JP7204774B2 - チャネル間時間差を推定するための装置、方法またはコンピュータプログラム - Google Patents

チャネル間時間差を推定するための装置、方法またはコンピュータプログラム Download PDF

Info

Publication number
JP7204774B2
JP7204774B2 JP2020554532A JP2020554532A JP7204774B2 JP 7204774 B2 JP7204774 B2 JP 7204774B2 JP 2020554532 A JP2020554532 A JP 2020554532A JP 2020554532 A JP2020554532 A JP 2020554532A JP 7204774 B2 JP7204774 B2 JP 7204774B2
Authority
JP
Japan
Prior art keywords
signal
channel
weighting
cross
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020554532A
Other languages
English (en)
Other versions
JP2021519949A (ja
Inventor
フォトポウルー・エレニ
ビューテ・ヤン
ラヴェリ・エマニュエル
マーベン・パラヴィ
ディーツ・マーティン
ロイテルフーバー・フランツ
ドーラ・ステファン
コルゼ・シュリカント
Original Assignee
フラウンホーファー-ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フラウンホーファー-ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン filed Critical フラウンホーファー-ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン
Publication of JP2021519949A publication Critical patent/JP2021519949A/ja
Priority to JP2022210992A priority Critical patent/JP2023036893A/ja
Application granted granted Critical
Publication of JP7204774B2 publication Critical patent/JP7204774B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/008Multichannel audio signal coding or decoding using interchannel correlation to reduce redundancy, e.g. joint-stereo, intensity-coding or matrixing
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/03Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
    • G10L25/06Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters the extracted parameters being correlation coefficients
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/03Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
    • G10L25/18Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters the extracted parameters being spectral information of each sub-band

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Mathematical Physics (AREA)
  • Quality & Reliability (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Stereophonic System (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Complex Calculations (AREA)

Description

本出願は、ステレオ処理、または一般に、マルチチャネル信号が、ステレオ信号の場合の左チャネルおよび右チャネルなどの2つのチャネル、または3つ、4つ、5つもしくは任意の他の数のチャネルなど3つ以上のチャネルを有する、マルチチャネル処理に関する。
ステレオ音声、特に会話型ステレオ音声は、立体音楽の保存および放送ほど科学的な注目を集めていない。実際、音声通信では、モノラル伝送が今日でも主に使用されている。しかしながら、ネットワークの帯域幅および容量の増大に伴い、ステレオ技術に基づく通信がより一般的になり、より良好なリスニング体験がもたらされることが想定されている。
ステレオオーディオ素材の効率的な符号化は、効率的な保存または放送のための音楽の知覚オーディオ符号化において長い間研究されてきた。波形の保存が重要な高ビットレートでは、ミッド/サイド(M/S)ステレオとして知られる和差ステレオが長い間利用されてきた。低ビットレートについては、インテンシティステレオおよびより最近ではパラメトリックステレオ符号化が導入されている。最新の技法が、HeAACv2およびMpeg USACなどのさまざまな規格で採用された。これは、2チャネル信号のダウンミックスを生成し、コンパクトな空間サイド情報を関連付ける。
ジョイントステレオ符号化は通常、信号の高周波数分解能、すなわち低時間分解能の時間-周波数変換に対して構築され、したがって、ほとんどの音声コーダにおいて実施される低遅延かつ時間領域の処理と互換性がない。さらに、生じるビットレートは通常高い。
他方、パラメトリックステレオは、プリプロセッサとして符号化器のフロントエンドに、および、ポストプロセッサとして復号器のバックエンドに位置決めされた追加のフィルタバンクを利用する。したがって、パラメトリックステレオは、MPEG USACにおいて行われているように、ACELPなどの従来の音声コーダによって使用することができる。さらに、聴覚シーンのパラメータ化は、最小量のサイド情報で実現することができ、これは低ビットレートに適している。しかしながら、パラメトリックステレオは、たとえばMPEG USACのように、低遅延向けに特別に設計されておらず、種々の会話シナリオに対して一貫した品質を提供しない。空間シーンの従来のパラメトリック表現では、ステレオ音像の幅は、2つの合成チャネルに適用され、符号化器によって計算および送信されるチャネル間コヒーレンス(IC)パラメータによって制御される脱相関器によって人工的に再現される。ほとんどのステレオ音声では、ステレオ音像を広げるこの方法は、空間(部屋からの何らかの反響を有することがある)内の特定の位置にある単一の音源によって生成されるため、かなり直接的な音声である発話の自然な周囲音を再現するのには適していない。対照的に、楽器は発話よりもはるかに自然な幅を有し、これはチャネルを非相関化することによってより良好に模倣することができる。
マイクロフォンが互いに離れている場合のA-B構成のように、またはバイノーラル録音もしくはレンダリングの場合のように、発話が同じ場所にないマイクによって録音される場合にも問題が発生する。これらのシナリオは、電話会議における音声の取り込みについて、またはマルチポイントコントロールユニット(MCU)における離れたスピーカを使用した仮想聴覚シーンの作成について想定され得る。このとき、X-Y(強度録音)またはM-S(ミッド-サイド録音)などの同じ場所にあるマイクロフォンにおいて行われる録音とは異なり、信号の到来時間はチャネルごとに異なる。このような時間整合されていない2つのチャネルのコヒーレンスの計算は、誤って推定される可能性があり、人工周囲音合成が失敗する。
ステレオ処理に関連する従来技術文献は、米国特許第5,434,948号明細書または米国特許第8,811,621号明細書である。
国際公開第2006/089570号パンフレットは、ほぼ透明または透明なマルチチャネル符号化器/復号器方式を開示している。マルチチャネル符号化器/復号器方式は、さらに波形タイプ残差信号を生成する。この残差信号は、1つまたは複数のマルチチャネルパラメータとともに復号器に送信される。純粋にパラメトリックなマルチチャネル復号器とは対照的に、この拡張復号器は、追加の残差信号のために出力品質が改善されたマルチチャネル出力信号を生成する。符号化器側では、左チャネルと右チャネルの両方が分析フィルタバンクによってフィルタ処理される。次に、サブバンド信号ごとに、サブバンドの整合値および利得値が計算される。このような整合は、その後、さらなる処理の前に実施される。復号器側では、脱整合および利得処理が実施され、その後、復号左信号および復号右信号を生成するために、対応する信号が合成フィルタバンクによって合成される。
そのようなステレオ処理用途では、第1のチャネル信号と第2のチャネル信号との間のチャネル間またはチャネル間時間差の計算は、通常、広帯域時間整合手順を実施するために有用である。一方、他の用途は、第1のチャネルと第2のチャネルとの間のチャネル間時間差を使用するために存在し、これらの用途は、ほんの数例を挙げると、パラメトリックデータの保存または送信、2つのチャネルの時間整合を含むステレオ/マルチチャネル処理、室内の話者の位置を決定するための到来時間差推定、ビームフォーミング空間フィルタリング、例えば、音響三角測量による音源の前景/背景分解または位置に存する。
このようなすべての用途について、第1のチャネル信号と第2のチャネル信号との間のチャネル間時間差を効率的、正確かつロバストに決定する必要がある。
「GCC-PHAT」または別称として一般化相互相関位相変換(generalized cross-correlation phase transform)の名称で知られているそのような決定はすでに存在する。通常、相互相関スペクトルが2つのチャネル信号間で計算され、その後、いわゆる一般化相互相関スペクトルを取得するために重み関数が相互相関スペクトルに適用され、その後、時間領域表現を見つけるために、逆DFTなどの逆スペクトル変換が一般化相互相関スペクトルに対して実施される。この時間領域表現は、特定のタイムラグの値を表し、このとき、時間領域表現の最高ピークは、通常、時間遅延または時間差、すなわち、2つのチャネル信号間の差のチャネル間時間遅延に対応する。
ただし、特に、例えば反響または背景雑音の一切ない明瞭な発話とは異なる信号では、この一般的な手法のロバスト性は最適ではないことが示されている。
米国特許第5,434,948号明細書 米国特許第8,811,621号明細書 国際公開第2006/089570号パンフレット
したがって、本発明の目的は、2つのチャネル信号間のチャネル間時間差を推定するための改善された概念を提供することである。
この目的は、請求項1に記載のチャネル間時間差を推定するための装置、または請求項28に記載のチャネル間時間差を推定するための方法、または請求項30に記載のコンピュータプログラムによって達成される。
本発明は、重み付き相互相関スペクトルを得るための平滑化または非平滑化相互相関スペクトルの重み付けが、信号分析器によって推定される信号特性に応じて、第1の重み付け手順または第2の重み付け手順を使用して行われるという知見に基づき、第1の重み付け手順は第2の重み付け手順とは異なる。
さらなる実施形態では、第1のチャネル信号または第2のチャネル信号のスペクトルのスペクトル特性によって制御される経時的な相互相関スペクトルの平滑化は、チャネル間時間差決定のロバスト性および正確度を大幅に改善する。
好ましい実施形態では、スペクトルのトーン性/雑音性特性が決定され、トーン様信号の場合、平滑化はより強くなり、一方、雑音性信号の場合、平滑化はより弱くされる。
好ましくは、スペクトル平坦度測度が使用され、トーン様信号の場合、スペクトル平坦度測度は低く、平滑化はより強くなり、雑音様信号の場合、スペクトル平坦度測度は、約1または1近くなど、高くなり、平滑化は弱くなる。
したがって、本発明によれば、第1のチャネル信号と第2のチャネル信号との間のチャネル間時間差を推定するための装置は、時間ブロックにおける第1のチャネル信号および時間ブロックにおける第2のチャネル信号の、時間ブロックの相互相関スペクトルを計算するための計算器を備える。この装置は、時間ブロックの第1のチャネル信号および第2のチャネル信号のスペクトルの特性を推定するためのスペクトル特性推定器と、さらに、平滑化相互相関スペクトルを取得するためにスペクトル特性を使用して経時的に相互相関スペクトルを平滑化するための平滑化フィルタとを備える。次に、平滑化相互相関スペクトルは、チャネル間時間差パラメータを取得するために、プロセッサによってさらに処理される。
平滑化相互相関スペクトルのさらなる処理に関連する好ましい実施形態について、適応閾値化演算が実施され、平滑化された一般化相互相関スペクトルの時間領域表現が分析されて、時間領域表現に依存する可変閾値が決定され、時間領域表現のピークが、可変閾値と比較され、チャネル間時間差は、閾値より大きいなど、ピークが閾値に対して所定の関係にあることに関連するタイムラグとして決定される。
一実施形態では、可変閾値は、例えば時間領域表現の値の10パーセントなど、最大のうちのある値の整数倍に等しい値として決定されるか、または、代替的に、変数決定のためのさらなる実施形態では、可変閾値は、可変閾値と上記値との乗算によって計算され、上記値は、第1のチャネル信号と第2のチャネル信号との信号対雑音比特性に依存し、上記値は、信号対雑音比が高いほど高くなり、信号対雑音比が低いほど低くなる。
前述のように、チャネル間時間差計算は、パラメトリックデータの保存または送信、ステレオ/マルチチャネル処理/符号化、2つのチャネルの時間整合、ビームフォーミング、空間フィルタリング、前景/背景分解、または、例えば2つまたは3つの信号の時間差に基づく音響三角測量による音源の位置決定を目的とした、2つのマイクロフォンおよび既知のマイクロフォン設定を有する室内の話者位置を決定するための到来時間差推定など、種々の用途に使用することができる。
しかしながら、以下では、チャネル間時間差計算の好ましい実施態様および使用法が、少なくとも2つのチャネルを有するマルチチャネル信号を符号化するプロセスにおける2つのステレオ信号の広帯域時間整合を目的として説明される。
少なくとも2つのチャネルを有するマルチチャネル信号を符号化するための装置は、一方においては広帯域整合パラメータを決定し、他方においては複数の狭帯域整合パラメータを決定するためのパラメータ決定手段を備える。これらのパラメータは、これらのパラメータを使用して少なくとも2つのチャネルを整合し、整合されたチャネルを取得するために、信号アライナによって使用される。次に、信号プロセッサが、整合されたチャネルを使用してミッド信号およびサイド信号を計算し、ミッド信号およびサイド信号は、続いて符号化され、パラメトリックサイド情報として広帯域整合パラメータおよび複数の狭帯域整合パラメータをさらに有する符号化出力信号に転送される。
復号器側では、信号復号器が、符号化ミッド信号および符号化サイド信号を復号して、復号ミッド信号およびサイド信号を取得する。次に、これらの信号は、復号された第1のチャネルおよび復号された第2のチャネルを計算するために信号プロセッサによって処理される。次に、これらの復号されたチャネルは、符号化マルチチャネル信号に含まれる広帯域整合パラメータに関する情報および複数の狭帯域パラメータに関する情報を使用して脱整合されて、復号マルチチャネル信号が取得される。
特定の実施態様では、広帯域整合パラメータはチャネル間時間差パラメータであり、複数の狭帯域整合パラメータはチャネル間位相差である。
本発明は、特に複数の話者がいる発話信号だけでなく、複数の音響源が存在する他のオーディオ信号についても、両方がマルチチャネル信号の2つのチャネルにマッピングする音響源の複数の異なる場所を、一方または両方のチャネルのスペクトル全体に適用されるチャネル間時間差パラメータなどの広帯域整合パラメータを使用して計上することができるという知見に基づいている。この広帯域整合パラメータに加えて、サブバンドごとに異なるいくつかの狭帯域整合パラメータがさらに、両方のチャネルにおける信号のより良好な整合をもたらすことが分かっている。
したがって、各サブバンド内の同じ時間遅延に対応する広帯域整合が、複数の異なるサブバンドの異なる位相回転に対応する位相整合とともに、両方のチャネルの最適な整合をもたらし、その後、これら2つのチャネルがミッド/サイド表現に変換され、その後、この表現はさらに符号化される。最適な整合が得られているため、一方ではミッド信号のエネルギーが可能な限り高くなり、他方ではサイド信号のエネルギーが可能な限り小さくなり、結果、ビットレートが可能な限り最も低くまたは特定のビットレートに対してオーディオ品質が可能な限り最も高い最適な符号化結果を得ることができる。
特に会話型発話素材について、通常、2つの異なる場所においてアクティブである話者が存在すると考えられる。さらに、この状況は通常、1人の話者のみが第1の場所から話しており、そして第2の話者が第2の場所または位置から話しているというものである。第1または左のチャネルおよび第2または右のチャネルなどの2つのチャネルに対する異なる位置の影響は、異なる到来時間、したがって、異なる位置に起因する両方のチャネル間の特定の時間遅延に反映され、この時間遅延は時に応じて変化している。一般に、この影響は、広帯域整合パラメータによって対処することができる広帯域脱整合として2つのチャネル信号に反映される。
他方、特に反響またはさらなる雑音源に由来する他の影響は、両方のチャネルの広帯域の異なる到来時間または広帯域脱整合に重ね合わされる個々の帯域の個々の位相整合パラメータによって計上することができる。
それを考慮して、広帯域整合パラメータと、広帯域整合パラメータに加わる複数の狭帯域整合パラメータの両方を使用する結果として、良好で非常にコンパクトなミッド/サイド表現を得るための符号化器側の最適なチャネル整合が得られ、他方、復号器側での復号に続く対応する脱整合が、特定のビットレートまたは特定の必要なオーディオ品質のための小さいビットレートに対して良好なオーディオ品質をもたらす。
本発明の利点は、既存のステレオ符号化スキームよりもステレオ音声の変換にはるかに適した新規のステレオ符号化スキームを提供することである。本発明によれば、パラメトリックステレオ技術とジョイントステレオ符号化技術が、特に発話源の場合だけでなく他の音響源の場合にも、マルチチャネル信号のチャネル内で発生するチャネル間時間差を利用することによって特に組み合わされる。
いくつかの実施形態は、後で議論されるように有用な利点を提供する。
新規の方法は、従来のM/Sステレオの要素とパラメトリックステレオの要素とを混合するハイブリッド手法である。従来のM/Sでは、チャネルは受動的にダウンミックスされて、ミッド信号およびサイド信号が生成される。このプロセスは、主成分分析(PCA)としても知られるカルーネンレーベ変換(KLT)を使用してチャネルを回転させ、その後、チャネルを合計して微分することにより、さらに拡張することができる。ミッド信号は一次コード符号化において符号化され、一方、サイドは二次コーダに伝達される。進化したM/Sステレオは、現在または先行するフレームにおいてコード化されたミッドチャネルによるサイド信号の予測をさらに使用することができる。回転および予測の主な目標は、サイドのエネルギーを最小化しながら、ミッド信号のエネルギーを最大化することである。M/Sステレオは波形を保持し、この点において任意のステレオシナリオに対して非常にロバストであるが、ビット消費の点で非常に高価になる可能性がある。
低ビットレートで最高の効率を実現するために、パラメトリックステレオは、チャネル間レベル差(ILD)、チャネル間位相差(IPD)、チャネル間時間差(ITD)、チャネル間コヒーレンス(IC)などのパラメータを計算してコード化する。これらはステレオ音像をコンパクトに表現し、聴覚シーンのキューになる(音源位置特定、パン、ステレオの幅など)。次に、ステレオシーンをパラメータ化し、復号器にあり得、送信されたステレオキューをもちいることによって再び空間化することができるダウンミックス信号のみを符号化することが目的となる。
本発明の手法は2つの概念を混合した。まず、ステレオキューITDおよびIPDが計算され、2つのチャネルに適用される。目標は、広帯域の時間差および種々の周波数帯域の位相を表すことである。次に、2つのチャネルが時間および位相において整合され、次に、M/S符号化が実施される。ITDおよびIPDは、ステレオ音声のモデリングに役立つことがわかっており、M/SにおけるKLTベースの回転の優れた代替案である。純粋なパラメトリック符号化とは異なり、周囲音はICによってモデル化されるのではなく、符号化および/または予測されるサイド信号によって直接的にモデル化される。この手法は、特に発話信号を処理する場合に、よりロバストであることがわかった。
ITDの計算および処理は、本発明の重要な部分である。ITDは、従来技術のバイノーラルキュー符号化(BCC)においてすでに活用されていたが、この様態では、ITDが経時的に変化すると、非効率的になった。この欠点を回避するために、2つの異なるITD間の移行を平滑化し、異なる場所にいる話者から話者へとシームレスに切り替えることができる、特定のウィンドウイングが設計された。
さらなる実施形態は、符号化器側で、複数の狭帯域整合パラメータを決定するためのパラメータ決定が、先行して決定されている広帯域整合パラメータとすでに整合されているチャネルを使用して実施される手順に関連する。
これに対応して、復号器側の狭帯域脱整合は、典型的な単一の広帯域整合パラメータを使用して広帯域脱整合が実施される前に実施される。
さらなる実施形態では、符号化器側で、ただしさらに重要なことには復号器側で、何らかの種類のウィンドウイングおよび重畳加算演算、または1つのブロックから次のブロックへの任意の種類のクロスフェードが、すべての整合の後に、具体的には、広帯域整合パラメータを使用した時間整合の後に実施されることが好ましい。これにより、時間または広帯域整合パラメータがブロックごとに変わるときにクリック音などの任意の可聴アーティファクトが回避される。
他の実施形態では、異なるスペクトル分解能が適用される。特に、チャネル信号は、DFTスペクトルなどの高周波分解能を有する時間スペクトル変換を受け、一方、狭帯域整合パラメータなどのパラメータが、より低いスペクトル分解能を有するパラメータ帯域について決定される。通常、パラメータ帯域は、信号スペクトルよりも多くのスペクトル線を有し、通常、DFTスペクトルからのスペクトル線のセットを有する。さらに、音響心理学的問題を考慮に入れるために、パラメータ帯域は低周波数から高周波数に増大する。
さらなる実施形態は、レベル間差などのレベルパラメータの追加の使用法、またはステレオ充填パラメータなどのサイド信号を処理するための他の手順に関する。符号化サイド信号は、実際のサイド信号自体によって、または現在のフレームもしくは任意の他のフレームのミッド信号を使用して実施されている予測残差信号によって、または帯域のサブセットのみのサイド信号またはサイド予測残差信号および残りの帯域のみの予測パラメータによって、またはさらには高周波分解能サイド信号情報を一切有しないすべての帯域の予測パラメータによって表すことができる。したがって、上記の最後の代替案では、符号化サイド信号は、各パラメータ帯域の予測パラメータまたはパラメータ帯域のサブセットのみによって表されるに過ぎず、結果、残りのパラメータ帯域について、元のサイド信号に関する情報は一切存在しない。
さらに、広帯域信号の帯域幅全体を反映するすべてのパラメータ帯域に対してではなく、パラメータ帯域の下位50パーセントなどの下位帯域のセットのみに対して、複数の狭帯域整合パラメータを有することが好ましい。一方、ステレオ充填パラメータは、いくつかの低帯域には使用されない。これは、これらの帯域について、少なくとも低帯域について波形が正しい表現が可能であることを保証するために、サイド信号自体または予測残差信号が送信されるためである。他方、サイド信号は、ビットレートをさらに低減するために、より高い帯域について波形が正確な表現において送信されず、サイド信号は通常、ステレオ充填パラメータによって表される。
さらに、同じDFTスペクトルに基づいて、まったく同一の周波数領域内で全体的なパラメータ分析および整合を実施することが好ましい。この目的のために、チャネル間時間差を決定するために、位相変換を用いた一般化相互相関(GCC-PHAT)技術を使用することがさらに好ましい。この手順の好ましい実施形態では、スペクトル形状に関する情報、好ましくはスペクトル平坦度測度である情報に基づく相関スペクトルの平滑化は、雑音様信号の場合に平滑化が弱くなり、トーン様信号の場合に平滑化がより強くなるように実施される。
さらに、チャネル振幅が考慮される特別な位相回転を実施することが好ましい。特に、位相回転は、符号化器側での整合の目的で、および無論、復号器側での脱整合の目的で、2つのチャネル間で分配され、より高い振幅を有するチャネルが先行するチャネルと考えられ、位相回転による影響が少なくなる、すなわち、振幅が小さいチャネルよりも回転が少なくなる。
さらに、和差計算は、両方のチャネルのエネルギーから導出され、加えて、ミッド/サイド計算がエネルギーに過度に影響を与えないことを保証するために特定の範囲に制限されるスケーリング係数を用いたエネルギースケーリングを使用して実施される。しかしながら、他方では、本発明の目的のために、この種のエネルギー節約は、時間および位相が事前に整合されているため、従来技術の手順ほど重要ではないことに留意されたい。したがって、左右からのミッド信号およびサイド信号の計算(符号化器側)またはミッドおよびサイドからの左右の信号の計算(復号器側)に起因するエネルギー変動は、従来技術においてほど重要ではない。
続いて、本発明の好ましい実施形態を、添付の図面に関連して論じる。
マルチチャネル信号を符号化するための装置の好ましい実施態様のブロック図である。 符号化マルチチャネル信号を復号するための装置の好ましい実施形態の図である。 特定の実施形態についての異なる周波数分解能および他の周波数関連態様の図である。 チャネルを整合させる目的で、符号化するための装置内で実施される手順のフローチャートである。 周波数領域において実施される手順の実施形態を示す図である。 ゼロパディング部分および重複範囲を有する分析ウィンドウを使用して、符号化するための装置内で実施される手順の実施形態を示す図である。 符号化するための装置内で実施されるさらなる手順のフローチャートである。 チャネル間時間差推定の実施態様を示すためのフローチャートである。 符号化するための装置内で実施される手順のさらなる実施形態を示すフローチャートである。 符号化器の一実施形態のブロック図である。 復号器の対応する実施形態のフローチャートである。 ステレオ時間周波数分析および合成のためにゼロパディングを用いる、重複の少ない正弦波ウィンドウによる好ましいウィンドウシナリオを示す図である。 複数の異なるパラメータ値のビット消費を示す表図である。 好ましい実施形態における符号化マルチチャネル信号を復号するための装置によって実施される手順を示す図である。 符号化マルチチャネル信号を復号するための装置の実施態様を示す図である。 符号化マルチチャネル信号の復号の文脈における広帯域脱整合の文脈において実施される手順を示す図である。 チャネル間時間差を推定するための装置の一実施形態を示す図である。 チャネル間時間差が適用される信号のさらなる処理の概略図である。 一実施形態における雑音推定器として実装される信号分析器および本発明の実施形態による重み付け手段の概略図である。 本発明の実施形態による重み付け手段の概略図である。 本発明の実施形態によるプロセッサの概略図である。 本発明の実施形態による雑音推定器の概略図である。 図10aのプロセッサによって実施される手順を示す図である。 図10aのプロセッサによって実施されるさらなる手順を示す図である。 可変閾値の計算のさらなる実施態様、および時間領域表現の分析における可変閾値の使用法を示す図である。 可変閾値を決定するための第1の実施形態を示す図である。 閾値の決定のさらなる実施態様を示す図である。 本発明の実施形態によるプロセッサの概略図である。 明瞭な発話信号の平滑化相互相関スペクトルの時間領域表現を示す図である。 雑音および周囲音を有する発話信号の平滑化相互相関スペクトルの時間領域表現を示す図である。
図10aは、左チャネルなどの第1のチャネル信号と右チャネルなどの第2のチャネル信号との間のチャネル間時間差を推定するための装置の一実施形態を示している。これらのチャネルは、アイテム451として図4eに関連して付加的に示されている時間スペクトル変換器150に入力される。
さらに、左チャネル信号および右チャネル信号の時間領域表現は、時間ブロック内の第1のチャネル信号および時間ブロック内の第2のチャネル信号から時間ブロックの相互相関スペクトルを計算するための計算器1020に入力される。さらに、装置は、時間ブロックの第1のチャネル信号または第2のチャネル信号のスペクトルの特性を推定するためのスペクトル特性推定器1010を備える。装置は、平滑化相互相関スペクトルを得るためにスペクトル特性を使用して経時的に相互相関スペクトルを平滑化するための平滑化フィルタ1030をさらに備える。この装置は、平滑化相関スペクトルを処理してチャネル間時間差を取得するためのプロセッサ1040をさらに備える。
代替的に、別の実施形態では、要素1030は存在せず、したがって、破線1035によって示されるように、要素1010も同様に必須ではない。この装置は、雑音推定値1038などの信号特性推定値を計算する信号分析器1037をさらに備える。この推定値は、信号特性推定値に応じて異なる重み付け操作を実施するように構成された重み付け手段1036に転送される。信号特性推定値は、好ましくは、例えば、プロセッサ1040がピークピッキング動作を実施するときに、プロセッサ1040を制御するためにも使用される。図10cは、信号分析器1037および制御可能な重み付け手段1036をさらに示す。
特に、本発明の実施形態による装置は、第1のチャネル信号と第2のチャネル信号との間のチャネル間時間差の推定を対象とする。このデバイスは、図10aの信号分析器1037と、図10aの相互相関スペクトル計算器1020と、図10aの平滑化または非平滑化相互相関スペクトルを重み付けするための重み付け手段1036と、重み付けされた相互相関スペクトルを処理するための、続いて接続されるプロセッサ1040とを備える。
時間スペクトル変換器150、スペクトル特性推定器1010、平滑化フィルタ1030の要素は、プリセット発明の基本的な実施には必要ではないが、本発明の好ましい実施形態には好ましい。信号分析器1037は、第1のチャネル信号もしくは第2のチャネル信号、または、両方の信号、または、第1のチャネル信号もしくは第2のチャネル信号から導出される信号の雑音レベル1038などの信号特性を推定するように構成される。したがって、後で重み付け手段1036によって使用され、好ましくはプロセッサ1040によっても使用される信号特性または雑音推定値などの信号特性推定値は、左もしくは第1のチャネル信号からのみ、第2のまたは右チャネル信号からのみ導出することができ、または、両方の信号から導出することができる。両方の信号からの信号特性の導出は、例えば、第1のチャネル信号の個々の信号特性、第2または右チャネル信号からの追加の個々の信号特性の導出であり得、その後の、最終的な信号特性1038は、たとえば、両方のチャネル間の平均または重み付け平均である。ここで、例えば、重み付けは、例えば、チャネルのフレーム内の異なる振幅が、最終的な雑音レベル1038への対応する個々の雑音推定値の異なる影響をもたらすように、振幅に従って行うことができる。さらに、第1のチャネル信号および第2のチャネル信号から導出される信号は、例えば、左または第1のチャネル信号と第2または右のチャネル信号を加算して合成信号を取得することによって得られる合成信号であり得、次いで、信号特性1038は、合成信号から計算される。
好ましい実施形態では、信号分析器1036は、雑音推定器または分析器として実施される。しかしながら、一致する重み付け手順が選択されるように、信号が第1の特性または第2の特性を有するかを決定するために、トーン性分析、音声活動検出、過渡分析、ステレオ分析、発話/音楽分析、干渉話者分析、背景音楽分析、明瞭発話分析または任意の他の信号分析などの他の信号分析方法も実施することができる。
合成は、等しい重み係数による合成、すなわち、1.0の重み係数に対応する、重みなしの左チャネルと重みなしの右チャネルとの合成であり得、または、代わりに、異なる重み係数が適用されてもよい。さらに、第1のチャネルから導出される信号または第2のチャネルから導出される信号は、ハイパスフィルタリングもしくはローパスフィルタリングを実施することによって取得することができ、または振幅圧縮または振幅逆圧縮関数を使用した処理を実施することによって取得することができる。振幅圧縮関数は、対数関数または累乗値が1より小さい関数になる。逆圧縮関数は、指数関数または指数が1より大きいべき関数になる。したがって、特定の実施態様に応じて、異なる処理動作を異なる左および右チャネル信号に適用することができ、両方のチャネルを合成するまたはしないことができる。好ましい実施形態では、左チャネルと右チャネルとは、好ましくは任意の特定の重み付けすらなくともに加算され、次に、信号特性推定値が、合成計算の結果から計算される。
時間ブロック内の第1のチャネル信号および時間ブロック内の第2のチャネル信号から時間ブロックの相互相関スペクトルを計算するための計算器1020は、いくつかの方法で実施することができる。1つの方法は、時間領域フレーム内の時間領域信号から相互相関を計算し、次いで、その結果を時間領域からスペクトル領域に変換することである。別の実施態様は、例えば、DFTまたは他の任意の時間-スペクトル変換を使用することによって、第1のチャネル信号の後続のフレームおよび第2のチャネル信号の後続のフレームが、後続のフレームが重なり合うことができ、または、重複しないことができるスペクトル表現に変換されることである。したがって、第1のチャネル信号の各時間ブロックについて、スペクトル表現が得られ、それに対応して、第2のチャネル信号の各時間ブロックについて、スペクトル表現が得られる。相互相関計算は、特定の周波数ビンkおよび特定の時間ブロックまたは時間サンプルインデックスsのスペクトル値に、第2のチャネルの同じ時間ブロックのスペクトル表現からの同じインデックスkおよび同じインデックスsを有するスペクトル値の共役複素数値を乗算することによって実施される。時間ブロックの相互相関スペクトルを計算するために、上記とは異なる他の相互相関計算手順を使用することもできる。
重み付け手段1036は、計算器によって得られる相互相関スペクトルを重み付けするように構成される。実施態様において、相互相関スペクトルは、比平滑化相互相関スペクトルであるが、他の実施形態では、相互相関スペクトルは平滑化され、この平滑化は時間に関する平滑化である。したがって、平滑化相互相関スペクトルを計算する目的で、最後のブロックの相互相関スペクトルを、現在のブロックの(生の)相互相関スペクトルとともに使用することができ、実施態様に応じて、例えば、図10aのスペクトル特性推定器1010によって提供されるものとしての、平滑化制御情報を使用することができる。しかしながら、平滑化は、所定の、すなわち、一定または時不変の平滑化設定を使用して実施することもできる。本発明の実施形態によれば、重み付けされた相互相関スペクトルは、例えば、図10dに示される第1の重み付け手順1036aまたは第2の重み付け手順1036bを使用して計算される。特に、重み付けされた相互相関スペクトルが第1の手順を使用して導出されるか、または、第2の手順を使用して導出されるかの選択は、信号分析器1037によって推定される信号特性に応じて行われる。したがって、本発明によれば、第1の重み付け特性による重み付けは、第1のチャネルもしくは第2のチャネルまたは合成信号の特定の信号特性に対して使用され、一方、第2の重み付け手順は、信号分析器1037によって決定される別の信号特性に応じて適用される。重み付け手段1036の結果は重み付けされ、平滑化されたまたは平滑化されていない相互相関スペクトルであり、これは次いで、プロセッサ1040によってさらに処理されて、第1のチャネル信号と第2のチャネル信号との間のチャネル間時間差が取得される。
図10dは、本発明の一実施形態による、雑音推定器としての信号分析器およびプロセッサ1040と接続されている重み付け手段の概略図である。特に、雑音推定器1037は、雑音推定値計算器1037aおよび雑音推定値分類器1037bを備える。雑音推定値分類器1037bは、図10aのブロック1037によって生成される雑音推定値出力1038に対応する制御信号1050を出力する。この制御信号は、第1のスイッチ1036cまたは第2のスイッチ1036dに適用することができる。この実施態様では、第1の重み付け手順を実施態様する処理カーネル1036a、および、第2の重み付け手順1036bを実施するための別の計算カーネルが提供される。実施態様に応じて、スイッチ1036cのみが提供され、制御信号1050に応じて、スイッチ1036cによって決定された重み付け手順のみが選択される、すなわち、計算器1020によって決定された相互相関スペクトルがスイッチ 1036cに入力され、スイッチ設定に応じて、カーネル1036aまたはカーネル1036bのいずれかに転送される。別の実施態様では、スイッチ1036cが存在せず、ブロック1020によって決定される相互相関スペクトルが、処理カーネル1036aと1036bの両方に供給され、出力スイッチ1036dの制御に応じて、ブロック1036aの出力またはブロック1036bの出力のいずれかが選択され、プロセッサ1040に転送される。したがって、実施態様に応じて、単一の重み付けされた相互相関スペクトルのみが計算され、いずれが計算されるかの選択は、制御信号1050および入力スイッチによって行われる。代替的に、両方の重み付けされた相互相関スペクトルが計算され、出力スイッチ1036dによって選択された相互相関スペクトルのみがプロセッサ1040に転送される。さらに、入出力スイッチなしで存在することができる処理カーネルは1つだけであり、制御信号に応じて、対応する時間ブロックに対して正しい重み付け手順が設定される。したがって、各時間ブロックについて、雑音推定値または制御信号1050を計算することができ、各時間ブロックについて、重み付けを1つの重み付け手順から他の重み付け手順に切り替えることができる。これに関連して、場合によって、3つ以上の異なる雑音推定値に応じて、3つ以上の異なる重み付け手順を実施することもできることに留意されたい。したがって、本発明は、2つの異なる重み付け手順の間の選択を招くだけでなく、第1のチャネル信号および第2のチャネル信号の雑音特性に由来する制御信号に応じて、3つ以上の重み付け手順の間の選択も含む。
好ましい実施形態では、第1の重み付け手順は、振幅が正規化され、位相が維持されるような重み付けを含み、第2の重み付け手順は、指数が1未満または0より大きいべき乗演算を使用して平滑化または非平滑化相互相関スペクトルから導出される重み付け係数を含む。さらに、第1の重み付け手順は、第2の重み付け手順が0~1の指数を使用すること、すなわち、指数が0よりも大きく1よりも小さく、一方、第1の重み付け手順が指数を一切適用しない、言い換えれば、1の指数を適用することを除いて、第2の重み付け手順とほぼ同一であり得る。したがって、第2の重み付け手順によって実施される正規化は圧縮される、すなわち、第1の重み付け手順によって適用される正規化係数はある値を有し、第2の重み付け手順を介して同じスペクトル相互相関値に適用される正規化係数はより小さい。これは、相互相関スペクトルのより高いスペクトル値に適用される。ただし、相互相関スペクトルの値が小さい場合、相互相関スペクトルの同じスペクトル値に関して、第2の重み付け手順の正規化値は第1の重み付け手順の正規化値よりも大きい。これは、1/2の指数の平方根演算など、1未満の指数によるべき乗演算は、小さい値を増大させるが、高い値を低下させることに起因する。したがって、第2の重み付け手順のための追加の重み付け係数計算はまた、対数関数などの任意の圧縮関数を含むことができる。好ましい実施形態では、第1の重み付け手順は、位相変換(PHAT)に適用される重み付けに基づいて動作し、第2の重み付け手順は、修正クロスパワースペクトル位相手順(MCSP)に適用される計算に基づいて動作する。
さらに、第2の重み付け手順は、好ましくは、第2の正規化手順の出力範囲が、第1の正規化手順の出力範囲が位置決めされる範囲内にあるような、または、第2の正規化手順の出力範囲が、第1の正規化手順の出力範囲と同じであるような、正規化を含むように実施される。これは、たとえば、MCSP重み付き相互相関スペクトルのすべてのスペクトル値の絶対値を計算し、1つの時間ブロックに対応する1つのスペクトル表現のすべての大きさを合計し、次いで、その結果を時間ブロック内のスペクトル値の数で除算することによって実施することができる。
一般に、図10aのプロセッサ1040は、重み付けされた相互相関スペクトルに関して何らかの処理ステップを実施するように構成され、ここで、特に、チャネル間時間差を最終的に取得するために特定のピークピッキング動作が実施される。好ましくは、このピークピッキング動作は、時間領域において行われる。すなわち、重み付けされ、平滑化された、または平滑化されていない相互相関スペクトルが、スペクトル表現から時間領域表現に変換され、次に、この時間領域表現が分析され、特に、1つまたは複数のピークが閾値に基づいて選択される。雑音推定値の設定に応じて、第1のピークピッキング動作または第2のピークピッキング動作のいずれかが実施され、好ましくは、両方のピークピッキング動作は、ピークピッキング動作によって使用される閾値に関して互いに異なる。
図10eは、入力スイッチ1040および出力スイッチ1043に関して、図10dの手順と同様の状況を示している。図10eに示される実施態様では、両方のピークピッキング動作を適用することができ、「正しい」ピークピッキング動作の結果を、出力スイッチ1043によって選択することができる。代替的に、入力スイッチが存在し、制御信号1050に応じて、正しいピークピッキング手順、すなわち、1041または1042のいずれかのみが選択される。したがって、一実施態様では、両方のスイッチは存在しないが、一実施態様では、図10dに関して以前に導出されたものと同様に、入力スイッチ1040または出力スイッチ1043のいずれかが存在する。追加の実施態様では、可変閾値を有するピークピッキング動作を適用する単一の処理カーネルのみが存在し、単一の処理カーネル内で正しい閾値を設定するために制御信号1050が使用される。好ましい実施形態では、閾値設定は、第2の閾値が第1の閾値よりも高くなるように実施され、したがって、第2の閾値は、ブロック1036bの第2の重み付け手順が適用されたときに使用され、第1の閾値は、ブロック1036aの第1の重み付け手順が適用されたときに使用される。したがって、高レベルの背景雑音が検出されたとき、0~1の指数または対数演算による第2の重み付け手順、すなわち圧縮手順が適用され、このとき、ピークピッキングの閾値は、低レベルの背景雑音が検出されたとき、すなわち、1未満の指数による対数関数またはべき乗関数などの圧縮関数に依存しない正規化係数による正規化を実施する第1の重み付け手順が適用されたときに使用されるピークピッキング閾値と比較して、低くする必要がある。
続いて、雑音推定器1037としての信号分析器の好ましい実施態様が図10fに示されている。基本的に、雑音推定器1037は、図10dに示され、また図10fにも示されるように、雑音推定値計算器1037aおよび雑音推定値分類器1037bから成る。雑音推定値計算器1037aは、背景雑音推定器1060と、続いて接続されている(時間)平滑化手段1061とを備え、平滑化手段は、例えば、IIRフィルタとして実施することができる。
雑音推定値計算器1037a、または特に背景雑音推定器1060への入力は、左または第1のチャネル信号のフレーム、第2または右チャネル信号のフレーム、またはそのようなチャネル信号から導出される信号、または、例えば、同じ時間ブロック内の第1のチャネル信号の時間領域表現および第2のチャネル信号の時間領域表現を加算することによって取得される合成信号である。
雑音推定値分類器1037bに関して、入力信号は、セレクタ1071を制御する信号活動検出器1070に送達される。信号活動検出器1070の結果に基づいて、セレクタ1071は、アクティブなフレームのみを選択する。さらに、信号レベル計算器1072が、セレクタ1071の後に接続されている。計算された信号レベルは、次に、(時間)平滑化手段1073に転送される。平滑化手段は、たとえば、IIRフィルタとして実施される。次に、ブロック1074において、信号対雑音比の計算が行われ、結果が、コンパレータ1075内で、例えば、45dB~25dBであり、好ましくは、さらに30~40 dBの範囲内にあり、より好ましくは35dBである所定の閾値と比較される。
コンパレータ1075の出力は、高雑音レベルもしくは低雑音レベルのいずれかを示すか、または特定の方法における閾値設定が単一の重み付け手順プロセッサによって実施されることになることを示す検出結果であり、あるいは、図10dに示されるように2つの重み付け手順プロセッサがある場合には、コンパレータ1075からの決定結果、すなわち、信号1050が、正しく重み付けされた相互相関スペクトルをプロセッサ1040に転送するために、入力スイッチ1036cまたは出力スイッチ1036dのいずれかを制御する。
検出結果1050は、好ましくは、時間ブロックまたはフレームごとに計算される。したがって、例えば、特定のフレームについて、これが非アクティブなフレームであることを信号活動検出器1070が示す場合、セレクタ1071は、アクティブなフレームのみを選択するため、信号レベル計算も時間平滑化もこのフレームに対して実施されない。したがって、非アクティブなフレームについて、一実施形態ではSNR比の計算は実施されず、したがって、この実施形態では、この非アクティブなフレームについて、検出結果はまったく提供されない。したがって、一実施態様において、最後のアクティブなフレームに関して以前に決定されたのと同じ重み付け手順が使用されるか、あるいは、代替的に、非アクティブなフレームについて、第1の重み付け手順もしくは第2の重み付け手順、またはさらには第3の重み付け手順のいずれかが、フォールバックソリューションとして適用される。代替的に、非アクティブなフレームに対して、最後または最近に発生しているアクティブなフレームの時間平滑化された信号レベルを使用するために、SNR比計算器1074が実施されてもよい。したがって、検出結果は、非アクティブなフレームについても取得することができ、または、非アクティブなフレームについて、特定の(フォールバック)重み付け手順が使用され、または、非アクティブなフレームについて、非アクティブなフレームに先行する最後のアクティブなフレームに対して決定されたのと同じ重み付け手順が、場合によって引き続き使用される。
以前の特許出願[1]では、チャネル間時間差(ITD)推定器が導入された。この推定器は、TDOAの文献で広く使用されている手法である位相変換を用いた一般化相互相関(GCC-PHAT)に基づいている(最初の論文は[2]であり、別の優れた参考文献は[3]である)。2つのチャネル間の時間差は、GCCの出力をピークピッキングすることによって求められる。大きい分析ウィンドウ長さを使用するか、相互相関スペクトルを経時的に平滑化することにより、より良好なロバスト性を得ることができる。[1]の主な貢献は、スペクトル平坦度測度に依存する平滑化係数を用いて、この平滑化を適応させることであった。
[1]のITD推定器のステップは、以下のように説明することができる。
1.離散フーリエ変換:左チャネル
Figure 0007204774000001
の信号および右チャネル
Figure 0007204774000002
の信号がフレーム化され、ウィンドウイングされ、DFT
Figure 0007204774000003
Figure 0007204774000004
を使用して周波数領域に変換される。
Figure 0007204774000005
は時間サンプルインデックスであり、
Figure 0007204774000006
はフレームインデックスであり、
Figure 0007204774000007
は周波数インデックスであり、
Figure 0007204774000008
はフレーム長であり、
Figure 0007204774000009
はDFT長であり、
Figure 0007204774000010
は分析ウィンドウである。
2.相互相関スペクトル:2つのチャネル間の相関が周波数領域において計算される。
Figure 0007204774000011
3.平滑化:相互相関スペクトルが、スペクトル平坦度測度に依存する平滑化係数を用いて、経時的に平滑化される。ITD推定器を定常的なトーン性信号に対してよりロバストにするために、スペクトル平坦度が低い場合は、より強力な平滑化が使用される。ITD推定器を過渡信号により迅速に適応させるために、すなわち信号が急速に変化している場合に、スペクトル平坦度が高いときは、より弱い平滑化が使用される。
平滑化は、以下を使用して実施され、
Figure 0007204774000012
ここで、
Figure 0007204774000013
であり、かつ
Figure 0007204774000014
である。
4.重み付け:平滑化相互相関スペクトルが、その大きさの逆数によって重み付けされる。この重み付けは振幅を正規化し、位相のみを保持する。これが、位相変換(PHAT)と呼ばれる理由である。
Figure 0007204774000015
5.逆変換:最終的なGCCが、相互相関スペクトル
Figure 0007204774000016
を時間領域
Figure 0007204774000017
に変換し戻すことによって取得される。
6.ピークピッキング:最も単純な手法は、ステップ5において求められたGCCの絶対値の大域最大値を探索することである。この最大値がある閾値を超える場合、ITDはこの最大値に対応するラグnとして推定される。より高度な手法では、ヒステリシスベースおよび/またはハングオーバベースのメカニズムを付加的に使用して、より平滑なITD推定を経時的に取得する。
GGC-PHATは、低雑音の反響環境で非常に優れた性能を発揮する(たとえば[3]を参照)。ただし、背景雑音のレベルが高い場合、または他の信号成分(音楽、過渡、複雑なステレオシーン、非アクティブとして分類されるフレーム、干渉する話者など)が存在する場合、GCC-PHATの性能は大幅に低下する。その場合、GCC出力は雑音が多く、単一の強いピークは含まれない。その結果、ピークピッキングでは正しいITDを見つけられないことが多い。これは、位相変換が信号対雑音比に関係なく、すべての周波数を等しく処理するためである。このとき、GCCは、信号対雑音比が低いビンの位相によって汚染される。
この問題を回避するために、他の多くのGCC重み付けが文献において提案された。それらの1つは、本発明における問題のあるテスト信号に対して非常に効果的であることがわかった。これは[4]において最初に提案され、当時「修正クロスパワースペクトル位相」(MCSP)と呼ばれた。高雑音環境におけるその良好な性能は、後に他のいくつかの論文で確認された(例えば[5]を参照)。重み付け(従来技術のステップ4)は、以下のように修正される:
Figure 0007204774000018
式中、
Figure 0007204774000019
は0と1との間のパラメータである。
Figure 0007204774000020
は、通常の相互相関の場合に対応し、
Figure 0007204774000021
は、GCC-PHATの場合に対応する。通常、1未満であるが、1に近い値が使用され、これにより、相関の高いビンをより強調することにより、GCC-PHATを修正することが可能であり、相関の高いビンは通常、信号に対応し、一方、相関の低いビンは雑音に対応する。より正確には、
Figure 0007204774000022
の値が最良の性能を与えることがわかった([4]においては0.75、[5]においては0.78であった)。
残念ながら、この新規の重み付けは、高レベルの背景雑音が存在する場合にのみ、GCC-PHATよりも良好な性能を発揮する。新規の重み付けがGCC-PHATよりも性能が高い可能性がある代替シナリオは、非アクティブなフレーム(すなわち、音声活動検出が非アクティブを検出し、発話レベルが低いことを示している可能性がある)、過渡の存在、複雑なステレオシナリオ、音楽、干渉する話者、背景音楽の存在、明瞭でない発話、背景雑音もしくは音楽、または明瞭な発話から逸脱する他の信号成分がまったくない、または、低レベルでしかないなどの明瞭な環境では、GCC-PHATの性能はさらに向上する。常に最良の結果を達成するために、信号の内容に応じて2つの手法を切り替える必要が生じた。
信号内の高レベルの背景雑音の存在を検出するために、雑音推定器が信号活動検出器(SAD)とともに使用される。信号のレベル
Figure 0007204774000023
は、SADが信号を検出するフレーム上で推定することができ、一方、雑音のレベル
Figure 0007204774000024
は雑音推定器によって推定される。このとき、高レベルの背景雑音の存在は、信号対雑音比
Figure 0007204774000025
(dB単位)を閾値と比較することによって単純に検出され、たとえば、
Figure 0007204774000026
である場合、高レベルの雑音が検出される。
信号が高レベルの背景雑音を含むか否かがわかると、GCCを計算するためにPHAT重み付けまたはMCSP重み付けのいずれを選択するかが決定される(従来技術のステップ4)。ピークピッキング(従来技術のステップ6)はまた、高い背景雑音レベルが検出されたか否かに応じて、例えば閾値を下げることによって修正することができる。
続いて、好ましい実施形態が段階的に説明される。
0.高背景雑音レベルの検出:
a.雑音推定器(たとえば[6]からの)が、背景雑音のレベル
Figure 0007204774000027
を推定するために使用される。IIR平滑化フィルタが、雑音レベルを経時的に平滑化するために使用される。
b.信号活動検出器(たとえば[6]からの)が、フレームをアクティブまたは非アクティブとして分類するために使用される。次に、アクティブなフレームが使用されて、単純に信号エネルギーを計算し、IIR平滑化フィルタを使用して経時的に平滑化することによって、信号レベル
Figure 0007204774000028
が計算される。
c.信号対雑音比(dB単位)
Figure 0007204774000029
が閾値(例えば35dB)を下回っている場合、高い背景雑音レベルが検出される。
1.離散フーリエ変換:従来技術と同じ
2.相互相関スペクトル:従来技術と同じ
3.平滑化:従来技術と同じ、またはスペクトル特性に基づいて本明細書に記載されているものと同じ
4.重み付け:低レベルの背景雑音が検出された場合、従来技術と同じ重み付けが使用される(GCC-PHAT)。
高レベルの背景雑音が検出された場合、MCSP重み付けが使用される。
Figure 0007204774000030
ここで、
Figure 0007204774000031
(例えば、
Figure 0007204774000032
)である。GCC-MCSP出力をGCC-PHAT出力と同じ範囲内に保つために、追加の正規化ステップが実施される。
Figure 0007204774000033
5.逆変換:従来技術と同じ
6.ピークピッキング:高レベルの背景雑音が検出され、MCSP重み付けが使用される場合に、ピークピッキングを適応させることができる。特に、より低い閾値が有益であることが見出された。
さらに、図10aは、図10cの実施態様とは異なる実施態様を示している。図10cの重み付け手段1036において、重み付け手段は、第1の重み付け手順または第2の重み付け手順のいずれかを実施する。しかしながら、図10aに示されるような重み付け手段1036においては、重み付け手段は、図10dまたは図10cの表記に関する第2の重み付け手順のみを実施する。この実施態様は、ブロック1030に示されるような平滑化フィルタが使用され、平滑化に続いて、または例えば単一の数学的もしくはハードウェア動作において平滑化とともに第1の重み付け手順をすでに実施する場合に有用である。したがって、平滑化フィルタにおける圧縮を伴わない正規化動作である第1の重み付け手順を実施する場合、一方における平滑化フィルタ1030と他方における実際の重み付け手段1036の両方が、平滑化または非平滑化または非平滑化相互相関スペクトルを重み付けするための実際の重み付け手段に対応する。したがって、図10aの実施態様では、雑音推定値1038は、別個の重み付け手段1036にのみ提供され、重み付け手順に従ってすでに重み付けされている平滑化フィルタ1030の出力と、図10aの実際の重み付け手段136の出力との間の選択との間の選択は、重み付け手段1036が出力信号を一切提供しないときは平滑化フィルタ1030からの出力を自動的に使用し、重み付け手段1036が提供および出力するときは重み付け手段1036の出力を平滑化フィルタ1030の出力よりも自動的に優先する特定のプロセッサ設定1040によって行われる。次に、雑音推定値1038、または他の図で説明するように、制御信号1050が、重み付け手段1036をアクティブ化または非アクティブ化するために使用される。したがって、一次重み付け手順を使用して平滑化または非平滑化相互相関スペクトルを重み付けするための実際の重み付け手段は、図10aの特定のアクティブ化/非アクティブ化モード、あるいは、入力もしくは出力スイッチを用いるか、または、制御信号に応じて、一方もしくは他方の重み付け手順を選択するか、または一般的な重み付けプロセッサを第1の重み付け手順または第2の重み付け手順を実施するように適合させる単一の重み付け手順カーネルによる図10dの2カーネルモードなど、多くの異なる方法において実施することができる。
続いて、重み付けの前に平滑化が実施される好ましい実施形態が説明される。これに関連して、スペクトル特性推定器の機能性はまた、好ましい実施形態の図4e、アイテム453、454によって反映される。
さらに、相互相関スペクトル計算器1020の機能はまた、好ましい実施形態において後述する図4eのアイテム452によって反映される。
それに対応して、平滑化フィルタ1030の機能はまた、後で説明される図4eの文脈におけるアイテム453によって反映される。さらに、プロセッサ1040の機能はまた、好ましい実施形態の図4eの文脈において、アイテム456~459として説明されている。
プロセッサ1040の好ましい実施形態はまた、図10cに記載されている。
好ましくは、スペクトル特性推定は、スペクトルの雑音性またはトーン性を計算し、好ましい実施態様は、トーン性または非雑音性信号の場合は0に近く、雑音性または雑音様信号の場合は1に近いスペクトル平坦度測度の計算である。
特に、平滑化フィルタはこのとき、第1の雑音のより少ない特性または第1のよりトーン性の特性の場合は第1の平滑化度によってより強い平滑化を経時的に適用し、または、第2の雑音のより多いまたは第2のよりトーン性の低い特性の場合は第2の平滑化度によってより弱い平滑化を経時的に適用するように構成される。
特に、第1の平滑化は、第2の平滑化度よりも大きく、第1の雑音性特性は、第2の雑音性特性よりも雑音が少なく、または第1のトーン性特性は、第2のトーン性特性よりもトーン性が高い。好ましい実施態様は、スペクトル平坦度測度である。
さらに、図11aに示されるように、プロセッサは、好ましくは、図4eのステップ457および458に対応するステップ1031の時間領域表現の計算を実施する前に、図4eおよび図11aの456に示されるように平滑化相互相関スペクトルを正規化するために実施される。しかしながら、図11aにも概説されているように、プロセッサはまた、図4eのステップ456の正規化なしで動作することができる。次に、プロセッサは、チャネル間時間差を求めるために、図11aのブロック1032に示されるように時間領域表現を分析するように構成される。この分析は、任意の既知の方法で実施することができ、スペクトル特性に従って平滑化されている相互相関スペクトルに基づいて分析が実施されるため、すでにロバスト性が向上する。
図11bに示されるように、時間領域分析1032の好ましい実施態様は、図4eのアイテム458に対応する図11bの458に示されるような時間領域表現のローパスフィルタリング、およびローパスフィルタリングされた時間領域表現内のピーク検索/ピークピッキング動作を使用したその後のさらなる処理1033である。
図11cに示すように、ピークピッキングまたはピーク検索動作の好ましい実施態様は、可変閾値を使用してこの操作を実施することである。特に、プロセッサは、時間領域表現から可変閾値を決定し1034、時間領域表現(スペクトル正規化の有無にかかわらず取得される)の1つまたは複数のピークを可変閾値と比較することによって、平滑化相互相関スペクトルから導出される時間領域表現内でピーク検索/ピークピッキング動作を実施するように構成されており、チャネル間時間差は、可変閾値よりも大きいなど、閾値と所定の関係にあるピークに関連するタイムラグとして決定される。
図11dに示されるように、後述する図4e~図4bに関連する擬似コードに示される1つの好ましい実施形態は、値をそれらの大きさに従ってソートすること1034aに存する。次に、図11dのアイテム1034bに示されているように、それらの値のうちの最も高い、例えば10または5%が決定される。
次に、ステップ1034cに示されるように、数3などの数が、可変閾値を得るために、最も高い10または5%のうちの最低値に乗算される。
前述のように、好ましくは、最も高い10または5%が決定されるが、それらの値のうちの最も高い50%の値の最低数を決定し、10などのより高い乗数を使用することも有用であり得る。当然ながら、それらの値のうちの最も高い3%などのさらにより少ない量が決定され、次に、それらの値のうちのこれら最も高い3%の間の最低値に、例えば、2.5または2に等しい、すなわち、3より低い数が乗算される。したがって、図11dに示される実施形態では、数および百分率の異なる組み合わせを使用することができる。百分率とは別に、数値も変化する可能性があり、1.5より大きい数が好ましい。
図11eに示されるさらなる実施形態では、時間領域表現は、ブロック1101によって示されるようにサブブロックに分割され、これらのサブブロックは、図13の1300に示される。ここでは、有効範囲に約16個のサブブロックが使用されており、結果、各サブブロックのタイムラグスパンは20である。しかしながら、サブブロックの数は、この値より大きくても小さくてもよく、好ましくは3より大きく50より小さくてもよい。
図11eのステップ1102では、各サブブロックのピークが決定され、ステップ1103では、すべてのサブブロックの平均ピークが決定される。次に、ステップ1104において、一方では信号対雑音比に依存し、さらなる実施形態では、ブロック1104の左側に示されるような閾値と最大ピークとの間の差に依存する乗算値aが決定される。これらの入力値に応じて、好ましくは3つの異なる乗算値のうちの1つが決定され、ここで、乗算値は、alow、ahighおよびalowestに等しくなり得る。
次に、ステップ1105において、ブロック1104において決定された乗算値aが、その後ブロック1106での比較演算に使用される可変閾値を得るために、平均閾値と乗算される。比較演算のために、再び、ブロック1101に入力された時間領域表現を使用することができるか、またはブロック1102に概説されるように各サブブロック内のすでに決定されたピークを使用することができる。
続いて、時間領域相互相関関数内のピークの評価および検出に関するさらなる実施形態が概説される。
チャネル間時間差(ITD)を推定するための、一般化相互相関(GCC-PHAT)法から生じる時間領域相互相関関数内のピークの評価および検出は、種々の入力シナリオに起因して、必ずしも簡単ではない。明瞭な発話入力は、強いピークを有する低偏差の相互相関関数をもたらす可能性があり、一方、雑音の多い反響環境における発話は、ITDの存在を示す、高い偏差、および、より低いが依然として顕著に大きいピークを有するベクトルを生成することができる。種々の入力シナリオに対応するための適応性および柔軟性を備えたピーク検出アルゴリズムについて説明する。
遅延の制約により、システム全体が特定の制限、すなわちITD_MAXまでのチャネル時間整合を処理することができる。提案されているアルゴリズムは、以下の場合に有効なITDが存在するか否かを検出するように設計されている。
・ピークが顕著であることに起因する有効なITD。相互相関関数の[-ITD_MAX,ITD_MAX]範囲内に顕著なピークが存在する。
・相関関係がない。2つのチャネル間に相関関係がない場合、顕著なピークはない。これを超えるとピークが有効なITD値と見なされるのに十分な強度になる閾値を定義する必要がある。それ以外の場合、ITD処理は通知されない。すなわち、ITDはゼロに設定され、時間整合は実施されない。
・範囲外ITD。システムの処理能力の外側にあるITDが存在するか否かを判断するために、領域[-ITD_MAX,ITD_MAX]の外側の相互相関関数の強いピークを評価する必要がある。この場合、ITD処理は通知されるべきではなく、したがって、時間整合は実施されない。
ピークの大きさが時間差値と見なされるほど大きいか否かを判断するには、適切な閾値を定義する必要がある。種々の入力シナリオについて、相互相関関数出力は、例えば、環境(雑音、反響など)、マイクロフォン設定(AB、M/Sなど)などの種々のパラメータによって異なる。したがって、閾値を適応的に定義することが不可欠である。
提案されているアルゴリズムでは、閾値は、最初に[-ITD_MAX,ITD_MAX]領域内の相互相関関数の大きさのエンベロープの大まかな計算の平均を計算することによって定義され(図13)、次に平均がSNR推定に応じて、対応して重み付けされる。
アルゴリズムの段階的な説明を以下に記載する。
時間領域相互相関を表すGCC-PHATの逆DFTの出力が、負のタイムラグから正のタイムラグに再構成される(図12)。
相互相関ベクトルが、関心領域、すなわち[-ITD_MAX,ITD_MAX]、ならびに、ITD_MAX境界の外側の領域、すなわち-ITD_MAX(max_low)より小さいタイムラグ、および、ITD_MAX(max_high)より大きいタイムラグの3つの主要な領域に分割される。「範囲外」領域の最大ピークが検出および保存されて、関心領域内で検出された最大ピークと比較される。
有効なITDが存在するか否かを判定するために、相互相関関数のサブベクトル領域[-ITD_MAX,ITD_MAX]が考慮される。サブベクトルはN個のサブブロックに分割される(図13)。
サブブロックごとに、最大ピークの大きさpeak_subおよび同等のタイムラグ位置index_subが求められ、保存される。
極大値peak_maxの最大値が決定され、閾値と比較されて、有効なITD値の存在が決定される。
最大値peak_maxは、max_lowおよびmax_highと比較される。peak_maxが2つのいずれかよりも低い場合、itd処理は通知されず、時間整合は実施されない。システムのITD処理制限のため、範囲外のピークの大きさを評価する必要はない。
ピークの大きさの平均が計算される。
Figure 0007204774000034
次に、
Figure 0007204774000035
を、SNRに依存する重み係数
Figure 0007204774000036
を用いて重み付けすることにより、閾値
Figure 0007204774000037
が計算される。
Figure 0007204774000038
Figure 0007204774000039
かつ
Figure 0007204774000040
である場合、隣接するピークが高い顕著なピークが拒否されないようにするために、ピークの大きさはまた、わずかに緩和された閾値(
Figure 0007204774000041
)とも比較される。重み係数は、たとえば、ahigh=3,alow=2.5およびalowest=2であり得、一方、SNRthresholdは、たとえば、20dBであり得、境界ε=0.05であり得る。
好ましい範囲は、ahighについては2.5~5であり、alowについては1.5~4、alowestについては1.0から3、SNRthresholdについては10~30dB、εについては0.01~0.5であり、ここで、ahighはalowよりも大きく、alowはalowestよりも大きい。
peak_max>thresの場合、同等のタイムラグが推定ITDとして返される。それ以外の場合、itd処理は通知されない(ITD=0)。さらなる実施形態は、図4eに関して後で説明される。
図11fは、有効なITD(チャネル間時間差)出力を決定する好ましい実施態様を示している。
重み付けされ、平滑化された、または平滑化されていない相互相関スペクトルの時間領域表現のサブブロックは、プロセッサ1040内の決定ステップに入力される。この決定ステップ1120は、重み付けされ、平滑化された、または平滑化されていない相互相関スペクトルから導出される時間領域表現内の有効範囲および無効範囲を決定する。ステップ1121において、最大ピークが、無効範囲内で決定され、ステップ1122において、最大ピークが、有効範囲内で決定される。特に、少なくとも1つの最大ピークが、無効範囲内で決定され、少なくとも1つの最大ピークが、有効範囲内で決定される。ブロック1123において、有効範囲および無効範囲の最大ピークが比較される。有効ピーク、すなわち有効範囲内の最大ピークが無効範囲内の最大ピークである「無効ピーク」よりも大きい場合、ITD決定1124が実際に実施され、有効なITD出力が提供される。しかしながら、「無効ピーク」が「有効ピーク」よりも大きいこと、または無効ピークが有効ピークと同じサイズであることが検出された場合、有効な出力は提供されず、好ましくは、これに対してプロセッサの注意を引くために、エラーメッセージまたは同等の措置が実施される。
続いて、さらなる信号プロセッサの目的のための図10bのブロック1050内の本発明の好ましい実施態様が、図1~図9eに関して、すなわち、2つのチャネルのステレオ/マルチチャネル処理/符号化および時間整合の文脈において論じられる。
しかしながら、記述され、図10bに示されるように、決定されたチャネル間時間差を使用する信号のさらなる処理も同様に実施され得る他の多くのフィールドが存在する。
図1は、少なくとも2つのチャネルを有するマルチチャネル信号を符号化するための装置を示している。マルチチャネル信号10は、一方ではパラメータ決定手段100に入力され、他方では信号アライナ200に入力される。パラメータ決定手段100は、一方では広帯域整合パラメータを決定し、他方ではマルチチャネル信号から複数の狭帯域整合パラメータを決定する。これらのパラメータは、パラメータライン12を介して出力される。さらに、これらのパラメータはまた、図示のように、さらなるパラメータライン14を介して出力インターフェース500に出力される。パラメータライン14上で、レベルパラメータなどの追加のパラメータがパラメータ決定手段100から出力インターフェース500に転送される。信号アライナ200は、パラメータライン10を介して受信される広帯域整合パラメータおよび複数の狭帯域整合パラメータを使用してマルチチャネル信号10の少なくとも2つのチャネルを整合して、信号アライナ200の出力において整合されたチャネル20を取得するように構成される。これらの整合されたチャネル20は、ライン20を介して受信される整合されたチャネルからミッド信号31およびサイド信号32を計算するように構成された信号プロセッサ300に転送される。符号化するための装置は、ライン31からのミッド信号およびライン32からのサイド信号を符号化して、ライン41上で符号化ミッド信号を得、ライン42上で符号化サイド信号を得るための信号符号化器400をさらに備える。これらの信号は両方とも、出力ライン50において符号化マルチチャネル信号を生成するために出力インターフェース500に転送される。出力ライン50における符号化信号は、ライン41からの符号化ミッド信号、ライン42からの符号化サイド信号、ライン14からの狭帯域整合パラメータおよび広帯域整合パラメータ、ならびに任意選択的に、ライン14からのレベルパラメータ、ならびに加えて、任意選択的に、信号符号化器400によって生成され、パラメータライン43を介して出力インターフェース500に転送されるステレオ充填パラメータを含む。
好ましくは、信号アライナは、パラメータ決定手段100が実際に狭帯域パラメータを計算する前に、広帯域整合パラメータを使用してマルチチャネル信号からチャネルを整合するように構成される。したがって、この実施形態では、信号アライナ200は、接続ライン15を介して、広帯域整合されたチャネルをパラメータ決定手段100に送り返す。次に、パラメータ決定手段100は、すでに広帯域特性に関して整合されたマルチチャネル信号から、複数の狭帯域整合パラメータを決定する。しかしながら、他の実施形態では、パラメータは、この特定の一連の手順なしで決定される。
図4aは、接続ライン15を被る特定の一連のステップが実施される、好ましい実施態様を示している。ステップ16において、2つのチャネルを使用して広帯域整合パラメータが決定され、チャネル間時間差またはITDパラメータなどの広帯域整合パラメータが取得される。次に、ステップ21において、2つのチャネルは、広帯域整合パラメータを使用して、図1の信号アライナ200によって整合される。次に、ステップ17において、狭帯域パラメータが、パラメータ決定手段100内の整合されたチャネルを使用して決定されて、マルチチャネル信号の異なる帯域に対する複数のチャネル間位相差パラメータなどの複数の狭帯域整合パラメータが決定される。次に、ステップ22において、各パラメータ帯域内のスペクトル値が、この特定の帯域の対応する狭帯域整合パラメータを使用して整合される。ステップ22のこの手順が、狭帯域整合パラメータが利用可能な各帯域に対して実施されると、図1の信号プロセッサ300によるさらなる信号処理のために、整合された第1および第2のまたは左/右チャネルが利用可能になる。
図4bは、周波数領域においていくつかの手順が実施される、図1のマルチチャネル符号化器のさらなる実施態様を示している。
具体的には、マルチチャネル符号化器は、時間領域マルチチャネル信号を周波数領域内の少なくとも2つのチャネルのスペクトル表現に変換するための時間スペクトル変換器150をさらに備える。
さらに、152に示されているように、図1の100、200、および300に示されているパラメータ決定手段、信号アライナ、および信号プロセッサがすべて、周波数領域において動作する。
さらに、マルチチャネル符号化器、具体的には、信号プロセッサは、少なくともミッド信号の時間領域表現を生成するためのスペクトル時間変換器154をさらに備える。
好ましくは、スペクトル時間変換器はさらに、同じくブロック152によって表される手順によって決定されるサイド信号のスペクトル表現を時間領域表現に変換し、次に、図1の信号符号化器400は、このとき、ミッド信号および/またはサイド信号を、図1の信号符号化器400の特定の実施態様に応じて、時間領域信号としてさらに符号化するように構成される。
好ましくは、図4bの時間スペクトル変換器150は、図4cのステップ155、156、および157を実施するように構成される。具体的には、ステップ155は、その一端に少なくとも1つのゼロパディング部分、具体的には、例えば、後に図7に示すように、最初のウィンドウ部分にあるゼロパディング部分および終端ウィンドウ部分にあるゼロパディング部分を有する分析ウィンドウを提供することを含む。さらに、分析ウィンドウは、ウィンドウの第1の半部およびウィンドウの第2の半部に重複範囲または重複部分を付加的に有し、さらに、好ましくは、場合によって中間部分が非重複範囲になる。
ステップ156において、各チャネルは、重複範囲を有する分析ウィンドウを使用してウィンドウイングされる。具体的には、各チャネルは、チャネルの第1のブロックが取得されるように、分析ウィンドウを使用してウィンドウイングされる。続いて、第1のブロックとの一定の重複範囲を有する同じチャネルの第2のブロックが得られ、以下同様になり、結果、例えば、5回のウィンドウイング動作の後、各チャネルのウィンドウイングされたサンプルの5つのブロックが利用可能になり、これらは、図4cの157に示すように、個別にスペクトル表現に変換される。ステップ157の終わりに、スペクトル値の一連のブロック、具体的には、DFTスペクトル値または複素サブバンドサンプルなどの複素スペクトル値が利用可能になるように、同じ手順が他のチャネルに対しても実施される。
図1のパラメータ決定手段100によって実施されるステップ158において、広帯域整合パラメータが決定され、図1の信号整合200によって実施されるステップ159において、広帯域整合パラメータを使用して循環シフトが実施される。再び図1のパラメータ決定手段100によって実施されるステップ160において、狭帯域整合パラメータが個々の帯域/サブバンドに対して決定され、ステップ161において、整合されたスペクトル値が、特定の帯域に対して決定された対応する狭帯域整合パラメータを使用して各帯域について回転される。
図4dは、信号プロセッサ300によって実施されるさらなる手順を示している。具体的には、信号プロセッサ300は、ステップ301に示されるように、ミッド信号およびサイド信号を計算するように構成される。ステップ302において、サイド信号の何らかの種類のさらなる処理を実施することができ、次いで、ステップ303において、ミッド信号およびサイド信号の各ブロックが、時間領域に変換し戻され、ステップ304において、合成ウィンドウが、ステップ303によって得られた各ブロックに適用され、ステップ305において、一方ではミッド信号の重畳加算演算が実施され、他方ではサイド信号の重畳加算演算が実施されて、最終的に時間領域ミッド/サイド信号が得られる。
具体的には、ステップ304および305の動作の結果として、ミッド信号およびサイド信号の次のブロックにおいて、ミッド信号またはサイド信号の1つのブロックからの一種のクロスフェードが実施され、結果、チャネル間時間差パラメータまたはチャネル間位相差パラメータが発生するなどの任意のパラメータ変化が発生する場合であっても、それにもかかわらず、これは、図4dのステップ305によって得られる時間領域の中間/サイド信号において可聴ではない。
新規低遅延ステレオ符号化は、いくつかの空間キューを利用するジョイントミッド/サイド(M/S)ステレオ符号化であり、ミッドチャネルは一次モノコアコーダによって符号化され、サイドチャネルは二次コアコーダにおいて符号化される。符号化器および復号器の原理を図6a、図6bに示す。
ステレオ処理は主に周波数領域(FD)において実施される。任意選択的に、周波数分析の前に時間領域(TD)において何らかのステレオ処理を実施することができる。これは、ステレオ分析および処理を実行する前のチャネルの時間整合のための周波数分析の前に計算し、適用することができる、ITD計算の場合である。代替的に、ITD処理は周波数領域において直接実行されてもよい。ACELPのような通常の音声コーダには内部時間周波数分解が含まれていないため、ステレオ符号化は、コア符号化器の前の分析および合成フィルタバンク、ならびに、コア復号器の後の別の分析-合成フィルタバンクの段を用いることによって、さらなる複素変調フィルタバンクを追加する。好ましい実施形態では、重複領域が少ないオーバーサンプリングされたDFTが使用される。しかしながら、他の実施形態では、同様の時間分解能を有する任意の複素値の時間周波数分解を使用することができる。
ステレオ処理は、空間キュー、すなわち、チャネル間時間差(ITD)、チャネル間位相差(IPD)、およびチャネル間レベル差(ILD)の計算から構成される。ITDおよびIPDは、2つのチャネルLおよびRを時間および位相において整合させるために、入力ステレオ信号に対して使用される。ITDは広帯域または時間領域において計算され、一方、IPDおよびILDは、周波数空間の不均一な分解に対応して、パラメータ帯域の各々または一部に対して計算される。2つのチャネルが整合すると、ジョイントM/Sステレオが適用され、サイド信号がミッド信号からさらに予測される。予測利得はILDから導出される。
ミッド信号は、一次コアコーダによってさらにコード化される。好ましい実施形態では、一次コアコーダは、3GPP EVS規格、または音声符号化モード、ACELP、およびMDCT変換に基づく音楽モードの間で切り替えることができる、3GPP EVS規格から派生した符号化である。好ましくは、ACELPおよびMDCTベースのコーダは、それぞれ時間領域帯域幅拡張(TD-BWE)および/またはインテリジェントギャップ充填(IGF)モジュールによってサポートされる。
サイド信号は、ILDから導出された予測利得を使用して、ミッドチャネルによって最初に予測される。残差は、ミッド信号の遅延バージョンによってさらに予測することができるか、またはMDCT領域における好ましい実施形態において実施される二次コアコーダによって直接コード化することができる。符号化器におけるステレオ処理は、後で説明するように、図5によって要約することができる。
図2は、入力ライン50において受信される符号化マルチチャネル信号を復号するための装置の実施形態のブロック図を示している。
特に、信号は、入力インターフェース600によって受信される。入力インターフェース600には、信号復号器700、および信号デアライナ900が接続されている。さらに、信号プロセッサ800は、一方では信号復号器700に接続され、他方では信号デアライナに接続される。
特に、符号化マルチチャネル信号は、符号化ミッド信号、符号化サイド信号、広帯域整合パラメータに関する情報、および複数の狭帯域パラメータに関する情報を含む。したがって、ライン50上の符号化マルチチャネル信号は、図1の500の出力インターフェースによって出力されたものとまったく同じ信号であり得る。
しかしながら、ここで重要なことに、図1に示されているものとは対照的に、特定の形態の符号化信号に含まれる広帯域整合パラメータおよび複数の狭帯域整合パラメータは、正確に図1の信号アライナ200によって使用される整合パラメータであり得るが、代替的にまた、その逆の値、すなわち、信号アライナ200によって実施されるのとまったく同じ動作によって使用することができるが、値は逆であるパラメータであってもよく、結果、脱整合が得られる。
したがって、整合パラメータに関する情報は、図1の信号アライナ200によって使用される整合パラメータであり得るか、または逆の値、すなわち実際の「脱整合パラメータ」であり得る。さらに、これらのパラメータは通常、図8に関して後で説明するように、特定の形式で量子化される。
図2の入力インターフェース600は、広帯域整合パラメータおよび複数の狭帯域整合パラメータに関する情報を、符号化ミッド/サイド信号から分離し、この情報を、パラメータライン610を介して信号デアライナ900に転送する。他方、符号化ミッド信号は、ライン601を介して信号復号器700に転送され、符号化サイド信号は、信号ライン602を介して信号復号器700に転送される。
信号復号器は、符号化ミッド信号を復号し、符号化サイド信号を復号して、ライン701上で復号ミッド信号を取得し、ライン702上で復号サイド信号を取得するように構成される。これらの信号は、復号された第1のチャネル信号または復号された左信号を計算し、復号ミッド信号および復号サイド信号から復号された第2のチャネルまたは復号された右チャネル信号を計算するために、信号プロセッサ800によって使用され、復号された第1のチャネルおよび復号された第2のチャネルは、それぞれライン801、802上に出力される。信号デアライナ900は、復号マルチチャネル信号、すなわち、ライン901および902上の少なくとも2つの復号および脱整合されたチャネルを有する復号信号を取得するために、広帯域整合パラメータに関する情報を使用し、さらに複数の狭帯域整合パラメータに関する情報を使用して、ライン801上の復号された第1のチャネルおよび復号された右チャネル802を脱整合するように構成される。
図9aは、図2からの信号デアライナ900によって実施される好ましいステップシーケンスを示している。具体的には、ステップ910は、図2からのライン801、802上で利用可能であるような、整合された左および右チャネルを受信する。ステップ910において、信号デアライナ900は、911aおよび911bにおいて位相脱整合されている復号された第1のおよび第2のまたは左および右チャネルを得るために、狭帯域整合パラメータに関する情報を使用して個々のサブバンドを脱整合する。ステップ912において、チャネルは、広帯域整合パラメータを使用して脱整合され、結果、913aおよび913bにおいて、位相および時間脱整合されたチャネルが得られる。
ステップ914において、915aまたは915bで、アーティファクトが低減された、またはアーティファクトのない復号された信号を得るために、すなわち、アーティファクトを一切有しない復号チャネルに対して、ウィンドウイングまたは任意の重畳加算演算、または一般に任意のクロスフェード動作を使用することを含む任意のさらなる処理が実施されるが、一方では広帯域に対して、他方では複数の狭帯域に対して、典型的には時間変化する脱整合パラメータが存在している。
図9bは、図2に示されるマルチチャネル復号器の好ましい実施態様を示す。
特に、図2の信号プロセッサ800は、時間スペクトル変換器810を備える。
信号プロセッサは、ミッド信号Mおよびサイド信号Sから左信号Lおよび右信号Rを計算するために、ミッド/サイド-左/右変換器820をさらに備える。
しかしながら、重要なことに、ブロック820におけるミッド/サイド-左/右変換によってLおよびRを計算するために、サイド信号Sが必ずしも使用される必要はない。代わりに、後で説明するように、左/右信号は、最初にチャネル間レベル差パラメータILDから導出された利得パラメータのみを使用して計算される。一般に、予測利得はILDの形式と見なすこともできる。利得はILDから導出することができるが、直接計算することもできる。もはやILDを計算するのではなく、予測利得を直接計算し、ILDパラメータではなく予測利得を復号器において送信して使用することが好ましい。
したがって、この実施態様では、サイド信号Sは、バイパスライン821によって示されるように、送信されたサイド信号Sを使用してより良好な左/右信号を提供するために動作するチャネルアップデータ830においてのみ使用される。
したがって、コンバータ820は、レベルパラメータ入力822を介して取得されるレベルパラメータを使用して、実際にはサイド信号Sを使用せずに動作するが、このとき、チャネルアップデータ830は、サイド821を使用し、特定の実施態様に応じて、ライン831を介して受信されるステレオ充填パラメータを使用して動作する。このとき、信号アライナ900は、段階的デアライナおよびエネルギースケーラ910を備える。エネルギースケーリングは、スケーリング係数計算器940によって導出されるスケーリング係数によって制御される。スケーリング係数計算器940は、チャネルアップデータ830の出力によって供給される。入力911を介して受信される狭帯域整合パラメータに基づいて、位相脱整合が実施され、ブロック920において、ライン921を介して受信される広帯域整合パラメータに基づいて、時間脱整合が実施される。最後に、復号信号を最終的に取得するために、スペクトル時間変換930が実施される。
図9cは、好ましい実施形態において、図9bのブロック920および930内で典型的に実施されるさらなるステップシーケンスを示す。
具体的には、狭帯域脱整合チャネルが、図9bのブロック920に対応する広帯域脱整合機能に入力される。DFTまたは任意の他の変換が、ブロック931において実施される。時間領域サンプルの実際の計算に続いて、合成ウィンドウを使用した任意選択的な合成ウィンドウが実施される。合成ウィンドウは、好ましくは、分析ウィンドウと完全に同じであるか、または、例えば、補間またはデシメーションなど、分析ウィンドウから導出されるが、分析ウィンドウから特定の様態で依存する。この依存性は、好ましくは、2つの重なり合うウィンドウによって定義される乗算係数が、重複範囲内の各点について合計されるようなものである。したがって、ブロック932の合成ウィンドウに続いて、重畳演算および後続の加算演算が実施される。代替的に、合成ウィンドウイングおよび重畳/加算演算の代わりに、図9aに関連してすでに説明したように、アーティファクトが低減された復号信号を取得するために、各チャネルの後続のブロック間の任意のクロスフェードが実施される。
図6bを検討すると、一方におけるミッド信号の実際の復号動作、すなわち「EVS復号器」、ならびに、サイド信号の、逆ベクトル量子化VQ-1および逆MDCT動作(IMDCT)が、図2の信号復号器700に対応することが明らかになる。
さらに、ブロック810のDFT動作は、図9bの要素810に対応し、逆ステレオ処理および逆時間シフトの機能は、図2のブロック800、900に対応し、図6bの逆DFT動作930は、図9bのブロック930の対応する動作に対応する。
続いて、図3についてさらに詳しく説明する。特に、図3は、個々のスペクトル線を有するDFTスペクトルを示している。好ましくは、図3に示されるDFTスペクトルまたは他の任意のスペクトルは、複素スペクトルであり、各線は、大きさおよび位相を有するか、または実数部および虚数部を有する複素スペクトル線である。
さらに、スペクトルはまた種々のパラメータ帯域に分割される。各パラメータ帯域は、少なくとも1つ、好ましくは2つ以上のスペクトル線を有する。さらに、パラメータ帯域は低い周波数から高い周波数に増大する。典型的には、広帯域整合パラメータは、スペクトル全体、すなわち、図3の例示的な実施形態におけるすべての帯域1~6を含むスペクトルに対する単一の広帯域整合パラメータである。
さらに、各パラメータ帯域に対して単一の整合パラメータが存在するように、複数の狭帯域整合パラメータが提供される。これは、帯域の整合パラメータが、対応する帯域内のすべてのスペクトル値に常に適用されることを意味する。
さらに、狭帯域整合パラメータに加えて、レベルパラメータも各パラメータ帯域に提供される。
帯域1から帯域6までのすべてのパラメータ帯域に提供されるレベルパラメータとは対照的に、帯域1、2、3および4などの限られた数のより低い帯域に対してのみ複数の狭帯域整合パラメータを提供することが好ましい。
さらに、ステレオ充填パラメータが、例示的な実施形態では、帯域4、5および6などの低帯域を除く特定の数の帯域に提供され、一方、下位パラメータ帯域1、2および3にはサイド信号スペクトル値が存在し、結果として、これらの低帯域のステレオ充填パラメータは存在せず、ここでは、サイド信号自体またはサイド信号を表す予測残差信号のいずれかを使用して波形マッチングが得られる。
すでに述べたように、図3の実施形態では、パラメータ帯域6に7つのスペクトル線があるのに対し、パラメータ帯域2には3つのスペクトル線しかないなど、より高い帯域に多くのスペクトル線が存在する。ただし、当然のことながら、パラメータ帯域の数、スペクトル線の数、およびパラメータ帯域内のスペクトル線の数、ならびにまた特定のパラメータの種々制限は異なる。
それにもかかわらず、図8は、図3とは対照的に、実際には12個の帯域が存在する特定の実施形態において、パラメータの分布およびパラメータが提供される帯域の数を示している。
図に示すように、レベルパラメータILDは12個の帯域の各々に提供され、帯域あたり5ビットによって表される量子化精度に量子化される。
さらに、狭帯域整合パラメータIPDは、2.5kHzの境界周波数までの低帯域に対してのみ提供される。さらに、チャネル間時間差または広帯域整合パラメータは、スペクトル全体の単一パラメータとしてのみ提供されるが、量子化精度は、帯域全体について8ビットで表され、非常に高い。
さらに、1kHz未満の低帯域ではなく、帯域あたり3ビットで表される非常に大まかに量子化されたステレオ充填パラメータが提供される。これは、低帯域については、実際に符号化されたサイド信号またはサイド信号の残留スペクトル値が含まれるためである。
続いて、符号化器側での好ましい処理を図5に関して要約する。最初のステップにおいて、左チャネルおよび右チャネルのDFT分析が実施される。この手順は、図4cのステップ155~157に対応する。ステップ158において、広帯域整合パラメータが計算され、特に、好ましい広帯域整合パラメータのチャネル間時間差(ITD)が計算される。170に示すように、周波数領域におけるLおよびRの時間シフトが実施される。代替的に、この時間シフトはまた、時間領域において実施することもできる。次に、逆DFTが実施され、時間領域において時間シフトが実施され、広帯域整合パラメータを使用した整合に続いてスペクトル表現を再度取得するために、追加の順方向DFTが実施される。
ステップ171に示されるように、ILDパラメータ、すなわち、レベルパラメータおよび位相パラメータ(IPDパラメータ)が、シフトされたLおよびR表現上の各パラメータ帯域について計算される。このステップは、例えば、図4cのステップ160に対応する。図4cまたは図5のステップ161に示されるように、時間シフトされたLおよびR表現は、チャネル間位相差パラメータの関数として回転される。続いて、ミッド信号およびサイド信号が、ステップ301に示されるように、好ましくは、後で説明されるように、付加的にエネルギー会話動作を用いて計算される。後続のステップ174において、ILDの関数としてのMおよび任意選択的に過去のM信号、すなわち、先行するフレームのミッド信号を用いたSの予測が実施される。続いて、好ましい実施形態における図4dのステップ303、304、305に対応するミッド信号およびサイド信号の逆DFTが実施される。
最後のステップ175において、時間領域ミッド信号m、および任意選択的に、残差信号が、ステップ175に示されるようにコード化される。この手順は、図1の信号符号化器400によって実施されるものに対応する。
逆ステレオ処理の復号器において、サイド信号がDFTドメインにおいて生成され、最初にミッド信号から以下のように予測される。
Figure 0007204774000042
式中、gは各パラメータ帯域に対して計算される利得であり、送信されているチャネル間レベル差(ILD)の関数である。
次に、予測の残差
Figure 0007204774000043
を2つの異なる方法で調整できる。
残差信号の二次符号化による:
Figure 0007204774000044
式中、
Figure 0007204774000045
はスペクトル全体に送信されるグローバル利得である。
-ステレオ充填として知られる残差予測による、これは、前のDFTフレームからの前の復号ミッド信号スペクトルによって残差サイドスペクトルを予測する:
Figure 0007204774000046
式中、
Figure 0007204774000047
はパラメータ帯域ごとに送信される予測利得である。
2種類の符号化の改良は、同じDFTスペクトル内で混合することができる。好ましい実施形態では、残差符号化は、より低いパラメータ帯域に適用され、一方残差予測は、残りの帯域に適用される。残差符号化は、図1に示されるような好ましい実施形態において、時間領域において残差サイド信号を合成し、それをMDCTによって変換した後、MDCT領域において実施される。DFTとは異なり、MDCTはクリティカルサンプリングされ(critical sampled)、オーディオ符号化により適している。MDCT係数は、格子ベクトル量子化によって直接ベクトル量子化されるが、代替的に、スカラー量子化器およびそれに続くエントロピーコーダによってコード化されてもよい。代替的に、残差サイド信号は、音声符号化技術によって時間領域において、または直接的にDFTドメインにおいて符号化することもできる。
1.時間周波数分析:DFT
DFTによって行われるステレオ処理からのさらなる時間周波数分解により、符号化システムの全体的な遅延を大幅に増大させることなく、良好な聴覚シーン分析が可能になることが重要である。デフォルトでは、10ミリ秒の時間分解能(コアコーダの20ミリ秒のフレーミングの2倍)が使用される。分析ウィンドウと合成ウィンドウとは同じであり、対称的である。ウィンドウは、図7において16kHzのサンプリングレートで表されている。重複領域は、発生する遅延を減らすために制限されており、後に説明するように、周波数領域においてITDを適用するときに、循環シフトを相殺するためにゼロパディングも追加されていることがわかる。
2.ステレオパラメータ
ステレオパラメータは最大で、ステレオDFTの時間分解能で送信することができる。これは最小で、コアコーダのフレーミング解像度、すなわち20msに減らすことができる。デフォルトでは、過渡が検出されない場合、パラメータは2つのDFTウィンドウにわたって20ミリ秒ごとに計算される。パラメータ帯域は、等価矩形帯域幅(ERB)の約2倍または4倍に続く、スペクトルの不均一で重複しない分解を構成する。デフォルトでは、16kHzの周波数帯域幅(32kbpsのサンプリングレート、超広帯域ステレオ)の合計12帯域に4倍のERBスケールが使用される。図8は、ステレオサイド情報が約5kbpsで送信される構成例をまとめたものである。
3.ITDおよびチャネル時間整合の計算
ITDは、位相変換を用いた一般化相互相関(GCC-PHAT)を使用して到来時間遅延(TDOA)を推定することによって計算される。
Figure 0007204774000048
式中、LおよびRは、それぞれ左チャネルおよび右チャネルの周波数スペクトルである。周波数分析は、後続のステレオ処理に使用されるDFTとは独立して実施することができ、または、共有することができる。ITDを計算するための擬似コードは以下のとおりである。
L=fft(window(l));
R=fft(window(r));
tmp=L.*conj(R);
sfm_L=prod(abs(L).^(1/length(L)))/(mean(abs(L))+eps);
sfm_R=prod(abs(R).^(1/length(R)))/(mean(abs(R))+eps);
sfm=max(sfm_L,sfm_R);
h.cross_corr_smooth=(1-sfm)*h.cross_corr_smooth+sfm*tmp;
tmp=h.cross_corr_smooth./abs(h.cross_corr_smooth+eps);
tmp=ifft(tmp);
tmp=tmp([length(tmp)/2+1:length(tmp)1:length(tmp)/2+1]);
tmp_sort=sort(abs(tmp));
thresh=3*tmp_sort(round(0.95*length(tmp_sort)));
xcorr_time=abs(tmp(-(h.stereo_itd_q_max-(length(tmp)-1)/2-1):-(h.stereo_itd_q_min-(length(tmp)-1)/2-1)));
%smooth output for better detection
xcorr_time=[xcorr_time 0];
xcorr_time2=filter([0.25 0.5 0.25],1,xcorr_time)
[m,i]=max(xcorr_time2(2:end));
if m>thresh
itd=h.stereo_itd_q_max-i+1;
else
itd=0;
end
図4eは、広帯域整合パラメータの例としてのチャネル間時間差のロバストで効率的な計算を得るために、先に示した擬似コードを実施するためのフローチャートを示している。
ブロック451において、第1のチャネル(l)および第2のチャネル(r)の時間領域信号のDFT分析が実施される。このDFT分析は、通常、例えば、図5または図4cのステップ155~157の文脈で論じられたものと同じDFT分析である。
次に、ブロック452に示されるように、各周波数ビンに対して相互相関が実施される。
したがって、相互相関スペクトルは、左チャネルおよび右チャネルのスペクトル範囲全体に対して取得される。
次に、ステップ453において、スペクトル平坦度測度が、LおよびRの大きさスペクトルから計算され、ステップ454において、より大きいスペクトル平坦度測度が選択される。しかしながら、ステップ454での選択は、必ずしも大きい方の選択である必要はなく、両方のチャネルからの単一のSFMのこの決定はまた、左チャネルのみまたは右チャネルのみの選択および計算であってもよく、または両方のSFM値の加重平均の計算であってもよい。
ステップ455において、次に、相互相関スペクトルが、スペクトル平坦度測度に応じて経時的に平滑化される。
好ましくは、スペクトル平坦度測度は、大きさスペクトルの幾何平均を大きさスペクトルの算術平均によって除算することによって計算される。したがって、SFMの値は0と1との間に制限される。
次に、ステップ456において、平滑化相互相関スペクトルがその大きさによって正規化され、ステップ457において、正規化および平滑化された相互相関スペクトルの逆DFTが計算される。ステップ458において、特定の時間領域フィルタが好ましくは実施されるが、この時間領域フィルタリングはまた、実施態様に応じて除外することができるが、後で概説されるように好ましい。
ステップ459において、ITD推定は、フィルタ一般化相互相関関数のピークピッキングによって、および特定の閾値化動作を実施することによって実施される。
閾値を超えるピークが得られない場合、ITDはゼロに設定され、この対応するブロックの時間整合は実施されない。
ITDの計算は、次のように要約することもできる。相互相関は、スペクトル平坦度測度に応じて平滑化される前に、周波数領域において計算される。SFMは0と1との間に制限される。雑音様信号の場合、SFMは高くなり(すなわち約1)、平滑化は弱くなる。トーン様信号の場合、SFMは低くなり、平滑化は強くなる。次に、平滑化相互相関は、時間領域に変換し戻される前に、その振幅によって正規化される。正規化は相互相関の位相変換に対応し、低雑音および比較的高い反響環境において通常の相互相関よりも良好な性能を示すことが知られている。そのようにして得られた時間領域関数は、最初に、よりロバストなピークピーキングを達成するためにフィルタリングされる。最大振幅に対応するインデックスは、左チャネルと右チャネルとの間の時間差(ITD)の推定値に対応する。最大値の振幅が所与の閾値よりも低い場合、ITDの推定値は信頼できるとは見なされず、ゼロに設定される。
時間領域において時間整合が適用される場合、ITDは別個のDFT分析において計算される。シフトは以下のように行われる。
Figure 0007204774000049
これには符号化器における追加の遅延が必要であり、これは、最大で処理可能な最大絶対ITDと等しい。ITDの経時的な変動は、DFTの分析ウィンドウイングによって平滑化される。
代替的に、時間整合が周波数領域において実施されてもよい。この場合、ITD計算および循環シフトは同じDFTドメインにおいて行われ、ドメインはこの他のステレオ処理と共有される。循環シフトは以下によって与えられる。
Figure 0007204774000050
循環シフトによって時間シフトをシミュレートするには、DFTウィンドウのゼロパディングが必要である。ゼロパディングのサイズは、処理可能な最大絶対ITDに対応する。好ましい実施形態では、ゼロパディングは、両端に3.125ミリ秒のゼロを追加することによって、分析ウィンドウの両側で均一に分割される。その場合、可能な最大絶対ITDは6.25msである。A-Bマイクロフォン設定では、これは最悪の場合、2つのマイクロフォン間の約2.15メートルの最大距離に対応する。ITDの経時的な変動は、合成ウィンドウイングおよびDFTの重畳加算によって平滑化される。
時間シフトの後に、シフトされた信号のウィンドウイングが行われることが重要である。これは、時間シフトがウィンドウイングされた信号に適用されるが、合成段階ではそれ以上ウィンドウイングされない、従来技術のバイノーラルキュー符号化(BCC)との主な違いである。結果として、ITDの経時的な変化は、復号された信号に人為的な過渡/クリックを生成する。
4.IPDの計算およびチャネル回転
IPDは、2つのチャネルを時間整合した後に計算され、これは、ステレオ構成に応じて、各パラメータ帯域、または少なくとも最大で所与の
Figure 0007204774000051
に対して計算される。
Figure 0007204774000052
次に、IPDが2つのチャネルに、それらの位相を整合させるために適用される。
Figure 0007204774000053
式中、
Figure 0007204774000054

Figure 0007204774000055
であり、bは、周波数インデックスkが属するパラメータ帯域インデックスである。パラメータ
Figure 0007204774000056
は、位相を整合させながら、2つのチャネル間で位相回転の量を分散させる役割を果たす。
Figure 0007204774000057
は、IPDだけでなく、チャネルの相対振幅レベルILDにも依存する。チャネルの振幅が大きい場合、そのチャネルは先行チャネルと見なされ、振幅のより小さいチャネルよりも位相回転の影響を受けにくくなる。
5.和差およびサイド信号符号化
和差変換は、エネルギーがミッド信号において保存されるように、2つのチャネルの時間および位相整合したスペクトルに対して実施される。
Figure 0007204774000058
式中、
Figure 0007204774000059
は1/1.2~1.2の範囲、すなわち-1.58~+1.58dBに制限される。この制限により、MおよびSのエネルギーを調整する際のアーティファクトが回避される。時間および位相が事前に整合されている場合、このエネルギー節約はそれほど重要ではないことに留意されたい。代替的に、境界は増減されてもよい。
サイド信号Sは、さらにMによって予測される。
Figure 0007204774000060
式中、
Figure 0007204774000061
であり、式中、
Figure 0007204774000062
である。代替的に、前の式で推定された残差およびILDの平均二乗誤差(MSE)を最小化することにより、最適な予測利得gを求めることができる。
残差信号
Figure 0007204774000063
は、Mの遅延スペクトルによって予測するか、または、MDCTドメインのMDCTドメインにおいて直接符号化するかの2つの手段によってモデル化することができる。
6.ステレオ復号
ミッド信号Xおよびサイド信号Sは、最初に以下のように左右のチャネルLおよびRに変換される。
Figure 0007204774000064
Figure 0007204774000065

ここで、パラメータ帯域あたりの利得gはILDパラメータから導出される。
Figure 0007204774000066
式中、
Figure 0007204774000067
である。
cod_max_band未満のパラメータ帯域について、2つのチャネルは復号サイド信号によって更新される。
Figure 0007204774000068
Figure 0007204774000069

より高いパラメータ帯域について、サイド信号が予測され、チャネルが以下のように更新される。
Figure 0007204774000070
Figure 0007204774000071

最後に、チャネルがステレオ信号の元のエネルギーおよびチャネル間位相を復元することを目的として複素数値と乗算される。
Figure 0007204774000072
Figure 0007204774000073

式中、
Figure 0007204774000074
ここで、aは前に定義されたように定義され、制限され、式中、
Figure 0007204774000075
であり、atan2(x,y)は、yに対するxの4象限逆正接である.
最後に、チャネルは、送信ITDに応じて、時間領域または周波数領域のいずれかで時間シフトされる。時間領域チャネルは、逆DFTおよび重畳加算によって合成される。
本発明の特定の特徴は、空間キューと和差ジョイントステレオ符号化との組み合わせに関する。具体的には、空間キューIDTおよびIPDが計算され、ステレオチャネル(左および右)上で適用される。さらに、和差(M/S信号)が計算され、好ましくは、MによるSの予測が適用される。
復号器側では、広帯域および狭帯域の空間キューが、和差ジョイントステレオ符号化と組み合わされる。特に、サイド信号は、ILDなどの少なくとも1つの空間キューを使用してミッド信号を用いて予測され、左右のチャネルを取得するために逆和差が計算され、さらに、広帯域および狭帯域の空間キューが左右のチャネルに適用される。
好ましくは、符号化器は、ITDを使用して処理した後、時間整合されたチャネルに関してウィンドウおよび重畳加算を有する。さらに、復号器は、チャネル間時間差を適用した後、チャネルのシフトまたは脱整合されたバージョンのウィンドウイングおよび重畳加算演算をさらに有する。
GCC-Phat法によるチャネル間時間差の計算は、特にロバストな方法である。
新規の手順は、ステレオオーディオまたはマルチチャネルオーディオのビットレート符号化を低遅延で達成するため、従来技術よりも有利である。これは、入力信号の種々の性質、および、マルチチャネルまたはステレオ録音のさまざまな設定に対してロバストであるように特別に設計されている。特に、本発明は、低ビットレートのステレオ音声符号化について良好な品質を提供する。
好ましい手順は、所与の低ビットレートで一定の知覚品質を備えた、発話および音楽などのすべてのタイプのステレオまたはマルチチャネルオーディオコンテンツの放送の配信に用途を見出す。このような適用分野は、デジタルラジオ、インターネットストリーミング、またはオーディオ通信用途である。
本発明はいくつかの実施形態に関して説明されてきたが、本発明の範囲内に入る変更、置換、および同等物が存在する。本発明の方法および組成物を実施する多くの代替方法があることにも留意されたい。したがって、添付の特許請求の範囲は、本発明の真の思想および範囲内にあるようなすべてのそのような変更、置換および同等物を含むと解釈されることが意図される。
いくつかの態様が装置の文脈において説明されているが、これらの態様は対応する方法の説明をも表すことは明らかであり、ブロックまたはデバイスが、方法ステップまたは方法ステップの特徴に対応する。同様に、方法ステップの文脈において説明されている態様は、対応する装置の対応するブロックまたはアイテムまたは特徴の説明をも表す。方法ステップのいくつかまたはすべては、たとえば、マイクロプロセッサ、プログラム可能コンピュータまたは電子回路のようなハードウェア装置によって(またはハードウェア装置を使用して)実行されてもよい。いくつかの実施形態において、最も重要な方法ステップのいずれか1つまたは複数は、そのような装置によって実行されてもよい。
本発明の符号化イメージ信号は、デジタル記憶媒体上に記憶することができ、または、インターネットのような、無線伝送媒体または有線伝送媒体のような伝送媒体上で送信することができる。
特定の実施要件に応じて、本発明の実施形態は、ハードウェアまたはソフトウェアにおいて実施態様することができる。実施態様は、それぞれの方法が実施されるようにプログラム可能コンピュータシステムと協働する(または協働することが可能である)、電子可読制御信号を記憶されているデジタル記憶媒体、たとえば、フロッピーディスク、DVD、Blu-Ray、CD、ROM、PROM、EPROM、EEPROMまたはフラッシュメモリを使用して実施することができる。それゆえ、デジタル記憶媒体は、コンピュータ可読であってもよい。
本発明によるいくつかの実施形態は、本明細書に記載されている方法の1つが実施されるように、プログラム可能コンピュータシステムと協働することが可能である、電子可読制御信号を有するデータキャリアを含む。
一般的に、本発明の実施形態は、プログラムコードを有するコンピュータプログラム製品として実装することができ、プログラムコードは、コンピュータプログラム製品がコンピュータ上で作動すると、方法の1つを実施するように動作可能である。プログラムコードは、たとえば、機械可読キャリア上に記憶されてもよい。
他の実施形態は、機械可読キャリア上に記憶されている、本明細書に記載されている方法の1つを実施するためのコンピュータプログラムを含む。
言い換えれば、本発明の方法の一実施形態は、それゆえ、コンピュータプログラムがコンピュータ上で作動すると、本明細書に記載されている方法の1つを実施するためのプログラムコードを有するコンピュータプログラムである。
それゆえ、本発明の方法のさらなる実施形態は、本明細書に記載されている方法の1つを実施するためのコンピュータプログラムを記録されて含むデータキャリア(またはデジタル記憶媒体、もしくはコンピュータ可読媒体)である。データキャリア、デジタル記憶媒体または記録媒体は一般的に、有形かつ/または非一時的である。
それゆえ、本発明の方法のさらなる実施形態は、本明細書に記載されている方法の1つを実施するためのコンピュータプログラムを表すデータストリームまたは信号系列である。データストリームまたは信号系列は、たとえば、データ通信接続、たとえば、インターネットを介して転送されるように構成されてもよい。
さらなる実施形態は、本明細書に記載されている方法の1つを実施するように構成または適合されている処理手段、たとえば、コンピュータまたはプログラム可能論理デバイスを含む。
さらなる実施形態は、本明細書に記載されている方法の1つを実施するためのコンピュータプログラムをインストールされているコンピュータを含む。
本発明によるさらなる実施形態は、本明細書に記載されている方法のうちの1つを実施するためのコンピュータプログラムを受信機に(たとえば、電子的にまたは光学的に)転送するように構成されている装置またはシステムを含む。受信機は、たとえば、コンピュータ、モバイルデバイス、メモリデバイスなどであってもよい。装置またはシステムは、たとえば、コンピュータプログラムを受信機に転送するためのファイルサーバを含んでもよい。
いくつかの実施形態において、プログラム可能論理デバイス(たとえば、フィールドプログラマブルゲートアレイ)が、本明細書に記載されている方法の機能のいくつかまたはすべてを実施するために使用されてもよい。いくつかの実施形態において、フィールドプログラマブルゲートアレイは、本明細書に記載されている方法の1つを実施するためにマイクロプロセッサと協働してもよい。一般的に、方法は、任意のハードウェア装置によって実施されることが好ましい。
本明細書において説明する装置は、ハードウェア装置を使用して、またはコンピュータを使用して、またはハードウェア装置とコンピュータとの組合せを使用して実施することができる。
本明細書において説明する方法は、ハードウェア装置を使用して、またはコンピュータを使用して、またはハードウェア装置とコンピュータとの組合せを使用して実施することができる。
上述した実施形態は、本発明の原理の例示にすぎない。本明細書に記載されている構成および詳細の修正および変形が当業者には了解されることが理解される。それゆえ、本明細書において実施形態の記述および説明として提示されている特定の詳細によってではなく、添付の特許請求項の範囲にみによって限定されることが意図されている。
参考文献
[1] Patent application. “Apparatus and Method for Estimating an Inter-Channel Time Difference.” International Application Number PCT/EP2017/051214
[2] Knapp, Charles, and Glifford Carter. “The generalized correlation method for estimation of time delay.” IEEE Transactions on Acoustics, Speech, and Signal Processing 24.4 (1976): 320-327
[3] Zhang, Cha, Dinei Florencio, and Zhengyou Zhang. “Why does PHAT work well in low-noise, reverberative environments?” Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on. IEEE, 2008
[4] Rabinkin, Daniel V., et al. “DSP implementation of source location using microphone arrays.” Advanced signal processing algorithms, architectures, and implementations VI. Vol. 2846. International Society for Optics and Photonics, 1996
[5] Shen, Miao, and Hong Liu. “A modified cross power-spectrum phase method based on microphone array for acoustic source localization.” Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International Conference on. IEEE, 2009
[6] 3GPP TS 26.445; Codec for Enhanced Voice Services (EVS); Detailed algorithmic description.

Claims (30)

  1. 第1のチャネル信号と第2のチャネル信号との間のチャネル間時間差を推定するための装置であって、
    前記第1のチャネル信号もしくは前記第2のチャネル信号または両方の信号または前記第1のチャネル信号もしくは前記第2のチャネル信号から導出される信号の信号特性(1038)を推定するための信号分析器(1037)と、
    時間ブロック内の前記第1のチャネル信号および前記時間ブロック内の前記第2のチャネル信号から前記時間ブロックの相互相関スペクトルを計算するための計算器(1020)と、
    前記信号分析器(1037)によって推定されている信号特性に応じて、第1の重み付け手順(1036a)または第2の重み付け手順(1036b)を使用して、重み付き相互相関スペクトルを得るために、平滑化または非平滑化相互相関スペクトルを重み付けするための重み付け手段(1036)であり、前記第1の重み付け手順は、前記第2の重み付け手順とは異なり、前記第1の重み付け手順(1036a)は、振幅が正規化され、位相が維持されるような重み付けを含み、前記第2の重み付け手順(1036b)は、指数が1未満または0より大きいべき乗演算または対数関数を使用して前記平滑化または非平滑化相互相関スペクトルから導出される重み付け係数を含む、重み付け手段(1036)と、
    前記チャネル間時間差を取得するために前記重み付き相互相関スペクトルを処理するためのプロセッサ(1040)と
    を備える、装置。
  2. 前記信号分析器(1037)が、前記第1のチャネル信号もしくは前記第2のチャネル信号または両方の信号または前記第1のチャネル信号もしくは前記第2のチャネル信号から導出される信号の雑音レベル(1038)を推定するための雑音推定器(1037)として構成され、第1の信号特性が第1の雑音レベルであり、第2の信号特性が第2の雑音レベルであり、または、前記信号分析器(1037)が、信号が第1の特性または第2の特性を有するかを判断するために、発話/音楽分析、干渉話者分析、背景音楽分析、明瞭発話分析、または任意の他の信号分析を実施するように構成されている、請求項1に記載の装置。
  3. 前記第1の重み付け手順(1036a)が第1の信号特性に対して選択され、前記第2の重み付け手順(1036b)が第2の信号特性に対して選択され、前記第1の信号特性が前記第2の信号特性とは異なる、請求項1に記載の装置。
  4. 前記第2の重み付け手順(1036b)は、振幅が正規化され、位相が維持されるような重み付けを含み、加えて、指数が1未満または0より大きい、または、0.79~0.82である、べき乗演算を使用して前記平滑化または非平滑化相互相関スペクトルから導出される重み付け係数を含む、請求項1~のいずれか一項に記載の装置。
  5. 前記第1の重み付け手順(1036a)が以下の式に従って動作し、
    Figure 0007204774000076
    、または
    前記第2の重み付け手順(1036b)が以下の式に従って動作し、
    Figure 0007204774000077
    Figure 0007204774000078
    は、前記第1の重み付け手順を適用することによって得られる周波数インデックスkおよび時間インデックスsの重み付けされた平滑化または非平滑化相互相関スペクトル値であり、
    Figure 0007204774000079
    は、前記第2の重み付け手順を適用することによって得られる周波数インデックスkおよび時間インデックスsの重み付けされた平滑化または非平滑化相互相関スペクトル値であり、
    Figure 0007204774000080
    は、周波数インデックスkおよび時間インデックスsの平滑化または非平滑化相互相関スペクトル値であり、
    Figure 0007204774000081
    は1とは異なる指数値である、
    請求項1~のいずれか一項に記載の装置。
  6. 前記第2の重み付け手順(1036b)は、2の正規化手順の出力範囲が、1の正規化手順の出力範囲が位置決めされる範囲内にあるような、または、前記第2の正規化手順の出力範囲が、前記第1の正規化手順の出力範囲と同じであるような、正規化を含む、請求項1~のいずれか一項に記載の装置。
  7. 前記第2の重み付け手順(1036b)が、以下の式、すなわち、
    Figure 0007204774000082
    に基づく正規化を含み、
    前記式の左側にある
    Figure 0007204774000083
    は、特定のkと特定のsの正規化された相互相関結果を表し、前記式の右側にある
    Figure 0007204774000084
    は、特定のkと特定のsの正規化前の相互相関結果を表し、sはフレームインデックスであり、kは周波数インデックスであり、
    Figure 0007204774000085
    はDFT長である、請求項1~のいずれか一項に記載の装置。
  8. 前記プロセッサ(1040)が、前記第1の重み付け手順(1036a)または前記第2の重み付け手順(1036b)が使用されているかに応じて、第1のピークピッキング動作(1041)または第2のピークピッキング動作(1042)を実施するように構成されており、前記第1のピークピッキング動作は、前記第2のピークピッキング動作とは異なる、請求項1~のいずれか一項に記載の装置。
  9. 前記第2の重み付け手順が使用されるときに前記第2のピークピッキング動作(1042)が使用され、前記第2のピークピッキング動作(1042)が、前記第1のピークピッキング動作(1041)によって使用される第1の閾値よりも低い第2の閾値を適用するように構成されている、請求項に記載の装置。
  10. 前記雑音推定器(1037)は、背景雑音のレベルを推定するように構成されており(1060)、または、推定雑音レベルを経時的に平滑化するように構成されており(1061)、またはIIR平滑化フィルタを使用するように構成されている、請求項2および請求項2に戻って引用する場合の請求項3のいずれか一項に記載の装置。
  11. 前記雑音推定器(1037)は、前記時間ブロックをアクティブまたは非アクティブとして分類するための信号活動検出器(1070)をさらに備え、前記雑音推定器(1037)は、1つまたは複数のアクティブな時間ブロックを使用して信号レベルを計算する(1072)ように構成されており、または、前記雑音推定器(1037)は、信号対雑音比が閾値を下回る場合に、高い背景雑音レベルをシグナリングする(1050)するように構成されており、前記閾値が45~25dBの範囲にある、請求項2および請求項2に戻って引用する場合の請求項310のいずれか一項に記載の装置。
  12. 前記時間ブロックの前記第1のチャネル信号または前記第2のチャネル信号のスペクトルの特性を推定するためのスペクトル特性推定器(1010)と、
    平滑化相互相関スペクトルを取得するために、前記スペクトル特性を使用して経時的に前記相互相関スペクトルを平滑化するための平滑化フィルタ(1030)と
    を備え、前記重み付け手段(1036)は、前記平滑化相互相関スペクトルを重み付けするように構成されている、
    請求項1~11のいずれか一項に記載の装置。
  13. 前記プロセッサ(1040)は、前記平滑化相互相関スペクトルの大きさを使用して、前記平滑化相互相関スペクトルを正規化する(1036a)ように構成されている、請求項1~12のいずれか一項に記載の装置。
  14. 前記プロセッサ(1040)は、
    前記平滑化相互相関スペクトルまたは正規化された平滑化相互相関スペクトルの時間領域表現を計算し(1031)、
    前記チャネル間時間差を決定するために、前記時間領域表現を分析する(1032)ように構成されている、
    請求項1~13のいずれか一項に記載の装置。
  15. 前記プロセッサ(1040)は、前記時間領域表現をローパスフィルタリングし(458)、前記ローパスフィルタリングの結果をさらに処理する(1033)ように構成されている請求項14に記載の装置。
  16. 前記プロセッサ(1040)は、前記平滑化相互相関スペクトルから決定される時間領域表現内でピーク探索またはピークピッキング動作(1041、1042)を実施することによって前記チャネル間時間差決定を実施するように構成されている、請求項1~15のいずれか一項に記載の装置。
  17. 前記スペクトル特性推定器(1010)は、前記スペクトル特性として、前記スペクトルの雑音性またはトーン性を決定するように構成されており、
    前記平滑化フィルタ(1030)は、第1の雑音の少ない特性もしくは第1のよりトーン性の高い特性の場合に第1の平滑化度によって経時的により強い平滑化を適用するように、または、第2の雑音の多い特性または第2のよりトーン性の低い特性の場合に第2の平滑化度によって経時的により弱い平滑化を適用するように構成されており、
    前記第1の平滑化度は前記第2の平滑化度よりも大きく、前記第1の雑音の少ない特性は前記第2の雑音の多い特性よりも雑音が少ないか、または、前記第1のよりトーン性の高い特性は、前記第2のよりトーン性の低い特性よりもトーン性が高い、
    請求項1216のいずれか一項に記載の装置。
  18. 前記スペクトル特性推定器(1010)は、前記スペクトル特性として、前記第1のチャネル信号のスペクトルの第1のスペクトル平坦度測度および前記第2のチャネル信号の第2のスペクトルの第2のスペクトル平坦度測度を計算し、前記第1のスペクトル平坦度測度および前記第2のスペクトル平坦度測度から最大値を選択するか、前記第1のスペクトル平坦度測度と前記第2のスペクトル平坦度測度との間の加重平均もしくは非加重平均を決定するか、または前記第1のスペクトル平坦度測度および前記第2のスペクトル平坦度測度から最小値を選択することにより、前記第1のスペクトル平坦度測度および前記第2のスペクトル平坦度測度から前記スペクトル特性を決定するように構成されている、請求項1217のいずれか一項に記載の装置。
  19. 前記平滑化フィルタ(1030)は、前記時間ブロックからの周波数の前記相互相関スペクトル値と、少なくとも1つの過去の時間ブロックからの前記周波数の相互相関スペクトル値との重み付け組み合わせによって、前記周波数の平滑化相互相関スペクトル値を計算するように構成されており、前記重み付け組み合わせの重み付け係数は、前記スペクトルの前記特性によって決定される、請求項1218のいずれか一項に記載の装置。
  20. 前記プロセッサ(1040)は、前記重み付けされた平滑化または非平滑化相互相関スペクトルから導出される時間領域表現内の有効範囲および無効範囲を決定するように構成されており(1120)、
    前記無効範囲内の少なくとも1つの最大ピークが検出され(1121)、前記有効範囲内の最大ピークと比較され(1123)、前記チャネル間時間差は、前記有効範囲内の前記最大ピークが前記無効範囲内の少なくとも1つの最大ピークよりも大きいときにのみ決定される(1124)、
    請求項1~19のいずれか一項に記載の装置。
  21. 前記プロセッサ(1040)は、
    前記平滑化相互相関スペクトルから導出された時間領域表現内でピーク検索動作を実施し(1102)、
    前記時間領域表現から可変閾値の変数を決定し(1105)、
    ピークを可変閾値と比較する(1106、1035)ように構成されており、前記チャネル間時間差は、ピークが前記可変閾値と所定の関係にあることに関連するタイムラグとして決定される、
    請求項1~20のいずれか一項に記載の装置。
  22. 前記プロセッサ(1040)は、前記可変閾値を、前記時間領域表現の値の10%などの最大部分の中の値の整数倍に等しい値として決定する(1105)ように構成されている、請求項21に記載の装置。
  23. 前記プロセッサ(1040)は、前記平滑化相互相関スペクトルから導出される時間領域表現の複数のサブブロックの各サブブロックにおける最大ピーク振幅を決定する(1102)ように構成されており、
    前記プロセッサ(1040)は、前記複数のサブブロックの前記最大ピークの大きさから導出される(1103)平均ピークの大きさに基づいて可変閾値を計算する(1105、1034)ように構成されており、
    前記プロセッサ(1140)は、前記チャネル間時間差を、前記可変閾値よりも大きい前記複数のサブブロックの最大ピークに対応するタイムラグ値として決定するように構成されている、
    請求項1~22のいずれか一項に記載の装置。
  24. 前記プロセッサ(1140)は、前記平均ピークの大きさと値との乗算によって前記可変閾値を計算する(1105)ように構成されており、前記平均ピークの大きさは、前記複数のサブブロックの前記最大ピークの大きさの平均として決定され、
    前記値は、前記第1のチャネル信号および前記第2のチャネル信号に特徴的なSNR(信号対雑音比)によって決定され、第1の値は、第1のSNR値に関連付けられ、第2の値は、第2のSNR値に関連付けられ、前記第1の値は前記第2の値よりも大きく、前記第1のSNR値は前記第2のSNR値よりも大きい、
    請求項23に記載の装置。
  25. 前記プロセッサは、第3のSNR値が前記第2のSNR値よりも低い場合、および前記閾値と最大ピークとの間の差が所定の値よりも低い場合に、前記第2の値(alow)よりも低い第3の値(alowest)を使用する(1104)ように構成されている、請求項24に記載の装置。
  26. 前記雑音推定器(1037)が、背景雑音推定値を提供するための背景雑音推定器(1060)および時間平滑化手段(1061)を備え、または
    前記雑音推定器(1037)は、信号活動検出器(1070)、前記信号活動検出器(1070)の制御下でのみアクティブなフレームを選択するためのフレームセレクタ(1071)、および前記アクティブなフレーム内の信号レベルを計算するための信号レベル計算器(1072)、および前記信号レベル計算器(1072)の結果を経時的に平滑化して信号レベル推定値を提供するための時間平滑化手段(1073)を備え、または
    前記雑音推定器(1037)は、フレームの平滑化または非平滑化信号レベルおよび平滑化または非平滑化背景雑音レベルから信号対雑音比を計算する(1074)ように構成されており、コンパレータ(1075)が、前記フレームの雑音レベル(1038、1050)を提供するために、前記信号対雑音比を前記フレームの閾値と比較する、
    請求項2および請求項2に戻って引用する場合の請求項325のいずれか一項に記載の装置。
  27. 前記装置は、
    前記推定チャネル間時間差の保存もしくは送信を実施し、または
    前記推定チャネル間時間差を使用して、前記第1のチャネル信号および前記第2のチャネル信号のステレオもしくはマルチチャネル処理もしくは符号化を実施し、または
    前記チャネル間時間差を使用して前記2つのチャネル信号の時間整合を実施し、または
    前記推定チャネル間時間差を使用して到来時間差推定を実施し、または
    2つのマイクロフォンおよび既知のマイクロフォン設定を有する部屋の中の話者位置を決定するために前記チャネル間時間差を使用して到来時間差推定を実施し、または
    前記推定チャネル間時間差を使用してビームフォーミングを実施し、または
    前記推定チャネル間時間差を使用して空間フィルタリングを実施し、または
    前記推定チャネル間時間差を使用して前景または背景分解を実施し、または
    前記推定チャネル間時間差を使用して音源の位置特定動作を実施し、または
    前記第1のチャネル信号と前記第2のチャネル信号との間、または、前記第1のチャネル信号と、前記第2のチャネル信号と、少なくとも1つの追加の信号との間の時間差に基づいて音響三角測量を実施することにより、前記推定チャネル間時間差を使用して音源の位置特定を実施するように構成されている、
    請求項1~26のいずれか一項に記載の装置。
  28. 第1のチャネル信号と第2のチャネル信号との間のチャネル間時間差を推定するための方法であって、
    前記第1のチャネル信号もしくは前記第2のチャネル信号または両方の信号または前記第1のチャネル信号もしくは前記第2のチャネル信号から導出される信号の信号特性を推定することと、
    時間ブロック内の前記第1のチャネル信号および前記時間ブロック内の前記第2のチャネル信号から前記時間ブロックの相互相関スペクトルを計算することと、
    推定されている信号特性に応じて、第1の重み付け手順または第2の重み付け手順を使用して、重み付き相互相関スペクトルを得るために、平滑化または非平滑化相互相関スペクトルを重み付けすることであり、前記第1の重み付け手順は、前記第2の重み付け手順とは異なり、前記第1の重み付け手順は、振幅が正規化され、位相が維持されるような重み付けを含み、前記第2の重み付け手順は、指数が1未満または0より大きいべき乗演算または対数関数を使用して前記平滑化または非平滑化相互相関スペクトルから導出される重み付け係数を含む、重み付けすることと、
    前記チャネル間時間差を取得するために前記重み付き相互相関スペクトルを処理することと
    を含む、方法。
  29. 前記時間ブロックの前記第1のチャネル信号または前記第2のチャネル信号のスペクトルの特性を推定することと、
    平滑化相互相関スペクトルを取得するために前記スペクトル特性を使用して経時的に前記相互相関スペクトルを平滑化することと
    をさらに含み、前記重み付けは、前記平滑化相互相関スペクトルを重み付けする、
    請求項28に記載の方法。
  30. コンピュータまたはプロセッサ上で実施されるときに、請求項28または29に記載の方法を実施するためのコンピュータプログラム。
JP2020554532A 2018-04-05 2019-04-03 チャネル間時間差を推定するための装置、方法またはコンピュータプログラム Active JP7204774B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022210992A JP2023036893A (ja) 2018-04-05 2022-12-28 チャネル間時間差を推定するための装置、方法またはコンピュータプログラム

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP18165882.4 2018-04-05
EP18165882 2018-04-05
PCT/EP2019/058434 WO2019193070A1 (en) 2018-04-05 2019-04-03 Apparatus, method or computer program for estimating an inter-channel time difference

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022210992A Division JP2023036893A (ja) 2018-04-05 2022-12-28 チャネル間時間差を推定するための装置、方法またはコンピュータプログラム

Publications (2)

Publication Number Publication Date
JP2021519949A JP2021519949A (ja) 2021-08-12
JP7204774B2 true JP7204774B2 (ja) 2023-01-16

Family

ID=61965696

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020554532A Active JP7204774B2 (ja) 2018-04-05 2019-04-03 チャネル間時間差を推定するための装置、方法またはコンピュータプログラム
JP2022210992A Pending JP2023036893A (ja) 2018-04-05 2022-12-28 チャネル間時間差を推定するための装置、方法またはコンピュータプログラム

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022210992A Pending JP2023036893A (ja) 2018-04-05 2022-12-28 チャネル間時間差を推定するための装置、方法またはコンピュータプログラム

Country Status (18)

Country Link
US (2) US11594231B2 (ja)
EP (3) EP3776541B1 (ja)
JP (2) JP7204774B2 (ja)
KR (1) KR102550424B1 (ja)
CN (2) CN118283489A (ja)
AR (1) AR117567A1 (ja)
AU (1) AU2019249872B2 (ja)
BR (1) BR112020020457A2 (ja)
CA (1) CA3095971C (ja)
ES (1) ES2909343T3 (ja)
MX (1) MX2020010462A (ja)
PL (1) PL3776541T3 (ja)
PT (1) PT3776541T (ja)
RU (1) RU2762302C1 (ja)
SG (1) SG11202009801VA (ja)
TW (1) TWI714046B (ja)
WO (1) WO2019193070A1 (ja)
ZA (1) ZA202006125B (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11418879B2 (en) * 2020-05-13 2022-08-16 Nxp B.V. Audio signal blending with beat alignment
CN113948098A (zh) * 2020-07-17 2022-01-18 华为技术有限公司 一种立体声音频信号时延估计方法及装置
CN116075889A (zh) * 2020-08-31 2023-05-05 弗劳恩霍夫应用研究促进协会 依赖混合噪声信号的多声道信号产生器、音频编码器及相关方法
CN112242150B (zh) * 2020-09-30 2024-04-12 上海佰贝科技发展股份有限公司 一种检测立体声的方法及其系统
CN117501361A (zh) * 2021-06-15 2024-02-02 瑞典爱立信有限公司 用于重合立体声捕获的声道间时差(itd)估计器的提高的稳定性
WO2023038637A1 (en) * 2021-09-13 2023-03-16 Luminous Computing, Inc. Optical filter system and method of operation
CN114324972B (zh) * 2022-01-10 2022-09-13 浙江大学 一种适用于流体互相关测速的自适应广义互相关时延估计方法
WO2024053353A1 (ja) * 2022-09-08 2024-03-14 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 信号処理装置、及び、信号処理方法
WO2024202972A1 (ja) * 2023-03-29 2024-10-03 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ チャネル間時間差推定装置、及び、チャネル間時間差推定方法
WO2024202997A1 (ja) * 2023-03-29 2024-10-03 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ チャネル間時間差推定装置、及び、チャネル間時間差推定方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013097273A (ja) 2011-11-02 2013-05-20 Toyota Motor Corp 音源推定装置、方法、プログラム、及び移動体
WO2017125563A1 (en) 2016-01-22 2017-07-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for estimating an inter-channel time difference

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5434948A (en) 1989-06-15 1995-07-18 British Telecommunications Public Limited Company Polyphonic coding
US7116787B2 (en) * 2001-05-04 2006-10-03 Agere Systems Inc. Perceptual synthesis of auditory scenes
US7720230B2 (en) * 2004-10-20 2010-05-18 Agere Systems, Inc. Individual channel shaping for BCC schemes and the like
US7573912B2 (en) 2005-02-22 2009-08-11 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschunng E.V. Near-transparent or transparent multi-channel encoder/decoder scheme
KR20080066537A (ko) * 2007-01-12 2008-07-16 엘지전자 주식회사 부가정보를 가지는 오디오신호의 부호화/복호화 방법 및장치
GB2453117B (en) * 2007-09-25 2012-05-23 Motorola Mobility Inc Apparatus and method for encoding a multi channel audio signal
MX2010004220A (es) 2007-10-17 2010-06-11 Fraunhofer Ges Forschung Codificacion de audio usando mezcla descendente.
KR101405956B1 (ko) * 2007-12-28 2014-06-12 엘지전자 주식회사 오디오 신호 처리 방법 및 장치
BRPI0908630B1 (pt) 2008-05-23 2020-09-15 Koninklijke Philips N.V. Aparelho de 'upmix' estéreo paramétrico, decodificador estéreo paramétrico, método para a geração de um sinal esquerdo e de um sinal direito a partir de um sinal de 'downmix' mono com base em parâmetros espaciais, dispositivo de execução de áudio, aparelho de 'downmix' estéreo paramétrico, codificador estéreo paramétrico, método para a geração de um sinal residual de previsão para um sinal de diferença a partir de um sinal esquerdo e de um sinal direito com base nos parâmetros espaciais, e, produto de programa de computador
WO2010037426A1 (en) * 2008-10-03 2010-04-08 Nokia Corporation An apparatus
CN102292767B (zh) * 2009-01-22 2013-05-08 松下电器产业株式会社 立体声音响信号编码装置、立体声音响信号解码装置及它们的编解码方法
KR101433701B1 (ko) * 2009-03-17 2014-08-28 돌비 인터네셔널 에이비 적응형으로 선택가능한 좌/우 또는 미드/사이드 스테레오 코딩과 파라메트릭 스테레오 코딩의 조합에 기초한 진보된 스테레오 코딩
CN101848412B (zh) * 2009-03-25 2012-03-21 华为技术有限公司 通道间延迟估计的方法及其装置和编码器
CN102157152B (zh) * 2010-02-12 2014-04-30 华为技术有限公司 立体声编码的方法、装置
PL2671222T3 (pl) * 2011-02-02 2016-08-31 Ericsson Telefon Ab L M Określanie międzykanałowej różnicy czasu wielokanałowego sygnału audio
US9253574B2 (en) * 2011-09-13 2016-02-02 Dts, Inc. Direct-diffuse decomposition
JP2015517121A (ja) * 2012-04-05 2015-06-18 ホアウェイ・テクノロジーズ・カンパニー・リミテッド インターチャネル差分推定方法及び空間オーディオ符号化装置
US9460729B2 (en) * 2012-09-21 2016-10-04 Dolby Laboratories Licensing Corporation Layered approach to spatial audio coding
EP2980789A1 (en) * 2014-07-30 2016-02-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for enhancing an audio signal, sound enhancing system
EP3165000A4 (en) * 2014-08-14 2018-03-07 Rensselaer Polytechnic Institute Binaurally integrated cross-correlation auto-correlation mechanism
CN106033671B (zh) * 2015-03-09 2020-11-06 华为技术有限公司 确定声道间时间差参数的方法和装置
CN107742521B (zh) * 2016-08-10 2021-08-13 华为技术有限公司 多声道信号的编码方法和编码器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013097273A (ja) 2011-11-02 2013-05-20 Toyota Motor Corp 音源推定装置、方法、プログラム、及び移動体
WO2017125563A1 (en) 2016-01-22 2017-07-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for estimating an inter-channel time difference

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KNAPP, Charles H.,The Generalized Correlation Method for Estimation of Time Delay,IEEE TRANSACTIONS ON ACOUSTIC, SPEECH, AND SIGNAL PROCESSING,VOL. ASSP-24, NO.4,米国,IEEE,1976年08月,pp.320-327

Also Published As

Publication number Publication date
WO2019193070A1 (en) 2019-10-10
AU2019249872B2 (en) 2021-11-04
EP3985665A1 (en) 2022-04-20
TWI714046B (zh) 2020-12-21
KR102550424B1 (ko) 2023-07-04
JP2021519949A (ja) 2021-08-12
PL3776541T3 (pl) 2022-05-23
CN112262433A (zh) 2021-01-22
ZA202006125B (en) 2022-07-27
AU2019249872A1 (en) 2020-11-12
CA3095971C (en) 2023-04-25
PT3776541T (pt) 2022-03-21
JP2023036893A (ja) 2023-03-14
CN112262433B (zh) 2024-03-01
SG11202009801VA (en) 2020-11-27
US20210012784A1 (en) 2021-01-14
US11594231B2 (en) 2023-02-28
MX2020010462A (es) 2020-10-22
TW202004734A (zh) 2020-01-16
US20230169985A1 (en) 2023-06-01
CN118283489A (zh) 2024-07-02
KR20200140864A (ko) 2020-12-16
EP4435783A2 (en) 2024-09-25
CA3095971A1 (en) 2019-10-10
EP3776541A1 (en) 2021-02-17
ES2909343T3 (es) 2022-05-06
RU2762302C1 (ru) 2021-12-17
AR117567A1 (es) 2021-08-18
EP3776541B1 (en) 2022-01-12
BR112020020457A2 (pt) 2021-01-12
EP3985665B1 (en) 2024-08-21

Similar Documents

Publication Publication Date Title
JP7161564B2 (ja) チャネル間時間差を推定する装置及び方法
JP7204774B2 (ja) チャネル間時間差を推定するための装置、方法またはコンピュータプログラム
RU2741379C1 (ru) Оборудование для кодирования или декодирования кодированного многоканального сигнала с использованием заполняющего сигнала, сформированного посредством широкополосного фильтра

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220126

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221228

R150 Certificate of patent or registration of utility model

Ref document number: 7204774

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150