JP7205846B2 - CONVEYING DEVICE, CONVEYING METHOD, AND APPEARANCE INSPECTION DEVICE - Google Patents

CONVEYING DEVICE, CONVEYING METHOD, AND APPEARANCE INSPECTION DEVICE Download PDF

Info

Publication number
JP7205846B2
JP7205846B2 JP2017214763A JP2017214763A JP7205846B2 JP 7205846 B2 JP7205846 B2 JP 7205846B2 JP 2017214763 A JP2017214763 A JP 2017214763A JP 2017214763 A JP2017214763 A JP 2017214763A JP 7205846 B2 JP7205846 B2 JP 7205846B2
Authority
JP
Japan
Prior art keywords
conveying
electronic component
path
transport path
flat surfaces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017214763A
Other languages
Japanese (ja)
Other versions
JP2019086397A (en
Inventor
寺 克 義 小
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Weld Co Ltd
Original Assignee
Tokyo Weld Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Weld Co Ltd filed Critical Tokyo Weld Co Ltd
Priority to JP2017214763A priority Critical patent/JP7205846B2/en
Priority to TW107136126A priority patent/TWI715882B/en
Priority to KR1020180126527A priority patent/KR102172030B1/en
Priority to MYPI2018704064A priority patent/MY201917A/en
Priority to CN201811319217.3A priority patent/CN110031475B/en
Publication of JP2019086397A publication Critical patent/JP2019086397A/en
Application granted granted Critical
Publication of JP7205846B2 publication Critical patent/JP7205846B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/22Devices influencing the relative position or the attitude of articles during transit by conveyors
    • B65G47/24Devices influencing the relative position or the attitude of articles during transit by conveyors orientating the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/74Feeding, transfer, or discharging devices of particular kinds or types
    • B65G47/80Turntables carrying articles or materials to be transferred, e.g. combined with ploughs or scrapers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8803Visual inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2201/00Indexing codes relating to handling devices, e.g. conveyors, characterised by the type of product or load being conveyed or handled
    • B65G2201/02Articles

Landscapes

  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Attitude Control For Articles On Conveyors (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Feeding Of Articles To Conveyors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明の実施形態は、搬送装置、搬送方法、及び外観検査装置に関する。 TECHNICAL FIELD Embodiments of the present invention relate to a conveying device, a conveying method, and an appearance inspection device.

6面体形状の抵抗やコンデンサ等のチップ形電子部品(以下「ワーク」)の外観を検査する外観検査装置が知られている。この外観検査装置では、ガラス等の透明体からなる搬送テーブル上にワークを載置し、搬送テーブルを回転させてワークを搬送しながら複数のカメラで各面を撮像して外観検査を行う。このワークは、リニアフィーダを介して搬送テーブル上に載置され、搬送テーブルに静電吸着されている(特許文献1参照)。 2. Description of the Related Art Appearance inspection apparatuses are known for inspecting the appearance of chip-type electronic components (hereinafter referred to as "workpieces") such as hexahedral resistors and capacitors. In this visual inspection apparatus, a workpiece is placed on a conveying table made of a transparent material such as glass, and the conveying table is rotated to convey the workpiece while imaging each surface with a plurality of cameras for visual inspection. This work is placed on a carrier table via a linear feeder and electrostatically attracted to the carrier table (see Patent Document 1).

図12は、積層コンデンサにおける角柱型の素地チップが遠心力により回転する様子を示す図である。この図12に示すように、角柱型の素地チップの上下面に相当するプレス面は中央部分が膨らんでいる事が多く、搬送テーブルにこの面が載置されると、転がりやすくなり、静電吸着を行ってもテーブル上の遠心力と搬送による風圧により容易に回転してしまう。 FIG. 12 is a diagram showing how a prismatic base chip in a multilayer capacitor rotates due to centrifugal force. As shown in FIG. 12, the pressing surface corresponding to the upper and lower surfaces of a prismatic base chip often bulges in the central portion. Even if it is sucked, it will easily rotate due to the centrifugal force on the table and the wind pressure due to transportation.

特開2017-44579号公報JP 2017-44579 A

このため、搬送テーブル上におけるワークの載置位置や向きが不規則になり、各カメラにより撮像される画像の大きさや位置、向きが変動してしまい、ワークの良否の判定精度が低下してしまう恐れがある。 As a result, the placement positions and orientations of the workpieces on the transport table become irregular, and the size, position, and orientation of the images captured by each camera fluctuate. There is fear.

特に、積層コンデンサの素地チップは角柱品なので、リニアフィーダは、縦幅方向と横幅方向とが異なるワークをランダムに搬送テーブル上に配置するので、各カメラは、位置や向きが不揃いのワークを撮像することになり、ワークの良否の判定精度が低下してしまう恐れがある。 In particular, since the multilayer capacitor base chip is a prismatic product, the linear feeder randomly places workpieces with different vertical and horizontal directions on the transport table, so each camera captures workpieces with irregular positions and orientations. As a result, there is a risk that the accuracy of determining whether the workpiece is good or bad may deteriorate.

そこで、本発明が解決しようとする課題は、複数の電極が積層された電子部品の向きを揃えることが可能な搬送装置、搬送方法、及び外観検査装置を提供することである。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a conveying apparatus, a conveying method, and an appearance inspection apparatus capable of aligning the orientation of an electronic component in which a plurality of electrodes are stacked.

本発明の一態様による搬送装置は、複数の電極が積層された電子部品を搬送する搬送装置であって、
前記電子部品を搬送する第1搬送路と、
前記第1搬送路から段差を介して下方に配置され、前記第1搬送路を搬送された前記電子部品を搬送する第2搬送路と、
前記第2搬送路に磁界を生成する磁界生成部と、
を備える。
A conveying device according to one aspect of the present invention is a conveying device that conveys an electronic component in which a plurality of electrodes are stacked,
a first transport path for transporting the electronic component;
a second transport path arranged below the first transport path via a step and transporting the electronic component transported on the first transport path;
a magnetic field generator that generates a magnetic field on the second transport path;
Prepare.

前記第2搬送路の搬送面は、前記電子部品を所定方向に搬送させる2つの平坦面と、前記2つの平坦面の間に面一で連なる曲面とを有してもよい。 A conveying surface of the second conveying path may have two flat surfaces for conveying the electronic component in a predetermined direction, and a curved surface that is flush with and continues between the two flat surfaces.

前記第2搬送路の下方に配置され、前記電子部品の回転を抑制する2つの平坦面を有し、前記第2搬送路を搬送された前記電子部品を搬送する第3搬送路を更に備えてもよく、
前記第1搬送路の搬送面は、前記電子部品の回転を抑制する2つの平坦面を有してもよい。
further comprising a third transport path arranged below the second transport path, having two flat surfaces for suppressing rotation of the electronic component, and transporting the electronic component transported on the second transport path; well,
A conveying surface of the first conveying path may have two flat surfaces that suppress rotation of the electronic component.

前記第1搬送路、前記第2搬送路及び前記第3搬送路は、弱磁性体でもよく、
前記磁界生成部は、前記第1搬送路、前記第2搬送路、及び前記第3搬送路に前記磁界を生成しており、前記磁界生成部が生成する前記磁界の向きは、前記第1搬送路、前記第2搬送路、及び前記第3搬送路を形成する前記2つの平坦面の面方向に対して60乃至90度傾斜した方向でもよい。
The first transport path, the second transport path, and the third transport path may be weak magnetic materials,
The magnetic field generating section generates the magnetic field in the first conveying path, the second conveying path, and the third conveying path. It may be a direction inclined by 60 to 90 degrees with respect to the planar direction of the two flat surfaces forming the path, the second transport path, and the third transport path.

前記磁界生成部は、電磁石又は永久磁石を有してもよい。 The magnetic field generator may have an electromagnet or a permanent magnet.

本発明の一態様による搬送方法は、複数の電極が積層された電子部品を搬送する搬送方法であって、
前記電子部品を第1搬送路により搬送する第1搬送工程と、
前記第1搬送路から段差を介して下方に配置された第2搬送路により、前記第1搬送路を搬送された前記電子部品を搬送する第2搬送工程と、
前記第2搬送路に磁界を生成する磁界生成工程と、
を備える。
A transport method according to an aspect of the present invention is a transport method for transporting an electronic component in which a plurality of electrodes are stacked,
a first conveying step of conveying the electronic component through a first conveying path;
a second conveying step of conveying the electronic component conveyed on the first conveying path by a second conveying path disposed below the first conveying path via a step;
a magnetic field generating step of generating a magnetic field in the second transport path;
Prepare.

本発明の一態様による外観検査装置は、複数の電極が積層された電子部品の外観を検査する外観検査装置であって、
前記電子部品を搬送する第1搬送路と、
前記第1搬送路から段差を介して下方に配置され、前記第1搬送路を搬送された前記電子部品を搬送する磁性体である第2搬送路と、
前記第2搬送路に磁界を生成する磁界生成部と、
前記第2搬送路を介して前記電子部品が移載され、搬送円弧上に載置した前記電子部品を搬送する回転自在の搬送テーブルと、
前記搬送テーブル上の前記電子部品を撮像する撮像部と、
を備える。
A visual inspection apparatus according to one aspect of the present invention is a visual inspection apparatus for inspecting the appearance of an electronic component in which a plurality of electrodes are stacked,
a first transport path for transporting the electronic component;
a second transport path disposed below the first transport path via a step and made of a magnetic material for transporting the electronic component transported on the first transport path;
a magnetic field generator that generates a magnetic field on the second transport path;
a rotatable transport table on which the electronic component is transferred via the second transport path and transports the electronic component placed on the transport arc;
an imaging unit that captures an image of the electronic component on the carrier table;
Prepare.

ワークを対象としたワークの外観検査装置の平面図。FIG. 2 is a plan view of a workpiece visual inspection apparatus for workpieces. 図1の領域Sを示す拡大平面図。FIG. 2 is an enlarged plan view showing a region S in FIG. 1; 図1の領域Sを矢印Yの方向から見た透視図。FIG. 2 is a perspective view of the region S in FIG. 1 as viewed in the direction of arrow Y; 積層コンデンサにおける角柱型の素地チップの断面図。FIG. 2 is a cross-sectional view of a prismatic base chip in a multilayer capacitor; 搬送装置の詳細な構成を示す斜視図。The perspective view which shows the detailed structure of a conveying apparatus. ワークの回転の原理を示す説明図。Explanatory drawing which shows the principle of rotation of a workpiece|work. 第1搬送路の断面図。Sectional drawing of a 1st conveyance path. 第1搬送路、第2搬送路、及び第3搬送路の搬送面における底部の断面を模式的に示す図。FIG. 4 is a diagram schematically showing a cross section of the bottom portion on the transport surface of the first transport path, the second transport path, and the third transport path; 第2搬送路の境界面付近の断面図。Sectional drawing of boundary surface vicinity of a 2nd conveyance path. (A)~(D)は第2搬送路において発生する回転モーメントの例を示す図。(A) to (D) are diagrams showing examples of rotational moments generated in the second conveying path. 第3搬送路の断面図。Sectional drawing of a 3rd conveyance path. 積層コンデンサの角柱型の素地チップが遠心力により回転する様子を示す図。FIG. 4 is a diagram showing how a prismatic base chip of a multilayer capacitor rotates due to centrifugal force.

以下、本発明の実施形態に係る外観検査装置30について、図面を参照しながら詳細に説明する。なお、以下に示す実施形態は、本発明の実施形態の一例であって、本発明はこれらの実施形態に限定して解釈されるものではない。また、本実施形態で参照する図面において、同一部分又は同様な機能を有する部分には同一の符号又は類似の符号を付し、その繰り返しの説明は省略する場合がある。また、図面の寸法比率は説明の都合上実際の比率とは異なる場合や、構成の一部が図面から省略される場合がある。 A visual inspection apparatus 30 according to an embodiment of the present invention will be described in detail below with reference to the drawings. The embodiments shown below are examples of embodiments of the present invention, and the present invention should not be construed as being limited to these embodiments. In addition, in the drawings referred to in this embodiment, the same reference numerals or similar reference numerals are given to the same portions or portions having similar functions, and repeated description thereof may be omitted. Also, the dimensional ratios in the drawings may differ from the actual ratios for convenience of explanation, and some of the configurations may be omitted from the drawings.

まず、図1乃至図3に基づき、一実施形態による外観検査装置30の全体構成を説明する。図1は、ワークWを対象としたワークの外観検査装置の平面図であり、図2は、図1の破線領域Sの拡大平面図であり、図3は、図1の領域Sを矢印Yの方向から見た透視図である。 First, based on FIGS. 1 to 3, the overall configuration of a visual inspection apparatus 30 according to one embodiment will be described. 1 is a plan view of a work visual inspection apparatus for a work W, FIG. 2 is an enlarged plan view of a dashed line area S in FIG. 1, and FIG. 1 is a perspective view seen from the direction of .

この図1乃至図3に示すように、外観検査装置30は、ワークWの外観を検査する装置であり、搬送装置(リニアフィーダ)1と、搬送テーブル2と、リニア先端部4と、帯電部6と、ガイド7と、側面カメラ部8と、内面カメラ部9と、上面カメラ部10と、下面カメラ部11と、前面カメラ部12と、後面カメラ部13と、排出部14とを、備えて構成されている。また、側面カメラ部8と、内面カメラ部9と、上面カメラ部10と、下面カメラ部11と、前面カメラ部12と、後面カメラ部13とにより撮像部20が構成されている。さらにまた、リニア先端部4と、ガイド7とにより整列部21が構成されている。 As shown in FIGS. 1 to 3, the appearance inspection device 30 is a device for inspecting the appearance of the work W, and includes a conveying device (linear feeder) 1, a conveying table 2, a linear tip portion 4, and a charging portion. 6, a guide 7, a side camera section 8, an inner camera section 9, a top camera section 10, a bottom camera section 11, a front camera section 12, a rear camera section 13, and an ejection section 14. configured as follows. An imaging section 20 is configured by the side camera section 8 , the inner camera section 9 , the upper camera section 10 , the lower camera section 11 , the front camera section 12 and the rear camera section 13 . Furthermore, the linear tip portion 4 and the guide 7 constitute an alignment portion 21 .

搬送装置1は、複数の電極が積層されたワークWの積層方向の向きを磁力により揃え、矢印Nの方向に搬送する。この搬送装置1の搬送面は、図3に示すように、搬送テーブル2に向かって斜め下方に傾斜している。搬送面は、駆動源により振動しており、上流側に位置するパーツフィーダから搬送面に投入されたワークWは、搬送面の振動により斜め下方の搬送テーブル2に向かって搬送される。搬送装置1の詳細な構成は後述する。 The conveying apparatus 1 conveys the work W in which a plurality of electrodes are laminated in the direction of the arrow N while aligning the stacking direction of the work W by a magnetic force. The conveying surface of the conveying device 1 is inclined downward toward the conveying table 2, as shown in FIG. The conveying surface is vibrated by a driving source, and a workpiece W fed from a parts feeder located upstream to the conveying surface is conveyed obliquely downward toward the conveying table 2 by the vibration of the conveying surface. A detailed configuration of the transport device 1 will be described later.

搬送テーブル2は、例えば水平に設置された透明なガラスであり、回転軸3を中心として矢印Xの方向に回転する。搬送テーブル2には、搬送装置1により搬送されたワークWが移載される。ワークWは、図1の一点鎖線で示す回転軸3を中心とするワーク搬送円弧5に沿って搬送される。 The conveying table 2 is, for example, transparent glass that is horizontally installed, and rotates in the direction of the arrow X around the rotating shaft 3 . A work W conveyed by the conveying device 1 is transferred onto the conveying table 2 . A workpiece W is conveyed along a workpiece conveying arc 5 centered on a rotating shaft 3 indicated by a dashed line in FIG.

リニア先端部4は、搬送装置1の搬出口に接続されている。リニア先端部4の搬送面の傾斜は、搬送装置1の搬送面の傾斜と同等である。これにより、ワークWは搬送装置1からリニア先端部4の移載点4xを経て搬送テーブル2に移載される。 The linear tip 4 is connected to the outlet of the transport device 1 . The inclination of the conveying surface of the linear tip portion 4 is the same as the inclination of the conveying surface of the conveying device 1 . As a result, the workpiece W is transferred from the transfer device 1 to the transfer table 2 via the transfer point 4 x of the linear tip portion 4 .

こうしてワークWは搬送装置1およびリニア先端部4による搬送方向と搬送テーブル2による搬送方向が、ともにワークWの長手方向となるように、搬送テーブル2上に載置される。そして搬送テーブル2の上面に接触するワークWの一面は、図示されない保持手段の作用により搬送テーブル2の上面に吸着される。これにより、ワークWはその姿勢が固定された状態で、搬送テーブル2の回転によって搬送される。 Thus, the work W is placed on the transport table 2 so that the transport direction by the transport device 1 and the linear tip portion 4 and the transport direction by the transport table 2 are both the longitudinal direction of the work W. FIG. One surface of the workpiece W that contacts the upper surface of the conveying table 2 is attracted to the upper surface of the conveying table 2 by the action of holding means (not shown). As a result, the work W is conveyed by the rotation of the conveying table 2 while its attitude is fixed.

ガイド7は、リニア先端部4の下流側に設けられ、ワークWをワーク搬送円弧5上に整列させる。ガイド7は、ワーク搬送円弧5に接する直線状のガイド面7aを有し、ガイド面7aに沿ってワークWを進行させることにより、ワークWをワーク搬送円弧5上に整列させる。より詳細には、ガイド面7aは、図2に示すように、移載点4xと回転軸3とを結ぶ直線を破線Kとしたとき、ガイド面7aと破線Kのなす角αが鋭角となるように、かつガイド面7aが合流点7xにおいてワーク搬送円弧5の接線となるように設置されている。すなわち、合流点7xと搬送テーブル2の回転軸3とを結ぶ直線を破線Lで表したときに、破線Lとガイド面7aとのなす角βが90°となる。 A guide 7 is provided on the downstream side of the linear tip portion 4 and aligns the work W on the work conveying arc 5 . The guide 7 has a linear guide surface 7a in contact with the work conveying arc 5, and aligns the work W on the work conveying arc 5 by advancing the work W along the guide surface 7a. More specifically, as shown in FIG. 2, the guide surface 7a forms an acute angle .alpha. , and the guide surface 7a is tangential to the arc 5 for conveying the workpiece at the junction 7x. That is, when a straight line connecting the confluence point 7x and the rotary shaft 3 of the conveying table 2 is represented by a broken line L, the angle β formed by the broken line L and the guide surface 7a is 90°.

これにより、ワークWは図2における区間Pにおいて搬送テーブル2の上面に吸着された状態でW2→W3→W4のように搬送テーブル2の回転による搬送速度まで加速され、区間Qにおいてワークの間隔は例えばW4とW5の間のように広くなる。そしてワークW5は、区間Pと同様にガイド面7aに押し付けられながら搬送され、次第にワーク搬送円弧5に近づいていく。そして、ガイド面7aがワーク搬送円弧5に接する合流点7xに到達したワークW6の搬送方向は、区間Rにおいてワーク搬送円弧5の方向に一致し、ワークW6は、ガイド面7aから離れる方向にワーク搬送円弧5に沿って搬送される。 As a result, the workpiece W is accelerated to the conveying speed due to the rotation of the conveying table 2 in the manner of W2→W3→W4 while being adsorbed on the upper surface of the conveying table 2 in the section P in FIG. For example, it becomes wider, such as between W4 and W5. The work W5 is conveyed while being pressed against the guide surface 7a as in the section P, and gradually approaches the work conveying arc 5. As shown in FIG. The conveying direction of the work W6 that has reached the confluence point 7x where the guide surface 7a contacts the work conveying arc 5 coincides with the direction of the work conveying arc 5 in the section R, and the work W6 moves away from the guide surface 7a. Conveyed along the conveying arc 5 .

図1に示す側面カメラ部8は、ワークWの一方の側面を撮像し、側面カメラ部9は、ワークWの他方の側面を撮像する。上面カメラ部10は、ワークWの上面を撮像し、下面カメラ11部は、ワークWの下面を撮像する、前面カメラ部12は、ワークWの前面を撮像し、後面カメラ部13は、ワークWの後面を撮像する。このように、側面カメラ部8、内面カメラ部9、上面カメラ部10、下面カメラ部11、前面カメラ部12、及び後面カメラ部13により、ワークWの6面が撮像される。 The side camera unit 8 shown in FIG. 1 images one side surface of the work W, and the side camera unit 9 images the other side surface of the work W. As shown in FIG. The top camera section 10 captures an image of the top surface of the work W, the bottom camera section 11 captures an image of the bottom surface of the work W, the front camera section 12 captures an image of the front surface of the work W, and the rear camera section 13 captures an image of the work W. Take an image of the rear surface of the In this manner, six surfaces of the workpiece W are captured by the side camera section 8, the inner camera section 9, the upper camera section 10, the lower camera section 11, the front camera section 12, and the rear camera section 13.

排出部14は、撮像部20に対して搬送テーブル2の回転方向の下流側に設けられている。排出部14は、ワークWの外観検査の結果に対応させて、ワークWを収納箱に排出する。 The discharge unit 14 is provided downstream of the imaging unit 20 in the rotation direction of the transport table 2 . The discharge unit 14 discharges the work W into a storage box according to the result of the appearance inspection of the work W.

図3に示す磁界生成部40は、搬送装置1に設けられている。なお、磁界生成部40の詳細は後述する。また、図1、及び図2においては、磁界生成部40の記載は省略されている。 The magnetic field generator 40 shown in FIG. 3 is provided in the conveying device 1 . The details of the magnetic field generator 40 will be described later. 1 and 2, the illustration of the magnetic field generator 40 is omitted.

図4は、積層コンデンサにおける角柱型の素地チップの断面図である。この図4に示すように、本実施形態に係るワークWは、例えば積層コンデンサの角柱型の素地チップである。積層コンデンサにおける角柱型の素地チップは、薄膜状の電極200と、誘電体202とが交互に積層されている。電極200は、例えばニッケルなどの強磁性体である。これら電極200と誘電体202とは、各薄膜の法線方向に沿って交互に積層されている。図4では、積層方向をZとし、各薄膜の面方向をXY平面としている。 FIG. 4 is a cross-sectional view of a prismatic base chip in a multilayer capacitor. As shown in FIG. 4, the work W according to this embodiment is, for example, a prismatic base chip of a multilayer capacitor. In the prismatic base chip of the multilayer capacitor, thin-film electrodes 200 and dielectrics 202 are alternately laminated. Electrode 200 is a ferromagnetic material such as nickel. These electrodes 200 and dielectrics 202 are alternately laminated along the normal direction of each thin film. In FIG. 4, the stacking direction is Z, and the planar direction of each thin film is the XY plane.

積層コンデンサでは、例えば100~1000枚の電極200が誘電体202を介して積層されている。このような積層コンデンサの製造工程では、例えば電極200のシートと誘電体202のシートとを交互に積層し、圧力を加えて誘電体ブロックが一体成形される。そして、一体成形された誘電体のブロックが所定の大きさの素地チップに切断される。 In a multilayer capacitor, for example, 100 to 1000 electrodes 200 are stacked with dielectrics 202 interposed therebetween. In the manufacturing process of such a multilayer capacitor, for example, sheets of the electrodes 200 and sheets of the dielectric 202 are alternately laminated and pressure is applied to integrally mold the dielectric block. The integrally molded block of dielectric is then cut into blank chips of a predetermined size.

このような素地チップの製造工程の過程で、カット面204、カット面206、積層プレス面208、積層プレス面210が形成される。すなわち、カット面204と206は、誘電体ブロック(パッド)をチップ状に切断する際の切断面である。カット面204及びカット面206のそれぞれは、平坦面である。 A cut surface 204, a cut surface 206, a laminated pressed surface 208, and a laminated pressed surface 210 are formed during the manufacturing process of such a base chip. That is, the cut surfaces 204 and 206 are cut surfaces for cutting the dielectric block (pad) into chips. Each of the cut surface 204 and the cut surface 206 is a flat surface.

積層プレス面208は、圧力を加えて誘電体ブロックを一体成形する際のプレス面である。積層プレス面208及び積層プレス面210のそれぞれは、外側よりも中央部分が膨らんでいる。なお、完成品の積層コンデンサの大きさは、例えば0402サイズと呼ばれる積層コンデンサでは、角柱状の縦0.4ミリメートル、横0.2ミリメートル、厚さ0.2ミリメートルである。また、例えば3225サイズと呼ばれる積層コンデンサでは、角柱状の縦3.2ミリメートル、横2.5ミリメートル、厚さ2.5ミリメートルである。なお、本実施形態では、素地チップではなく、素地チップをパッケージングした完成品の積層コンデンサを検査対象にしてもよい。 The lamination press surface 208 is a press surface when applying pressure to integrally mold the dielectric block. Each of the lamination press surface 208 and the lamination press surface 210 bulges out more at the central portion than at the outside. As for the size of the finished multilayer capacitor, for example, a multilayer capacitor called 0402 size is prism-shaped with a length of 0.4 mm, a width of 0.2 mm, and a thickness of 0.2 mm. For example, a multilayer capacitor called 3225 size has a prism shape of 3.2 mm long, 2.5 mm wide and 2.5 mm thick. In this embodiment, instead of the base chip, a multilayer capacitor as a finished product packaged with the base chip may be inspected.

図5は、搬送装置1の詳細な構成を示す斜視図である。この図5に示すように、搬送装置1は、磁界生成部40と、第1搬送路100と、第2搬送路102と、第3搬送路104とを備えて構成されている。 FIG. 5 is a perspective view showing the detailed configuration of the conveying device 1. As shown in FIG. As shown in FIG. 5, the conveying apparatus 1 includes a magnetic field generator 40, a first conveying path 100, a second conveying path 102, and a third conveying path 104. As shown in FIG.

磁界生成部40は、搬送面から所定の距離を隔てて配置される電磁石、又は永久磁石を有している。この磁界生成部40は、第1搬送路100、第2搬送路102、及び第3搬送路104に磁界を生成している。磁界生成部40が生成する磁界の方向、すなわち磁力線の方向は、第1搬送路100、第2搬送路102、及び第3搬送路104のそれぞれが有する2つの平坦面の内の一方の面方向に対して60~90度である。 The magnetic field generator 40 has an electromagnet or a permanent magnet arranged at a predetermined distance from the conveying surface. The magnetic field generator 40 generates magnetic fields in the first conveying path 100 , the second conveying path 102 and the third conveying path 104 . The direction of the magnetic field generated by the magnetic field generator 40, that is, the direction of the magnetic lines of force, is the direction of one of the two flat surfaces of each of the first transport path 100, the second transport path 102, and the third transport path 104. 60 to 90 degrees with respect to

第1搬送路100は、上述のように、上流側に位置するパーツフィーダに投入されたワークWを搬送面に載置し、搬送面を振動させることにより搬送する。この第1搬送路100の搬送面は、電子部品の回転を抑制する2つの平坦面106、108を有する。これら2つの平坦面106、108のそれぞれは基準面の面方向に対して例えば45度の傾斜を有し、ワークWの2面ガイドとしても機能する。ここで、基準面とは、搬送装置1が載置される下地の面である。また、第1搬送路100は、例えば、オーステナイト系ステンレス鋼、アルミニウム合金、等の常磁性体であり、磁界生成部40の生成する磁界により搬送面に磁極が形成される。これにより、第1搬送路100の搬送面は、ワークWの搬送速度に影響を与えない程度にワークWを保持する保持機能を有する。ここでの常磁性体は、外部磁場が無いときは磁化を有さず、磁場を印加するとその方向に磁化する磁性体を意味する。 As described above, the first transport path 100 transports the work W input to the upstream parts feeder by placing the work W on the transport surface and vibrating the transport surface. The conveying surface of the first conveying path 100 has two flat surfaces 106, 108 that suppress rotation of the electronic component. Each of these two flat surfaces 106 and 108 has an inclination of, for example, 45 degrees with respect to the plane direction of the reference plane, and also functions as a two-plane guide for the workpiece W. As shown in FIG. Here, the reference surface is the surface of the substrate on which the conveying device 1 is placed. The first transport path 100 is made of, for example, a paramagnetic material such as austenitic stainless steel or aluminum alloy, and magnetic poles are formed on the transport surface by the magnetic field generated by the magnetic field generator 40 . As a result, the conveying surface of the first conveying path 100 has a holding function of holding the work W to such an extent that the conveying speed of the work W is not affected. A paramagnetic material here means a magnetic material that does not have magnetization in the absence of an external magnetic field and is magnetized in that direction when a magnetic field is applied.

第2搬送路102は、第1搬送路100から段差を介して下方に配置され、第1搬送路100を搬送されたワークWを搬送する。すなわち、第1搬送路100と第2搬送路102との境界面110には段差がある。この第2搬送路102の搬送面は、電子部品を所定方向に搬送させる2つの平坦面112、114と、2つの平坦面112、114の間に面一で連なる曲面116とを有する。これら2つの平坦面112、114のそれぞれは基準面の面方向に対して例えば45度の傾斜を有する。曲面116は、例えばR加工されている。また、第2搬送路102は、第1搬送路100と同様に、例えばオーステナイト系ステンレス鋼、アルミニウム合金、等の常磁性体であり、磁界生成部40の生成する磁界により搬送面に磁極が形成される。これにより、第2搬送路102の搬送面は、ワークWの搬送速度に影響を与えない程度にワークWを保持する保持機能を有するとともに、ワークW内の電極200の向きを所定の方向に揃える磁力を発生する。 The second transport path 102 is arranged below the first transport path 100 via a step, and transports the work W transported on the first transport path 100 . That is, there is a step on the boundary surface 110 between the first transport path 100 and the second transport path 102 . The conveying surface of the second conveying path 102 has two flat surfaces 112 and 114 for conveying the electronic component in a predetermined direction, and a curved surface 116 that is flush with and continues between the two flat surfaces 112 and 114 . Each of these two flat surfaces 112, 114 has an inclination of, for example, 45 degrees with respect to the plane direction of the reference plane. The curved surface 116 is rounded, for example. The second transport path 102 is, like the first transport path 100, made of a paramagnetic material such as austenitic stainless steel or aluminum alloy, and magnetic poles are formed on the transport surface by the magnetic field generated by the magnetic field generator 40. be done. As a result, the conveying surface of the second conveying path 102 has a holding function of holding the work W to the extent that the conveying speed of the work W is not affected, and also aligns the electrodes 200 in the work W in a predetermined direction. Generates magnetic force.

第3搬送路104は、第2搬送路102から段差を介して下方に配置され、第2搬送路102を搬送されたワークWを搬送する。すなわち、本実施形態に係る第2搬送路102と第2搬送路104との境界面118には段差がある。この第2搬送路102の搬送面は、電子部品の回転を抑制する2つの平坦面120、122を有する。これら2つの平坦面120、122のそれぞれは基準面の面方向に対して例えば45度の傾斜を有し、ワークWの2面ガイドとしても機能する。なお、第2搬送路102の搬送面をなだらかに変形させ、第3搬送路104の搬送面と連続的に接続させてもよい。 The third transport path 104 is arranged below the second transport path 102 via a step, and transports the work W transported on the second transport path 102 . That is, there is a step on the boundary surface 118 between the second transport path 102 and the second transport path 104 according to this embodiment. The conveying surface of the second conveying path 102 has two flat surfaces 120, 122 that suppress rotation of the electronic component. Each of these two flat surfaces 120 and 122 has an inclination of, for example, 45 degrees with respect to the plane direction of the reference plane, and also functions as a two-plane guide for the workpiece W. As shown in FIG. Note that the conveying surface of the second conveying path 102 may be gently deformed to be continuously connected to the conveying surface of the third conveying path 104 .

また、第3搬送路104は、第1搬送路100と同様に、例えばオーステナイト系ステンレス鋼、アルミニウム合金、等の常磁性体であり、磁界生成部40の生成する磁界により搬送面に磁極が形成される。これにより、第3搬送路104の搬送面は、ワークWの搬送速度に影響を与えない程度にワークWを保持する保持機能を有する。すなわち、第3搬送路104の搬送面は、ワークW内の電極200の向きを所定の方向に保持する磁力を発生する。また、第1搬送路100、第2搬送路102、及び第3搬送路104の搬送面は、鏡面に加工され、例えばDLC(Diamond-Like Carbon)処理などの低摩擦処理が施されている。このDLC処理は磁界の発生を阻害しないので、第1搬送路100、第2搬送路102、及び第3搬送路104の搬送面の低摩擦処理として適している。なお、第1搬送路100、第2搬送路102、及び第3搬送路104の材質は、例えばプラスティツクなどのように磁石に吸着されない非磁性材料でもよい。 The third transport path 104, like the first transport path 100, is made of a paramagnetic material such as austenitic stainless steel or aluminum alloy, and magnetic poles are formed on the transport surface by the magnetic field generated by the magnetic field generator 40. be done. Thereby, the conveying surface of the third conveying path 104 has a holding function of holding the work W to the extent that the conveying speed of the work W is not affected. That is, the conveying surface of the third conveying path 104 generates a magnetic force that holds the orientation of the electrode 200 inside the workpiece W in a predetermined direction. Further, the conveying surfaces of the first conveying path 100, the second conveying path 102, and the third conveying path 104 are mirror-finished and subjected to low-friction treatment such as DLC (Diamond-Like Carbon) treatment. Since this DLC treatment does not hinder the generation of magnetic fields, it is suitable as a low-friction treatment for the conveying surfaces of the first conveying path 100 , the second conveying path 102 and the third conveying path 104 . The material of the first conveying path 100, the second conveying path 102, and the third conveying path 104 may be a non-magnetic material, such as plastic, which is not attracted to magnets.

次にこのような構成からなるワークWの搬送装置1を用いたワークWの回転について図6乃至図11に基づき説明する。 Next, the rotation of the work W using the conveying apparatus 1 for the work W configured as described above will be described with reference to FIGS. 6 to 11. FIG.

図6は、ワークWの回転の原理を示す説明図である。図6に示すように、磁界内に載置されたワークWの電極は、磁界の作用により分極する。磁力線の向きが磁界生成部40からワークWに向かう方向であれば、ワークW内の平板状の電極200には、磁界生成部40に近い方にS極が生じ、磁界生成部40に遠い方にN極が生じる。つまり、平板状の電極200の磁界生成部40に近い方の一端には、磁界生成部40に対する引力が働き、平板状の電極200の磁界生成部40に遠い方の他端には、磁界生成部40に対する斥力が働く。これらの磁力により、平板状の電極200に回転モーメントが発生し、電極200の積層方向が磁力線と直交するように作用する。このように、磁界生成部40が生成する磁界内では、磁力線と電極200の積層方向とが直交する状態が安定状態である。なお、磁力線の向きが逆でも同様に、磁力は電極200の積層方向が磁力線と直交するように作用する。 6A and 6B are explanatory diagrams showing the principle of rotation of the workpiece W. FIG. As shown in FIG. 6, the electrodes of the work W placed in the magnetic field are polarized by the action of the magnetic field. If the direction of the magnetic lines of force is the direction from the magnetic field generator 40 toward the work W, the plate-shaped electrode 200 inside the work W will have an S pole near the magnetic field generator 40 and an S pole near the magnetic field generator 40 . A north pole is generated at That is, at one end of the plate-shaped electrode 200 closer to the magnetic field generation unit 40, an attractive force acts on the magnetic field generation unit 40, and at the other end of the plate-shaped electrode 200 farther from the magnetic field generation unit 40, a magnetic field generation A repulsive force acts on the portion 40 . These magnetic forces generate a rotational moment in the plate-shaped electrode 200, and act so that the stacking direction of the electrodes 200 is orthogonal to the magnetic lines of force. Thus, in the magnetic field generated by the magnetic field generator 40, the state in which the magnetic lines of force are orthogonal to the stacking direction of the electrodes 200 is the stable state. Even if the direction of the magnetic lines of force is reversed, the magnetic force acts so that the stacking direction of the electrodes 200 is perpendicular to the magnetic lines of force.

図7は、第1搬送路100の断面図である。図7では、ワークW内の電極200の積層方向が磁力線の方向にほぼ並行している例を示している。このような場合、ワークWは、ワークWの積層プレス面210又は積層プレス面208の中央部を支点として駆動源の振動により揺れながら搬送される。例えば、振動により反時計回りの回転モーメントが働いたとしても、ワークWのカット面206が平坦面106に接触しているため、ワークWの回転が防止される。逆に、ワークWに振動により時計回りの回転モーメントが働いたとしても、ワークWの積層プレス面210が平坦面108に接触しているため、やはりワークWの回転が防止される。このため、第1搬送路100内では、ワークWはほぼ回転しない状態で搬送される。 FIG. 7 is a cross-sectional view of the first transport path 100. As shown in FIG. FIG. 7 shows an example in which the stacking direction of the electrodes 200 in the workpiece W is substantially parallel to the direction of the magnetic lines of force. In such a case, the workpiece W is conveyed while being shaken by the vibration of the drive source with the central portion of the laminate press surface 210 or laminate press surface 208 of the workpiece W as a fulcrum. For example, even if a counterclockwise rotation moment acts due to vibration, the work W is prevented from rotating because the cut surface 206 of the work W is in contact with the flat surface 106 . Conversely, even if a clockwise rotational moment acts on the work W due to vibration, the work W is still prevented from rotating because the lamination pressing surface 210 of the work W is in contact with the flat surface 108 . For this reason, the work W is conveyed in the first conveying path 100 in a state in which it does not substantially rotate.

一方で、ワークWの電極200の積層方向が磁力線と直交する場合も、同様の理由で第1搬送路100内でのワークWの回転が防止される。このように、ワークWがどのような向きで第1搬送路100に搬送されても、ワークWはその向きをほぼ維持したままで、第2搬送路100との間の段差まで搬送される。 On the other hand, even when the stacking direction of the electrodes 200 of the work W is perpendicular to the lines of magnetic force, the work W is prevented from rotating within the first transport path 100 for the same reason. In this way, no matter what orientation the work W is conveyed to the first conveying path 100, the work W is conveyed up to the step between it and the second conveying path 100 while maintaining its orientation.

図8は、図5で示した第1搬送路100、第2搬送路102、及び第3搬送路104の断面を模式的に示す図である。ここでは、磁界生成部40が生成する磁力線を一点鎖線により示している。図8は、磁界生成部40の下側、すなわち搬送面に近い側はN極である例を示している。 FIG. 8 is a diagram schematically showing cross sections of the first transport path 100, the second transport path 102, and the third transport path 104 shown in FIG. Here, the lines of magnetic force generated by the magnetic field generator 40 are indicated by dashed-dotted lines. FIG. 8 shows an example in which the lower side of the magnetic field generator 40, that is, the side closer to the conveying surface, is the N pole.

この図8に示すように、第1搬送路100を搬送されたワークWは、境界面110を超える際に、段差により空中に浮いた後に第2搬送路102の搬送面に載置される。これから分かる様に、空中に浮いたワークWは磁力による回転モーメントにより、磁力線と電極200の積層方向とが直交する方向に回転する。このため、図7で示したように、ワークWの電極200の積層方向が磁力線とほぼ平行であるワークWも、ワークWの電極200の積層方向が磁力線と直交する方向に回転する。一方で、ワークWの電極200の積層方向が磁力線と直交するワークWは、磁力により電極200の積層方向が磁力線と直交する状態を維持した状態で第2搬送路102の搬送面に載置される。 As shown in FIG. 8 , the work W conveyed along the first conveying path 100 is placed on the conveying surface of the second conveying path 102 after floating in the air due to the steps when passing over the boundary surface 110 . As can be seen from this, the workpiece W floating in the air rotates in the direction in which the lines of magnetic force and the stacking direction of the electrodes 200 are perpendicular to each other due to the rotational moment caused by the magnetic force. Therefore, as shown in FIG. 7, even the work W whose stacking direction of the electrodes 200 of the work W is substantially parallel to the lines of magnetic force rotates in the direction in which the stacking direction of the electrodes 200 of the work W is perpendicular to the lines of magnetic force. On the other hand, the work W whose stacking direction of the electrodes 200 of the work W is perpendicular to the lines of magnetic force is placed on the conveying surface of the second conveying path 102 while maintaining the state in which the stacking direction of the electrodes 200 is perpendicular to the lines of magnetic force due to the magnetic force. be.

図9は、第2搬送路102の境界面110付近の断面図である。第2搬送路102の搬送面は、上述のように、低摩擦加工された法線方向が互いに異なる2つの平坦面112、114と、2つの平坦面112、114の間に面一で連なる曲面116とを有する。このため、第2搬送路102では、ワークWは、磁界により発生した回転モーメントにより自在に回転する。 FIG. 9 is a cross-sectional view of the vicinity of the boundary surface 110 of the second transport path 102. As shown in FIG. As described above, the conveying surface of the second conveying path 102 includes the two flat surfaces 112 and 114 that are low-friction processed and have different normal directions, and the curved surface that is flush with and continues between the two flat surfaces 112 and 114. 116. Therefore, in the second transport path 102, the work W is freely rotated by the rotational moment generated by the magnetic field.

図10は、第2搬送路102において発生する回転モーメントの例を示す図である。ワークWが空中に浮いている間に、ワークWの向きは、電極200の積層面が磁力線と平行となるように回転される。 FIG. 10 is a diagram showing an example of rotational moment generated in the second conveying path 102. As shown in FIG. While the work W is floating in the air, the orientation of the work W is rotated so that the lamination surface of the electrode 200 is parallel to the lines of magnetic force.

一方で、電極200の積層面が磁力線と平行でないワークWも存在する。このようなワークWには、電極200の積層面が磁力線と平行となる方向に磁界による回転モーメントが発生する。 On the other hand, there is also a workpiece W in which the lamination plane of the electrodes 200 is not parallel to the lines of magnetic force. In such a workpiece W, a rotational moment due to the magnetic field is generated in the direction in which the lamination plane of the electrodes 200 is parallel to the lines of magnetic force.

図10(A)は、ワークWの電極200の積層方向が磁力線と斜めになり、反時計回りの回転モーメントが発生する例を示す図である。すなわち、図10(A)に示す例では、ワークWのカット面206側に生じる磁極には、磁界生成部40の方向への引力が働き、カット面204側に生じる磁極には、磁界生成部40の方向への斥力が働くため、ワークWには反時計回りの回転モーメントが発生する。 FIG. 10A is a diagram showing an example in which the stacking direction of the electrodes 200 of the workpiece W is oblique to the lines of magnetic force and a counterclockwise rotational moment is generated. That is, in the example shown in FIG. 10A, the magnetic poles generated on the cut surface 206 side of the workpiece W are subjected to an attractive force in the direction of the magnetic field generation unit 40, and the magnetic poles generated on the cut surface 204 side are generated by the magnetic field generation unit Since a repulsive force acts in the direction of 40, a counterclockwise rotational moment is generated in the workpiece W.

図10(B)は、ワークWの電極200の積層方向が磁力線と斜めになり、時計回りの回転モーメントが発生する例を示す図である。すなわち、図10(B)に示す例では、ワークWのカット面206側に生じる磁極には、磁界生成部40の方向への引力が働き、カット面204側に生じる磁極には、磁界生成部40の方向への斥力が働くため、ワークWには時計回りの回転モーメントが発生する。このように、ワークWの電極200の積層方向が磁力線と斜めの場合、ワーク内の電極200の積層方向と磁力線とが直交するように回転モーメントが発生する。 FIG. 10B is a diagram showing an example in which the stacking direction of the electrodes 200 of the workpiece W is oblique to the lines of magnetic force and a clockwise rotational moment is generated. That is, in the example shown in FIG. 10(B), the magnetic poles generated on the cut surface 206 side of the workpiece W are subjected to an attractive force in the direction of the magnetic field generation unit 40, and the magnetic poles generated on the cut surface 204 side are generated by the magnetic field generation unit Since a repulsive force acts in the direction of 40, a clockwise rotational moment is generated in the workpiece W. In this way, when the stacking direction of the electrodes 200 of the workpiece W is oblique to the lines of magnetic force, a rotational moment is generated so that the stacking direction of the electrodes 200 in the workpiece and the lines of magnetic force are perpendicular to each other.

一方で、図10(C)は、ワークWの電極200の積層面と、磁界生成部40の磁力線とが平行である例を示す図であり、回転モーメントは生じない。上述のように、図10(C)で示す状態が最も安定した状態である。つまり、図10(A)及び図10(B)で示すワークWは、図10(C)の状態になると回転を停止する。また、振動部の振動により、ワークWが揺れた場合にも、図10(C)で示す状態に戻すように磁界による回転モーメントが生じる。このように、ワークWの電極200の積層面と、磁界生成部40の磁力線とが平行になると、磁界生成部40が生成する磁界及び第2搬送路102が生成する磁界が電極200の向きを保持するように作用する。 On the other hand, FIG. 10C is a diagram showing an example in which the lamination surface of the electrode 200 of the workpiece W and the magnetic lines of force of the magnetic field generator 40 are parallel, and no rotational moment is generated. As described above, the state shown in FIG. 10C is the most stable state. That is, the work W shown in FIGS. 10A and 10B stops rotating when it reaches the state of FIG. 10C. Further, even when the workpiece W shakes due to the vibration of the vibrating portion, a rotational moment is generated by the magnetic field so as to restore the state shown in FIG. 10(C). In this way, when the lamination surface of the electrodes 200 of the workpiece W and the lines of magnetic force of the magnetic field generator 40 are parallel, the magnetic field generated by the magnetic field generator 40 and the magnetic field generated by the second transport path 102 change the direction of the electrodes 200. act to hold.

図10(D)は、ワークWの電極200の積層面と、磁界生成部40の磁力線とが垂直である例を示す図である。この例では、ワークWのカット面204側の電極200の端部と磁界生成部40との距離が、カット面206側の電極200の端部と磁界生成部40との距離と同等であるので、回転モーメントは生じない。しかしながら、不安定な状態であり、ワークWが揺れた際の回転方向に、このワークWは図10(C)で示す状態になるまで回転する。 FIG. 10D is a diagram showing an example in which the laminated surface of the electrode 200 of the workpiece W and the magnetic lines of force of the magnetic field generator 40 are perpendicular to each other. In this example, the distance between the edge of the electrode 200 on the cut surface 204 side of the workpiece W and the magnetic field generator 40 is equivalent to the distance between the edge of the electrode 200 on the cut surface 206 side and the magnetic field generator 40. , no rotational moment occurs. However, this is an unstable state, and the work W rotates in the direction of rotation when the work W shakes until it reaches the state shown in FIG. 10(C).

このように、磁界生成部40が生成する磁界は、第2搬送路102の搬送面上のワークWの電極200の積層面と、磁界生成部40の磁力線とが平行となるように、ワークWを回転させる。これにより、ワークWは、電極200の向きが揃えられた状態で第3搬送路104に移載される。 In this way, the magnetic field generated by the magnetic field generator 40 is applied to the workpiece W so that the layered surface of the electrodes 200 of the workpiece W on the conveying surface of the second conveying path 102 and the magnetic lines of force of the magnetic field generator 40 are parallel to each other. to rotate. As a result, the work W is transferred to the third transport path 104 with the electrodes 200 oriented in the same direction.

図11は、第3搬送路104の断面図である。第2搬送路102から第3搬送路104に移載されるワークWの向きは、電極200の積層面と、磁界生成部40の磁力線とが平行となるように揃えられている。一方で、何らかの要因により向きが揃っていないワークWは、第2搬送路102から第3搬送路104に移載される際の段差で、上述した図10(A)~図10(D)に説明した原理にて、向きが揃えられる。 FIG. 11 is a cross-sectional view of the third transport path 104. As shown in FIG. The direction of the work W transferred from the second transport path 102 to the third transport path 104 is aligned so that the stacking surface of the electrodes 200 and the magnetic lines of force of the magnetic field generator 40 are parallel. On the other hand, the workpieces W whose orientation is not aligned for some reason are transferred from the second conveying path 102 to the third conveying path 104 at a step, as shown in FIGS. 10A to 10D. The directions are aligned according to the principle described.

第3搬送路104では、ワークWの電極200の積層面が磁力線と平行な向きに揃えられているので、カット面204、又はカット面206(図4)が平坦面122と接触している。このため、振動によるワークWの揺れが平坦面122により抑制されている。また、振動によりワークWの揺れが生じた場合にも、ワークWの電極200の積層面が磁力線と平行になるように磁界が作用する。さらにまた、平坦面120がワークWの回転を制限する。このように、第3搬送路104では、磁界生成部40及び第3搬送路104の搬送面が生成する磁界がワークWの向きを維持するように作用すると共に、平坦面120及び平坦面122が2面ガイドとして機能する。これにより、第3搬送路104は、ワークWの向きを維持した状態でワークWをリニア先端部4に移載する。そして、リニア先端部4は、ワークWのカット面204又はカット面206(図4)が搬送テーブル2(図1)に接するようにワークWを移載する。 In the third transport path 104 , the laminated surface of the electrode 200 of the workpiece W is aligned parallel to the magnetic lines of force, so the cut surface 204 or the cut surface 206 ( FIG. 4 ) is in contact with the flat surface 122 . Therefore, the flat surface 122 suppresses the shaking of the workpiece W due to vibration. Further, even when the work W is swayed by vibration, the magnetic field acts so that the lamination surface of the electrode 200 of the work W becomes parallel to the lines of magnetic force. Furthermore, the flat surface 120 limits the rotation of the work W. Thus, in the third transport path 104, the magnetic field generated by the magnetic field generator 40 and the transport surface of the third transport path 104 acts to maintain the orientation of the workpiece W, and the flat surface 120 and the flat surface 122 It functions as a two-sided guide. As a result, the third conveying path 104 transfers the work W to the linear tip portion 4 while maintaining the orientation of the work W. As shown in FIG. Then, the linear tip portion 4 transfers the work W so that the cut surface 204 or the cut surface 206 (FIG. 4) of the work W is in contact with the conveying table 2 (FIG. 1).

より具体的には、上述のリニア先端部4は、搬送装置1の第3搬送路104に接続されている。このリニア先端部4の搬送面は、法線方向が互いに異なる2つの平坦面を有する。例えばリニア先端部4の一方の平坦面は平坦面120に連続的に接続され、下流に向かうにしたがい垂直になり、リニア先端部4の他方の平坦面は平坦面122に連続的に接続され、下流に向かうにしたがい水平になるように構成されている。これにより、ワークWのカット面204又はカット面206(図4)が搬送テーブル2(図1)に接するように移載される。 More specifically, the linear tip 4 described above is connected to the third transport path 104 of the transport device 1 . The conveying surface of this linear tip 4 has two flat surfaces with different normal directions. For example, one flat surface of the linear tip 4 is continuously connected to the flat surface 120 and becomes vertical as it goes downstream, the other flat surface of the linear tip 4 is continuously connected to the flat surface 122, It is configured so that it becomes horizontal as it goes downstream. As a result, the work W is transferred so that the cut surface 204 or the cut surface 206 (FIG. 4) is in contact with the conveying table 2 (FIG. 1).

このように、平面度の高い積層コンデンサのカット面204又はカット面206が搬送テーブル2に接するように移載されるので、搬送テーブル2上でのワークWの姿勢は安定する。また、搬送テーブル2上でのワークWの向きがそろっているので、撮像部20は、ワークWの側面と上下面を同一方向から撮像可能となる。これにより、ワークWの良否の判定精度が向上する。 Since the cut surface 204 or the cut surface 206 of the multilayer capacitor with high flatness is transferred so as to be in contact with the carrier table 2 in this manner, the posture of the workpiece W on the carrier table 2 is stabilized. In addition, since the orientation of the work W on the transport table 2 is aligned, the imaging unit 20 can image the side surface and upper and lower surfaces of the work W from the same direction. As a result, the accuracy of determining whether the work W is good or bad is improved.

なお、ワークW内の積層された電極の数や電極サイズに応じて、ワークWに作用するモーメントの大きさが異なるため、ワークWの種類ごとに磁界生成部の位置を最適化するのが望ましい。 Since the magnitude of the moment acting on the workpiece W differs depending on the number of stacked electrodes and the size of the electrodes in the workpiece W, it is desirable to optimize the position of the magnetic field generator for each type of workpiece W. .

以上説明したように、本実施形態に係る外観検査装置30によれば、第1搬送路100から段差を介して下方に配置された第2搬送路102を設け、電極200を積層したワークWを搬送する第2搬送路102に磁界を生成することとした。これにより、ワークWが段差により空中に滞在する期間に、ワークWの電極200の積層方向と磁力線とが直交する方向にワークWを回転させることが可能となる。 As described above, according to the appearance inspection apparatus 30 according to the present embodiment, the second transport path 102 is arranged below the first transport path 100 via a step, and the work W having the electrodes 200 stacked thereon is inspected. A magnetic field is generated in the second conveying path 102 for conveying. This makes it possible to rotate the work W in the direction in which the stacking direction of the electrodes 200 of the work W and the lines of magnetic force are perpendicular to each other while the work W stays in the air due to the steps.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施することが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形例は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the invention have been described above, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are included in the scope of the invention described in the claims and equivalents thereof.

1:搬送装置、2:搬送テーブル、6:帯電部、20:撮像部、30:外観検査装置、40:磁界生成部、100:第1搬送路、102:第2搬送路、104:第3搬送路 1: Conveying device, 2: Conveying table, 6: Charging unit, 20: Imaging unit, 30: Appearance inspection device, 40: Magnetic field generating unit, 100: First conveying path, 102: Second conveying path, 104: Third transport path

Claims (4)

複数の電極が積層された電子部品を搬送する搬送装置であって、
水平面に対して傾斜する平面を基準面として、前記基準面の鉛直下方向に沿って交線を有し、且つ前記基準面に対してその断面が傾斜を有する2つの平坦面を有し、前記電子部品の回転を抑制すると共に、前記電子部品を前記鉛直下方向に搬送する常磁性体の第1搬送路と、
前記第1搬送路から垂直方向の段差を介して鉛直下方に配置され、前記基準面に対してその断面が傾斜を有する2つの平坦面と、前記2つの平坦面の間に面一で連なる局面を有し、前記電子部品を鉛直下方向に搬送する常磁性体の第2搬送路と、
前記第2搬送路から垂直方向の段差を介して下方に配置され、前記基準面の鉛直下方向に沿って交線を有し、且つ前記基準面に対してその断面が傾斜を有する2つの平坦面を有し、前記電子部品の回転を抑制すると共に、前記第2搬送路を搬送された前記電子部品を鉛直下方向に搬送する常磁性体の第3搬送路と、
前記第1搬送路、前記第2搬送路及び前記第3搬送路から所定の距離隔てて配置されると共に、前記段差の領域を含む前記第1搬送路、前記第2搬送路及び前記第3搬送路がそれぞれ形成される前記2つの平坦面の内の一方の面の垂線に対して0乃至30度の角度範囲の方向を有する磁界を生成する磁界生成部と、
を備え、
前記第1搬送路の2つの平坦面の交線と、前記第3搬送路の2つの平坦面の交線とは、直線状に形成される、搬送装置。
A transport device for transporting an electronic component in which a plurality of electrodes are stacked,
With a plane inclined with respect to a horizontal plane as a reference plane, having two flat surfaces having a line of intersection along the vertically downward direction of the reference plane and having a cross section inclined with respect to the reference plane , a paramagnetic first transport path that suppresses rotation of the electronic component and transports the electronic component in the vertically downward direction ;
two flat surfaces arranged vertically downward from the first conveying path via a step in the vertical direction and having a cross section inclined with respect to the reference surface ; and a paramagnetic second transport path for transporting the electronic component vertically downward ;
Two flat surfaces arranged below the second conveying path via a step in the vertical direction, having a line of intersection along the vertically downward direction of the reference plane, and having a cross section inclined with respect to the reference plane. a paramagnetic third transport path that has a surface, suppresses rotation of the electronic component, and transports the electronic component transported on the second transport path in a vertically downward direction ;
The first conveying path, the second conveying path, and the third conveying path are arranged at predetermined distances from the first conveying path, the second conveying path, and the third conveying path, and include the step region. a magnetic field generator for generating a magnetic field having a direction within an angular range of 0 to 30 degrees with respect to a normal to one of the two flat surfaces on which the paths are respectively formed;
with
The conveying device, wherein the line of intersection of the two flat surfaces of the first conveying path and the line of intersection of the two flat surfaces of the third conveying path are formed in a straight line.
前記磁界生成部は、前記第2搬送路から所定距離を隔てて配置された電磁石又は永久磁石を有する、請求項1に記載の搬送装置。 2. The conveying apparatus according to claim 1, wherein said magnetic field generator has an electromagnet or a permanent magnet arranged at a predetermined distance from said second conveying path. 複数の電極が積層された電子部品を搬送する搬送方法であって、
前記電子部品の回転を抑制すると共に、水平面に対して傾斜する平面を基準面として、前記基準面の鉛直下方向に沿って交線を有し、且つ前記基準面に対してその断面が傾斜を有する2つの平坦面で構成される搬送面を有する常磁性体の第1搬送路により前記鉛直下方向に搬送する第1搬送工程と、
前記第1搬送路から垂直方向の段差を介して下方に配置され、前記基準面に対してその断面が傾斜を有する2つの平坦面と、前記2つの平坦面の間に面一で連なる局面を有する常磁性体の第2搬送路により、前記第1搬送路を搬送された前記電子部品を前記鉛直下方向に搬送する第2搬送工程と、
前記第2搬送路から垂直方向の段差を介して下方に配置され、前記電子部品の回転を抑制すると共に、前記基準面の鉛直下方向に沿って交線を有し、且つ前記基準面に対してその断面が傾斜を有する2つの平坦面を有する常磁性体の第3搬送路により、前記第2搬送路を搬送された前記電子部品を前記鉛直下方向に搬送する第3搬送工程と、
を有する搬送工程と、
前記段差の領域を含む前記第1搬送路、前記第2搬送路及び前記第3搬送路がそれぞれ形成される2つの平坦面の一方の面の垂線に対して0乃至30度の角度範囲の方向を有する磁界を生成する磁界生成工程と、
を備え、
前記第1搬送路の2つの平坦面の交線と、前記第3搬送路の2つの平坦面の交線とは、直線状に形成される、搬送方法。
A transport method for transporting an electronic component in which a plurality of electrodes are stacked,
A plane that suppresses rotation of the electronic component and that is inclined with respect to a horizontal plane is defined as a reference plane. A first conveying step of conveying in the vertically downward direction by a first conveying path of a paramagnetic body having a conveying surface composed of two flat surfaces;
two flat surfaces arranged below the first conveying path via a step in the vertical direction and having a cross section inclined with respect to the reference surface ; a second conveying step of conveying the electronic component conveyed on the first conveying path in the vertically downward direction by a second conveying path of a paramagnetic body;
arranged below the second conveying path via a step in the vertical direction, suppresses rotation of the electronic component , has a line of intersection along the vertically downward direction of the reference plane, and is with respect to the reference plane a third conveying step of conveying the electronic component conveyed on the second conveying path in the vertically downward direction by a third conveying path of a paramagnetic material having two flat surfaces whose cross sections are inclined ;
a conveying step having
A direction within an angle range of 0 to 30 degrees with respect to a normal to one of two flat surfaces on which the first, second, and third conveying paths including the step region are respectively formed. a magnetic field generating step for generating a magnetic field having
with
The conveying method, wherein the line of intersection of the two flat surfaces of the first conveying path and the line of intersection of the two flat surfaces of the third conveying path are formed linearly.
複数の電極が積層された電子部品の外観を検査する外観検査装置であって、
水平面に対して傾斜する平面を基準面として、前記基準面の鉛直下方向に沿って交線を有し、且つ前記基準面に対してその断面が傾斜を有する2つの平坦面を有し、前記電子部品の回転を抑制すると共に、前記電子部品を所定の方向に搬送する常磁性体の第1搬送路と、
前記第1搬送路から垂直方向の段差を介して鉛直下方に配置され、前記基準面に対してその断面が傾斜を有する2つの平坦面と、前記2つの平坦面の間に面一で連なる局面を有し、前記電子部品を前記鉛直下方向に搬送する常磁性体の第2搬送路と、
前記第2搬送路から垂直方向の段差を介して鉛直下方に配置され、前記基準面の鉛直下方向に沿って交線を有し、且つ前記基準面に対してその断面が傾斜を有する2つの平坦面を有し、前記電子部品の回転を抑制すると共に、前記電子部品を前記所定の方向に搬送する常磁性体の第3搬送路とを、有する搬送路と
前記第1搬送路、前記第2搬送路及び前記第3搬送路から所定の距離隔てて配置されると共に、前記段差の領域を含む前記第1搬送路、前記第2搬送路及び前記第3搬送路がそれぞれ形成される2つの平坦面の一方の面の垂線に対して0乃至30度の角度範囲の方向を有する磁界を生成する磁界生成部と、
前記第2搬送路を介して前記電子部品が移載され、搬送円弧上に載置した前記電子部品を搬送する回転自在の搬送テーブルと、
前記搬送テーブル上の前記電子部品を撮像する撮像部と、
を備え、
前記第1搬送路の2つの平坦面の交線と、前記第3搬送路の2つの平坦面の交線とは、直線状に形成される、外観検査装置。
A visual inspection apparatus for inspecting the appearance of an electronic component in which a plurality of electrodes are laminated,
With a plane inclined with respect to a horizontal plane as a reference plane, having two flat surfaces having a line of intersection along the vertically downward direction of the reference plane and having a cross section inclined with respect to the reference plane , a paramagnetic first transport path for suppressing rotation of the electronic component and transporting the electronic component in a predetermined direction;
two flat surfaces arranged vertically downward from the first conveying path via a step in the vertical direction and having a cross section inclined with respect to the reference surface ; a paramagnetic second transport path for transporting the electronic component in the vertically downward direction ;
Two devices arranged vertically below the second conveying path via a step in the vertical direction, have a line of intersection along the vertically downward direction of the reference plane, and have a cross section inclined with respect to the reference plane. a transport path having a flat surface and a paramagnetic third transport path for suppressing rotation of the electronic component and transporting the electronic component in the predetermined direction; Two transport paths are arranged at a predetermined distance from the second transport path and the third transport path, and the first transport path, the second transport path, and the third transport path including the step area are respectively formed. a magnetic field generator that generates a magnetic field having a direction in an angular range of 0 to 30 degrees with respect to the normal to one surface of the flat surface;
a rotatable transport table on which the electronic component is transferred via the second transport path and transports the electronic component placed on the transport arc;
an imaging unit that captures an image of the electronic component on the carrier table;
with
The visual inspection apparatus, wherein the line of intersection of the two flat surfaces of the first transport path and the line of intersection of the two flat surfaces of the third transport path are formed linearly.
JP2017214763A 2017-11-07 2017-11-07 CONVEYING DEVICE, CONVEYING METHOD, AND APPEARANCE INSPECTION DEVICE Active JP7205846B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017214763A JP7205846B2 (en) 2017-11-07 2017-11-07 CONVEYING DEVICE, CONVEYING METHOD, AND APPEARANCE INSPECTION DEVICE
TW107136126A TWI715882B (en) 2017-11-07 2018-10-15 Transport device, transport method, and appearance inspection device
KR1020180126527A KR102172030B1 (en) 2017-11-07 2018-10-23 Conveying apparatus, conveying method, and appearance inspection apparatus
MYPI2018704064A MY201917A (en) 2017-11-07 2018-11-01 Conveyance device, conveyance method, and exterior inspection apparatus
CN201811319217.3A CN110031475B (en) 2017-11-07 2018-11-07 Conveying device, conveying method and appearance inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017214763A JP7205846B2 (en) 2017-11-07 2017-11-07 CONVEYING DEVICE, CONVEYING METHOD, AND APPEARANCE INSPECTION DEVICE

Publications (2)

Publication Number Publication Date
JP2019086397A JP2019086397A (en) 2019-06-06
JP7205846B2 true JP7205846B2 (en) 2023-01-17

Family

ID=66579972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017214763A Active JP7205846B2 (en) 2017-11-07 2017-11-07 CONVEYING DEVICE, CONVEYING METHOD, AND APPEARANCE INSPECTION DEVICE

Country Status (5)

Country Link
JP (1) JP7205846B2 (en)
KR (1) KR102172030B1 (en)
CN (1) CN110031475B (en)
MY (1) MY201917A (en)
TW (1) TWI715882B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7279673B2 (en) * 2020-03-24 2023-05-23 株式会社村田製作所 Conveying device and method
CN117465753A (en) * 2023-12-08 2024-01-30 广东微容电子科技有限公司 Vibration feed mechanism and braiding machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168516A (en) 2002-11-21 2004-06-17 Takashi Shigesada Alignment apparatus for electronic component
JP2015000756A (en) 2013-06-17 2015-01-05 大森機械工業株式会社 Box packing device
JP2017010955A (en) 2015-06-16 2017-01-12 株式会社村田製作所 Electronic component conveyance device and manufacturing method for taping electronic component series
JP2017010954A (en) 2015-06-16 2017-01-12 株式会社村田製作所 Electronic-component conveyance device and manufacturing method for taping electronic component series
JP2017198462A (en) 2016-04-25 2017-11-02 株式会社村田製作所 Method for inspecting appearance

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4691848B2 (en) * 2001-07-19 2011-06-01 シンフォニアテクノロジー株式会社 Vibrating feeder with two distributors
JP2005526304A (en) * 2001-12-21 2005-09-02 ギーゼッケ ウント デフリエント ゲーエムベーハー Sheet material, apparatus and method for manufacturing sheet material, apparatus and method for processing sheet material
JP5050359B2 (en) * 2006-02-01 2012-10-17 シンフォニアテクノロジー株式会社 Parts supply device
JP4951796B2 (en) * 2009-07-07 2012-06-13 株式会社村田製作所 Electronic component conveyor
KR101989625B1 (en) * 2011-09-06 2019-06-14 신포니아 테크놀로지 가부시끼가이샤 Apparatus for aligning and conveying work
JP6009167B2 (en) * 2012-01-17 2016-10-19 株式会社 東京ウエルズ Work appearance inspection apparatus and work appearance inspection method
JP6582623B2 (en) * 2015-07-02 2019-10-02 株式会社村田製作所 Electronic component conveyor
JP6529170B2 (en) * 2015-08-26 2019-06-12 株式会社 東京ウエルズ Work appearance inspection apparatus and work appearance inspection method
JP6610105B2 (en) * 2015-09-10 2019-11-27 株式会社村田製作所 Electronic component conveying apparatus and method of manufacturing electronic component series
DE102016203854A1 (en) * 2016-03-09 2017-09-14 Festo Ag & Co. Kg Conveyor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168516A (en) 2002-11-21 2004-06-17 Takashi Shigesada Alignment apparatus for electronic component
JP2015000756A (en) 2013-06-17 2015-01-05 大森機械工業株式会社 Box packing device
JP2017010955A (en) 2015-06-16 2017-01-12 株式会社村田製作所 Electronic component conveyance device and manufacturing method for taping electronic component series
JP2017010954A (en) 2015-06-16 2017-01-12 株式会社村田製作所 Electronic-component conveyance device and manufacturing method for taping electronic component series
JP2017198462A (en) 2016-04-25 2017-11-02 株式会社村田製作所 Method for inspecting appearance

Also Published As

Publication number Publication date
TW201928336A (en) 2019-07-16
KR20190051799A (en) 2019-05-15
TWI715882B (en) 2021-01-11
CN110031475B (en) 2022-05-10
JP2019086397A (en) 2019-06-06
CN110031475A (en) 2019-07-19
MY201917A (en) 2024-03-23
KR102172030B1 (en) 2020-10-30

Similar Documents

Publication Publication Date Title
JP5598912B2 (en) Work appearance inspection apparatus and work appearance inspection method
JP6009167B2 (en) Work appearance inspection apparatus and work appearance inspection method
TWI410370B (en) Electronic parts transfer device
US10472187B2 (en) Electronic component transportation device and method for manufacturing electronic component array
JP6529170B2 (en) Work appearance inspection apparatus and work appearance inspection method
JP2005217136A (en) Aligning method and device of lamination electronic component
JP7205846B2 (en) CONVEYING DEVICE, CONVEYING METHOD, AND APPEARANCE INSPECTION DEVICE
JP6107752B2 (en) Direction identification method for multilayer ceramic capacitor, direction identification device for multilayer ceramic capacitor, and method for manufacturing multilayer ceramic capacitor
TWI604518B (en) Substrate separation apparatus
JP5463585B2 (en) Parts supply device
JP2008260594A (en) Part conveying device
KR101840694B1 (en) Electronic component conveyance device
JP2008039675A (en) Inspection device of chip type electronic component
CN116461947A (en) Conveying device and conveying method
JP7279673B2 (en) Conveying device and method
JP2010228873A (en) Parts feeder
JP6347152B2 (en) Alignment device
JP2006159367A (en) Workpiece conveying device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220426

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220426

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220511

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221222

R150 Certificate of patent or registration of utility model

Ref document number: 7205846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150