JP7206124B2 - Squarylium derivative, its production method, organic thin film and photoelectric conversion device - Google Patents

Squarylium derivative, its production method, organic thin film and photoelectric conversion device Download PDF

Info

Publication number
JP7206124B2
JP7206124B2 JP2019022481A JP2019022481A JP7206124B2 JP 7206124 B2 JP7206124 B2 JP 7206124B2 JP 2019022481 A JP2019022481 A JP 2019022481A JP 2019022481 A JP2019022481 A JP 2019022481A JP 7206124 B2 JP7206124 B2 JP 7206124B2
Authority
JP
Japan
Prior art keywords
group
carbon atoms
squarylium derivative
derivative according
halogen atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019022481A
Other languages
Japanese (ja)
Other versions
JP2020128361A (en
Inventor
拓也 山縣
祥生 浅野
秀典 相原
宏平 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sagami Chemical Research Institute (Sagami CRI)
Tosoh Corp
Original Assignee
Sagami Chemical Research Institute (Sagami CRI)
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagami Chemical Research Institute (Sagami CRI), Tosoh Corp filed Critical Sagami Chemical Research Institute (Sagami CRI)
Priority to JP2019022481A priority Critical patent/JP7206124B2/en
Publication of JP2020128361A publication Critical patent/JP2020128361A/en
Application granted granted Critical
Publication of JP7206124B2 publication Critical patent/JP7206124B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Light Receiving Elements (AREA)
  • Indole Compounds (AREA)

Description

本発明は、色純度の高い新規な色素として有用なインドリン構造を含むスクアリリウム誘導体及びその製造方法に関するものである。また、該スクアリリウム誘導体を色素として用いた有機薄膜及び光電変換素子に関するものである。 TECHNICAL FIELD The present invention relates to a squarylium derivative containing an indoline structure useful as a novel dye with high color purity, and a method for producing the same. The present invention also relates to an organic thin film and a photoelectric conversion device using the squarylium derivative as a dye.

光電変換素子は、光センサー、太陽電池などの光発電装置に使用されている。色素を用いる光電変換素子が特許文献1などで知られている。 Photoelectric conversion elements are used in photovoltaic devices such as optical sensors and solar cells. A photoelectric conversion element using a dye is known from Patent Document 1 and the like.

光電変換素子としては、シリコン半導体を用いた素子が広く用いられている。しかしながらこのようなシリコンフォトダイオードは可視光領域全域に感度を有しているため、この上部にRGBがモザイク状に配置されたカラーフィルターを用いることにより、各画素をRGBそれぞれの受光部として振り分け、カラー撮像を行っている。本方式では、カラーフィルターでの損失により入射光の利用効率が低いため、高感度化の障壁となることが懸念される。そこで、RGB各色の有機光電変換層を積層した撮像素子(以下積層型有機撮像素子)が提案されている(例えば、非特許文献1参照)。本方式では、カラーフィルターによる光の損失がなく光の利用効率が数倍となるため、高画素化に伴う画素の微細化に優位性を持つ高感度のデバイスとして期待されている。 Devices using silicon semiconductors are widely used as photoelectric conversion devices. However, since such a silicon photodiode has sensitivity in the entire visible light region, by using a color filter in which RGB are arranged in a mosaic pattern on the upper part, each pixel is assigned as a light receiving part for each of RGB, I am shooting in color. In this method, the efficiency of incident light utilization is low due to the loss in the color filter, and there is concern that this may be a barrier to achieving high sensitivity. Therefore, an imaging device (hereinafter referred to as a stacked organic imaging device) in which organic photoelectric conversion layers of RGB colors are stacked has been proposed (see, for example, Non-Patent Document 1). In this method, there is no loss of light due to the color filter, and the light utilization efficiency is several times higher. Therefore, it is expected to be a high-sensitivity device that has superiority in miniaturization of pixels accompanying the increase in the number of pixels.

積層型有機撮像素子の光電変換層としては、RGB各層がそれぞれ高い色純度の光電変換特性を有することが求められる。非特許文献1にはRGB各層の受光感度の波長依存性が示されているが、特にR層(赤色用光電変換層)は広い波長領域において吸収を示し、色純度が低い。また、特許文献2には、サブナフタロシアニンを光電変換材料として用いた赤色用光電変換素子について記載されており、赤色領域で極大吸収を示すものの可視光の全波長領域で吸収を示すため、色純度に課題がある。その他、赤色領域に吸収を持つ色素としてスクアリリウム誘導体を用いた光電変換素子が報告されている(例えば、特許文献3、非特許文献2、非特許文献3参照)。 As for the photoelectric conversion layers of the stacked organic imaging device, each of the RGB layers is required to have photoelectric conversion characteristics with high color purity. Non-Patent Document 1 shows the wavelength dependence of the photosensitivity of each of the RGB layers. In particular, the R layer (photoelectric conversion layer for red) exhibits absorption in a wide wavelength range and has low color purity. Further, Patent Document 2 describes a photoelectric conversion element for red using sub-naphthalocyanine as a photoelectric conversion material. Purity is an issue. In addition, a photoelectric conversion device using a squarylium derivative as a dye having absorption in the red region has been reported (see, for example, Patent Document 3, Non-Patent Document 2, and Non-Patent Document 3).

特許4148374号公報Japanese Patent No. 4148374 特開2017-73426号公報JP 2017-73426 A 特許5392765号公報Japanese Patent No. 5392765

Japanese Journal of Applied Physics,2011年、50巻、024103頁Japanese Journal of Applied Physics, 2011, 50, 024103 Laser & Photonics Reviews,2016年,10巻,473頁Laser & Photonics Reviews, 2016, 10, 473 pages The Journal of Physical Chemistry C,2017年、121巻、15333頁The Journal of Physical Chemistry C, 2017, 121, 15333

しかしながらさらなる色純度の向上を達成するには、報告されているスクアリリウム誘導体に比べて吸収極大ピークの半値幅を狭めた新規な誘導体の開発が必要である。またスクアリリウム誘導体を各種電子デバイスに実装するためには、光学特性だけでなく、熱に対する安定性が必要となる。 However, in order to achieve further improvement in color purity, it is necessary to develop a new derivative with a narrower half-width of the maximum absorption peak compared to the reported squarylium derivatives. Moreover, in order to mount squarylium derivatives in various electronic devices, not only optical properties but also thermal stability are required.

本発明は上記課題を鑑みてなされたものであり、高い耐熱性を有し、既存材よりも狭い半値幅を有するスクアリリウム誘導体を提供し、これを色素として用いた有機薄膜及び光電変換素子を提供すること、及び該スクアリリウム誘導体を簡便に合成する方法を提供することにある。 The present invention has been made in view of the above problems, and provides a squarylium derivative that has high heat resistance and a narrower half-value width than existing materials, and provides an organic thin film and a photoelectric conversion device using this as a dye. and to provide a method for easily synthesizing the squarylium derivative.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、新規なスクアリリウム誘導体が、半値幅が狭く色純度が高く、高い分解温度を有することを見出した。また、該スクアリリウム誘導体を用いて簡便に有機薄膜が製膜できることも合わせて見出し本発明を完成するに至った。 The present inventors have made intensive studies to solve the above problems, and as a result, have found that a novel squarylium derivative has a narrow half-value width, high color purity, and a high decomposition temperature. In addition, the inventors also found that an organic thin film can be easily formed using the squarylium derivative, and completed the present invention.

即ち本発明は、
[1]
一般式(1)で示されるスクアリリウム誘導体。
That is, the present invention
[1]
A squarylium derivative represented by the general formula (1).

Figure 0007206124000001
Figure 0007206124000001

(式中、Arは、炭素数6から12の単環、連結、又は縮環の芳香族炭化水素基を表し、該芳香族炭化水素基は、ハロゲン原子、炭素数1から8のアルキル基、又は炭素数1から8のハロアルキル基で置換されていてもよい。
、R、R、Rは、各々独立に、水素原子、ハロゲン原子、炭素数1から8のアルキル基、炭素数1から8のハロアルキル基、フェニル基、又はナフチル基を表す。
又、隣接する2つのRとR、RとR、及びRとRが、それぞれ一体となって、それぞれが結合している炭素原子を含んで脂肪族環又は芳香環を形成してもよい。);
[2]
Arが、ハロゲン原子、又は炭素数1から8のアルキル基で置換されていてもよいフェニル基である前記[1]に記載のスクアリリウム誘導体;
[3]
及びRが、水素原子である前記[1]又は[2]に記載のスクアリリウム誘導体;
[4]
及びRが、水素原子である前記[1]から[3]のいずれかに記載のスクアリリウム誘導体
に関する。
また本発明は、
[5]
一般式(2a)
(wherein Ar 1 represents a monocyclic, linked or condensed aromatic hydrocarbon group having 6 to 12 carbon atoms, the aromatic hydrocarbon group being a halogen atom, an alkyl group having 1 to 8 carbon atoms, , or may be substituted with a haloalkyl group having 1 to 8 carbon atoms.
R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, a haloalkyl group having 1 to 8 carbon atoms, a phenyl group or a naphthyl group.
Two adjacent R 1 and R 2 , R 2 and R 3 , and R 3 and R 4 together form an aliphatic or aromatic ring containing the carbon atoms to which they are bonded. may be formed. );
[2]
The squarylium derivative according to the above [1], wherein Ar 1 is a halogen atom or a phenyl group optionally substituted with an alkyl group having 1 to 8 carbon atoms;
[3]
The squarylium derivative according to the above [1] or [2], wherein R 3 and R 4 are hydrogen atoms;
[4]
The squarylium derivative according to any one of the above [1] to [3], wherein R 1 and R 2 are hydrogen atoms.
Further, the present invention
[5]
general formula (2a)

Figure 0007206124000002
Figure 0007206124000002

(式中、Arは、炭素数6から12の単環、連結、又は縮環の芳香族炭化水素基を表し、該芳香族炭化水素基は、ハロゲン原子、炭素数1から8のアルキル基、又は炭素数1から8のハロアルキル基で置換されていてもよい。
、R、R、Rは、各々独立に、水素原子、ハロゲン原子、炭素数1から8のアルキル基、炭素数1から8のハロアルキル基、フェニル基、又はナフチル基を表す。
又、隣接する2つのRとR、RとR、及びRとRが、それぞれ一体となって、それぞれが結合している炭素原子を含んで脂肪族環又は芳香環を形成してもよい。)で示されるインドリン化合物と、スクアリン酸と反応させることを特徴とする、前記一般式(1)で示されるスクアリリウム誘導体の製造方法;
[6]
Arが、ハロゲン原子、又は炭素数1から8のアルキル基で置換されていてもよいフェニル基である前記[5]に記載のスクアリリウム誘導体の製造方法;
[7]
及びRが、水素原子である前記[5]又は[6]に記載のスクアリリウム誘導体の製造方法;
[8]
及びRが、水素原子である前記[5]から[7]のいずれかに記載のスクアリリウム誘導体の製造方法
に関する。
また本発明は
[9]
一般式(2b)
(wherein Ar 1 represents a monocyclic, linked or condensed aromatic hydrocarbon group having 6 to 12 carbon atoms, the aromatic hydrocarbon group being a halogen atom, an alkyl group having 1 to 8 carbon atoms, , or may be substituted with a haloalkyl group having 1 to 8 carbon atoms.
R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, a haloalkyl group having 1 to 8 carbon atoms, a phenyl group or a naphthyl group.
Two adjacent R 1 and R 2 , R 2 and R 3 , and R 3 and R 4 together form an aliphatic or aromatic ring containing the carbon atoms to which they are bonded. may be formed. A method for producing a squarylium derivative represented by the general formula (1), characterized by reacting an indoline compound represented by ) with squaric acid;
[6]
The method for producing a squarylium derivative according to [5] above, wherein Ar 1 is a halogen atom or a phenyl group optionally substituted with an alkyl group having 1 to 8 carbon atoms;
[7]
The method for producing a squarylium derivative according to the above [5] or [6], wherein R 3 and R 4 are hydrogen atoms;
[8]
The method for producing a squarylium derivative according to any one of [5] to [7], wherein R 1 and R 2 are hydrogen atoms.
The present invention also provides [9]
general formula (2b)

Figure 0007206124000003
Figure 0007206124000003

(式中、R、R、R、Rは、各々独立に、水素原子、ハロゲン原子、炭素数1から8のアルキル基、炭素数1から8のハロアルキル基、フェニル基、又はナフチル基を表す。
又、隣接する2つのRとR、RとR、及びRとRが、それぞれ一体となって、それぞれが結合している炭素原子を含んで脂肪族環又は芳香環を形成してもよい。)で示されるインドリン化合物と、一般式(3a)
(wherein R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, a haloalkyl group having 1 to 8 carbon atoms, a phenyl group, or naphthyl represents a group.
Two adjacent R 1 and R 2 , R 2 and R 3 , and R 3 and R 4 together form an aliphatic or aromatic ring containing the carbon atoms to which they are bonded. may be formed. ) and an indoline compound represented by the general formula (3a)

Figure 0007206124000004
Figure 0007206124000004

(式中、Arは、炭素数6から12の単環、連結、又は縮環の芳香族炭化水素基を表し、該芳香族炭化水素基は、ハロゲン原子、炭素数1から8のアルキル基、又は炭素数1から8のハロアルキル基で置換されていてもよい。式中、Xは対アニオンを表す)で示される超原子価ヨウ素化合物を塩基存在下反応させ、前記一般式(2a)で示されるインドリン化合物を得、次いでこれとスクアリン酸と反応させることを特徴とする前記一般式(1)で示されるスクアリリウム誘導体の製造方法;
[10]
Arが、ハロゲン原子、又は炭素数1から8のアルキル基で置換されていてもよいフェニル基である前記[9]に記載のスクアリリウム誘導体の製造方法。
[11]
及びRが、水素原子である前記[9]又は[10]に記載のスクアリリウム誘導体の製造方法;
[12]
及びRが、水素原子である前記[9]から[11]のいずれかに記載のスクアリリウム誘導体の製造方法;
[13]
が、トリフルオロメタンスルホン酸イオン又はヘキサフルオロリン酸イオンである前記[9]から[12]のいずれかに記載のスクアリリウム誘導体の製造方法
に関する。
また本発明は、
[14]
前記[1]から[4]のいずれかに記載のスクアリリウム誘導体を含むことを特徴とする有機薄膜に関するものである。
さらに本発明は、
[15]
前記[14]に記載の有機薄膜を含むことを特徴とする光電変換素子に関するものである。
(wherein Ar 1 represents a monocyclic, linked or condensed aromatic hydrocarbon group having 6 to 12 carbon atoms, the aromatic hydrocarbon group being a halogen atom, an alkyl group having 1 to 8 carbon atoms, , or may be substituted with a haloalkyl group having 1 to 8 carbon atoms, wherein X - represents a counter anion) is reacted in the presence of a base, and the general formula (2a) A method for producing a squarylium derivative represented by the general formula (1), characterized by obtaining an indoline compound represented by and then reacting it with squaric acid;
[10]
The method for producing a squarylium derivative according to the above [9], wherein Ar 1 is a halogen atom or a phenyl group optionally substituted with an alkyl group having 1 to 8 carbon atoms.
[11]
The method for producing a squarylium derivative according to the above [9] or [10], wherein R 3 and R 4 are hydrogen atoms;
[12]
The method for producing a squarylium derivative according to any one of [9] to [11] above, wherein R 1 and R 2 are hydrogen atoms;
[13]
The method for producing a squarylium derivative according to any one of the above [9] to [12], wherein X - is a trifluoromethanesulfonate ion or a hexafluorophosphate ion.
Further, the present invention
[14]
The present invention relates to an organic thin film comprising the squarylium derivative according to any one of [1] to [4].
Furthermore, the present invention
[15]
A photoelectric conversion device comprising the organic thin film according to [14] above.

以下に本発明を詳細に説明する。
本発明のスクアリリウム誘導体(1)には以下の1aに示す共鳴構造が存在するが、本特許はそれらも包含するものである。
The present invention will be described in detail below.
The squarylium derivative (1) of the present invention has a resonance structure shown in 1a below, and this patent also covers them.

Figure 0007206124000005
Figure 0007206124000005

本発明のスクアリリウム誘導体(1)におけるAr、R、R、R及びRの定義について説明する。 Definitions of Ar 1 , R 1 , R 2 , R 3 and R 4 in the squarylium derivative (1) of the present invention are explained.

Arで表される炭素数6から12の単環、連結、又は縮環の芳香族炭化水素基としては、フェニル基、ナフチル基又はビフェニリル基などを例示することができ、得られるスクアリリウム誘導体(1)の収率が良い点で、フェニル基が好ましい。 Examples of the monocyclic, linked or condensed aromatic hydrocarbon group having 6 to 12 carbon atoms represented by Ar 1 include a phenyl group, a naphthyl group and a biphenylyl group, and the obtained squarylium derivative ( A phenyl group is preferable because the yield of 1) is good.

Arで表される炭素数6から12の単環、連結、又は縮環の芳香族炭化水素基はハロゲン原子で置換されていてもよく、該ハロゲン原子としてはフッ素原子、塩素原子、臭素原子又はヨウ素原子を例示することができる。得られるスクアリリウム誘導体(1)の収率が良い点で、臭素原子が好ましい。 The monocyclic, linked or condensed aromatic hydrocarbon group having 6 to 12 carbon atoms represented by Ar 1 may be substituted with a halogen atom, and the halogen atom is a fluorine atom, a chlorine atom or a bromine atom. Or an iodine atom can be exemplified. A bromine atom is preferable because the yield of the squarylium derivative (1) obtained is good.

Arで表される炭素数6から12の単環、連結、又は縮環の芳香族炭化水素基は炭素数1から8のアルキル基で置換されていてもよい。該炭素数1から8のアルキル基は、直鎖状、分岐状又は環状アルキル基のいずれでもよく、具体的には、メチル基、シクロヘキシルメチル基、エチル基、2-シクロペンチルエチル基、プロピル基、2-メチルプロピル基、2,2-ジメチルプロピル基、3-シクロプロピルプロピル基、イソプロピル基、シクロプロピル基、ブチル基、2-メチルブチル基、3-メチルブチル基、2-ブチル基、3-メチルブタン-2-イル基、tert-ブチル基、シクロブチル基、ペンチル基、2-メチルペンチル基、3-エチルペンチル基、2,4-ジメチルペンチル基、2-ペンチル基、2-メチルペンタン-2-イル基、4,4-ジメチルペンタン-2-イル基、3-ペンチル基、3-エチルペンタン-3-イル基、シクロペンチル基、2,5-ジメチルシクロペンチル基、3-エチルシクロペンチル基、ヘキシル基、2-メチルヘキシル基、3,3-ジメチルヘキシル基、4-エチルヘキシル基、2-ヘキシル基、2-メチルヘキサン-2-イル基、5,5-ジメチルヘキサン-2-イル基、3-ヘキシル基、2,4-ジメチルヘキサン-3-イル基、シクロヘキシル基、4-エチルシクロヘキシル基、4,4-ジメチルシクロヘキシル基、ヘプチル基、2-ヘプチル基、3-ヘプチル基、4-ヘプチル基、ビシクロ[2.2.1]ヘプチル基、オクチル基、2-オクチル基、3-オクチル基、4-オクチル基、シクロオクチル基又はビシクロ[2.2.2]オクチル基などを例示することができ、その中でも得られるスクアリリウム誘導体(1)の収率が良い点でメチル基、イソプロピル基又はtert-ブチル基が好ましく、特にtert-ブチル基が好ましい。 The monocyclic, linked or condensed aromatic hydrocarbon group having 6 to 12 carbon atoms represented by Ar 1 may be substituted with an alkyl group having 1 to 8 carbon atoms. The alkyl group having 1 to 8 carbon atoms may be a linear, branched or cyclic alkyl group, and specifically includes a methyl group, a cyclohexylmethyl group, an ethyl group, a 2-cyclopentylethyl group, a propyl group, 2-methylpropyl group, 2,2-dimethylpropyl group, 3-cyclopropylpropyl group, isopropyl group, cyclopropyl group, butyl group, 2-methylbutyl group, 3-methylbutyl group, 2-butyl group, 3-methylbutane- 2-yl group, tert-butyl group, cyclobutyl group, pentyl group, 2-methylpentyl group, 3-ethylpentyl group, 2,4-dimethylpentyl group, 2-pentyl group, 2-methylpentan-2-yl group , 4,4-dimethylpentan-2-yl group, 3-pentyl group, 3-ethylpentan-3-yl group, cyclopentyl group, 2,5-dimethylcyclopentyl group, 3-ethylcyclopentyl group, hexyl group, 2- methylhexyl group, 3,3-dimethylhexyl group, 4-ethylhexyl group, 2-hexyl group, 2-methylhexan-2-yl group, 5,5-dimethylhexan-2-yl group, 3-hexyl group, 2 , 4-dimethylhexan-3-yl group, cyclohexyl group, 4-ethylcyclohexyl group, 4,4-dimethylcyclohexyl group, heptyl group, 2-heptyl group, 3-heptyl group, 4-heptyl group, bicyclo [2. 2.1]heptyl group, octyl group, 2-octyl group, 3-octyl group, 4-octyl group, cyclooctyl group or bicyclo[2.2.2]octyl group. A methyl group, an isopropyl group, or a tert-butyl group is preferable, and a tert-butyl group is particularly preferable, because the yield of the squarylium derivative (1) obtained is good.

Arで表される炭素数6から12の単環、連結、又は縮環の芳香族炭化水素基は炭素数1から8のハロアルキル基で置換されていてもよい。該炭素数1から8のハロアルキル基は、直鎖状、分岐状又は環状ハロアルキル基のいずれでもよく、具体的には、トリフルオロメチル基、ジフルオロメチル基、ペルフルオロエチル基、2,2,2-トリフルオロエチル基、1,1-ジフルオロエチル基、2,2-ジフルオロエチル基、ペルフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基、2,2,3,3-テトラフルオロプロピル基、3,3,3-トリフルオロプロピル基、1,1-ジフルオロプロピル基、ペルフルオロイソプロピル基、2,2,2-トリフルオロ-1-(トリフルオロメチル)エチル基、ペルフルオロシクロプロピル基、2,2,3,3-テトラフルオロシクロプロピル基、ペルフルオロブチル基、2,2,3,3,4,4,4-ヘプタフルオロブチル基、3,3,4,4,4-ペンタフルオロブチル基、4,4,4-トリフルオロブチル基、1,2,2,3,3,3-ヘキサフルオロ-1-(トリフルオロメチル)プロピル基、1-(トリフルオロメチル)プロピル基、1-メチル-3,3,3-トリフルオロプロピル基、ペルフルオロシクロブチル基、2,2,3,3,4,4-ヘキサフルオロシクロブチル基、ペルフルオロペンチル基、2,2,3,3,4,4,5,5,5-ノナフルオロペンチル基、3,3,4,4,5,5,5-ヘプタフルオロペンチル基、4,4,5,5,5-ペンタフルオロペンチル基、5,5,5-トリフルオロペンチル基、1,2,2,3,3,3-ヘキサフルオロ-1-(ペルフルオロエチル)プロピル基、2,2,3,3,3-ペンタフルオロ-1-(ペルフルオロエチル)プロピル基、ペルフルオロシクロペンチル基、ペルフルオロヘキシル基、2,2,3,3,4,4,5,5,6,6,6-ウンデカフルオロヘキシル基、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル基、4,4,5,5,6,6,6-ヘプタフルオロヘキシル基、5,5,6,6,6-ペンプタフルオロヘキシル基、6,6,6-トリフルオロヘキシル基、ペルフルオロシクロヘキシル基、クロロメチル基、ブロモメチル基、ヨードメチル基、2-クロロエチル基又は3-ブロモプロピル基などを例示することができ、その中でも得られるスクアリリウム誘導体(1)の収率が良い点でトリフルオロメチル基又はブロモメチル基が好ましい。 The monocyclic, linked or condensed aromatic hydrocarbon group of 6 to 12 carbon atoms represented by Ar 1 may be substituted with a haloalkyl group of 1 to 8 carbon atoms. The haloalkyl group having 1 to 8 carbon atoms may be a linear, branched or cyclic haloalkyl group, specifically a trifluoromethyl group, a difluoromethyl group, a perfluoroethyl group, a 2,2,2- trifluoroethyl group, 1,1-difluoroethyl group, 2,2-difluoroethyl group, perfluoropropyl group, 2,2,3,3,3-pentafluoropropyl group, 2,2,3,3-tetrafluoro propyl group, 3,3,3-trifluoropropyl group, 1,1-difluoropropyl group, perfluoroisopropyl group, 2,2,2-trifluoro-1-(trifluoromethyl)ethyl group, perfluorocyclopropyl group, 2,2,3,3-tetrafluorocyclopropyl group, perfluorobutyl group, 2,2,3,3,4,4,4-heptafluorobutyl group, 3,3,4,4,4-pentafluorobutyl group, 4,4,4-trifluorobutyl group, 1,2,2,3,3,3-hexafluoro-1-(trifluoromethyl)propyl group, 1-(trifluoromethyl)propyl group, 1- methyl-3,3,3-trifluoropropyl group, perfluorocyclobutyl group, 2,2,3,3,4,4-hexafluorocyclobutyl group, perfluoropentyl group, 2,2,3,3,4, 4,5,5,5-nonafluoropentyl group, 3,3,4,4,5,5,5-heptafluoropentyl group, 4,4,5,5,5-pentafluoropentyl group, 5,5 ,5-trifluoropentyl group, 1,2,2,3,3,3-hexafluoro-1-(perfluoroethyl)propyl group, 2,2,3,3,3-pentafluoro-1-(perfluoroethyl ) propyl group, perfluorocyclopentyl group, perfluorohexyl group, 2,2,3,3,4,4,5,5,6,6,6-undecafluorohexyl group, 3,3,4,4,5, 5,6,6,6-nonafluorohexyl group, 4,4,5,5,6,6,6-heptafluorohexyl group, 5,5,6,6,6-pentafluorohexyl group, 6, 6,6-trifluorohexyl group, perfluorocyclohexyl group, chloromethyl group, bromomethyl group, iodomethyl group, 2-chloroethyl group or 3-bromopropyl group can be exemplified, among which the obtained squarylium derivative (1) A trifluoromethyl group or a bromomethyl group is preferable in that the yield of is good.

これらの中でもArとしては、ハロゲン原子、又は炭素数1から8のアルキル基で置換されてもよいフェニル基が好ましく、特に臭素原子置換フェニル基又は4-tert-ブチルフェニル基が好ましい。 Among these, Ar 1 is preferably a phenyl group optionally substituted with a halogen atom or an alkyl group having 1 to 8 carbon atoms, particularly preferably a bromine atom-substituted phenyl group or a 4-tert-butylphenyl group.

、R、R及びRで表されるハロゲン原子としてはフッ素原子、塩素原子、臭素原子又はヨウ素原子を例示することができ、その中でも得られるスクアリリウム誘導体(1)の収率が良い点で臭素原子が好ましい。 Examples of halogen atoms represented by R 1 , R 2 , R 3 and R 4 include fluorine, chlorine, bromine and iodine atoms. A bromine atom is preferred because of its advantages.

、R、R及びRで表される1から8のアルキル基は、直鎖状、分岐状又は環状アルキル基のいずれでもよく、具体的には、メチル基、シクロヘキシルメチル基、エチル基、2-シクロペンチルエチル基、プロピル基、2-メチルプロピル基、2,2-ジメチルプロピル基、3-シクロプロピルプロピル基、イソプロピル基、シクロプロピル基、ブチル基、2-メチルブチル基、3-メチルブチル基、2-ブチル基、3-メチルブタン-2-イル基、tert-ブチル基、シクロブチル基、ペンチル基、2-メチルペンチル基、3-エチルペンチル基、2,4-ジメチルペンチル基、2-ペンチル基、2-メチルペンタン-2-イル基、4,4-ジメチルペンタン-2-イル基、3-ペンチル基、3-エチルペンタン-3-イル基、シクロペンチル基、2,5-ジメチルシクロペンチル基、3-エチルシクロペンチル基、ヘキシル基、2-メチルヘキシル基、3,3-ジメチルヘキシル基、4-エチルヘキシル基、2-ヘキシル基、2-メチルヘキサン-2-イル基、5,5-ジメチルヘキサン-2-イル基、3-ヘキシル基、2,4-ジメチルヘキサン-3-イル基、シクロヘキシル基、4-エチルシクロヘキシル基、4,4-ジメチルシクロヘキシル基、ヘプチル基、2-ヘプチル基、3-ヘプチル基、4-ヘプチル基、ビシクロ[2.2.1]ヘプチル基、オクチル基、2-オクチル基、3-オクチル基、4-オクチル基、シクロオクチル基又はビシクロ[2.2.2]オクチル基などを例示することができ、その中でも得られるスクアリリウム誘導体(1)の収率が良い点でメチル基が好ましい。 The 1 to 8 alkyl groups represented by R 1 , R 2 , R 3 and R 4 may be linear, branched or cyclic alkyl groups, specifically methyl group, cyclohexylmethyl group, ethyl group, 2-cyclopentylethyl group, propyl group, 2-methylpropyl group, 2,2-dimethylpropyl group, 3-cyclopropylpropyl group, isopropyl group, cyclopropyl group, butyl group, 2-methylbutyl group, 3- methylbutyl group, 2-butyl group, 3-methylbutan-2-yl group, tert-butyl group, cyclobutyl group, pentyl group, 2-methylpentyl group, 3-ethylpentyl group, 2,4-dimethylpentyl group, 2- pentyl group, 2-methylpentan-2-yl group, 4,4-dimethylpentan-2-yl group, 3-pentyl group, 3-ethylpentan-3-yl group, cyclopentyl group, 2,5-dimethylcyclopentyl group , 3-ethylcyclopentyl group, hexyl group, 2-methylhexyl group, 3,3-dimethylhexyl group, 4-ethylhexyl group, 2-hexyl group, 2-methylhexane-2-yl group, 5,5-dimethylhexane -2-yl group, 3-hexyl group, 2,4-dimethylhexan-3-yl group, cyclohexyl group, 4-ethylcyclohexyl group, 4,4-dimethylcyclohexyl group, heptyl group, 2-heptyl group, 3- heptyl group, 4-heptyl group, bicyclo[2.2.1]heptyl group, octyl group, 2-octyl group, 3-octyl group, 4-octyl group, cyclooctyl group or bicyclo[2.2.2]octyl Among them, a methyl group is preferable because the yield of the obtained squarylium derivative (1) is good.

、R、R及びRで表される炭素数1から8のハロアルキル基とは、直鎖状、分岐状又は環状ハロアルキル基のいずれでもよく、具体的には、トリフルオロメチル基、ジフルオロメチル基、ペルフルオロエチル基、2,2,2-トリフルオロエチル基、1,1-ジフルオロエチル基、2,2-ジフルオロエチル基、ペルフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基、2,2,3,3-テトラフルオロプロピル基、3,3,3-トリフルオロプロピル基、1,1-ジフルオロプロピル基、ペルフルオロイソプロピル基、2,2,2-トリフルオロ-1-(トリフルオロメチル)エチル基、ペルフルオロシクロプロピル基、2,2,3,3-テトラフルオロシクロプロピル基、ペルフルオロブチル基、2,2,3,3,4,4,4-ヘプタフルオロブチル基、3,3,4,4,4-ペンタフルオロブチル基、4,4,4-トリフルオロブチル基、1,2,2,3,3,3-ヘキサフルオロ-1-(トリフルオロメチル)プロピル基、1-(トリフルオロメチル)プロピル基、1-メチル-3,3,3-トリフルオロプロピル基、ペルフルオロシクロブチル基、2,2,3,3,4,4-ヘキサフルオロシクロブチル基、ペルフルオロペンチル基、2,2,3,3,4,4,5,5,5-ノナフルオロペンチル基、3,3,4,4,5,5,5-ヘプタフルオロペンチル基、4,4,5,5,5-ペンタフルオロペンチル基、5,5,5-トリフルオロペンチル基、1,2,2,3,3,3-ヘキサフルオロ-1-(ペルフルオロエチル)プロピル基、2,2,3,3,3-ペンタフルオロ-1-(ペルフルオロエチル)プロピル基、ペルフルオロシクロペンチル基、ペルフルオロヘキシル基、2,2,3,3,4,4,5,5,6,6,6-ウンデカフルオロヘキシル基、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル基、4,4,5,5,6,6,6-ヘプタフルオロヘキシル基、5,5,6,6,6-ペンプタフルオロヘキシル基、6,6,6-トリフルオロヘキシル基、ペルフルオロシクロヘキシル基、クロロメチル基、ブロモメチル基、ヨードメチル基、2-クロロエチル基又は3-ブロモプロピル基などを例示することができる。 The haloalkyl group having 1 to 8 carbon atoms represented by R 1 , R 2 , R 3 and R 4 may be a linear, branched or cyclic haloalkyl group, specifically a trifluoromethyl group , difluoromethyl group, perfluoroethyl group, 2,2,2-trifluoroethyl group, 1,1-difluoroethyl group, 2,2-difluoroethyl group, perfluoropropyl group, 2,2,3,3,3- pentafluoropropyl group, 2,2,3,3-tetrafluoropropyl group, 3,3,3-trifluoropropyl group, 1,1-difluoropropyl group, perfluoroisopropyl group, 2,2,2-trifluoro- 1-(trifluoromethyl)ethyl group, perfluorocyclopropyl group, 2,2,3,3-tetrafluorocyclopropyl group, perfluorobutyl group, 2,2,3,3,4,4,4-heptafluorobutyl group, 3,3,4,4,4-pentafluorobutyl group, 4,4,4-trifluorobutyl group, 1,2,2,3,3,3-hexafluoro-1-(trifluoromethyl) propyl group, 1-(trifluoromethyl)propyl group, 1-methyl-3,3,3-trifluoropropyl group, perfluorocyclobutyl group, 2,2,3,3,4,4-hexafluorocyclobutyl group , perfluoropentyl group, 2,2,3,3,4,4,5,5,5-nonafluoropentyl group, 3,3,4,4,5,5,5-heptafluoropentyl group, 4,4 , 5,5,5-pentafluoropentyl group, 5,5,5-trifluoropentyl group, 1,2,2,3,3,3-hexafluoro-1-(perfluoroethyl)propyl group, 2,2 , 3,3,3-pentafluoro-1-(perfluoroethyl)propyl group, perfluorocyclopentyl group, perfluorohexyl group, 2,2,3,3,4,4,5,5,6,6,6-un decafluorohexyl group, 3,3,4,4,5,5,6,6,6-nonafluorohexyl group, 4,4,5,5,6,6,6-heptafluorohexyl group, 5,5 , 6,6,6-pentafluorohexyl group, 6,6,6-trifluorohexyl group, perfluorocyclohexyl group, chloromethyl group, bromomethyl group, iodomethyl group, 2-chloroethyl group or 3-bromopropyl group, etc. can be exemplified.

隣接する2つのRとR、RとR、及びRとRが、それぞれ一体となって、それぞれが結合している炭素原子を含んで形成してもよい脂肪族環又は芳香環としては、シクロペンテン環、シクロヘキセン環、シクロへプテン環又はベンゼン環を例示することができ、その中でも得られるスクアリリウム誘導体(1)の収率が良い点でベンゼン環が好ましい。 two adjacent R 1 and R 2 , R 2 and R 3 , and R 3 and R 4 may be joined together to form an aliphatic ring containing the carbon atoms to which they are bonded, or Examples of the aromatic ring include a cyclopentene ring, a cyclohexene ring, a cycloheptene ring, and a benzene ring. Among them, a benzene ring is preferable because the yield of the obtained squarylium derivative (1) is good.

及びRとしては、特に水素原子が好ましく、RおよびRとしては、特に水素原子が好ましい。 R 1 and R 2 are particularly preferably hydrogen atoms, and R 3 and R 4 are particularly preferably hydrogen atoms.

本発明のスクアリリウム誘導体(1)としては、特に限定するものではなく、例えば、以下の1-1から1-45に示す構造の化合物を具体的に例示することができる。 The squarylium derivative (1) of the present invention is not particularly limited, and specific examples thereof include compounds having structures shown in 1-1 to 1-45 below.

Figure 0007206124000006
Figure 0007206124000006

Figure 0007206124000007
Figure 0007206124000007

Figure 0007206124000008
なお本明細書中、Meはメチル基を表す。
Figure 0007206124000008
In addition, Me represents a methyl group in this specification.

1-1から1-45で示される化合物のうち、本発明のスクアリリウム誘導体(1)としては、合成が容易な点で1-1、1-2、1-4、1-16、1-17、1-19、1-31、1-32又は1-34で示される化合物が好ましく、特に1-1、1-2、1-4又は1-34で示される化合物が好ましい。 Among the compounds represented by 1-1 to 1-45, the squarylium derivative (1) of the present invention is 1-1, 1-2, 1-4, 1-16, 1-17 in terms of ease of synthesis. , 1-19, 1-31, 1-32 or 1-34 are preferred, and compounds of 1-1, 1-2, 1-4 or 1-34 are particularly preferred.

次に、本発明のスクアリリウム誘導体(1)の製造方法(以下、本発明の製造方法と称する。)について説明する。 Next, the method for producing the squarylium derivative (1) of the present invention (hereinafter referred to as the production method of the present invention) will be described.

本発明のスクアリリウム誘導体(1)は、次の反応式に示される工程1又は2により製造することができる。 The squarylium derivative (1) of the present invention can be produced by Step 1 or 2 shown in the following reaction scheme.

Figure 0007206124000009
Figure 0007206124000009

Figure 0007206124000010
(式中、Arは、炭素数6から12の単環、連結、又は縮環の芳香族炭化水素基を表し、該芳香族炭化水素基は、ハロゲン原子、炭素数1から8のアルキル基、又は炭素数1から8のハロアルキル基で置換されていてもよい。
、R、R、Rは、各々独立に、水素原子、ハロゲン原子、炭素数1から8のアルキル基、炭素数1から8のハロアルキル基、フェニル基、又はナフチル基を表す。
又、隣接する2つのRとR、RとR、及びRとRは、それぞれ一体となって、環を形成してもよい。Xは対アニオンを表す。)
工程1は、インドリン化合物(2a)とスクアリン酸とを反応させ、本発明のスクアリリウム誘導体(1)を製造する工程である。
Figure 0007206124000010
(wherein Ar 1 represents a monocyclic, linked or condensed aromatic hydrocarbon group having 6 to 12 carbon atoms, the aromatic hydrocarbon group being a halogen atom, an alkyl group having 1 to 8 carbon atoms, , or may be substituted with a haloalkyl group having 1 to 8 carbon atoms.
R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, a haloalkyl group having 1 to 8 carbon atoms, a phenyl group or a naphthyl group.
Two adjacent R 1 and R 2 , R 2 and R 3 , and R 3 and R 4 may be combined to form a ring. X represents a counter anion. )
Step 1 is a step of reacting an indoline compound (2a) with squaric acid to produce the squarylium derivative (1) of the present invention.

工程1に用いるインドリン化合物(2a)としては、例えば、以下の2a-1から2a-45に示す構造の化合物を具体的に例示することができる。 Specific examples of the indoline compound (2a) used in step 1 include compounds having structures shown in 2a-1 to 2a-45 below.

Figure 0007206124000011
Figure 0007206124000011

Figure 0007206124000012
2a-1から2a-45で示される化合物のうち、合成が容易な点で2a-1、2a-2、2a-4、2a-16、2a-17、2a-19、2a-31、2a-32又は2a-34で示される化合物が好ましく、特に2a-1及び2a-2で示される化合物が好ましい。インドリン化合物(2a)は、当業者の良く知る汎用的方法や、工程2の方法を用いて製造することができる。また、市販品を用いてもよい。
Figure 0007206124000012
Among the compounds represented by 2a-1 to 2a-45, 2a-1, 2a-2, 2a-4, 2a-16, 2a-17, 2a-19, 2a-31, 2a- Compounds represented by 32 or 2a-34 are preferred, especially compounds represented by 2a-1 and 2a-2. The indoline compound (2a) can be produced using a general method well known to those skilled in the art or the method of step 2. Moreover, you may use a commercial item.

工程1で用いるスクアリン酸とインドリン化合物(2a)とのモル比に特に制限はなく、収率がよい点でスクアリン酸:インドリン化合物(2a)のモル比が1:1から1:10の範囲にあることが好ましく、反応収率が良い点で1:2から1:3の範囲にあることがさらに好ましい。 The molar ratio of squaric acid and indoline compound (2a) used in step 1 is not particularly limited, and the molar ratio of squaric acid:indoline compound (2a) is in the range of 1:1 to 1:10 in terms of good yield. It is preferably in the range of 1:2 to 1:3 from the viewpoint of good reaction yield.

工程1は溶媒中で実施することができる。用いることのできる溶媒に特に制限はなく、反応を阻害しない溶媒であればよい。このような溶媒としては、具体的には、ジイソプロピルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル(CPME)、テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン、1,4-ジオキサン、ジメトキシエタン等のエーテル、ベンゼン、トルエン、キシレン、メシチレン、ニトロベンゼン、アニソール、テトラリン等の芳香族炭化水素、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、4-フルオロエチレンカーボネート等の炭酸エステル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、γ-ラクトン等のエステル、アセトニトリル、プロピオニトリル、バレロニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3-メトキシプロピオニトリル等のニトリル、メタノール、エタノール、プロパノール、イソプロピルアルコール、ブタノール、イソブチルアルコール、sec-ブタノール、tert-ブタノール、オクタノール等のアルコール、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N-メチルピロリドン(NMP)等のアミド、N,N,N’,N’-テトラメチルウレア(TMU)、N,N’-ジメチルプロピレンウレア(DMPU)等のウレア、ジメチルスルホキシド(DMSO)を例示することができ、これらを任意の比で混合して用いてもよい。溶媒の使用量に特に制限はない。これらのうち、本発明のスクアリリウム誘導体(1)の反応収率がよい点でトルエン、キシレン、ブタノール、オクタノール及びこれらの混合溶媒を用いることが好ましく、トルエンとブタノールの混合溶媒がさらに好ましい。 Step 1 can be carried out in a solvent. Solvents that can be used are not particularly limited as long as they do not inhibit the reaction. Specific examples of such solvents include ethers such as diisopropyl ether, dibutyl ether, cyclopentyl methyl ether (CPME), tetrahydrofuran (THF), 2-methyltetrahydrofuran, 1,4-dioxane, and dimethoxyethane, benzene, and toluene. , xylene, mesitylene, nitrobenzene, anisole, tetralin and other aromatic hydrocarbons, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, 4-fluoroethylene carbonate and other carbonate esters, ethyl acetate, butyl acetate, propion Esters such as methyl acid, ethyl propionate, methyl butyrate, γ-lactone, nitriles such as acetonitrile, propionitrile, valeronitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methoxypropionitrile, methanol, ethanol, propanol , isopropyl alcohol, butanol, isobutyl alcohol, sec-butanol, tert-butanol, octanol and other alcohols, N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), N-methylpyrrolidone (NMP), etc. amides, N,N,N',N'-tetramethylurea (TMU), ureas such as N,N'-dimethylpropyleneurea (DMPU), dimethylsulfoxide (DMSO), which can be optionally It may be used by mixing at a ratio of There are no particular restrictions on the amount of solvent used. Of these, toluene, xylene, butanol, octanol, and a mixed solvent thereof are preferably used, and a mixed solvent of toluene and butanol is more preferred because the reaction yield of the squarylium derivative (1) of the present invention is good.

工程1を実施する際の反応温度には特に制限はなく、通常は40から230℃から適宜選択された温度にて実施することができ、本発明のスクアリリウム誘導体(1)の反応収率が良い点で120から180℃から適宜選択された温度にて実施することが好ましい。 The reaction temperature for carrying out step 1 is not particularly limited, and it can usually be carried out at a temperature appropriately selected from 40 to 230° C., and the reaction yield of the squarylium derivative (1) of the present invention is good. It is preferable to carry out at a temperature suitably selected from 120 to 180°C.

本発明のスクアリリウム誘導体(1)は、工程1の反応の終了後に通常の処理を行うことで得ることができる。必要に応じて、再結晶、カラムクロマトグラフィー、昇華又は分取HPLC等で精製してもよい。 The squarylium derivative (1) of the present invention can be obtained by performing a normal treatment after completion of the reaction in step 1. If necessary, it may be purified by recrystallization, column chromatography, sublimation, preparative HPLC, or the like.

工程2は、インドリン化合物(2b)と超原子価ヨウ素化合物(3a)とを塩基存在下反応させ、インドリン化合物(2a)を製造する工程(以下、工程2Aと記載する。)を行った後、引き続いて前記工程1により本発明のスクアリリウム(1)を製造する工程である。 In step 2, the indoline compound (2b) and the hypervalent iodine compound (3a) are reacted in the presence of a base to produce the indoline compound (2a) (hereinafter referred to as step 2A). Subsequently, step 1 is followed to produce squarylium (1) of the present invention.

工程2Aに用いるインドリン化合物(2b)としては、例えば、以下の2b-1から2b-3に示す構造の化合物を具体的に例示することができる。 Specific examples of the indoline compound (2b) used in step 2A include compounds having structures shown in 2b-1 to 2b-3 below.

Figure 0007206124000013
Figure 0007206124000013

2b-1から2b-3で示される化合物のうち、合成が容易な点で2b-1又は2b-3で示される化合物が好ましく、特に2b-1で示される化合物が好ましい。インドリン化合物(2b)は、当業者の良く知る汎用的な方法で製造することができ、例えば、Tetrahedron Letters,2011年,52巻,6758-6762頁に開示されている方法等に従えば、収率よくインドリン化合物(2b)を得ることができる。また、市販品を用いてもよい。 Among the compounds represented by 2b-1 to 2b-3, the compound represented by 2b-1 or 2b-3 is preferable in terms of ease of synthesis, and the compound represented by 2b-1 is particularly preferable. The indoline compound (2b) can be produced by a general method well known to those skilled in the art. Indoline compound (2b) can be obtained efficiently. Moreover, you may use a commercial item.

工程2Aに用いる超原子価ヨウ素化合物(3a)における対アニオンXは、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン等のハロゲン化物イオン、過塩素酸イオン、硝酸イオン等の無機オキソ酸イオン、トリフルオロメタンスルホン酸イオン、トルエンスルホン酸イオン等の有機酸イオン、ヘキサフルオロリン酸イオン、ヘキサフルオロアルセナートイオン、テトラフルオロホウ酸イオン又はテトラキス(ペンタフルオロフェニル)ホウ酸イオンを例示することができる。これらのうち、反応性が良い点で、有機酸イオン又はヘキサフルオロリン酸イオンが好ましく、トリフルオロメタンスルホン酸イオン又はヘキサフルオロリン酸イオンがさらに好ましい。 The counter anion X in the hypervalent iodine compound (3a) used in step 2A is fluoride ion, chloride ion, bromide ion, halide ion such as iodide ion, inorganic oxo such as perchlorate ion, nitrate ion, etc. Acid ions, trifluoromethanesulfonate ions, organic acid ions such as toluenesulfonate ions, hexafluorophosphate ions, hexafluoroarsenate ions, tetrafluoroborate ions, and tetrakis(pentafluorophenyl)borate ions are exemplified. can be done. Of these, organic acid ions or hexafluorophosphate ions are preferred, and trifluoromethanesulfonate ions or hexafluorophosphate ions are more preferred, in terms of good reactivity.

工程2Aに用いる超原子価ヨウ素化合物(3a)としては、ジフェニルヨードニウムクロリド、ジフェニルヨードニウムブロミド、ジフェニルヨードニウムヨージド、ジフェニルヨードニウムヘキサフルオロホスファート、過塩素酸ジフェニルヨードニウム、ジフェニルヨードニウムニトラート、ジフェニルヨードニウムヘキサフルオロアルセナート、ジフェニルヨードニウムトリフルオロメタンスルホン酸、ビス(4-tert-ブチルフェニル)ヨードニウムヘキサフルオロホスファート、ビス(4-フルオロフェニル)ヨードニウムトリフルオロメタンスルホナート又はビス(4-ブロモフェニル)ヨードニウムトリフルオロメタンスルホナートを例示することができる。インドリン化合物(2a)の反応収率が良い点で、ジフェニルヨードニウムトリフルオロメタンスルホン酸、ビス(4-ブロモフェニル)ヨードニウムトリフルオロメタンスルホナート及びビス(4-tert-ブチルフェニル)ヨードニウムヘキサフルオロホスファートが好ましく、ジフェニルヨードニウムトリフルオロメタンスルホン酸又はビス(4-tert-ブチルフェニル)ヨードニウムヘキサフルオロホスファートがさらに好ましい。超原子価ヨウ素化物(3a)は当業者の良く知る汎用的な方法で製造することができ、例えば、Chemistry-A European Journal,2015年,21巻,16801-16806頁に開示されている方法等に従えば、収率よく超原子価ヨウ素化物(3a)を得ることができる。また、市販品を用いてもよい。 The hypervalent iodine compound (3a) used in step 2A includes diphenyliodonium chloride, diphenyliodonium bromide, diphenyliodonium iodide, diphenyliodonium hexafluorophosphate, diphenyliodonium perchlorate, diphenyliodonium nitrate, and diphenyliodonium hexafluoro. arsenate, diphenyliodonium trifluoromethanesulfonate, bis(4-tert-butylphenyl)iodonium hexafluorophosphate, bis(4-fluorophenyl)iodonium trifluoromethanesulfonate or bis(4-bromophenyl)iodonium trifluoromethanesulfonate can be exemplified. Diphenyliodonium trifluoromethanesulfonate, bis(4-bromophenyl)iodonium trifluoromethanesulfonate and bis(4-tert-butylphenyl)iodonium hexafluorophosphate are preferred in that the reaction yield of the indoline compound (2a) is good. , diphenyliodonium trifluoromethanesulfonic acid or bis(4-tert-butylphenyl)iodonium hexafluorophosphate are more preferred. The hypervalent iodide (3a) can be produced by a general method well known to those skilled in the art, such as the method disclosed in Chemistry-A European Journal, 2015, vol. 21, pp. 16801-16806. , the hypervalent iodide (3a) can be obtained in good yield. Moreover, you may use a commercial item.

工程2Aで用いる超原子価ヨウ素化物(3a)とインドリン化合物(2b)とのモル比に特に制限はなく、超原子価ヨウ素化合物(3a):インドリン化合物(2b)のモル比が1:2から10:1の範囲にあることが好ましく、反応収率が良い点で1:2から1:1の範囲にあることがさらに好ましい。 The molar ratio of the hypervalent iodide (3a) and the indoline compound (2b) used in step 2A is not particularly limited, and the molar ratio of the hypervalent iodine compound (3a):indoline compound (2b) is from 1:2. It is preferably in the range of 10:1, more preferably in the range of 1:2 to 1:1 from the viewpoint of good reaction yield.

工程2Aに用いる塩基としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等の金属水酸化物塩、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム等の金属炭酸塩、酢酸カリウム、酢酸ナトリウム等の金属酢酸塩、リン酸カリウム、リン酸ナトリウム等の金属リン酸塩、フッ化ナトリウム、フッ化カリウム、フッ化セシウム等の金属フッ化物塩、ナトリウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、カリウムイソプロピルオキシド、カリウムtert-ブトキシド等の金属アルコキシド等を挙げることができる。中でも反応収率がよい点で、金属アルコキシドが好ましく、カリウムtert-ブトキシドがさらに好ましい。用いる塩基の量に特に制限はない。反応収率がよい点で、塩基と超原子価ヨウ素化合物とのモル比は、1:2~10:1の範囲であることが好ましく、1:1~4:1の範囲であることがさらに好ましい。 Examples of the base used in step 2A include metal hydroxide salts such as sodium hydroxide, potassium hydroxide, and calcium hydroxide; metal carbonates such as sodium carbonate, potassium carbonate, lithium carbonate, and cesium carbonate; potassium acetate; Metal acetates such as sodium, metal phosphates such as potassium phosphate and sodium phosphate, metal fluoride salts such as sodium fluoride, potassium fluoride, cesium fluoride, sodium methoxide, potassium methoxide, sodium ethoxide , potassium isopropyl oxide, potassium tert-butoxide and other metal alkoxides. Among them, metal alkoxides are preferred, and potassium tert-butoxide is more preferred, in terms of good reaction yield. There are no particular restrictions on the amount of base used. The molar ratio of the base to the hypervalent iodine compound is preferably in the range of 1:2 to 10:1, more preferably in the range of 1:1 to 4:1, in terms of good reaction yield. preferable.

工程2Aは溶媒中で実施することができる。工程2Aにおける溶媒としては、ジイソプロピルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル(CPME)、テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン、1,4-ジオキサン、ジメトキシエタン等のエーテル;ベンゼン、トルエン、キシレン、メシチレン、テトラリン等の芳香族炭化水素;エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、4-フルオロエチレンカーボネート等の炭酸エステル;酢酸エチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、γ-ラクトン等のエステル;N,N-ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、N-メチルピロリドン(NMP)等のアミド;N,N,N’,N’-テトラメチルウレア(TMU)、N,N’-ジメチルプロピレンウレア(DMPU)等のウレア;ジメチルスルホキシド(DMSO)等が挙げられる。これらは1種のみで用いてもよく、任意の比で混合して用いてもよい。溶媒の使用量に特に制限はない。これらのうち、反応収率がよい点で芳香族炭化水素が好ましく、ベンゼン又はトルエンがさらに好ましい。 Step 2A can be carried out in a solvent. Solvents in Step 2A include ethers such as diisopropyl ether, dibutyl ether, cyclopentyl methyl ether (CPME), tetrahydrofuran (THF), 2-methyltetrahydrofuran, 1,4-dioxane, dimethoxyethane; benzene, toluene, xylene, mesitylene, Aromatic hydrocarbons such as tetralin; carbonate esters such as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 4-fluoroethylene carbonate; ethyl acetate, butyl acetate, methyl propionate, ethyl propionate, methyl butyrate , γ-lactone; amides such as N,N-dimethylformamide (DMF), dimethylacetamide (DMAc), N-methylpyrrolidone (NMP); N,N,N',N'-tetramethylurea (TMU ), ureas such as N,N'-dimethylpropylene urea (DMPU); dimethyl sulfoxide (DMSO) and the like. These may be used alone, or may be used by mixing at any ratio. There are no particular restrictions on the amount of solvent used. Among these, aromatic hydrocarbons are preferable, and benzene or toluene is more preferable because of good reaction yield.

工程2Aを実施する際の反応温度には特に制限はなく、0から150℃から適宜選択された温度にて実施することができ、収率が良い点で20から80℃から適宜選択された温度にて実施することが好ましい。 The reaction temperature for carrying out step 2A is not particularly limited, and it can be carried out at a temperature appropriately selected from 0 to 150°C, and the temperature is appropriately selected from 20 to 80°C in terms of good yield. It is preferable to carry out in

インドリン化合物(2a)は、工程2Aの反応の終了後に通常の処理を行うことで得ることができる。必要に応じて、再結晶、カラムクロマトグラフィー、昇華又は分取HPLC等で精製してもよいが、精製を行わずに工程1に供してもよい。 The indoline compound (2a) can be obtained by carrying out a normal treatment after completion of the reaction in step 2A. If necessary, it may be purified by recrystallization, column chromatography, sublimation, preparative HPLC, or the like, but may be subjected to step 1 without purification.

次に、本発明のスクアリリウム誘導体(1)を色素として含む有機薄膜(以下、「本発明の有機薄膜」と称する。)について説明する。 Next, an organic thin film containing the squarylium derivative (1) of the present invention as a dye (hereinafter referred to as "organic thin film of the present invention") will be described.

本発明の有機薄膜は、本発明のスクアリリウム誘導体(1)を製膜することで作製することができる。製膜する際の方法に特に制限はなく、例えば、真空蒸着法、スピンコート法、インクジェット法、キャスト法、LB(Langmuir-Blodgett)法などの当業者が通常用いる公知の方法を用いることができる。本発明の有機薄膜を作製するには、本発明のスクアリリウム誘導体(1)のみを用いて製膜してもよく、必要に応じてドープ剤、結着樹脂などの材料、溶剤と共に用いて製膜してもよい。 The organic thin film of the present invention can be produced by forming the squarylium derivative (1) of the present invention. There is no particular limitation on the method for film formation, and known methods commonly used by those skilled in the art such as vacuum deposition, spin coating, inkjet, casting, and LB (Langmuir-Blodgett) can be used. . In order to prepare the organic thin film of the present invention, the squarylium derivative (1) of the present invention may be used alone to form a film, and if necessary, a dopant, a material such as a binder resin, and a solvent may be used together to form a film. You may

有機薄膜の膜厚については特に制限はなく、状況に応じて適宜選択することができ、通常は5nm~5μmの範囲である。 The film thickness of the organic thin film is not particularly limited and can be appropriately selected depending on the situation, and is usually in the range of 5 nm to 5 μm.

さらに、本発明のスクアリリウム誘導体(1)を含む光電変換素子(以下、「本発明の光電変換素子」と称する。)について説明する。本発明の光電変換素子は、基板、負極層、光電変換層、及び正極層を含む。また、必要に応じて負極層と光電変換層との間に正孔輸送層及び/又は電子注入阻止層を、正極層と光電変換層との間に電子輸送層及び/又は正孔注入阻止層を設けてもよい。 Further, a photoelectric conversion device containing the squarylium derivative (1) of the present invention (hereinafter referred to as "photoelectric conversion device of the present invention") will be described. A photoelectric conversion element of the present invention includes a substrate, a negative electrode layer, a photoelectric conversion layer, and a positive electrode layer. Further, if necessary, a hole transport layer and/or an electron injection blocking layer is provided between the negative electrode layer and the photoelectric conversion layer, and an electron transport layer and/or a hole injection blocking layer is provided between the positive electrode layer and the photoelectric conversion layer. may be provided.

本発明の光電変換素子の光電変換層としては、本発明の有機薄膜を用いる。該光電変換層には、ドープ剤を含んでいてもよく、該ドープ剤としては、[60]フラーレン、[70]フラーレン、フェニル-C61-酪酸メチル([60]PCBM)、フェニル-C71-酪酸メチル([70]PCBM)、フェニル-C85-酪酸メチル([84]PCBM)等のフラーレン誘導体を例示することができる。 The organic thin film of the present invention is used as the photoelectric conversion layer of the photoelectric conversion element of the present invention. The photoelectric conversion layer may contain a dopant, and the dopant includes [60]fullerene, [70]fullerene, methyl phenyl-C 61 -butyrate ([60]PCBM), phenyl-C 71 Fullerene derivatives such as methyl-butyrate ([70]PCBM) and phenyl-C 85 -methylbutyrate ([84]PCBM) can be exemplified.

本発明の光電変換素子の正極層及び負極層は、導線等の電気的な導体を介して電源に接続されている。正極層又は負極層のいずれかは本発明の光電変換素子の基板と接触することができる。基板と接触する電極は便宜上、下部電極と呼ばれる。本発明の光電変換素子に置いては、正極層、負極層のいずれを下部電極としてもよい。 The positive electrode layer and the negative electrode layer of the photoelectric conversion element of the present invention are connected to a power source via an electrical conductor such as a lead wire. Either the positive electrode layer or the negative electrode layer can be in contact with the substrate of the photoelectric conversion element of the present invention. The electrode in contact with the substrate is conveniently called the bottom electrode. In the photoelectric conversion element of the present invention, either the positive electrode layer or the negative electrode layer may be used as the lower electrode.

本発明の光電変換素子の正極層及び負極層(以下、「電極」と称する。)としては、受光面となる少なくとも一方は光透過性であることが好ましい。光透過性の電極としては、一般的な透明電極材料を用いることができ、インジウム-錫酸化物(ITO)、インジウム-亜鉛酸化物(IZO)、酸化錫、アルミニウム又はインジウム・ドープ型酸化錫、マグネシウム-インジウム酸化物、又はニッケル-タングステン酸化物等の金属酸化物、窒化ガリウム等の金属窒化物、セレン化亜鉛等の金属セレン化物、又は硫化亜鉛等の金属硫化物を例示することができる。光透過性や導電性が良い点で金属酸化物が好ましく、ITO、IZO、酸化錫がさらに好ましい。また、該電極はプラズマ蒸着されたフルオロカーボンで改質することができる。 As for the positive electrode layer and the negative electrode layer (hereinafter referred to as “electrodes”) of the photoelectric conversion element of the present invention, at least one of the light receiving surfaces is preferably light transmissive. As the light-transmitting electrode, general transparent electrode materials can be used, including indium-tin oxide (ITO), indium-zinc oxide (IZO), tin oxide, aluminum or indium-doped tin oxide, Examples include metal oxides such as magnesium-indium oxide or nickel-tungsten oxide, metal nitrides such as gallium nitride, metal selenides such as zinc selenide, and metal sulfides such as zinc sulfide. Metal oxides are preferable, and ITO, IZO, and tin oxide are more preferable because they have good light transmittance and conductivity. Also, the electrodes can be modified with plasma deposited fluorocarbons.

受光面でない他方の電極については、先に例示した透明電極材料に加え、不透明又は反射性の電極材料を使用することができる。該不透明又は反射性の電極材料としては、金、イリジウム、モリブテン、パラジウム、白金、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。 For the other electrode, which is not the light-receiving surface, an opaque or reflective electrode material can be used in addition to the transparent electrode materials exemplified above. The opaque or reflective electrode materials include gold, iridium, molybdenum, palladium, platinum, sodium, sodium-potassium alloys, magnesium, lithium, magnesium/copper mixtures, magnesium/silver mixtures, magnesium/aluminum mixtures, magnesium/indium. mixtures, aluminum, aluminum/aluminum oxide ( Al2O3 ) mixtures, indium, lithium/aluminum mixtures, rare earth metals, and the like.

本発明の光電変換素子は、基板上に形成される。該基板は、意図される受光方向に応じて、光透過性又は不透明であってよい。光透過性は基板を通して受光するのに好ましく、該基板としては透明ガラス、石英又はプラスチック等を例示することができる。不透明基板としてはシリコン、酸化シリコンを例示することができる。また該基板は、多重の材料層を含む複合構造であってよい。 A photoelectric conversion element of the present invention is formed on a substrate. The substrate may be light transmissive or opaque, depending on the intended direction of light reception. Light transmittance is preferable for receiving light through a substrate, and the substrate can be exemplified by transparent glass, quartz, plastic, or the like. Examples of opaque substrates include silicon and silicon oxide. The substrate may also be a composite structure comprising multiple layers of material.

本発明の光電変換素子は、キャリア輸送性の向上を目的として、負極と光電変換層との間に正孔輸送層を、正極と光電変換層との間に電子輸送層を設けてもよい。正孔輸送層としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよく、具体的にはトリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマーが挙げられ、特にポリ(3,4-エチレンジオキシチオフェン):ポリスチレンスルホン酸(PEDOT:PSS)を例示することができる。電子輸送層としては、特に限定されるものではなく、電子注入効率が高く、注入された電子を効率良く輸送することが好ましく、具体的にはニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体又はオキサジアゾール誘導体を例示することができる。また、暗電流発生の抑制を目的として、負極と光電変換層との間に電子注入阻止層を、正極と光電変換層との間に正孔注入阻止層を設けてもよい。電子注入阻止層としては、2,7-ビス(9-カルバゾリル)-9,9-スピロビフルオレン(Spiro-2CBP)等のトリアリールアミン類を挙げることができる。正孔注入阻止層としては、トリス(8-キノリノラト)アルミニウム(Alq)を例示することができる。 In the photoelectric conversion element of the present invention, a hole transport layer may be provided between the negative electrode and the photoelectric conversion layer, and an electron transport layer may be provided between the positive electrode and the photoelectric conversion layer for the purpose of improving carrier transport properties. The hole transport layer has either hole injection or transport or electron blocking properties, and may be either organic or inorganic. Specific examples include triazole derivatives, oxadiazole derivatives, Imidazole derivatives, polyarylalkane derivatives, pyrazoline and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers Coalescing and conductive polymer oligomers can be mentioned, especially poly(3,4-ethylenedioxythiophene):polystyrene sulfonic acid (PEDOT:PSS). The electron transport layer is not particularly limited, and preferably has a high electron injection efficiency and efficiently transports the injected electrons. Specifically, nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide Derivatives, carbodiimides, frelenylidenemethane derivatives, anthraquinodimethanes and anthrone derivatives or oxadiazole derivatives may be mentioned. For the purpose of suppressing dark current generation, an electron injection blocking layer may be provided between the negative electrode and the photoelectric conversion layer, and a hole injection blocking layer may be provided between the positive electrode and the photoelectric conversion layer. Examples of the electron injection blocking layer include triarylamines such as 2,7-bis(9-carbazolyl)-9,9-spirobifluorene (Spiro-2CBP). An example of the hole injection blocking layer is tris(8-quinolinolato)aluminum (Alq 3 ).

本発明のスクアリリウム誘導体(1)は、狭い半値幅と高い耐熱性を有することから有機光電変換素子に代表される有機電子材料としての適用が期待できる。 Since the squarylium derivative (1) of the present invention has a narrow half width and high heat resistance, it can be expected to be applied as an organic electronic material typified by organic photoelectric conversion devices.

実施例-1及び比較例-1で得られる有機薄膜の規格化された吸収スペクトルの図である。1 is a diagram of normalized absorption spectra of organic thin films obtained in Example-1 and Comparative Example-1. FIG. 実施例-5で得られる光電変換素子の断面模式図である。It is a schematic cross-sectional view of a photoelectric conversion element obtained in Example-5. 実施例-5で得られる光電変換素子の外部量子効率の測定結果の図である。FIG. 10 is a diagram showing measurement results of the external quantum efficiency of the photoelectric conversion device obtained in Example-5.

以下、実施例及び比較例により本発明をさらに詳細に説明するが、本発明はこれらに限定して解釈されるものではない。
H-NMR測定]
H-NMRの測定には、Bruker ASCEND 400(400MHz;BRUKER社製)を用いた。H-NMRは、重クロロホルム(CDCl)を測定溶媒とし、内部標準物質としてテトラメチルシラン(TMS)を用いて測定した。化合物の同定はThe Journal of Organic Chemistry,2017年,82巻,5819-5825頁及びJournal of American Chemical Society,1995年,117巻,2214-2225頁を参考に行った。
[TG/DTA測定]
5%重量減少温度及び分解温度の測定はEXSTAR TG/DTA6200(製品名、エスアイアイ・ナノテクノロジー社製)を用いた。窒素ガス気流下(50mL/分)、10℃/分の速度で温度を上昇させて、測定を行った。
[薄膜作製及び膜厚測定]
薄膜作製はスピンコート法により行い、スピンコーターMS-A100(ミカサ社製)を用いた。基板は、予めイソプロピルアルコールにより洗浄した後、酸素プラズマ洗浄を行ったものを用いた。膜厚測定には触針式膜厚測定計DektakXT(BRUKER社製)を用いた。
[吸収スペクトル測定]
吸収スペクトル測定は日立分光光度計U-4100(日立ハイテクサイエンス製)を用いた。スキャンスピード750nm/分で測定を行った。
[外部量子効率測定]
外部量子効率の測定には太陽電池分光感度測定装置(相馬光学社製)を用いた。照射光強度100μW/cmで測定を行った。
試薬類は市販品を用いた。
EXAMPLES The present invention will be described in more detail below with reference to examples and comparative examples, but the present invention should not be construed as being limited thereto.
[ 1 H-NMR measurement]
Bruker ASCEND 400 (400 MHz; manufactured by BRUKER) was used for 1 H-NMR measurement. 1 H-NMR was measured using deuterated chloroform (CDCl 3 ) as a measurement solvent and tetramethylsilane (TMS) as an internal standard substance. Identification of the compound was performed with reference to The Journal of Organic Chemistry, 2017, vol.82, pp.5819-5825 and Journal of American Chemical Society, 1995, vol.117, pp.2214-2225.
[TG/DTA measurement]
EXSTAR TG/DTA6200 (product name, manufactured by SII Nano Technology Co., Ltd.) was used to measure the 5% weight loss temperature and the decomposition temperature. Measurement was performed by raising the temperature at a rate of 10°C/min under a nitrogen gas stream (50 mL/min).
[Thin film preparation and film thickness measurement]
The thin film was formed by a spin coating method using a spin coater MS-A100 (manufactured by Mikasa). The substrate used was preliminarily cleaned with isopropyl alcohol and then subjected to oxygen plasma cleaning. A stylus type film thickness meter DektakXT (manufactured by BRUKER) was used for film thickness measurement.
[Absorption spectrum measurement]
A Hitachi spectrophotometer U-4100 (manufactured by Hitachi High-Tech Science) was used for the absorption spectrum measurement. Measurements were made at a scan speed of 750 nm/min.
[External quantum efficiency measurement]
A solar cell spectral sensitivity measuring device (manufactured by Soma Kogaku Co., Ltd.) was used to measure the external quantum efficiency. The measurement was performed at an irradiation light intensity of 100 μW/cm 2 .
Commercially available reagents were used.

実施例-1 Example-1

Figure 0007206124000014
Figure 0007206124000014

アルゴン雰囲気下、2,3-ジメチル-3-フェニルインドレニン(1.20g,5.4mmol)及び3,4-ジヒドロキシ-3-シクロブテン-1,2-ジオン(300mg,2.6mmol)をトルエン(50mL)及びブタノール(50mL)の混合溶媒に溶解し、130℃で14時間撹拌した。室温まで放冷後、析出した固体をろ取した。この固体を、メタノールからの再結晶及びシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール)により精製することで、青色固体の2-[{3-[(1,3-ジヒドロ-3-メチル-3-フェニル-2H-インドール-2-イリデン)メチル]-2-ヒドロキシ-4-オキソ-2-シクロブテン-1-イリデン}メチル]-3-メチル-3-フェニル-3H-インドール(Z,Z-体とZ,E-体の混合物(2:1)、例示化合物1-1)を得た(840mg,61%)。
H-NMR(CDCl):δ12.92(s,1.3H),12.67(s,0.7H),7.23-7.34(m,7.3H),7.13-7.18(m,6H),7.00-7.08(m,4.7H),5.25(s,0.7H),5.20(s,1.3H),1.82(s,6H)。
Under an argon atmosphere, 2,3-dimethyl-3-phenylindolenine (1.20 g, 5.4 mmol) and 3,4-dihydroxy-3-cyclobutene-1,2-dione (300 mg, 2.6 mmol) were added to toluene ( 50 mL) and butanol (50 mL), and stirred at 130° C. for 14 hours. After allowing to cool to room temperature, the precipitated solid was collected by filtration. This solid was recrystallized from methanol and purified by silica gel column chromatography (chloroform/methanol) to give 2-[{3-[(1,3-dihydro-3-methyl-3-phenyl-) as a blue solid. 2H-indol-2-ylidene)methyl]-2-hydroxy-4-oxo-2-cyclobuten-1-ylidene}methyl]-3-methyl-3-phenyl-3H-indole (Z,Z-form and Z, A mixture of E-isomers (2:1), exemplified compound 1-1) was obtained (840 mg, 61%).
1 H-NMR (CDCl 3 ): δ 12.92 (s, 1.3H), 12.67 (s, 0.7H), 7.23-7.34 (m, 7.3H), 7.13- 7.18 (m, 6H), 7.00-7.08 (m, 4.7H), 5.25 (s, 0.7H), 5.20 (s, 1.3H), 1.82 ( s, 6H).

得られたスクアリリウム誘導体(1-1)のTG/DTAを測定した結果、分解温度は305℃であった。 As a result of measuring TG/DTA of the obtained squarylium derivative (1-1), the decomposition temperature was 305°C.

得られたスクアリリウム誘導体(1-1)の有機薄膜を作製し、その吸収特性を評価した。得られたスクアリリウム誘導体(1-1)のクロロベンゼン溶液(濃度0.5wt%)を調製し、スピンコート法により石英基板上に塗布し、次いでアルゴン下、100℃で45分間乾燥させることで有機薄膜を得た。スピンコート法の回転条件は、1500rpm、30秒である。該有機薄膜の膜厚は12nmであった。該有機薄膜の規格化された吸収スペクトルを図1に示す。極大吸収波長は695nm、半値幅は87nmであった。なお、本明細書中における半値幅とは、半値全幅(full width at half maximum、FWHM)を表すものとする。 An organic thin film of the obtained squarylium derivative (1-1) was prepared and its absorption characteristics were evaluated. A chlorobenzene solution (concentration: 0.5 wt %) of the obtained squarylium derivative (1-1) was prepared, applied onto a quartz substrate by spin coating, and then dried under argon at 100° C. for 45 minutes to form an organic thin film. got The rotation conditions for the spin coating method are 1500 rpm and 30 seconds. The thickness of the organic thin film was 12 nm. A normalized absorption spectrum of the organic thin film is shown in FIG. The maximum absorption wavelength was 695 nm and the half width was 87 nm. In this specification, the term "full width at half maximum" means full width at half maximum (FWHM).

実施例-2 Example-2

Figure 0007206124000015
Figure 0007206124000015

アルゴン雰囲気下、2,3-ジメチルインドール(620mg,4.3mmol)及びカリウム-tert-ブトキシド(954mg,8.5mmol)をトルエン(20mL)中、50℃で10分間撹拌した。撹拌後、ビス(4-ブロモフェニル)ヨードニウムトリフラート(2.50g,4.3mmol)を加え、再度50℃で18時間撹拌した。室温まで放冷後、反応混合物にクロロホルムを加えて有機層を抽出し、さらに有機層を水、次いで飽和食塩水で洗浄し、硫酸ナトリウムを加え室温で撹拌した。乾燥剤をろ別し、低沸分を留去し、得られた油状物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)を用いて精製することで黄色油状の2, 3-ジメチル-3-(4-ブロモフェニル)インドレニンを得た(250mg,収率20%)。
H-NMR(CDCl):δ7.60(d,J=7.7Hz,1H),7.39(brd,J=8.6Hz,2H),7.34(ddd,J=6.4,6.4,1.2Hz,1H),7.16(ddd,J=6.5,6.4,1.0Hz,1H),7.06(d,J=7.0Hz,1H),6.89(brd,J=8.6Hz,2H),2.11(s,3H),1.66(s,3H)。
Under an argon atmosphere, 2,3-dimethylindole (620 mg, 4.3 mmol) and potassium-tert-butoxide (954 mg, 8.5 mmol) were stirred in toluene (20 mL) at 50° C. for 10 minutes. After stirring, bis(4-bromophenyl)iodonium triflate (2.50 g, 4.3 mmol) was added and stirred again at 50° C. for 18 hours. After allowing to cool to room temperature, chloroform was added to the reaction mixture to extract the organic layer, the organic layer was washed with water and then with saturated brine, sodium sulfate was added, and the mixture was stirred at room temperature. The drying agent was filtered off, the low-boiling components were distilled off, and the resulting oil was purified using silica gel column chromatography (hexane/ethyl acetate) to give 2,3-dimethyl-3-( 4-Bromophenyl)indolenine was obtained (250 mg, 20% yield).
1 H-NMR (CDCl 3 ): δ 7.60 (d, J = 7.7 Hz, 1H), 7.39 (brd, J = 8.6 Hz, 2H), 7.34 (ddd, J = 6.4 , 6.4, 1.2 Hz, 1 H), 7.16 (ddd, J = 6.5, 6.4, 1.0 Hz, 1 H), 7.06 (d, J = 7.0 Hz, 1 H), 6.89 (brd, J=8.6 Hz, 2H), 2.11 (s, 3H), 1.66 (s, 3H).

Figure 0007206124000016
Figure 0007206124000016

アルゴン雰囲気下、得られた2,3-ジメチル-3-(4-ブロモフェニル)インドレニン(260mg,0.87mmol)及び3,4-ジヒドロキシ-3-シクロブテン-1,2-ジオン(50mg,0.43mmol)をトルエン(4.0mL)及びブタノール(4.0mL)の混合溶媒中に溶解し、130℃で14時間撹拌した。室温まで放冷後、反応混合物にクロロホルムを加えて有機層を抽出し、さらに有機層を水、次いで飽和食塩水で洗浄し、硫酸ナトリウムを加え室温で撹拌した。乾燥剤を濾別し、低沸分を留去した。得られた固体をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)、メタノールからの再結晶、次いでリサイクルHPLCにより精製を行うことで青色固体の2-[3-{[1,3-ジヒドロ-3-メチル-3-(4-ブロモフェニル)-2H-インドール-2-イリデン)メチル]-2-ヒドロキシ-4-オキソ-2-シクロブテン-1-イリデン}メチル]-3-メチル-3-(4-ブロモフェニル)-3H-インドール(Z,Z-体とZ,E-体の混合物(2:1)、例示化合物1-2)を得た(47mg,16%)。
H-NMR(CDCl):δ12.93(s,1.3H),12.67(s,0.7H),7.40-7.44(m,4H),7.25-7.35(m,2.7H),7.16(d,J=7.8Hz,1.3H),7.00-7.07(m,8H),5.23(s,0.7H),5.17(s,1.3H),1.80(s,6H).
得られたスクアリリウム誘導体(1-2)のTG/DTAを測定した結果、分解温度は298℃であった。
Under an argon atmosphere, the obtained 2,3-dimethyl-3-(4-bromophenyl)indolenine (260 mg, 0.87 mmol) and 3,4-dihydroxy-3-cyclobutene-1,2-dione (50 mg, 0 .43 mmol) was dissolved in a mixed solvent of toluene (4.0 mL) and butanol (4.0 mL) and stirred at 130° C. for 14 hours. After allowing to cool to room temperature, chloroform was added to the reaction mixture to extract the organic layer, the organic layer was washed with water and then with saturated brine, sodium sulfate was added, and the mixture was stirred at room temperature. The desiccant was filtered off and the low boilers were distilled off. The resulting solid was purified by silica gel column chromatography (hexane/ethyl acetate), recrystallization from methanol, and then recycle HPLC to give a blue solid of 2-[3-{[1,3-dihydro-3-methyl -3-(4-bromophenyl)-2H-indol-2-ylidene)methyl]-2-hydroxy-4-oxo-2-cyclobuten-1-ylidene}methyl]-3-methyl-3-(4-bromo Phenyl)-3H-indole (mixture of Z,Z-form and Z,E-form (2:1), exemplified compound 1-2) was obtained (47 mg, 16%).
1 H-NMR (CDCl 3 ): δ 12.93 (s, 1.3H), 12.67 (s, 0.7H), 7.40-7.44 (m, 4H), 7.25-7. 35 (m, 2.7H), 7.16 (d, J=7.8Hz, 1.3H), 7.00-7.07 (m, 8H), 5.23 (s, 0.7H), 5.17 (s, 1.3H), 1.80 (s, 6H).
As a result of measuring TG/DTA of the obtained squarylium derivative (1-2), the decomposition temperature was 298°C.

実施例-3 Example-3

Figure 0007206124000017
Figure 0007206124000017

アルゴン雰囲気下、2,3-ジメチルインドール(0.27mg,1.9mmol)及びカリウム-tert-ブトキシド(206mg,3.7mmol)をトルエン(10mL)中、50℃で10分間撹拌した。撹拌後ビス(4-tert-ブチルフェニル)ヨードニウムヘキサフルオロホスファート(1.00g,1.9mmol)を加え、再度50℃で18時間撹拌した。室温まで放冷後、反応混合物にクロロホルムを加えて有機層を抽出し、さらに有機層を水、次いで飽和食塩水で洗浄し、硫酸ナトリウムを加え室温で撹拌した。乾燥剤をろ別し、低沸分を留去し、得られた油状物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)を用いて精製することで黄色油状の2, 3-ジメチル-3-(4-tert-ブチルフェニル)インドレニンを得た(170mg,収率33%)。
H-NMR(CDCl):δ7.60(d,J=7.7Hz,1H),7.31(brdd,J=7.7,7.4Hz,1H),7.28(brd,J=8.5Hz,2H),7.14(brdd,J=7.4,7.3Hz,1H),7.10(brd,J=7.3Hz,1H),6.97(brd,J=8.5Hz,2H),2.14(s,3H),1.67(s,3H),1.28(brs,9H).
Under an argon atmosphere, 2,3-dimethylindole (0.27 mg, 1.9 mmol) and potassium-tert-butoxide (206 mg, 3.7 mmol) were stirred in toluene (10 mL) at 50° C. for 10 minutes. After stirring, bis(4-tert-butylphenyl)iodonium hexafluorophosphate (1.00 g, 1.9 mmol) was added, and the mixture was stirred again at 50°C for 18 hours. After allowing to cool to room temperature, chloroform was added to the reaction mixture to extract the organic layer, the organic layer was washed with water and then with saturated brine, sodium sulfate was added, and the mixture was stirred at room temperature. The drying agent was filtered off, the low-boiling components were distilled off, and the resulting oil was purified using silica gel column chromatography (hexane/ethyl acetate) to give 2,3-dimethyl-3-( 4-tert-Butylphenyl)indolenine was obtained (170 mg, 33% yield).
1 H-NMR (CDCl 3 ): δ 7.60 (d, J = 7.7 Hz, 1H), 7.31 (brdd, J = 7.7, 7.4 Hz, 1H), 7.28 (brd, J = 8.5Hz, 2H), 7.14 (brd, J = 7.4, 7.3Hz, 1H), 7.10 (brd, J = 7.3Hz, 1H), 6.97 (brd, J = 8.5 Hz, 2H), 2.14 (s, 3H), 1.67 (s, 3H), 1.28 (brs, 9H).

Figure 0007206124000018
Figure 0007206124000018

アルゴン雰囲気下、得られた2,3-ジメチル-3-(4-tert-ブチルフェニル)インドレニン(170mg,0.60mmol)及び3,4-ジヒドロキシシクロブタ-3-エン-1,2-ジオン(30mg,0.30mmol)をトルエン(4mL)及びブタノール(4mL)の混合溶媒中に溶解させ、130℃で14時間撹拌した。室温まで放冷後、反応混合物にクロロホルムを加えて有機層を抽出し、さらに有機層を水、次いで飽和食塩水で洗浄し、硫酸ナトリウムを加え室温で撹拌した。乾燥剤を濾別し、低沸分を留去した。得られた固体をメタノールからの再結晶、次いでリサイクルHPLCにより精製を行うことで青色固体の2-[3-{[1,3-ジヒドロ-3-メチル-3-(4-tert-ブチルフェニル)-2H-インドール-2-イリデン)メチル]-2-ヒドロキシ-4-オキソ-2-シクロブテン-1-イリデン}メチル]-3-メチル-3-(4-tert-ブチルフェニル)-3H-インドール(Z,Z-体とZ,E-体の混合物(2:1)、例示化合物1-4)を得た(96mg、51%)。
H-NMR(CDCl):δ12.88(s,1.3H),12.62(s,0.7H),7.24‐7.33(m,6.7H),7.14(d,J=7.9Hz,1.3H),6.99‐7.11(m,8H),5.25(d,J=1.4Hz,0.7H),5.21(d,J=2.5Hz,1.3H),1.81(brs,6H),1.27‐1.28(m,18H).
得られたスクアリリウム誘導体(1-4)のTG/DTAを測定した結果、分解温度は302℃であった。
Under an argon atmosphere, the resulting 2,3-dimethyl-3-(4-tert-butylphenyl)indolenine (170 mg, 0.60 mmol) and 3,4-dihydroxycyclobut-3-ene-1,2-dione (30 mg, 0.30 mmol) was dissolved in a mixed solvent of toluene (4 mL) and butanol (4 mL) and stirred at 130° C. for 14 hours. After allowing to cool to room temperature, chloroform was added to the reaction mixture to extract the organic layer, the organic layer was washed with water and then with saturated brine, sodium sulfate was added, and the mixture was stirred at room temperature. The desiccant was filtered off and the low boilers were distilled off. The obtained solid was recrystallized from methanol and then purified by recycle HPLC to obtain 2-[3-{[1,3-dihydro-3-methyl-3-(4-tert-butylphenyl) as a blue solid. -2H-indol-2-ylidene)methyl]-2-hydroxy-4-oxo-2-cyclobuten-1-ylidene}methyl]-3-methyl-3-(4-tert-butylphenyl)-3H-indole ( A mixture of Z,Z-isomer and Z,E-isomer (2:1), exemplified compound 1-4) was obtained (96 mg, 51%).
1 H-NMR (CDCl 3 ): δ 12.88 (s, 1.3H), 12.62 (s, 0.7H), 7.24-7.33 (m, 6.7H), 7.14 ( d, J = 7.9 Hz, 1.3 H), 6.99-7.11 (m, 8 H), 5.25 (d, J = 1.4 Hz, 0.7 H), 5.21 (d, J = 2.5Hz, 1.3H), 1.81 (brs, 6H), 1.27-1.28 (m, 18H).
As a result of measuring TG/DTA of the obtained squarylium derivative (1-4), the decomposition temperature was 302°C.

実施例-4 Example-4

Figure 0007206124000019
Figure 0007206124000019

アルゴン雰囲気下、1,2-ジメチル-3H-ベンゾ[e]インドール(195mg,1.0mmol)、カリウム-tert-ブトキシド(224mg,2.0mmol)及びビス(4-tert-ブチルフェニル)ヨードニウムヘキサフルオロホスファート(538mg,1.0mmol)をトルエン(5mL)中、50℃で18時間撹拌した。室温まで放冷後、反応混合物に水及びジエチルエーテルを加えて有機層を抽出し、さらに有機層を水、次いで飽和食塩水で洗浄し、硫酸ナトリウムを加え室温で撹拌した。乾燥剤をろ別し、低沸分を留去し、得られた油状物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル)を用いて精製することで黄色油状の1,2-ジメチル-1-(4-tert-ブチルフェニル)-1H-ベンゾ[e]インドールを得た(148mg,収率45%)。
H-NMR(CDCl):δ7.90(brd,J=8.7Hz,1H),7.89(brd,J=8.5Hz,1H),7.83(brd,J=8.5Hz,1H),7.48(brd,J=8.1Hz,1H),7.30‐7.39(m,2H),7.26(brd,J=8.7Hz,2H),6.98(brd,J=8.4Hz,2H),2.17(s,3H),1.84(s,3H),1.28(brs,9H).
1,2-dimethyl-3H-benzo[e]indole (195 mg, 1.0 mmol), potassium-tert-butoxide (224 mg, 2.0 mmol) and bis(4-tert-butylphenyl)iodonium hexafluoro under an argon atmosphere. Phosphate (538 mg, 1.0 mmol) was stirred in toluene (5 mL) at 50° C. for 18 hours. After allowing to cool to room temperature, water and diethyl ether were added to the reaction mixture to extract the organic layer. The organic layer was washed with water and then with saturated brine, added with sodium sulfate and stirred at room temperature. The desiccant was filtered off, the low-boiling fraction was distilled off, and the resulting oil was purified using silica gel column chromatography (hexane/ethyl acetate) to give 1,2-dimethyl-1-( 4-tert-Butylphenyl)-1H-benzo[e]indole was obtained (148 mg, 45% yield).
1 H-NMR (CDCl 3 ): δ 7.90 (brd, J = 8.7 Hz, 1H), 7.89 (brd, J = 8.5 Hz, 1H), 7.83 (brd, J = 8.5 Hz , 1H), 7.48 (brd, J=8.1Hz, 1H), 7.30-7.39 (m, 2H), 7.26 (brd, J=8.7Hz, 2H), 6.98 (brd, J=8.4 Hz, 2H), 2.17 (s, 3H), 1.84 (s, 3H), 1.28 (brs, 9H).

Figure 0007206124000020
Figure 0007206124000020

アルゴン雰囲気下、得られた1,2-ジメチル-1-(4-tert-ブチルフェニル)-1H-ベンゾ[e]インドール(148mg,0.5mmol)及び3,4-ジヒドロキシシクロブタ-3-エン-1,2-ジオン(26mg,0.2mmol)をトルエン(4mL)及びブタノール(4mL)の混合溶媒中に溶解させ、130℃で14時間撹拌した。室温まで放冷後、反応混合物にクロロホルムを加えて有機層を抽出し、さらに有機層を水、次いで飽和食塩水で洗浄し、硫酸ナトリウムを加え室温で撹拌した。乾燥剤を濾別し、低沸分を留去した。得られた固体をメタノールからの再結晶、次いでリサイクルHPLCによる精製を行うことで紫色固体の2-[3-{[1,3-ジヒドロ-1-メチル-1-(4-tert-ブチルフェニル)-2H-ベンゾ[e]インドール-2-イリデン)メチル]-2-ヒドロキシ-4-オキソ-2-シクロブテン-1-イリデン}メチル]-1-メチル-1-(4-tert-ブチルフェニル)-1H-ベンゾ[e]インドール(Z,Z-体とZ,E-体の混合物(2:1)、例示化合物1-34)を得た(125mg、59%)。
H-NMR(CDCl):δ13.07(s,1.3H),12.82(s,0.7H),7.91(d,J=8.7Hz,0.7H),7.82‐7.88(m,3.3H),7.55(d,J=8.6Hz,0.7H),7.42(dd,J=8.6,1.5Hz,1.3H),7.26‐7.37(m,10H),7.08‐7.13(m,4H),5.29(d,J=2.7Hz,0.7H),5.24(d,J=3.8Hz,1.3H),2.00(d,J=5.3Hz,6H),1.26‐1.28(m,18H).
得られたスクアリリウム誘導体(1-34)のTG/DTAを測定した結果、分解温度は294℃であった。
Under an argon atmosphere, the resulting 1,2-dimethyl-1-(4-tert-butylphenyl)-1H-benzo[e]indole (148 mg, 0.5 mmol) and 3,4-dihydroxycyclobut-3-ene -1,2-dione (26 mg, 0.2 mmol) was dissolved in a mixed solvent of toluene (4 mL) and butanol (4 mL) and stirred at 130° C. for 14 hours. After allowing to cool to room temperature, chloroform was added to the reaction mixture to extract the organic layer, the organic layer was washed with water and then with saturated brine, sodium sulfate was added, and the mixture was stirred at room temperature. The desiccant was filtered off and the low boilers were distilled off. The resulting solid was recrystallized from methanol and then purified by recycle HPLC to give 2-[3-{[1,3-dihydro-1-methyl-1-(4-tert-butylphenyl) as a purple solid. -2H-benzo[e]indol-2-ylidene)methyl]-2-hydroxy-4-oxo-2-cyclobuten-1-ylidene}methyl]-1-methyl-1-(4-tert-butylphenyl)- 1H-benzo[e]indole (mixture of Z,Z-isomer and Z,E-isomer (2:1), exemplified compound 1-34) was obtained (125 mg, 59%).
1 H-NMR (CDCl 3 ): δ 13.07 (s, 1.3H), 12.82 (s, 0.7H), 7.91 (d, J=8.7Hz, 0.7H), 7. 82-7.88 (m, 3.3H), 7.55 (d, J=8.6Hz, 0.7H), 7.42 (dd, J=8.6, 1.5Hz, 1.3H) , 7.26-7.37 (m, 10H), 7.08-7.13 (m, 4H), 5.29 (d, J=2.7Hz, 0.7H), 5.24 (d, J=3.8 Hz, 1.3 H), 2.00 (d, J=5.3 Hz, 6 H), 1.26-1.28 (m, 18 H).
As a result of measuring TG/DTA of the obtained squarylium derivative (1-34), the decomposition temperature was 294°C.

比較例-1
European Journal of Medicinal Chemistry,2016年,113巻,187-197頁に開示されている方法に従って2-[{3-[(1,3-ジヒドロ-3,3-ジメチル-2H-インドール-2-イリデン)メチル]-2-ヒドロキシ-4-オキソ-2-シクロブテン-1-イリデン}メチル]-3,3-ジメチル-3H-インドール(下記 SQ-1)を合成し、そのTG/DTAを測定した結果、分解温度は270℃であった。
Comparative example-1
2-[{3-[(1,3-dihydro-3,3-dimethyl-2H-indol-2-ylidene according to the method disclosed in European Journal of Medicinal Chemistry, 2016, Vol. 113, pp. 187-197. ) Methyl]-2-hydroxy-4-oxo-2-cyclobuten-1-ylidene}methyl]-3,3-dimethyl-3H-indole (SQ-1 below) was synthesized and its TG/DTA was measured. , the decomposition temperature was 270°C.

該SQ-1の有機薄膜を作製し、その吸収特性を評価した。該有機薄膜の膜厚は26nmであった。なお、該有機薄膜の作製は本明細書中の実施例-1と同じ条件で行った。該薄膜の規格化された吸収スペクトルを図1に示す。極大吸収波長は690nm、半値幅は111nmであった。 An organic thin film of SQ-1 was prepared and its absorption characteristics were evaluated. The thickness of the organic thin film was 26 nm. The organic thin film was prepared under the same conditions as in Example-1 in this specification. A normalized absorption spectrum of the thin film is shown in FIG. The maximum absorption wavelength was 690 nm and the half width was 111 nm.

Figure 0007206124000021
Figure 0007206124000021

以上の結果より、実施例-1で得られたスクアリリウム誘導体(1-1)は、比較例-1で得られた従来公知のスクアリリウム誘導体(SQ-1)と比べて高い5%重量減少温度及び分解温度を有することがわかった。またスクアリリウム誘導体(1-1)は、従来公知のスクアリリウム誘導体と比べて半値幅が狭いことから、高い色純度を有するといえる。 From the above results, the squarylium derivative (1-1) obtained in Example-1 has a higher 5% weight loss temperature and It was found to have a decomposition temperature. In addition, the squarylium derivative (1-1) has a narrower half width than conventionally known squarylium derivatives, and thus can be said to have high color purity.

実施例-5
本発明のスクアリリウム誘導体(1-1)を構成成分とする光電変換素子を作製し、その性能評価を行った。
Example-5
A photoelectric conversion device containing the squarylium derivative (1-1) of the present invention as a component was produced, and its performance was evaluated.

基板には、2mm幅のITO膜がストライプ状にパターンされたITO透明電極付きガラス基板を用いた。この基板をイソプロピルアルコールにより洗浄した後、酸素プラズマ洗浄した。洗浄後の基板に、正孔輸送層、光電変換層、及び正極層を順に製膜し、受光面積4mmの光電変換素子を作製した。該光電変換素子の断面模式図を図2に示した。 As the substrate, a glass substrate with an ITO transparent electrode on which an ITO film with a width of 2 mm was patterned in stripes was used. After cleaning this substrate with isopropyl alcohol, it was cleaned with oxygen plasma. A hole transport layer, a photoelectric conversion layer, and a positive electrode layer were formed in this order on the washed substrate to produce a photoelectric conversion element having a light-receiving area of 4 mm 2 . A schematic cross-sectional view of the photoelectric conversion element is shown in FIG.

正孔輸送層として、PEDOT:PSSの薄膜をスピンコート法により作製した。PEDOT:PSSは市販の溶液(Heraeus社製CLEVIOS P CH 8000)を用い、3000rpm、60秒の条件で塗布し、大気下、200℃で15分間乾燥させた。 As a hole transport layer, a thin film of PEDOT:PSS was prepared by a spin coating method. PEDOT:PSS was applied using a commercially available solution (CLEVIOS P CH 8000 manufactured by Heraeus) under the conditions of 3000 rpm and 60 seconds, and dried in air at 200° C. for 15 minutes.

次いで該正孔輸送層上に光電変換層として本発明のスクアリリウム誘導体(1-1)の有機薄膜をスピンコート法により作製した。本発明のスクアリリウム誘導体(1-1)のクロロベンゼン溶液(濃度0.5wt%)を調製し、1500rpm、30秒の条件で塗布し、アルゴン下、100℃で45分間乾燥させた。 Next, an organic thin film of the squarylium derivative (1-1) of the present invention was formed as a photoelectric conversion layer on the hole transport layer by spin coating. A chlorobenzene solution (concentration 0.5 wt %) of the squarylium derivative (1-1) of the present invention was prepared, applied at 1500 rpm for 30 seconds, and dried at 100° C. for 45 minutes under argon.

該製膜基板にITOストライプと直行するようにメタルマスクを配し、正極層としてアルミニウムを0.1nm/秒の製膜速度で真空蒸着した。製膜後、この多層膜を酸素及び水分濃度1ppm以下の窒素雰囲気グローブボックス内で封止し、本発明の光電変換素子を得た。封止は、ガラス製の封止キャップとエポキシ型紫外線硬化樹脂(ナガセケムテックス社製)を用いた。 A metal mask was placed on the film forming substrate so as to be perpendicular to the ITO stripes, and aluminum was vacuum-deposited as a positive electrode layer at a film forming rate of 0.1 nm/sec. After film formation, this multilayer film was sealed in a nitrogen atmosphere glove box with an oxygen and water concentration of 1 ppm or less to obtain a photoelectric conversion element of the present invention. For sealing, a sealing cap made of glass and an epoxy type UV curable resin (manufactured by Nagase ChemteX Corporation) were used.

なお、正孔輸送層、光電変換層、正極層の膜厚は、それぞれ35nm、13nm、50nmであった。 The film thicknesses of the hole transport layer, the photoelectric conversion layer, and the positive electrode layer were 35 nm, 13 nm, and 50 nm, respectively.

該光電変換素子の外部量子効率の測定結果を図3に示す。印加電圧0.2Vの場合、波長690nmに極大ピークを有し、その波長における外部量子効率は0.22%であった。また、印加電圧0.2Vの場合、暗電流密度は5.3×10-7A/cmであった。これより、本発明の光電変換素子は、赤色光領域に感度を有する光電変換素子として駆動することが分かった。 FIG. 3 shows the measurement results of the external quantum efficiency of the photoelectric conversion device. When the applied voltage was 0.2 V, it had a maximum peak at a wavelength of 690 nm, and the external quantum efficiency at that wavelength was 0.22%. Also, when the applied voltage was 0.2 V, the dark current density was 5.3×10 −7 A/cm 2 . From this, it was found that the photoelectric conversion element of the present invention was driven as a photoelectric conversion element having sensitivity in the red light region.

本発明のスクアリリウム誘導体(1)は、有機フォトダイオード材料、有機薄膜太陽電池材料、有機半導体レーザー材料、有機ELディスプレイ材料、フォトニック結晶材料等の電子材料等に利用することができる。 The squarylium derivative (1) of the present invention can be used for electronic materials such as organic photodiode materials, organic thin film solar cell materials, organic semiconductor laser materials, organic EL display materials, and photonic crystal materials.

1:ITO透明電極付きガラス基板
2:正孔輸送層
3:光電変換層
4:正極層
1: Glass substrate with ITO transparent electrode 2: Hole transport layer 3: Photoelectric conversion layer 4: Positive electrode layer

Claims (15)

一般式(1)で示されるスクアリリウム誘導体。
Figure 0007206124000022
(式中、Arは、炭素数6から12の単環、連結、又は縮環の芳香族炭化水素基を表し、該芳香族炭化水素基は、ハロゲン原子、炭素数1から8のアルキル基、又は炭素数1から8のハロアルキル基で置換されていてもよい。
、R、R及びRは、各々独立に、水素原子、ハロゲン原子、炭素数1から8のアルキル基、炭素数1から8のハロアルキル基、フェニル基、又はナフチル基を表す。
又、隣接する2つのRとR、RとR、及びRとRは、それぞれ一体となって、それぞれが結合している炭素原子を含んで脂肪族環又は芳香環を形成してもよい。)
A squarylium derivative represented by the general formula (1).
Figure 0007206124000022
(wherein Ar 1 represents a monocyclic, linked or condensed aromatic hydrocarbon group having 6 to 12 carbon atoms, the aromatic hydrocarbon group being a halogen atom, an alkyl group having 1 to 8 carbon atoms, , or may be substituted with a haloalkyl group having 1 to 8 carbon atoms.
R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, a haloalkyl group having 1 to 8 carbon atoms, a phenyl group or a naphthyl group.
Two adjacent R 1 and R 2 , R 2 and R 3 , and R 3 and R 4 are each united to form an aliphatic or aromatic ring containing the carbon atoms to which they are bonded. may be formed. )
Arが、ハロゲン原子、又は炭素数1から8のアルキル基で置換されていてもよいフェニル基である請求項1に記載のスクアリリウム誘導体。 2. The squarylium derivative according to claim 1, wherein Ar 1 is a halogen atom or a phenyl group optionally substituted with an alkyl group having 1 to 8 carbon atoms. 及びRが、水素原子である請求項1又は2に記載のスクアリリウム誘導体。 3. The squarylium derivative according to claim 1 or 2, wherein R3 and R4 are hydrogen atoms. 及びRが、水素原子である請求項1から3のいずれかに記載のスクアリリウム誘導体。 4. The squarylium derivative according to any one of claims 1 to 3, wherein R1 and R2 are hydrogen atoms. 一般式(2a)
Figure 0007206124000023
(式中、Arは、炭素数6から12の単環、連結、又は縮環の芳香族炭化水素基を表し、該芳香族炭化水素基は、ハロゲン原子、炭素数1から8のアルキル基、又は炭素数1から8のハロアルキル基で置換されていてもよい。
、R、R及びRは、各々独立に、水素原子、ハロゲン原子、炭素数1から8のアルキル基、炭素数1から8のハロアルキル基、フェニル基、又はナフチル基を表す。
又、隣接する2つのRとR、RとR、及びRとRが、それぞれ一体となって、それぞれが結合している炭素原子を含んで脂肪族環又は芳香環を形成してもよい。)で示されるインドリン化合物と、スクアリン酸とを反応させることを特徴とする、一般式(1)
Figure 0007206124000024
(式中、Ar、R、R、R及びRは、前記と同じ意味を表す。)で示されるスクアリリウム誘導体の製造方法。
general formula (2a)
Figure 0007206124000023
(wherein Ar 1 represents a monocyclic, linked or condensed aromatic hydrocarbon group having 6 to 12 carbon atoms, the aromatic hydrocarbon group being a halogen atom, an alkyl group having 1 to 8 carbon atoms, , or may be substituted with a haloalkyl group having 1 to 8 carbon atoms.
R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, a haloalkyl group having 1 to 8 carbon atoms, a phenyl group or a naphthyl group.
Two adjacent R 1 and R 2 , R 2 and R 3 , and R 3 and R 4 together form an aliphatic or aromatic ring containing the carbon atoms to which they are bonded. may be formed. ), characterized by reacting an indoline compound represented by the general formula (1) with squaric acid
Figure 0007206124000024
(wherein Ar 1 , R 1 , R 2 , R 3 and R 4 have the same meanings as defined above).
Arが、ハロゲン原子、又は炭素数1から8のアルキル基で置換されていてもよいフェニル基である請求項5に記載のスクアリリウム誘導体の製造方法。 6. The method for producing a squarylium derivative according to claim 5, wherein Ar 1 is a halogen atom or a phenyl group optionally substituted with an alkyl group having 1 to 8 carbon atoms. 及びRが、水素原子である請求項5又は6に記載のスクアリリウム誘導体の製造方法。 7. The method for producing a squarylium derivative according to claim 5 or 6, wherein R3 and R4 are hydrogen atoms. 及びRが、水素原子である請求項5から7のいずれかに記載のスクアリリウム誘導体の製造方法。 The method for producing a squarylium derivative according to any one of claims 5 to 7, wherein R1 and R2 are hydrogen atoms. 一般式(2b)
Figure 0007206124000025
(式中、R、R、R及びRは、各々独立に、水素原子、ハロゲン原子、炭素数1から8のアルキル基、炭素数1から8のハロアルキル基、フェニル基、又はナフチル基を表す。
又、隣接する2つのRとR、RとR、及びRとRが、それぞれ一体となって、それぞれが結合している炭素原子を含んで脂肪族環又は芳香環を形成してもよい。)で示されるインドリン化合物と、一般式(3a)
Figure 0007206124000026
(式中、Arは、炭素数6から12の単環、連結、又は縮環の芳香族炭化水素基を表し、該芳香族炭化水素基は、ハロゲン原子、炭素数1から8のアルキル基、又は炭素数1から8のハロアルキル基で置換されていてもよい。Xは対アニオンを表す)で示される超原子価ヨウ素化合物を塩基存在下反応させ、一般式(2a)
Figure 0007206124000027
(式中、Ar、R、R、R及びRは、前記と同じ意味を表す。)で示されるインドリン化合物を得、次いでこれとスクアリン酸と反応させることを特徴とする一般式(1)
Figure 0007206124000028
(式中、Ar、R、R、R及びRは、前記と同じ意味を表す。)で示されるスクアリリウム誘導体の製造方法。
general formula (2b)
Figure 0007206124000025
(wherein R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, a haloalkyl group having 1 to 8 carbon atoms, a phenyl group, or naphthyl represents a group.
Two adjacent R 1 and R 2 , R 2 and R 3 , and R 3 and R 4 together form an aliphatic or aromatic ring containing the carbon atoms to which they are bonded. may be formed. ) and an indoline compound represented by the general formula (3a)
Figure 0007206124000026
(wherein Ar 1 represents a monocyclic, linked or condensed aromatic hydrocarbon group having 6 to 12 carbon atoms, the aromatic hydrocarbon group being a halogen atom, an alkyl group having 1 to 8 carbon atoms, , or may be substituted with a haloalkyl group having 1 to 8 carbon atoms.X - represents a counter anion) is reacted in the presence of a base, and the general formula (2a)
Figure 0007206124000027
(wherein Ar 1 , R 1 , R 2 , R 3 and R 4 have the same meanings as above), and then reacting it with squaric acid. formula (1)
Figure 0007206124000028
(wherein Ar 1 , R 1 , R 2 , R 3 and R 4 have the same meanings as defined above).
Arが、ハロゲン原子、又は炭素数1から8のアルキル基で置換されていてもよいフェニル基である請求項9に記載のスクアリリウム誘導体の製造方法。 10. The method for producing a squarylium derivative according to claim 9, wherein Ar 1 is a halogen atom or a phenyl group optionally substituted with an alkyl group having 1 to 8 carbon atoms. 及びRが、水素原子である請求項9又は10に記載のスクアリリウム誘導体の製造方法。 The method for producing a squarylium derivative according to claim 9 or 10, wherein R3 and R4 are hydrogen atoms. 及びRが、水素原子である請求項9から11のいずれかに記載のスクアリリウム誘導体の製造方法。 The method for producing a squarylium derivative according to any one of claims 9 to 11, wherein R1 and R3 are hydrogen atoms. が、トリフルオロメタンスルホン酸イオン又はヘキサフルオロリン酸イオンである請求項9から12のいずれかに記載のスクアリリウム誘導体の製造方法。 The method for producing a squarylium derivative according to any one of claims 9 to 12, wherein X - is a trifluoromethanesulfonate ion or a hexafluorophosphate ion. 請求項1から4のいずれかに記載のスクアリリウム誘導体を含むことを特徴とする有機薄膜。 An organic thin film comprising the squarylium derivative according to any one of claims 1 to 4. 請求項14に記載の有機薄膜を含むことを特徴とする光電変換素子。 A photoelectric conversion device comprising the organic thin film according to claim 14 .
JP2019022481A 2019-02-12 2019-02-12 Squarylium derivative, its production method, organic thin film and photoelectric conversion device Active JP7206124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019022481A JP7206124B2 (en) 2019-02-12 2019-02-12 Squarylium derivative, its production method, organic thin film and photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019022481A JP7206124B2 (en) 2019-02-12 2019-02-12 Squarylium derivative, its production method, organic thin film and photoelectric conversion device

Publications (2)

Publication Number Publication Date
JP2020128361A JP2020128361A (en) 2020-08-27
JP7206124B2 true JP7206124B2 (en) 2023-01-17

Family

ID=72174211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019022481A Active JP7206124B2 (en) 2019-02-12 2019-02-12 Squarylium derivative, its production method, organic thin film and photoelectric conversion device

Country Status (1)

Country Link
JP (1) JP7206124B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082583A (en) 1998-06-24 2000-03-21 Nec Corp Organic electroluminescence element
JP2017068120A (en) 2015-09-30 2017-04-06 株式会社日本触媒 Mixture of oxocarbon-based compounds

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4148374B2 (en) * 1997-07-18 2008-09-10 富士フイルム株式会社 Photoelectric conversion element and photoelectrochemical cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082583A (en) 1998-06-24 2000-03-21 Nec Corp Organic electroluminescence element
JP2017068120A (en) 2015-09-30 2017-04-06 株式会社日本触媒 Mixture of oxocarbon-based compounds

Also Published As

Publication number Publication date
JP2020128361A (en) 2020-08-27

Similar Documents

Publication Publication Date Title
JP7209698B2 (en) Indane derivatives and their use in organic electronics
JP5253739B2 (en) Organic electronic devices
US8940407B2 (en) Organic electroluminescent device
CN106467482B (en) A kind of compound and its application based on diaryl ketone
US10096781B2 (en) Compound for organic photoelectric device and organic photoelectric device, image sensor, and electronic device including the same
EP2292586B1 (en) Photoelectric conversion material, film containing the material, photoelectric conversion device, production method thereof, photosensor, imaging device and their use methods
WO2014017042A1 (en) Film-forming organic material, organic photoelectric conversion element obtained using same, imaging element, film-forming method, and method for manufacturing organic photoelectric conversion element
EP3770163B1 (en) Compound and photoelectric device, image sensor and electronic device including the same
TW201031733A (en) Materials for organic electroluminescent devices
JP2016025345A (en) Organic photoelectric element and image sensor using the same and compound
US11401284B2 (en) Organic semiconducting material and its synthesis and organic semiconducting component with the material
CN106467458B (en) A kind of compound based on diaryl ketone and its application on organic electroluminescence device
KR20230154815A (en) Novel cerium(IV) complexes and their uses in organic electronics
JP2022509585A (en) Gee, Trie and Tetraphenyl Indane Derivatives and Their Use in Organic Electronics
CN116323859A (en) Heterocyclic compounds for organic electroluminescent devices
US20190092798A1 (en) Organic metal complex, method for preparing the same, and light-emitting element including the same
US20230157158A1 (en) Photovoltaic Devices Containing Cyclobutane-Based Hole Transporting Materials
US20240002352A1 (en) Compound, light-emitting material, delayed fluorescence material, and organic light-emitting element
KR20190015515A (en) Photoelectric conversion element, image pickup element, photosensor, compound
JP7206124B2 (en) Squarylium derivative, its production method, organic thin film and photoelectric conversion device
CN106467530B (en) A kind of compound based on diaryl ketone and its application in OLED device
JP2023002913A (en) Indolylmethylene indanedione derivative, manufacturing method and photoelectric conversion element
CN110734432A (en) nitrogenous heterocyclic ring substituted triazine derivatives, preparation method and application thereof
KR20200127530A (en) Compound and photoelectric device, image sensor and electronic device including the same
TW201943700A (en) Aniline derivative and use thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230104

R150 Certificate of patent or registration of utility model

Ref document number: 7206124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150