JP7203431B2 - 電界効果調整可能イプシロンニアゼロ吸収装置 - Google Patents
電界効果調整可能イプシロンニアゼロ吸収装置 Download PDFInfo
- Publication number
- JP7203431B2 JP7203431B2 JP2019562651A JP2019562651A JP7203431B2 JP 7203431 B2 JP7203431 B2 JP 7203431B2 JP 2019562651 A JP2019562651 A JP 2019562651A JP 2019562651 A JP2019562651 A JP 2019562651A JP 7203431 B2 JP7203431 B2 JP 7203431B2
- Authority
- JP
- Japan
- Prior art keywords
- enz
- layer
- thickness
- layers
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000006096 absorbing agent Substances 0.000 title description 22
- 230000005669 field effect Effects 0.000 title description 7
- 238000010521 absorption reaction Methods 0.000 claims description 52
- 239000000463 material Substances 0.000 claims description 50
- 229910052751 metal Inorganic materials 0.000 claims description 25
- 239000002184 metal Substances 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 12
- 239000004065 semiconductor Substances 0.000 claims description 11
- 239000004020 conductor Substances 0.000 claims description 10
- 229910044991 metal oxide Inorganic materials 0.000 claims description 4
- 150000004706 metal oxides Chemical class 0.000 claims description 4
- 229910052723 transition metal Inorganic materials 0.000 claims description 4
- -1 transition metal nitride Chemical class 0.000 claims description 4
- 230000031700 light absorption Effects 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 70
- 238000010586 diagram Methods 0.000 description 44
- JAONJTDQXUSBGG-UHFFFAOYSA-N dialuminum;dizinc;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Zn+2].[Zn+2] JAONJTDQXUSBGG-UHFFFAOYSA-N 0.000 description 29
- 230000005284 excitation Effects 0.000 description 20
- 239000010408 film Substances 0.000 description 20
- 230000003287 optical effect Effects 0.000 description 15
- 238000009825 accumulation Methods 0.000 description 11
- 239000002356 single layer Substances 0.000 description 11
- 238000002310 reflectometry Methods 0.000 description 7
- 238000013461 design Methods 0.000 description 6
- 230000005684 electric field Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 238000000231 atomic layer deposition Methods 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000002052 molecular layer Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000000572 ellipsometry Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 101150099549 azo1 gene Proteins 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 239000003574 free electron Substances 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 229910052752 metalloid Inorganic materials 0.000 description 1
- 150000002738 metalloids Chemical class 0.000 description 1
- 239000002120 nanofilm Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000000985 reflectance spectrum Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/002—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/015—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/015—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
- G02F1/0155—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction modulating the optical absorption
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/072—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
- H01L31/0735—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2203/00—Function characteristic
- G02F2203/10—Function characteristic plasmon
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/544—Solar cells from Group III-V materials
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Solid State Image Pick-Up Elements (AREA)
Description
入射角度およびITO膜厚および波長の関数として、p-分極(TM)光吸収率が、図2A~図2Fに示される。吸収率は、IMDソフトウエアを用いて計算される。ITOの光学特性は、自由電子ドルーデモデル(Drude model)を用いてモデリングされる。強度のスケールバーは、多くの図の右にある。
図4Aは、電界効果調整可能なENZ層を有する金属酸化物半導体(MOS)構造の例の模式図である。調整可能な吸収は、電界効果により可能になる。MOS構造は、TCOを有する電子電界効果トランジスタに類似しても良い。金属とTCOとの間にバイアスを加えた場合、TCO-絶縁体界面のTCO中に電子蓄積が起きる。電子蓄積は、TCOの複雑な誘電体定数を変える、電子蓄積は、プラズマとENZ周波数を増加させ、それにより、波長の吸収ピークのブルーシフトに繋がる。ポアソン式およびドリフト拡散式を自己整合的に解く商業的なデバイスシミュレータが、MOSデバイス中の電子分布を計算するために使用された。
t<10nm~ζD≒1~2nm
となる。
図6Aは、図1Bの構造中で光を用いた初期入射で、高い指数材料を有する単層のための、測定された吸収率と波長との模式的な図である。実験は、超薄層ベレマン吸収装置およびENZ吸収装置の吸収および枯渇から形成された。
図7Aは、例えば図1Aおよび図1Bに示されたAZO多層クレッチュマン-ラター構造中のENZモード励起の模式図である。図7Bは、例えば図1AのようなAZO多層構造中の放射ベレマンモードの模式図である。図7Cは、図1Bに示すプリズムの無い入射光のための高指数材料を有するバウンドENZモード構造の模式図である。
図10は、与えられたバイアスにおけるシミュレーションされたMOS電界効果完全吸収装置の4つの組み合わせの、酸化物-ITO界面における電子密度の模式図である。この例では、与えられるバイアスは5Vである。ITOバルクの電子密度は、1×1021cm-3である。MOS構造は、実線はAg-HfO2-ITO、破線はAu-HfO2-ITO、点線はAg-Al2O3-ITO、一点鎖線はCu-HfO2-ITOである。金属の仕事関数は、銀は4.26eV、金は5.1eV、銅は4.65eVである。ハフニウム酸化物の誘電定数は25で、アルミニウム酸化物の誘電定数は25である。
Claims (21)
- 1つの方向からの入射光から所定の波長で完全吸収のイプシロンニアゼロ(ENZ)レジームの誘電率を形成するように形成され、適用された電気バイアスにより誘電率が変化するように調整可能に形成された導電性材料のための空間電荷領域の膜厚に対してある膜厚を有する、少なくとも1層の導電性材料を含み、
空間電荷領域の膜厚に対してある膜厚を有する複数の導電性層の少なくとも1層は、8:1またはそれ以下の比を含む電子デバイス。 - 導電性材料は、金属または半金属がドープされ、イプシロンニアゼロ(ENZ)レジームの誘電率のために材料中にキャリア濃度を形成する、少なくとも1つの部分的に透明な半導体材料を含む請求項1に記載のデバイス。
- 半導体材料は、透明な導電性酸化物(TCO)材料または遷移金属窒化物材料の少なくとも1つからなる少なくとも1層を含む請求項1に記載のデバイス。
- 異なるキャリア濃度を有する少なくとも2つの層を含む請求項1に記載のデバイス。
- 異なるENZレジームを有する少なくとも2つの層を含む請求項1に記載のデバイス。
- さらに、少なくとも1層に接続された酸化層と、少なくとも1層から遠位で酸化層に接続された金属層とを含み、金属酸化物半導体(MOS)形状を形成する請求項1に記載のデバイス。
- MOS形状は、MOS形状に電気バイアスを与えることにより、光の吸収周波数が調整可能な請求項6に記載のデバイス。
- さらに、少なくとも1層に接続された金属リフレクタを含む請求項1に記載のデバイス。
- さらに、少なくとも1層の前に光を受けるように形成された高い屈折率の材料を含む請求項1に記載のデバイス。
- 異なるENZレジームを有し、異なる周波数で光を吸収するように形成された少なくとも2つの層を備えた、所定の波長でイプシロンニアゼロ(ENZ)レジームの誘電率を有する複数の導電性層のスタックを含み、
複数の導電体層の少なくとも1つは、1つの方向からの光の所定の波長で完全吸収のイプシロンニアゼロ(ENZ)レジームの誘電率を形成するように形成され、適用された電気バイアスにより誘電率が変化するように調整可能に形成された導電性材料のための空間電荷領域の膜厚に対してある膜厚を有し、
空間電荷領域の膜厚に対してある膜厚を有する複数の導電性層の少なくとも1層は、8:1またはそれ以下の比を含む電子デバイス。 - 複数の層の少なくとも1つは、キャリア濃度を形成するために、少なくとも1つの金属または半金属がドープされた半導体材料を含む請求項10に記載のデバイス。
- 電気バイアスをデバイスに与えることにより、異なる誘電率に調整可能な請求項10に記載のデバイス。
- さらに、少なくとも1層に接続された金属リフレクタを含む請求項10に記載のデバイス。
- さらに、少なくとも1層の前に光を受けるように形成された高い屈折率の材料を含む請求項10に記載のデバイス。
- さらに、少なくとも1層に接続された酸化層と、少なくとも1層から遠位で酸化層に接続された金属層とを含み、金属酸化物半導体(MOS)形状を形成する請求項10に記載のデバイス。
- MOS形状は、MOS形状に電気バイアスを与えることにより、異なる光の周波数を吸収するように調整可能な請求項15に記載のデバイス。
- 所定の波長で完全吸収のイプシロンニアゼロ(ENZ)レジームの誘電率を形成するように形成された導電性材料のための空間電荷領域の膜厚に対してある膜厚を有する少なくとも1層の導電性材料を含む電子デバイスを使用する方法であって、
空間電荷領域の膜厚に対してある膜厚を有する複数の導電性層の少なくとも1層は、8:1またはそれ以下の比を含み、この方法は、
デバイスに電気バイアスを与える工程と、
様々な周波数の光を吸収するようにデバイスを調整する工程と、を含む方法。 - 少なくとも1つの層は、所定の波長で完全吸収のイプシロンニアゼロ(ENZ)レジームの誘電率となるために、金属または半金属がドープされて材料中にキャリア濃度を形成する半導体材料を含む請求項17に記載の方法。
- デバイスは、異なるENZレジームを有する少なくとも2つの層を含み、さらに、少なくとも2つの層を通る異なる周波数の入射光を吸収する工程を含む請求項17に記載の方法。
- 空間電荷領域の膜厚に対してある膜厚を有する複数の導電性層の少なくとも1層は、5:1またはそれ以下の比を含む請求項1に記載の電子デバイス。
- 空間電荷領域の膜厚に対してある膜厚を有する複数の導電性層の少なくとも1層は、5:1またはそれ以下の比を含む請求項10に記載の電子デバイス。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762504985P | 2017-05-11 | 2017-05-11 | |
US62/504,985 | 2017-05-11 | ||
PCT/US2018/032342 WO2018209250A1 (en) | 2017-05-11 | 2018-05-11 | Field-effect tunable epsilon-near-zero absorber |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2020523621A JP2020523621A (ja) | 2020-08-06 |
JP2020523621A5 JP2020523621A5 (ja) | 2020-11-19 |
JP7203431B2 true JP7203431B2 (ja) | 2023-01-13 |
Family
ID=62455845
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019562651A Active JP7203431B2 (ja) | 2017-05-11 | 2018-05-11 | 電界効果調整可能イプシロンニアゼロ吸収装置 |
Country Status (9)
Country | Link |
---|---|
US (1) | US10698134B2 (ja) |
EP (1) | EP3622345B1 (ja) |
JP (1) | JP7203431B2 (ja) |
KR (1) | KR102466884B1 (ja) |
CN (1) | CN111051968A (ja) |
AU (1) | AU2018265566B2 (ja) |
CA (1) | CA3063125C (ja) |
RU (1) | RU2754985C2 (ja) |
WO (1) | WO2018209250A1 (ja) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110488510A (zh) * | 2019-08-22 | 2019-11-22 | 中北大学 | 一种基于ito介电常数近零效应的偏振调控超构表面光器件 |
CN111596388A (zh) * | 2020-05-27 | 2020-08-28 | 中国科学院上海硅酸盐研究所 | 一种基于介电常数近零薄膜的近红外宽带完美吸收器及其制备方法 |
US12019208B2 (en) * | 2020-06-30 | 2024-06-25 | Third Floor Materials, Inc. | Surface with tunable emissivity based on epsilon-near-zero materials and patterned substrates |
CN112615163A (zh) * | 2020-12-08 | 2021-04-06 | 中国人民解放军海军工程大学 | 一种基于填充理想导体的多层周期透波结构 |
US12099263B2 (en) | 2021-01-13 | 2024-09-24 | Research Institute For Electromagnetic Materials | Magneto-optical material and production method therefor |
CN113381200B (zh) * | 2021-05-13 | 2022-07-15 | 宁波大学 | 一种宽入射角度的电磁吸收结构 |
CN115084813B (zh) * | 2022-06-28 | 2023-03-28 | 上海交通大学 | 亚波长尺寸宽谱非互易发射/吸收器件构造方法及系统 |
CN115637413A (zh) * | 2022-09-16 | 2023-01-24 | 华南师范大学 | 一种具有可调谐介电近零波长的介质/金属层堆积纳米薄膜及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160223723A1 (en) | 2015-02-03 | 2016-08-04 | Samsung Electronics Co., Ltd. | Optical modulating device having gate structure |
US20170045759A1 (en) | 2015-08-10 | 2017-02-16 | Samsung Electronics Co., Ltd. | Meta-structure and tunable optical device including the same |
US20170097451A1 (en) | 2015-10-06 | 2017-04-06 | Samsung Electronics Co., Ltd. | Optical filter and electronic device including the same |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102610923B (zh) | 2011-09-28 | 2015-02-04 | 深圳光启高等理工研究院 | 负磁导率超材料 |
US8995055B1 (en) * | 2011-11-21 | 2015-03-31 | The United States Of America As Represented By The Secretary Of The Navy | Angular and spectral selective absorber in ultrathin metamaterials |
US9726818B1 (en) * | 2013-05-30 | 2017-08-08 | Hrl Laboratories, Llc | Multi-wavelength band optical phase and amplitude controller |
JP6394171B2 (ja) * | 2013-10-30 | 2018-09-26 | 株式会社リコー | 電界効果型トランジスタ、表示素子、画像表示装置、及びシステム |
EP3570101A1 (en) | 2014-01-10 | 2019-11-20 | King's College London | Device and method |
KR102372569B1 (ko) | 2014-03-06 | 2022-03-08 | 캘리포니아 인스티튜트 오브 테크놀로지 | 전기적 튜닝가능 메타표면 구현 시스템 및 방법 |
WO2015161207A1 (en) * | 2014-04-18 | 2015-10-22 | Huawei Technologies Co., Ltd. | Mos capacitor optical modulator with transparent conductive and low-refractive-index gate |
EP3146528A4 (en) | 2014-05-23 | 2018-01-03 | The Regents of The University of Michigan | Ultra-thin doped noble metal films for optoelectronics and photonics applications |
KR102374119B1 (ko) * | 2015-02-03 | 2022-03-14 | 삼성전자주식회사 | 게이트 구조를 포함하는 광 변조 소자 |
GB2546265B (en) * | 2016-01-12 | 2021-03-17 | Inst Jozef Stefan | Electro-optical Modulator based on a layered semiconductor crystal structure |
US10509297B2 (en) * | 2017-01-27 | 2019-12-17 | California Institute Of Technology | Continuous beam steering with multiple-gated reconfigurable metasurfaces |
RU173568U1 (ru) * | 2017-04-27 | 2017-08-30 | федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный университет" | Оптический изолятор на основе магнитофотонного микрорезонатора |
-
2018
- 2018-05-11 AU AU2018265566A patent/AU2018265566B2/en active Active
- 2018-05-11 RU RU2019140603A patent/RU2754985C2/ru active
- 2018-05-11 WO PCT/US2018/032342 patent/WO2018209250A1/en unknown
- 2018-05-11 US US15/977,686 patent/US10698134B2/en not_active Expired - Fee Related
- 2018-05-11 JP JP2019562651A patent/JP7203431B2/ja active Active
- 2018-05-11 EP EP18728288.4A patent/EP3622345B1/en active Active
- 2018-05-11 CN CN201880045668.4A patent/CN111051968A/zh active Pending
- 2018-05-11 KR KR1020197036638A patent/KR102466884B1/ko active IP Right Grant
- 2018-05-11 CA CA3063125A patent/CA3063125C/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160223723A1 (en) | 2015-02-03 | 2016-08-04 | Samsung Electronics Co., Ltd. | Optical modulating device having gate structure |
US20170045759A1 (en) | 2015-08-10 | 2017-02-16 | Samsung Electronics Co., Ltd. | Meta-structure and tunable optical device including the same |
US20170097451A1 (en) | 2015-10-06 | 2017-04-06 | Samsung Electronics Co., Ltd. | Optical filter and electronic device including the same |
Non-Patent Citations (3)
Title |
---|
Kim et al.,General Strategy for Broadband Coherent Perfect Absorption and Multi-wavelength All-optical Switching Based on Epsilon-Near-Zero Multilayer Films,Scientific Reports,Nature,2016年03月11日,vol. 6, 22941,pp.1-11,DOI: 10.1038/srep22941 |
Koch et al.,Digital Plasmonic Absorption Modulator Exploiting Epsilon-Near-Zero in Transparent Conducting Oxides,IEEE Photonics Journal,IEEE,2016年02月,Vol. 8, No. 1, 4800813,pp. 1-13 |
Papadakis G. T. and Atwater H. A.,Field-effect induced tunability in hyperbolic metamaterials,Physical Review B,Vol. 92, No. 18,米国,American Physical Society,2015年11月02日,pp.184101-1~184101-11,DOI: 10.1103/PhysRevB.92.184101 |
Also Published As
Publication number | Publication date |
---|---|
KR20200039619A (ko) | 2020-04-16 |
AU2018265566A1 (en) | 2019-11-28 |
KR102466884B1 (ko) | 2022-11-11 |
CN111051968A (zh) | 2020-04-21 |
US20180329114A1 (en) | 2018-11-15 |
RU2019140603A (ru) | 2021-06-11 |
CA3063125A1 (en) | 2018-11-15 |
JP2020523621A (ja) | 2020-08-06 |
US10698134B2 (en) | 2020-06-30 |
AU2018265566B2 (en) | 2021-04-01 |
RU2754985C2 (ru) | 2021-09-08 |
EP3622345B1 (en) | 2023-03-15 |
CA3063125C (en) | 2021-03-23 |
EP3622345A1 (en) | 2020-03-18 |
WO2018209250A1 (en) | 2018-11-15 |
RU2019140603A3 (ja) | 2021-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7203431B2 (ja) | 電界効果調整可能イプシロンニアゼロ吸収装置 | |
Dong et al. | Tunable mid‐infrared phase‐change metasurface | |
Rasheed et al. | Room temperature deposition of ZnO and Al: ZnO ultrathin films on glass and PET substrates by DC sputtering technique | |
Abedini Dereshgi et al. | Ultra-broadband, lithography-free, and large-scale compatible perfect absorbers: the optimum choice of metal layers in metal-insulator multilayer stacks | |
Mirshafieyan et al. | Silicon colors: spectral selective perfect light absorption in single layer silicon films on aluminum surface and its thermal tunability | |
Lee et al. | Omnidirectional Flexible Transmissive Structural Colors with High‐Color‐Purity and High‐Efficiency Exploiting Multicavity Resonances | |
WO2018043298A1 (ja) | 光吸収体、ボロメーター、赤外線吸収体、太陽熱発電装置、放射冷却フィルム、及び光吸収体の製造方法 | |
Mirshafieyan et al. | Zeroth order Fabry-Perot resonance enabled ultra-thin perfect light absorber using percolation aluminum and silicon nanofilms | |
Toudert et al. | Mid-to-far infrared tunable perfect absorption by a sub-λ/100 nanofilm in a fractal phasor resonant cavity | |
CN112255716B (zh) | 基于结构对称性破缺的高效光吸收装置及制备方法和应用 | |
Boriskina et al. | Sensitive singular-phase optical detection without phase measurements with Tamm plasmons | |
Dutta-Gupta et al. | Electrical tuning of the polarization state of light using graphene-integrated anisotropic metasurfaces | |
Abdelraouf et al. | All‐Optical Switching of Structural Color with a Fabry–Pérot Cavity | |
Basak et al. | Perovskite/metal‐based hyperbolic metamaterials: Tailoring the permittivity properties of coexisting anisotropies in the visible region | |
Jin et al. | Ultrahigh omnidirectional, broadband, and polarization-independent optical absorption over the visible wavelengths by effective dispersion engineering | |
CN108919405A (zh) | 角度不敏感反射滤光片 | |
Ghobadi et al. | Broadband Nonlinear Optical Response of Indium–Zirconium Oxide in the Epsilon‐Near‐Zero Region | |
Buckley et al. | Optical reflectance of solution processed quasi-superlattice ZnO and Al-doped ZnO (AZO) channel materials | |
Woo et al. | Enhancement of sub-bandgap light absorption in perovskite semiconductor films via critical coupling | |
Hafezian et al. | Percolation threshold determination of sputtered silver films using Stokes parameters and in situ conductance measurements | |
Singh et al. | Lossy mode resonance surface plasmon resonance sensor for malaria detection | |
Yang et al. | Angular reflection study to reduce plasmonic losses in the dielectrically displaced back reflectors of silicon solar cells | |
Chatterjee et al. | Generalized Brewster effect in aluminum-doped ZnO nanopillars | |
Lavrinenko et al. | Lamellas metamaterials: Properties and potential applications | |
JP7255618B2 (ja) | 積層体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201005 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201005 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210819 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210907 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20211125 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220203 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220307 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220628 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221122 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221220 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7203431 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |