JP7205452B2 - exhaust passage - Google Patents

exhaust passage Download PDF

Info

Publication number
JP7205452B2
JP7205452B2 JP2019221108A JP2019221108A JP7205452B2 JP 7205452 B2 JP7205452 B2 JP 7205452B2 JP 2019221108 A JP2019221108 A JP 2019221108A JP 2019221108 A JP2019221108 A JP 2019221108A JP 7205452 B2 JP7205452 B2 JP 7205452B2
Authority
JP
Japan
Prior art keywords
exhaust pipe
projecting portion
exhaust
holes
protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019221108A
Other languages
Japanese (ja)
Other versions
JP2021088984A (en
Inventor
昌彦 浅野
満帆 井手
和弘 北川
真二郎 三枝
栄介 保科
健司 大橋
建光 鈴木
直芳 勝美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019221108A priority Critical patent/JP7205452B2/en
Publication of JP2021088984A publication Critical patent/JP2021088984A/en
Application granted granted Critical
Publication of JP7205452B2 publication Critical patent/JP7205452B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Silencers (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

本発明は、排気通路に関する。 The present invention relates to exhaust passages.

内燃機関の排気管には、排ガス中の酸素濃度を検出するためのセンサが設けられている。内燃機関の運転制御では、例えば検出された酸素濃度に応じて吸入空気量や燃料噴射量が調整されて、空燃比が制御される。
各気筒から出る排ガスは、エキゾーストマニホールドを経て一つの排気管に流入する。排ガスの流れは下流方向への指向性が高く、排気管断面内で偏りが生じやすいため、センサに到達するまでに撹拌するための機構を設けることが検討されている。
An exhaust pipe of an internal combustion engine is provided with a sensor for detecting oxygen concentration in the exhaust gas. In the operation control of the internal combustion engine, for example, the air-fuel ratio is controlled by adjusting the intake air amount and the fuel injection amount according to the detected oxygen concentration.
Exhaust gas from each cylinder flows into one exhaust pipe through an exhaust manifold. Since the flow of exhaust gas is highly directional in the downstream direction and tends to be uneven within the cross section of the exhaust pipe, it is being studied to provide a mechanism for stirring the exhaust gas before it reaches the sensor.

特許文献1には、排気流を分散する分散板として、2つのプレートを組み合わせた分散板が開示されている。
特許文献2には、第1の排気管と第2の排気管との間に孔を備えた突起部を設けることが開示されている。特許文献2によれば、排気が当該突起部近傍を通過するときに乱流となって、排気が拡散されると記載されている。
Patent Literature 1 discloses a dispersion plate in which two plates are combined as a dispersion plate for dispersing an exhaust flow.
Patent Literature 2 discloses providing a protrusion having a hole between a first exhaust pipe and a second exhaust pipe. According to Patent Document 2, it is described that when the exhaust gas passes through the vicinity of the protrusion, it becomes turbulent and diffuses.

特開2016-79962号公報JP 2016-79962 A 特開2014-126009号公報JP 2014-126009 A

上記特許文献1~2の分散板等はいずれも開口率が小さいため、圧力損失が大きくなりやすいという問題があった。また特許文献1の分散板は、複数のプレートを使用するため、製造コストや信頼性の点で不利なものであった。また、特許文献2の突起部は、孔とセンサの配置によっては、センサへのガス当たり流量が低下してセンサの応答性が悪化する場合があった。 Since each of the dispersion plates and the like disclosed in Patent Documents 1 and 2 has a small aperture ratio, there is a problem that the pressure loss tends to increase. Moreover, since the dispersion plate of Patent Document 1 uses a plurality of plates, it is disadvantageous in terms of manufacturing cost and reliability. In addition, depending on the arrangement of the hole and the sensor, the protrusion of Patent Document 2 may reduce the flow rate of the gas per contact with the sensor, degrading the responsiveness of the sensor.

上記課題を解決するために、例えば、排気管の内面と円周方向の一部の範囲で連続して設けられ、排気管の延在方向に傾き排気管の下流側ほど断面積が小さくなる突出部を形成することによって、排気管内における圧力損失を抑制しつつ排気ガスを効率良く撹拌することが考えられる。しかしながら、排気管内に突出部を形成すると、突出部内において圧力損失が発生する虞がある。 In order to solve the above problems, for example, a protrusion that is continuously provided in a part of the inner surface of the exhaust pipe in the circumferential direction, is inclined in the extending direction of the exhaust pipe, and has a smaller cross-sectional area toward the downstream side of the exhaust pipe. By forming the portion, it is conceivable to efficiently agitate the exhaust gas while suppressing the pressure loss in the exhaust pipe. However, forming the protrusion in the exhaust pipe may cause pressure loss in the protrusion.

本発明はこのような問題を解決するものであり、圧力損失をより抑制しながら、高い撹拌効果を有する排気通路を提供するものである。 The present invention solves such problems, and provides an exhaust passage having a high agitation effect while further suppressing pressure loss.

本実施形態にかかる排気通路は、
排気管と、
前記排気管の内面に円周方向の一部の範囲で連続して設けられ、排気管の延在方向に傾き排気管の下流側ほど断面積が小さくなる突出部と、を備える排気通路であって、
前記突出部の上流端に、前記突出部を貫通する複数の貫通孔が設けられており、
突出部の円周方向の両端から遠い貫通孔の面積が、前記両端に近い貫通孔の面積よりも大きいことを特徴とする。
The exhaust passage according to this embodiment is
an exhaust pipe;
The exhaust passage is provided with a projecting portion continuously provided on the inner surface of the exhaust pipe in a partial range in the circumferential direction and inclined in the extending direction of the exhaust pipe and having a cross-sectional area that decreases toward the downstream side of the exhaust pipe. hand,
A plurality of through-holes penetrating the projecting portion are provided at an upstream end of the projecting portion,
It is characterized in that the area of the through hole farther from both ends in the circumferential direction of the protrusion is larger than the area of the through hole closer to the both ends.

本発明により、圧力損失をより抑制しながら、高い撹拌効果を有する排気通路を提供できる。 ADVANTAGE OF THE INVENTION By this invention, the exhaust passage which has a high stirring effect can be provided, suppressing a pressure loss more.

本実施形態に係る排気通路の一例を示す模式的な側面図である。FIG. 3 is a schematic side view showing an example of an exhaust passage according to the embodiment; 突出部の一例を示す模式的な側面図である。FIG. 4 is a schematic side view showing an example of a protrusion; 突出部の一例を示す模式的な正面図である。FIG. 4 is a schematic front view showing an example of a protrusion; 排気通路の別の一例を示す模式的な側面図である。FIG. 5 is a schematic side view showing another example of an exhaust passage; 突出部の別の一例を示す模式的な側面図である。FIG. 10 is a schematic side view showing another example of the protrusion; 突出部の別の一例を示す模式的な側面図である。FIG. 10 is a schematic side view showing another example of the protrusion;

以下、実施の形態を通じて本発明を説明するが、特許請求の範囲に係る発明を以下の実施形態に限定するものではない。また、説明を明確にするため、以下の記載及び図面は、適宜、簡略化されている。なお、本明細書においては、排気管の軸方向(延在方向)の下流向きにX軸をとり、X軸に垂直な面をYZ面(単に断面ともいう)とする。 Hereinafter, the present invention will be described through embodiments, but the invention according to the scope of claims is not limited to the following embodiments. Also, for clarity of explanation, the following description and drawings are simplified as appropriate. In this specification, the X-axis is taken downstream in the axial direction (extending direction) of the exhaust pipe, and the plane perpendicular to the X-axis is the YZ plane (also referred to simply as the cross section).

図1の例に示す排気通路10は、内燃機関用に好適に用いられる排気通路であって、少なくとも排気管11(11A,11B)と、突出部22とを備え、さらに接続具23等の各種の構成を備えていてもよいものである。突出部22には、複数の貫通孔が形成されている。突出部22は、排気管の延在方向に傾くテーパ状の部材であり、上流側の端において排気管11と接する。突出部22は、内面が排気管11の内面と連続的に形成されている。突出部22は、排気管11の下流側ほど断面積が小さくなる。ここで突出部22の断面とは、排気管11の軸に対して垂直な円弧状の断面をいい、突出部22の断面積とは、円弧と、円弧の端点と排気管11の中心とを結んだ線により構成される扇形の面積をいう。本実施形態の排気通路は、圧力損失をより抑制しながら、高い撹拌効果を有する。このことについて図2及び図3を参照して説明する。 The exhaust passage 10 shown in the example of FIG. 1 is an exhaust passage suitably used for an internal combustion engine, and includes at least an exhaust pipe 11 (11A, 11B) and a projecting portion 22. It may be provided with the configuration of A plurality of through holes are formed in the projecting portion 22 . The protruding portion 22 is a tapered member that is inclined in the extending direction of the exhaust pipe, and is in contact with the exhaust pipe 11 at its upstream end. The projecting portion 22 has an inner surface formed continuously with the inner surface of the exhaust pipe 11 . The projecting portion 22 has a smaller cross-sectional area toward the downstream side of the exhaust pipe 11 . Here, the cross section of the projecting portion 22 refers to the arc-shaped cross section perpendicular to the axis of the exhaust pipe 11, and the cross-sectional area of the projecting portion 22 refers to the arc, the end point of the arc, and the center of the exhaust pipe 11. It refers to the area of a sector formed by connecting lines. The exhaust passage of the present embodiment has a high stirring effect while suppressing pressure loss. This will be described with reference to FIGS. 2 and 3. FIG.

図2及び図3は、突出部22により排ガスが撹拌される機構を説明するための模式的な図である。図3の例に示すように、突出部22には、複数の貫通孔22a~22hが形成されている。図2の例に示すように、複数の貫通孔22a~22hは、突出部22の上流端25に設けられており、突出部22を貫通する。
図2の例に示すように、排ガスは上流から下流に流れる際に、突出部22を通過する。突出部22は下流側ほど断面積が小さくなる構造を有しているため、下流に進むにしたがって突出部22の気体が突出部22外に押し出されて実線矢印に示す気流が発生する。図3に示すように、この気流は突出部22全域で連続的に生じて旋回流となり、突出部22通過後においても管内全体で排ガスの撹拌が進む。その結果、排ガスの面均一性が向上し、センサによる測定精度が向上する。また、本実施形態の排気通路は、突出部においても比較的開口部が大きくまた、前述する旋回流が管内全体に広がるため、圧力損失の増加を抑制することができる。
突出部22の上流端25に複数の貫通孔22a~22hが形成されているため、突出部22の気体の一部が複数の貫通孔22a~22hから突出部22外に押し出されて点線矢印に示す気流が発生する。その結果、突出部22内における圧力損失の発生を抑制することができる。図2及び図3の例に示すように、突出部22の円周方向の両端(端点26)から遠い貫通孔の面積が当該両端に近い貫通孔の面積よりも大きくなるように形成されているため、貫通孔22d,22eから押し出される排ガスの量が貫通孔22a,22h等から押し出される排ガスの量よりも多い。その結果、突出部22の円周方向の両端から遠い部分における圧力損失の発生をより抑制することができる。複数の貫通孔22a~22hから排ガスが押し出されて発生する気流は、前述する旋回流と衝突し、排ガスの撹拌が進む。その結果、排ガスの面均一性がさらに向上する。
図2の例に示すように、複数の貫通孔22a~22hは、例えば排気管の延在方向を長手方向とするスリットであってもよい。この場合、突出部22の円周方向の両端から遠い貫通孔のスリット長Lは、当該両端に近い貫通孔のスリット長Lよりも長くなるように形成される。なお、突出部22に形成される複数の貫通孔の数は特に限定されず、排気管11の直径等に応じて適宜変更することができる。
2 and 3 are schematic diagrams for explaining a mechanism in which the projecting portion 22 stirs the exhaust gas. As shown in the example of FIG. 3, the projecting portion 22 is formed with a plurality of through holes 22a to 22h. As shown in the example of FIG. 2, a plurality of through holes 22a-22h are provided at the upstream end 25 of the protrusion 22 and pass through the protrusion 22. As shown in FIG.
As shown in the example of FIG. 2, the exhaust gas passes through the projecting portion 22 when flowing from upstream to downstream. Since the protruding portion 22 has a structure in which the cross-sectional area decreases toward the downstream side, the gas in the protruding portion 22 is pushed out of the protruding portion 22 toward the downstream side to generate the airflow indicated by the solid arrow. As shown in FIG. 3, this airflow is continuously generated over the entire area of the projecting portion 22 to form a swirling flow, and even after passing through the projecting portion 22, the exhaust gas is stirred throughout the pipe. As a result, the surface uniformity of the exhaust gas is improved, and the accuracy of measurement by the sensor is improved. Further, in the exhaust passage of the present embodiment, the opening of the projecting portion is relatively large, and the swirling flow described above spreads throughout the pipe, so that an increase in pressure loss can be suppressed.
Since a plurality of through-holes 22a to 22h are formed in the upstream end 25 of the projecting portion 22, part of the gas in the projecting portion 22 is pushed out of the projecting portion 22 through the plurality of through-holes 22a to 22h and is indicated by a dotted line arrow. The airflow shown is generated. As a result, the occurrence of pressure loss within the projecting portion 22 can be suppressed. As shown in the examples of FIGS. 2 and 3, the area of the through-holes farther from both ends (end points 26) in the circumferential direction of the protruding portion 22 is formed to be larger than the area of the through-holes closer to the both ends. Therefore, the amount of exhaust gas extruded from the through holes 22d and 22e is larger than the amount of exhaust gas extruded from the through holes 22a and 22h. As a result, it is possible to further suppress the occurrence of pressure loss in portions far from both circumferential ends of the projecting portion 22 . The airflow generated by the exhaust gas being pushed out from the plurality of through holes 22a to 22h collides with the swirling flow described above, and the exhaust gas is stirred. As a result, the surface uniformity of the exhaust gas is further improved.
As shown in the example of FIG. 2, the plurality of through holes 22a to 22h may be slits whose longitudinal direction is, for example, the direction in which the exhaust pipe extends. In this case, the slit length L of the through hole farther from both ends in the circumferential direction of the projecting portion 22 is formed to be longer than the slit length L of the through hole closer to the both ends. The number of through-holes formed in the protruding portion 22 is not particularly limited, and can be changed as appropriate according to the diameter of the exhaust pipe 11 or the like.

本実施形態において、図1の例に示すように、排気管11は、上流側の排気管11A及び下流側の排気管11Bを含む構成であってもよい。排気管11Aは、下流端が排気管11Bの上流端に接続された状態で使用される。排気管11A,11Bを接続する方法は特に限定されず、例えば図1の例に示すように接続具23を用いて接続されてもよい。
排気管11A,11Bを含む構成である場合、突出部22は、接合部位における腐食抑制、及び突出部22の先端位置精度向上の観点から、上流側の排気管11Aと一体的に成型されることが好ましい。突出部22を排気管11Aと一体的に成型する場合、排気管11Aの下流端に形成された突出部22が排気管11Bの上流端に入り込むように、排気管11Aが排気管11Bに嵌め込まれる。突出部22を排気管11Aと一体的に成型する方法としては、例えば排気管11Aの下流端側を折り曲げて突出部22とするプレス加工が挙げられる。プレス加工によって突出部22を排気管11Aと一体的に成型する場合、突出部22を排気管11Aに溶接する必要がないため、突出部22と排気管11Aとの接合部における腐食発生が抑制される。また、溶接歪みが起こらないため、突出部22の位置精度が向上する。
プレス加工によって突出部22を排気管11Aと一体的に成型する場合、図1の例に示すように、複数の貫通孔22a~22hは、排気管11A本体部から突出部22に亘って連続的に形成されることが好ましい。複数の貫通孔22a~22hを排気管11A本体部から突出部22に亘って連続的に形成すると、プレス加工時に突出部22の根元におけるしわの発生が抑制されるため、排気管11Aの真円度が向上し、ガス漏れの発生が抑制される。
In this embodiment, as shown in the example of FIG. 1, the exhaust pipe 11 may be configured to include an upstream exhaust pipe 11A and a downstream exhaust pipe 11B. The exhaust pipe 11A is used with its downstream end connected to the upstream end of the exhaust pipe 11B. The method of connecting the exhaust pipes 11A and 11B is not particularly limited, and they may be connected using a connector 23 as shown in the example of FIG. 1, for example.
In the case of the configuration including the exhaust pipes 11A and 11B, the projecting portion 22 should be molded integrally with the upstream exhaust pipe 11A from the viewpoint of suppressing corrosion at the joint portion and improving the positional accuracy of the tip of the projecting portion 22. is preferred. When the projecting portion 22 is molded integrally with the exhaust pipe 11A, the exhaust pipe 11A is fitted into the exhaust pipe 11B so that the projecting portion 22 formed at the downstream end of the exhaust pipe 11A enters the upstream end of the exhaust pipe 11B. . As a method of integrally molding the projecting portion 22 with the exhaust pipe 11A, for example, pressing is performed to form the projecting portion 22 by bending the downstream end side of the exhaust pipe 11A. When the projecting portion 22 is formed integrally with the exhaust pipe 11A by press working, the projecting portion 22 does not need to be welded to the exhaust pipe 11A, so the occurrence of corrosion at the junction between the projecting portion 22 and the exhaust pipe 11A is suppressed. be. In addition, since welding distortion does not occur, the positional accuracy of the projecting portion 22 is improved.
When the projecting portion 22 is integrally formed with the exhaust pipe 11A by press working, as shown in the example of FIG. It is preferably formed in If the plurality of through-holes 22a to 22h are continuously formed from the main body of the exhaust pipe 11A to the protruding portion 22, the generation of wrinkles at the base of the protruding portion 22 is suppressed during press working. and the occurrence of gas leakage is suppressed.

下流側の排気管11Bの形状は特に限定されず、例えば図4の例に示すようにフレキシブル管であってもよい。なお、図4では、複数の貫通孔22a~22hの図示を省略している。図4の例に示すように排気管11Bの内径が排気管11Aの外径に比較して小さい場合、突出部22と排気管11Bとの干渉を防ぐために、突出部22の傾きを大きくすることが望ましい。この場合においても、複数の貫通孔22a~22hを排気管11A本体部から突出部22に亘って連続的に形成すると、プレス加工時に突出部22の根元におけるしわの発生を抑制することができる。 The shape of the exhaust pipe 11B on the downstream side is not particularly limited, and may be a flexible pipe as shown in the example of FIG. 4, for example. In FIG. 4, illustration of the plurality of through holes 22a to 22h is omitted. When the inner diameter of the exhaust pipe 11B is smaller than the outer diameter of the exhaust pipe 11A as shown in the example of FIG. is desirable. Even in this case, if the plurality of through holes 22a to 22h are continuously formed from the main body of the exhaust pipe 11A to the protruding portion 22, it is possible to suppress the occurrence of wrinkles at the base of the protruding portion 22 during press working.

突出部22を排気管11Aと一体的に成型する場合、図4の例に示すように、排気管11A本体と突出部22の円周方向の両端との継ぎ目に弧状部24を形成してもよい。弧状部24は、弧状部24の両端を結ぶ仮想直線よりも排気管11A本体と突出部22との接合部分側に凹む形状を有する。弧状部24は、図5の例に示すように、排気管11A本体と突出部22とを繋げるように形成されてもよいし、図6の例に示すように、突出部22の円周方向の上流側を凹ませるように形成されてもよい。弧状部24が形成される場合、プレス加工時に排気管11A本体と突出部22の円周方向の両端との継ぎ目近傍における形成抵抗を抑制することができるため、当該継ぎ目近傍におけるしわの発生を抑制することができる。また、排ガスが通過する際における当該継ぎ目近傍における集中応力を低減することができる。 When the projecting portion 22 is molded integrally with the exhaust pipe 11A, as shown in the example of FIG. good. The arcuate portion 24 has a shape that is recessed toward the joint portion between the main body of the exhaust pipe 11A and the protruding portion 22 with respect to the imaginary straight line connecting both ends of the arcuate portion 24 . The arcuate portion 24 may be formed so as to connect the main body of the exhaust pipe 11A and the projecting portion 22 as shown in the example of FIG. may be formed so as to dent the upstream side of the . When the arcuate portion 24 is formed, it is possible to suppress formation resistance in the vicinity of the joint between the exhaust pipe 11A main body and the circumferential ends of the projecting portion 22 during press working, thereby suppressing the occurrence of wrinkles in the vicinity of the joint. can do. In addition, it is possible to reduce the concentrated stress in the vicinity of the joint when the exhaust gas passes through.

上記本実施形態の排気通路は、上述のとおり圧力損失を抑制しながら高い撹拌効果を有するものであり、例えば内燃機関の排気通路として好適に用いることができる。 The exhaust passage of the present embodiment has a high stirring effect while suppressing pressure loss as described above, and can be suitably used as an exhaust passage of an internal combustion engine, for example.

10 排気通路、 11(11A,11B) 排気管、 22 突出部、22a~22h 複数の貫通孔、 23 接続具、 24 弧状部、 25 上流端、 26 端点。 10 exhaust passage, 11 (11A, 11B) exhaust pipe, 22 protrusion, 22a-22h multiple through holes, 23 connector, 24 arcuate portion, 25 upstream end, 26 end point.

Claims (1)

排気管と、
前記排気管の内面に円周方向の一部の範囲で連続して設けられ、排気管の延在方向に傾き排気管の下流側ほど断面積が小さくなる突出部と、を備える排気通路であって、
前記突出部の上流端に、前記突出部を貫通する複数の貫通孔が設けられており、
突出部の円周方向の両端から遠い貫通孔の面積が、前記両端に近い貫通孔の面積よりも大きい、
排気通路。
an exhaust pipe;
The exhaust passage is provided with a projecting portion continuously provided on the inner surface of the exhaust pipe in a partial range in the circumferential direction and inclined in the extending direction of the exhaust pipe and having a cross-sectional area that decreases toward the downstream side of the exhaust pipe. hand,
A plurality of through-holes penetrating the projecting portion are provided at an upstream end of the projecting portion,
The area of the through hole farther from both ends in the circumferential direction of the protrusion is larger than the area of the through hole closer to the both ends.
exhaust passage.
JP2019221108A 2019-12-06 2019-12-06 exhaust passage Active JP7205452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019221108A JP7205452B2 (en) 2019-12-06 2019-12-06 exhaust passage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019221108A JP7205452B2 (en) 2019-12-06 2019-12-06 exhaust passage

Publications (2)

Publication Number Publication Date
JP2021088984A JP2021088984A (en) 2021-06-10
JP7205452B2 true JP7205452B2 (en) 2023-01-17

Family

ID=76219974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019221108A Active JP7205452B2 (en) 2019-12-06 2019-12-06 exhaust passage

Country Status (1)

Country Link
JP (1) JP7205452B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7472801B2 (en) 2021-01-19 2024-04-23 トヨタ自動車株式会社 Exhaust passage

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144576A (en) 2004-11-16 2006-06-08 Denso Corp Nitrogen oxide cleaning device
US20070245718A1 (en) 2006-04-24 2007-10-25 Cheng C R Exhaust aftertreatment mixer with stamped muffler flange

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10331631A (en) * 1997-06-03 1998-12-15 Tsunoda Jierawan Scavenging accelerator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144576A (en) 2004-11-16 2006-06-08 Denso Corp Nitrogen oxide cleaning device
US20070245718A1 (en) 2006-04-24 2007-10-25 Cheng C R Exhaust aftertreatment mixer with stamped muffler flange

Also Published As

Publication number Publication date
JP2021088984A (en) 2021-06-10

Similar Documents

Publication Publication Date Title
US8594908B2 (en) Intake system for internal combustion engine
US6725655B2 (en) Exhaust manifold for internal combustion engine
JP2012031782A (en) Egr pipe connection part structure for exhaust system
JP7205452B2 (en) exhaust passage
JP5983517B2 (en) Engine exhaust pipe structure with catalyst
US9739237B2 (en) Exhaust gas recirculation device
WO2014171114A1 (en) Catalyst-equipped exhaust gas pipe structure for engine
JP2012211557A (en) Structure of exhaust introducing pipe of catalyst converter
JP5306039B2 (en) EGR gas mixing device
JP7351148B2 (en) exhaust passage
JP2021001578A (en) Intake manifold
JP2018084158A (en) Intake pipe structure
JP6506958B2 (en) Exhaust purification system
JP2019148205A (en) Reflux exhaust gas introduction structure of intake manifold
JP6508976B2 (en) Spacer
JP2020133574A (en) Intake manifold
JP7472801B2 (en) Exhaust passage
JP7540388B2 (en) Intake manifold
CN105545438A (en) Dispersion plate and internal combustion engine
JP6919281B2 (en) Exhaust pipe
JP2020002833A (en) Intake pipe and intake manifold for internal combustion engine including the same
JP2018188983A (en) Intake system for engine
JP2008280925A (en) Exhaust manifold
JP2019203442A (en) Tail pipe and vehicle including the same
JP6142864B2 (en) Engine intake system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220125

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221212

R151 Written notification of patent or utility model registration

Ref document number: 7205452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151