationary induction device, wherein the composite core is constructed by stacking a plurality of cores obtained by cutting two or more kinds of ribbon-shaped magnetic materials and laminating the respective ribbon-shaped magnetic materials continuously in the lamination direction.
請求項1に記載の静止誘導機器において、
前記複合鉄心は、2種以上の薄帯状磁性材料を切断し、交互に積層して構成したことを特徴とする静止誘導機器。
In the stationary induction device according to claim 1,
A stationary induction device, wherein the composite core is formed by cutting two or more kinds of ribbon-shaped magnetic materials and laminating them alternately.
請求項1に記載の静止誘導機器において、
前記複合鉄心は、2種以上の薄帯状磁性材料を切断,積層し、環状に成形して切断端同士をラップ接合した巻鉄心により構成したことを特徴とする静止誘導機器。
In the stationary induction device according to claim 1,
A stationary induction device, wherein the composite core is a wound core formed by cutting and laminating two or more kinds of ribbon-like magnetic materials, forming them into a ring shape, and lap-joining the cut ends to each other.
請求項1に記載の静止誘導機器において、
前記複合鉄心は、三相巻線を備えた3本の並列した磁脚群と、該磁脚群の両外側に並列に備えられ、巻線が備えられていない2本の側脚と、前記磁脚群および側脚の両端部同士を接続するヨーク部から構成される三相五脚型積層鉄心であることを特徴とする静止誘導機器。
In the stationary induction device according to claim 1,
The composite core includes three parallel magnetic leg groups with three-phase windings, two side legs provided in parallel on both outer sides of the magnetic leg groups and having no windings, A stationary induction device, characterized by being a three-phase five-legged laminated core composed of a yoke portion connecting both ends of a group of magnetic legs and side legs.
請求項1に記載の静止誘導機器において、
前記複合鉄心は、三相巻線を備えた3本の並列した磁脚群と、該磁脚群の両端部を接続するヨーク部から構成された三相三脚型積層鉄心であることを特徴とする静止誘導機器。
In the stationary induction device according to claim 1,
The composite core is a three-phase three-legged laminated core composed of three parallel magnetic leg groups with three-phase windings and yoke portions connecting both ends of the magnetic leg groups. stationary induction equipment.
請求項1に記載の静止誘導機器において、
前記複合鉄心は、額縁状であり、鉄心の1辺,または対向する2辺に単相巻線を備えた単相型積層鉄心であることを特徴とする静止誘導機器。
In the stationary induction device according to claim 1,
A stationary induction device, wherein the composite core is a frame-shaped single-phase laminated core having a single-phase winding on one side or two opposite sides of the core.
請求項1に記載の静止誘導機器において、
前記複合鉄心は、2種以上の前記磁性材料からなる4つの略同寸法の巻鉄心を並列させ、巻鉄心同士が隣接する3か所の磁脚部に三相巻線が備えられた三相五脚型巻鉄心であることを特徴とする静止誘導機器。
In the stationary induction device according to claim 1,
The composite core comprises four wound cores of approximately the same size made of two or more of the magnetic materials, arranged in parallel, and a three-phase winding provided with three-phase windings on three magnetic legs where the wound cores are adjacent to each other. A stationary induction device characterized by being a pentapod wound core.
請求項1に記載の静止誘導機器において、
前記複合鉄心は、2種以上の磁性材料からなる2つの並列させた略同寸法の巻鉄心と、2つの巻鉄心の外周を覆う1つの前記巻鉄心からなり、巻鉄心同士が隣接する3か所の磁脚部に三相巻線が備えられた三相三脚型巻鉄心であることを特徴とする静止誘導機器。
In the stationary induction device according to claim 1,
The composite core consists of two wound cores made of two or more magnetic materials and having approximately the same dimensions arranged side by side, and one wound core covering the outer periphery of the two wound cores, and the wound cores are adjacent to each other. A stationary induction device characterized by a three-phase tripod-type wound iron core in which a three-phase winding is provided on each magnetic leg.
請求項1に記載の静止誘導機器において、
前記複合鉄心は、2種以上の前記磁性材料からなる1つの巻鉄心からなり、該巻鉄心の1か所または2か所の磁脚部に単相巻線を備えた単相型巻鉄心であることを特徴とする静止誘導機器。
In the stationary induction device according to claim 1,
The composite core is a single-phase wound core composed of one wound core made of two or more of the magnetic materials, and having single-phase windings on one or two magnetic legs of the wound core. A stationary induction device characterized by:
請求項1に記載の静止誘導機器において、
前記複合鉄心をアモルファス鉄心とナノ結晶鉄心とで構成し、前記アモルファス鉄心の磁束密度が、前記アモルファス鉄心のみで構成した場合の鉄心の磁束密度以下であり、前記磁束密度が前記アモルファス鉄心と前記ナノ結晶鉄心の断面積の比率に応じた磁束密度の加重平均値よりも大きい値となるように、前記複合鉄心内の平均磁束密度を設定したことを特徴とする静止誘導機器。
In the stationary induction device according to claim 1,
The composite core is composed of an amorphous core and a nanocrystalline core, the magnetic flux density of the amorphous core is equal to or lower than the magnetic flux density of the core composed only of the amorphous core, and the magnetic flux density is the amorphous core and the nanocrystalline core. A stationary induction device, wherein the average magnetic flux density in the composite core is set to be larger than the weighted average value of magnetic flux densities according to the cross-sectional area ratio of the crystal core.
2種以上の磁性材料から構成された複合鉄心と、前記複合鉄心に高圧巻線と低圧巻線を重ねて巻回してなる変圧器であって、
前記複合鉄心内で飽和磁束密度が最も高い磁性材料内の磁束密度が、前記飽和磁束密度が最も高い磁性材料のみで構成した鉄心の磁束密度以下であり、かつ前記複合鉄心における前記2種以上の磁性材料の断面積の比率に応じた磁束密度の加重平均値よりも大きくなるように、前記複合鉄心内の平均磁束密度を設定した変圧器。
A composite core composed of two or more kinds of magnetic materials, and a transformer obtained by winding a high-voltage winding and a low-voltage winding on the composite core in an overlapping manner,
The magnetic flux density in the magnetic material with the highest saturation magnetic flux density in the composite core is less than or equal to the magnetic flux density of the core composed only of the magnetic material with the highest saturated magnetic flux density, and the two or more types in the composite core A transformer in which the average magnetic flux density in the composite core is set to be larger than the weighted average value of the magnetic flux density according to the ratio of the cross-sectional area of the magnetic material.
JP2020025974A 2020-02-19 2020-02-19 Stationary induction equipment and transformers Active JP7208182B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020025974A JP7208182B2 (en) 2020-02-19 2020-02-19 Stationary induction equipment and transformers
PCT/JP2020/036691 WO2021166314A1 (en) 2020-02-19 2020-09-28 Stationary induction apparatus and transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020025974A JP7208182B2 (en) 2020-02-19 2020-02-19 Stationary induction equipment and transformers

Publications (2)

Publication Number Publication Date
JP2021132091A JP2021132091A (en) 2021-09-09
JP7208182B2 true JP7208182B2 (en) 2023-01-18

Family

ID=77390624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020025974A Active JP7208182B2 (en) 2020-02-19 2020-02-19 Stationary induction equipment and transformers

Country Status (2)

Country Link
JP (1) JP7208182B2 (en)
WO (1) WO2021166314A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114420435B (en) * 2022-01-25 2023-11-24 沈阳工业大学 Method for designing cross section of mixed material wound core for transformer
WO2024029367A1 (en) * 2022-08-02 2024-02-08 Ecdl合同会社 Composite laminated soft magnetic ribbon with controlled physical properties
WO2024106262A1 (en) * 2022-11-16 2024-05-23 Ecdl合同会社 Composite laminated soft magnetic ribbon
WO2024144670A1 (en) * 2022-12-30 2024-07-04 Gazi Universitesi Rektorlugu Mixed core structure for split-core inverter output transformers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114170A (en) 2008-11-05 2010-05-20 Hitachi Industrial Equipment Systems Co Ltd Iron core for static apparatus
JP5275255B2 (en) 2007-02-06 2013-08-28 ヌベラ・フュエル・セルズ・ヨーロッパ・ソチエタ・ア・レスポンサビリタ・リミタータ Bipolar unit for a fuel cell provided with a porous current collector
JP2013254827A (en) 2012-06-06 2013-12-19 Mitsubishi Electric Corp Transformer
JP5776811B2 (en) 2012-11-21 2015-09-09 日本精工株式会社 Torque detection device, electric power steering device, and vehicle
JP2016181620A (en) 2015-03-24 2016-10-13 三菱電機株式会社 Magnetic core for current transformer, current transformer and watthour meter
JP2018502446A (en) 2014-11-25 2018-01-25 アペラン Basic module for magnetic core of transformer, magnetic core including the basic module, method for manufacturing the magnetic core, and transformer including the magnetic core

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5776811A (en) * 1980-10-30 1982-05-14 Fujitsu Denso Ltd Composite core for transformer
JPS57143808A (en) * 1981-03-02 1982-09-06 Daihen Corp Wound core for stationary electrical equipment
US4520335A (en) * 1983-04-06 1985-05-28 Westinghouse Electric Corp. Transformer with ferromagnetic circuits of unequal saturation inductions
JPH05275255A (en) * 1992-03-27 1993-10-22 Nippon Steel Corp Manufacture of transformer of good magnetic properties

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5275255B2 (en) 2007-02-06 2013-08-28 ヌベラ・フュエル・セルズ・ヨーロッパ・ソチエタ・ア・レスポンサビリタ・リミタータ Bipolar unit for a fuel cell provided with a porous current collector
JP2010114170A (en) 2008-11-05 2010-05-20 Hitachi Industrial Equipment Systems Co Ltd Iron core for static apparatus
JP2013254827A (en) 2012-06-06 2013-12-19 Mitsubishi Electric Corp Transformer
JP5776811B2 (en) 2012-11-21 2015-09-09 日本精工株式会社 Torque detection device, electric power steering device, and vehicle
JP2018502446A (en) 2014-11-25 2018-01-25 アペラン Basic module for magnetic core of transformer, magnetic core including the basic module, method for manufacturing the magnetic core, and transformer including the magnetic core
JP2016181620A (en) 2015-03-24 2016-10-13 三菱電機株式会社 Magnetic core for current transformer, current transformer and watthour meter

Also Published As

Publication number Publication date
WO2021166314A1 (en) 2021-08-26
JP2021132091A (en) 2021-09-09

Similar Documents

Publication Publication Date Title
JP7208182B2 (en) Stationary induction equipment and transformers
US7026905B2 (en) Magnetically controlled inductive device
WO2012169325A1 (en) High-frequency transformer
US9412510B2 (en) Three-phase reactor
JP6397349B2 (en) Three-phase five-legged iron core and stationary electromagnetic equipment
TW201532088A (en) Magnetic core
JP7047931B2 (en) Winding core and transformer
US10210983B2 (en) Electromagnetic induction device
WO2014208109A1 (en) Wound iron core for static electromagnetic device, three-phase transformer, and three-phase reactor
JP5988712B2 (en) Transformer
US20050280491A1 (en) Transformer
WO2021045169A1 (en) Wound core
JP2011142149A (en) Transformer
KR101506698B1 (en) iron core winding assembly for transformer
JP4630873B2 (en) Controllable guidance device
CN204632536U (en) The electrical transformer cores structure of low no-load loss
WO2021049076A1 (en) Stationary induction apparatus
JP2017054896A (en) Iron core for transformer and transformer using the same
JP7556372B2 (en) Three-phase, three-legged wound core and three-phase, three-legged wound core transformer using the same
JPS59218714A (en) Electromagnetic apparatus for high frequency power circuit
JP2021114811A (en) Lamination core
TWM569926U (en) Transformer with improved winding structure
JP2023146181A (en) Three-phase tripod wound iron core and three-phase tripod wound iron core transformer using the same
WO2021049419A1 (en) Wound core
KR102490358B1 (en) A structure of single-phase transformer with wound core type capable of reducing iron loss and manufacturing method therof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230105

R150 Certificate of patent or registration of utility model

Ref document number: 7208182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150