JP7201211B2 - 物体検出方法及び物体検出装置 - Google Patents

物体検出方法及び物体検出装置 Download PDF

Info

Publication number
JP7201211B2
JP7201211B2 JP2018163240A JP2018163240A JP7201211B2 JP 7201211 B2 JP7201211 B2 JP 7201211B2 JP 2018163240 A JP2018163240 A JP 2018163240A JP 2018163240 A JP2018163240 A JP 2018163240A JP 7201211 B2 JP7201211 B2 JP 7201211B2
Authority
JP
Japan
Prior art keywords
distribution function
cumulative distribution
region
luminance gradient
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018163240A
Other languages
English (en)
Other versions
JP2020035338A (ja
Inventor
忻 盧
大輝 城澤
彰男 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwate University
Original Assignee
Iwate University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwate University filed Critical Iwate University
Priority to JP2018163240A priority Critical patent/JP7201211B2/ja
Publication of JP2020035338A publication Critical patent/JP2020035338A/ja
Application granted granted Critical
Publication of JP7201211B2 publication Critical patent/JP7201211B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Analysis (AREA)

Description

本発明は、輝度勾配に基づく特徴量を用いた画像認識による物体検出方法および物体検出装置に関する。
顔や人物等の物体を検出するためには、通常、画像から算出される局所的な特徴量が使用される。局所的な特徴量の代表的なものとして、明暗差を利用するHaar-like特徴量、画素値の勾配方向の輝度勾配ヒストグラムを利用するHOG特徴量(Histogram of Oriented Gradients)などがある。中でもHOG特徴量は物体検出に広く使用されており、特に車載カメラに基づく歩行者・車検出の応用に非常に役立てられている。
これらの局所的な特徴量を利用する物体検出においては、大量の教師付き画像データを用いて、検出に有効な特徴を学習させる。物体検出の性能は、特徴量記述子の良し悪しに強く依存する。このため、物体検出性能を高めるためにはより優れた局所的特徴量を見出すことが重要である。
従来のDalalらによるHOG特徴量を用いた歩行者検出(非特許文献1)では、HOG特徴量のセルサイズを6x6画素、ブロックサイズを3x3セルに固定した大きさ、かつ、第1ビンの下境界を0度、ビンの幅を20度に固定したヒストグラムが最も良いと結論付けられており、腕や下半身など広範囲の局所領域(セル)が歩行者の輪郭として表現できることが示されている。
これに対し特許第5916134号公報(特許文献1)では、ビン数の異なる複数のHOG特徴量を算出し(実施例ではビン数3,5,7,9)、算出された各HOG特徴量の複数のビンから特徴量パターンを求めるのに有効なビン(即ち、被検出物の検出を行う基準に適したビン)の選択を行うことが記載されている。ビン数の異なる複数のHOG特徴量を算出することにより、物体検出に効果的な成分から構成される特徴量を抽出することができ、被検出物の存否判定精度を高めることが可能であると述べている。
特許第5916134号公報
N. Dalal, B. Triggs, "Histograms of oriented gradients for human detection", Proc. Conf. Computer Vision Pattern Recognition, vol. 1, pp. 886-893, 2005.
主に車載安全システムの安全性向上のために、さらに物体検出性能を高める必要がある。そのためには、より優れた局所的特徴量を見出すことが重要である。
そこで本発明は、さらに検出率向上ないし高速化を図ることが可能な物体検出方法および物体検出装置を提供することを目的としている。
発明者らは、各セルにおける輝度勾配ヒストグラムのビンを最適化すれば、物体検出性能が更に向上すると考えた。そして発明者らが鋭意検討したところ、ビンの下境界と幅を固定したり、多数のビンから有効なビンを選択したりするのではなく、セルの画素データに応じてビンの下境界と幅を最適化することにより、「物体らしい特徴」を捉えることができ、物体検出性能を更に高められることを見出し、本発明を完成するに至った。
すなわち本発明にかかる物体検出方法の代表的な構成は、輝度勾配に基づく特徴量を用いて画像中の被検出物の存否を判定する物体検出方法において、画像を所定数の画素で区切ったセルごとに輝度勾配ヒストグラムを作成し、セルごとに輝度勾配ヒストグラムのビンの下境界と幅を最適化して特徴量を算出することを特徴とする。
上記の最適化においては、輝度勾配ヒストグラムにおいて開始位置および幅が異なる複数の領域を設定し、複数の領域において累積分布関数を求め、累積分布関数と正規累積分布関数との誤差が最小となる領域を選択し、選択した領域の開始位置を1番目のビンの下境界に設定し、選択した領域の幅を輝度勾配ヒストグラム全体のビンの幅に設定してもよい。
上記の累積分布関数と正規累積分布関数との誤差を算出する際には、輝度勾配ヒストグラムにおいて所定角ごとに複数の区切り位置を設定し、各区切り位置を開始位置として数種類の幅を持つ領域を設定し、各幅ごとに領域集合を設定し、各領域集合において累積分布関数の増加量が最大となる領域を選択し、選択された領域の累積分布関数と正規累積分布関数との誤差を算出してもよい。
また、本発明にかかる物体検出装置の代表的な構成は、被検出物を示す特徴量を求める特徴量構成部と、特徴量を基にして識別器を構築する識別器生成部とを備え、特徴量構成部は、画像を所定数の画素で区切ったセルごとに輝度勾配ヒストグラムを作成し、セルごとに輝度勾配ヒストグラムのビンの下境界と幅を最適化して特徴量を算出し、特徴量から被検出物の存在を示す特徴量を求めることを特徴とする。
上記の特徴量構成部は、最適化する際に、輝度勾配ヒストグラムにおいて開始位置および幅が異なる複数の領域を設定し、複数の領域において累積分布関数を求め、累積分布関数と正規累積分布関数との誤差が最小となる領域を選択し、選択した領域の開始位置を1番目のビンの下境界に設定し、選択した領域の幅を輝度勾配ヒストグラム全体のビンの幅に設定してもよい。
上記の特徴量構成部は、累積分布関数と正規累積分布関数との誤差を算出する際には、輝度勾配ヒストグラムにおいて所定角ごとに複数の区切り位置を設定し、各区切り位置を開始位置として数種類の幅を持つ領域を設定し、各幅ごとに領域集合を設定し、各領域集合において累積分布関数の増加量が最大となる領域を選択し、選択された領域の累積分布関数と正規累積分布関数との誤差を算出してもよい。
本発明は、従来よりもさらに検出率向上ないし高速化を図ることが可能な物体検出方法および物体検出装置を提供することができる。
物体検出装置の概略構成を説明するブロック図である。 特徴量構成部の処理手順を説明するフローチャートである。 特徴量算出部の処理手順を説明するフローチャートである。 輝度勾配を説明する画像例である。 HOG特徴量とPDOG特徴量のヒストグラムと第1ビンを比較する図である。 HOG特徴量とPDOG特徴量を用いた顔検出と身体検出の画像例である。 顔検出と身体検出のエラー率を示す図である。
以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値などは、発明の理解を容易とするための例示に過ぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書及び図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示または説明を省略する。
図1は物体検出装置の概略構成を説明するブロック図である。図1に示す物体検出装置100において、特徴量構成部106において行われる処理以外の全体的な構成および処理は、従来のHOG特徴量を用いた物体検出方法および物体検出装置と同様である。本実施形態においては、本発明の新規な部分については詳細に説明し、既知の部分については簡潔に説明する。
物体検出装置100は、トレーニング部102と実行部110から構成される。まずトレーニング部102においてトレーニング用画像134が画像入力部104に入力される。画像は一般的に動画像であるが、以下の処理は動画像から抜き出されたフレーム画像(静止画像)に対して行われる。
特徴量構成部106では、トレーニング用画像の勾配情報を用いて、特徴量の算出および特徴量パターンの生成が行われる。特徴量とは、HOG特徴量と同様に、セルの輝度勾配方向を横軸とし、輝度勾配の大きさ(強度)を縦軸として輝度勾配をヒストグラム化した特徴量であり、角度を複数の方向領域に分割し、各方向領域に対応する輝度勾配の大きさをヒストグラムのビンの高さで示したものである。
ただし、従来のHOG特徴量は輝度勾配ヒストグラムのビンの下境界と幅を固定していたところ(例えば下境界を0度、ビンの幅を20度)、本発明では輝度勾配ヒストグラムのビンの下境界とビンの幅を最適化する。この最適化した特徴量をPDOG特徴量(Probability Distribution of Oriented Gradients)と称する。PDOG特徴量の算出は本発明の最も特徴的な処理であり、後に詳述する。
画像中では被検出物の輪郭が位置する箇所で輝度勾配が大きくなるので、PDOG特徴量を求めることにより画像中にある被検出物の形状を検知することができる。このときの被検出物に対するPDOG特徴量のパターンを、特徴量パターンという。
特徴量構成部106が算出した特徴量の構成パラメータは、データベース122に格納する。特徴量の構成パラメータとは、セルの位置とサイズ、勾配ヒストグラムビンの下境界や幅、ブロックの位置とサイズを含む。
識別器生成部108では、PDOG特徴量の構成パラメータによって全トレーニング用画像における各同種(同じ構成パラメータかつ同じビン)PDOG特徴量を求め、同一番号をつける。そして、Adaboost方法により、各同番PDOG特徴量の共通信頼度(重み)を計算し、逐次的に信頼度の高い同番PDOG特徴量を選択して識別器を生成する(重み付き加法型関数を生成する)。そして、選択された各同番PDOG特徴量の番号(どれ)とそれらに対応する信頼度(どのくらい)を識別器の重みパラメータとしてデータベース124に格納する。
実行部110においては、カメラ130から画像入力部112に画像が入力される。特徴量算出部114では、データベース122に格納されたPDOG特徴量の構成パラメータ(セルの位置とサイズ、勾配ヒストグラムビンの下境界や幅、ブロックの位置とサイズ)を利用し、リアルタイムの入力画像における各PDOG特徴量を計算する。
識別器実行部116では、入力画像について算出したPDOG特徴量を用いてデータベース124の重みパラメータ(番号と信頼度)を参照する。そして入力画像のPDOG特徴量の番号から、これに対応する信頼度を取得して、識別器に代入して実行する(重み付き加法型関数の計算結果を得る)。
判定部118は、識別器実行部116の実行結果に基づいて、認識可能な被検出物(顔や人物)が存在するか否かを判定し、判定結果をディスプレイ132に出力する。
次に、本発明の特徴であるPDOG特徴量の算出手順について説明する。図2は特徴量構成部106の処理手順を説明するフローチャート、図3は特徴量算出部114の処理手順を説明するフローチャート、図4は輝度勾配を説明する画像例である。
図2に示すように、特徴量構成部106においては、まず入力画像(トレーニング用画像)に対し、輝度勾配画像を生成する(ステップ200)。
具体的には、まず入力画像をグレースケール化し、適当なサイズにリサイズする。リサイズした画像Iの画像位置(x,y)での輝度をL(x,y)とすると、x,y方向の微分はそれぞれ次の式で定義する。
Figure 0007201211000001
そして次式によって画素位置(x,y)における勾配強度m(x,y)と勾配方向θ(x,y)をそれぞれ求める(ステップ202)。図4(a)に、計算結果例を示す。図中右側の勾配画像では、画素単位で強度m(x,y)と方向θ(x,y)が示されており、m(x,y)が大きいほど長く、明るく表示されている。
Figure 0007201211000002
画像IをNp×Np画素ごとに区切ってセルを設定する(図4(b))。各セルの範囲内でそれぞれ、最適な輝度勾配ヒストグラムを作成する(ステップ204)。Npは例えば3,5,6等とすることができる。ステップ230~240は、ステップ204の詳細な手順である。
まずは、任意のトレーニング用画像(正解画像と非正解画像)Iにおいて、1セル(同じ場所のセル)に含まれている任意の位置(x,y)の画素はk番目の画素とすると、その画素の勾配強度m(x,y)と勾配方向θ(x,y)はそれぞれにmとθで表せる。画像数やセルの画素数が有限であるから、勾配強度mと勾配方向θで構成された2次元ユークリッド空間に、1セルに含まれている全ての画像(正解画像と非正解画像)位置(x,y)の(θ,m)をm軸(縦軸)とθ軸(横軸)方向に沿って離散的に散布する(ステップ230)。図5は勾配強度mと勾配方向θで構成された2次元ユークリッド空間に、1セルに含まれている全てのトレーニング画像(正解画像と非正解画像)の画素位置(x,y)の(θ,m)を点で示したものである。縦軸において、正解画像の勾配強度mは正の値に取り、非正解画像の勾配強度mは負の値に取っている。ここで、mはθの密度関数p(θ)とすれば、0度から180度の連続的な値θの累積分布関数F(θ)は以下のように定義される。
Figure 0007201211000003
また、180度から210度のθの累積分布関数F(θ)は以下のように定義される(ステップ232))。210度とするのは、次に述べる領域の幅の最大を本実施形態では一例として30度としたから(180度+30度=210度)である。
Figure 0007201211000004
次に、0度から210度を本実施形態では5度ずつで分割し、この二次元ユークリッド空間に合計42個の区切り位置θjをつける。
Figure 0007201211000005
各区切り位置θjから、本実施形態では10度、15度、20度、30度の4通りの幅の領域Ωを設定する。領域Ωは勾配ヒストグラムのビンの下境界ρと幅φを用いて(ρ,φ)と定義する。そして幅の異なる領域集合{(θj,10)},{(θj,15)},{(θj,20)},{(θj,30)},j=1...42を設定する(ステップ234)。各領域集合での累積分布関数F(θ)の増加量は、以下のように計算する。
Figure 0007201211000006
そして、各領域集合で累積分布関数の増加量が最大となる領域をそれぞれ選択する(ステップ236)。
Figure 0007201211000007
得られた各領域での累積分布関数F(θ)に、以下の正規累積分布関数、もしくは逆正規累積分布関数を当てはめる。
Figure 0007201211000008
そして、当てはめた正規累積分布関数もしくは逆正規累積分布関数と平均二乗誤差平方根εが最小となる領域Ωminを選ぶ(ステップ238)。
Figure 0007201211000009
ここで、K(Ω)は領域Ωに含まれるθkの数である。そして、選ばれた領域Ωminの下境界ρと幅φを、輝度勾配ヒストグラムの第1ビンの下境界と幅にする(ステップ240)。
この確率的最適化手法によって、i番目のセルに対して、輝度勾配方向はφ(i)度ごとに量子化するものとし、ρ(i)度から180+ρ(i)度をN(i)=180/φ(i)個のビンで表現する。つまり、このi番目のセルにおけるヒストグラムvは、以下のN(i)次元ベクトルで表現される形となる。
このようにして、各セルの輝度勾配ヒストグラムの第1ビンの下境界と幅は、全てのトレーニング画像(正解画像、非正解画像)を元に一組の下境界と幅が算出される。
ここで図5に示した勾配強度mと勾配方向θで構成された2次元ユークリッド空間において、図5(a)(b)は同じセルの(θ,m)であり、(c)(d)は同じセルの(θ,m)である。図5(a)(c)に示されるように、HOG特徴量のヒストグラムを用いた場合には第1ビンは0度から開始し、一定の幅(20度)である。一方、図5(b)(d)に示されるように、PDOG特徴量のヒストグラムを用いた場合には、第1ビンの下境界と幅がそれぞれのセルの画素データに応じて最適化されていることがわかる。
さらに、隣接するNc×Nc個のセルを1つのブロックと考え、ブロックB(n)ごとに以下の式でヒストグラムを正規化する(ステップ206)。Ncは例えば3,4,5等とすることができる。
Figure 0007201211000010
ここで、i,jはブロックB(n)に含まれるセル番号を表している。なお、各ブロックは一部オーバーラップしているので、ほとんどのセルが別のブロックに複数回、含まれることになる。そこで上式では、i番目セルのヒストグラムベクトルvがブロックB(n)に含まれることを明示するためにv (n)という記述で示している。
ブロックB(n)内に存在するNc×Nc個のすべての正規化勾配ヒストグラムベクトルv (n)を連結し、1つのブロックB(n)につき、1つの正規化ベクトルv(n)が次式のように得られると考える。
Figure 0007201211000011
ここでN(n)(i)はブロックB(n)に含まれるセルv (n)の次元数である。
ブロックをずらしながら上式(数11)にしたがってブロックの表現ベクトルを計算する。画像IにNw×Nh個のセル、すなわち、(Nw‐Nc+1)×(Nh‐Nc+1)個のブロックが含まれた場合、算出された全てのv(n)を連結したベクトルは次式となる。
Figure 0007201211000012
これを、画像IのPDOG特徴(記述ベクトル)とする。30×30画素の画像を扱う場合、Np=Nc=3ならばNw=Nh=10となる。以上から,最終的なHOG記述子vの次元は
Figure 0007201211000013
となる。なお、本発明では、これを改めて
Figure 0007201211000014
のように、成分vを使って記述する。もちろん、
Figure 0007201211000015
である。こうすると、添字iの違いによって「ある特定セル位置における勾配の向き」を区別することができ、さらに個々のvの値は、その向きの勾配の(正規化された)大きさ情報を有している、という形になる。
特徴量構成部106は、上記のようにして算出した特徴量の構成パラメータをデータベース122に格納する(ステップ208)。すなわちデータベース122には、各セルごとに一組の構成パラメータ(下境界や幅など)が格納される。
図3に示す特徴量算出部114の処理手順のフローチャートにおいては、図2と説明の重複するステップには同一の符号を付して説明を省略する。トレーニング部102の特徴量構成部106がトレーニング画像を処理したのに対し、実行部110の116はカメラのリアルタイムな画像を処理する。特徴量算出部114は特徴量構成部106と同様に、輝度勾配画像を生成し(ステップ200)、画素位置(x,y)における勾配強度mと勾配方向θをそれぞれ求める(ステップ202)。
次に特徴量算出部114は、特徴量構成部106がデータベース122に格納した特徴量の構成パラメータを読み込む(ステップ210)。そして読み込んだPDOG特徴量の構成パラメータを利用して、リアルタイムの入力画像における勾配ヒストグラムを作成する(ステップ212)。そして画像にブロックを設定し、ヒストグラムを正規化する(ステップ206)。
図6はHOG特徴量とPDOG特徴量を用いた顔検出と身体検出の画像例である。図6(a)のHOG特徴量を用いた顔検出では、人形の顔を検出してしまったり、人間の顔を検出しそびれてしまっている。これに対し、図6(b)のPDOG特徴量を用いた顔検出では人間の顔だけを適切に検出できていることがわかる。
また図6(c)のHOG特徴量を用いた身体検出では、同じ人物に多重に検出した上で、検出漏れが多くなってしまっている。これに対し、図6(d)のPDOG特徴量を用いた身体検出では、検出漏れもあるものの、はるかに多くの人物の身体を検出できていることがわかる。
図7は顔検出と身体検出のエラー率を示す図であって、横軸は特徴量の数、縦軸はエラー率である。図7(a)に示すように、本発明によるPDOG特徴量を用いて顔検出を行った場合、HOG特徴量を用いた場合と比較して、同程度の特徴量パターンの数(選択された弱識別器の数)で、すなわち物体検出の処理速度を落とさずに、エラー率を最大20%削減した。別の見方をすると、30%~40%少ない特徴量のパラメータ数で同程度の検出率向上を達成した。物体検出処理速度は特徴量パターン数に比例するため、従来技術と比較して30%~40%の物体検出処理の高速化を実現したことになり、画像認識分野において本発明の効果は非常に大きいと言える。
一方、身体検出を行った場合、図7(b)に示すように、PDOG特徴量を用いた場合とHOG特徴量を用いた場合の差は顔検出の場合ほど大きくない。原因として、身体の画像に含まれる情報量が顔の情報量ほど多くないためと考えられる。しかし、それでも10%程度の物体検出処理の高速化が実現されており、本発明による効果は大きいと言える。
本発明によるPDOG特徴量パターン数は、同程度のエラー率の深層学習法(ディープラーニング)のパラメータ量の1/20程度、HOG特徴量の2/3程度で済むため、本発明は、小規模化が求められる組み込みシステムに特に適した技術である。
以上説明したように、本発明のPDOG特徴量を用いれば、セルの画素データに応じてビンの下境界と幅を最適化することにより、「物体らしい特徴」を捉えることができ、HOG特徴量を用いた場合よりも検出率向上ないし高速化を図ることが可能な物体検出方法および物体検出装置を提供することができる。
以上、添付図面を参照しながら本発明の好適な実施例について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
本発明は、輝度勾配に基づく特徴量を用いた画像認識による物体検出方法および物体検出装置として利用することができる。
100…物体検出装置、102…トレーニング部、104…画像入力部、106…特徴量構成部、108…識別器生成部、110…実行部、112…画像入力部、114…特徴量算出部、116…識別器実行部、118…判定部、122…データベース、124…データベース、130…カメラ、132…ディスプレイ、134…トレーニング用画像

Claims (4)

  1. 輝度勾配に基づく特徴量を用いて画像中の被検出物の存否を判定する物体検出方法において、
    画像を所定数の画素で区切ったセルごとに輝度勾配ヒストグラムを作成し、
    前記輝度勾配ヒストグラムにおいて開始位置および幅が異なる複数の領域を設定し、
    前記複数の領域において累積分布関数を求め、
    前記累積分布関数と正規累積分布関数との誤差が最小となる領域を選択し、
    前記選択した領域の開始位置を1番目のビンの下境界に設定し、
    前記選択した領域の幅を前記輝度勾配ヒストグラム全体のビンの幅に設定することにより、
    セルごとに輝度勾配ヒストグラムのビンの下境界と幅を最適化して特徴量を算出することを特徴とする物体検出方法。
  2. 前記累積分布関数と正規累積分布関数との誤差を算出する際には、
    輝度勾配ヒストグラムにおいて所定角ごとに複数の区切り位置を設定し、
    各区切り位置を開始位置として数種類の幅を持つ領域を設定し、
    各幅ごとに領域集合を設定し、
    各領域集合において累積分布関数の増加量が最大となる領域を選択し、
    前記選択された領域の累積分布関数と正規累積分布関数との誤差を算出することを特徴とする請求項1に記載の物体検出方法。
  3. 被検出物を示す特徴量を求める特徴量構成部と、
    前記特徴量を基にして識別器を構築する識別器生成部とを備え、
    前記特徴量構成部は、
    画像を所定数の画素で区切ったセルごとに輝度勾配ヒストグラムを作成し、
    セルごとに輝度勾配ヒストグラムのビンの下境界と幅を最適化して特徴量を算出し、
    前記輝度勾配ヒストグラムにおいて開始位置および幅が異なる複数の領域を設定し、
    前記複数の領域において累積分布関数を求め、
    前記累積分布関数と正規累積分布関数との誤差が最小となる領域を選択し、
    前記選択した領域の開始位置を1番目のビンの下境界に設定し、
    前記選択した領域の幅を前記輝度勾配ヒストグラム全体のビンの幅に設定することにより、
    前記特徴量から被検出物の存在を示す特徴量を求めることを特徴とする物体検出装置。
  4. 前記特徴量構成部は、前記累積分布関数と正規累積分布関数との誤差を算出する際には、
    輝度勾配ヒストグラムにおいて所定角ごとに複数の区切り位置を設定し、
    各区切り位置を開始位置として数種類の幅を持つ領域を設定し、
    各幅ごとに領域集合を設定し、
    各領域集合において累積分布関数の増加量が最大となる領域を選択し、
    前記選択された領域の累積分布関数と正規累積分布関数との誤差を算出することを特徴とする請求項3に記載の物体検出装置。
JP2018163240A 2018-08-31 2018-08-31 物体検出方法及び物体検出装置 Active JP7201211B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018163240A JP7201211B2 (ja) 2018-08-31 2018-08-31 物体検出方法及び物体検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018163240A JP7201211B2 (ja) 2018-08-31 2018-08-31 物体検出方法及び物体検出装置

Publications (2)

Publication Number Publication Date
JP2020035338A JP2020035338A (ja) 2020-03-05
JP7201211B2 true JP7201211B2 (ja) 2023-01-10

Family

ID=69668395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018163240A Active JP7201211B2 (ja) 2018-08-31 2018-08-31 物体検出方法及び物体検出装置

Country Status (1)

Country Link
JP (1) JP7201211B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113393401B (zh) * 2021-06-24 2023-09-05 上海科技大学 物体检测硬件加速器、系统、方法、设备和介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271872A (ja) 2009-05-20 2010-12-02 Canon Inc 画像認識装置、撮像装置及び画像認識方法
WO2012073894A1 (ja) 2010-11-29 2012-06-07 国立大学法人 九州工業大学 物体の検出方法及びその方法を用いた物体の検出装置
JP2015026110A (ja) 2013-07-24 2015-02-05 オリンパス株式会社 画像処理装置、画像処理方法及び画像処理プログラム
JP2015176563A (ja) 2014-03-18 2015-10-05 株式会社デンソー 物体検出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271872A (ja) 2009-05-20 2010-12-02 Canon Inc 画像認識装置、撮像装置及び画像認識方法
WO2012073894A1 (ja) 2010-11-29 2012-06-07 国立大学法人 九州工業大学 物体の検出方法及びその方法を用いた物体の検出装置
JP2015026110A (ja) 2013-07-24 2015-02-05 オリンパス株式会社 画像処理装置、画像処理方法及び画像処理プログラム
JP2015176563A (ja) 2014-03-18 2015-10-05 株式会社デンソー 物体検出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Brian Ayers,外1名,Home Interior Classification using SIFT Keypoint Histograms,2007 IEEE Conference on Computer Vision and Pattern Recognition,2007年06月17日

Also Published As

Publication number Publication date
JP2020035338A (ja) 2020-03-05

Similar Documents

Publication Publication Date Title
US8811744B2 (en) Method for determining frontal face pose
CN111353512B (zh) 障碍物分类方法、装置、存储介质和计算机设备
CN101211411B (zh) 一种人体检测的方法和装置
KR101848019B1 (ko) 차량 영역 검출을 통한 차량 번호판 검출 방법 및 장치
JP4479478B2 (ja) パターン認識方法および装置
US10579883B2 (en) Method and apparatus for detecting a vehicle in a driving assisting system
CN100561501C (zh) 一种图像检测方法及装置
CN112001406B (zh) 一种文本区域检测方法及装置
CN104036284A (zh) 基于Adaboost算法的多尺度行人检测方法
CN108256454B (zh) 一种基于cnn模型的训练方法、人脸姿态估测方法及装置
CN105046278B (zh) 基于Haar特征的Adaboost检测算法的优化方法
CN111881732B (zh) 一种基于svm的人脸质量评价方法
CN110942473A (zh) 一种基于特征点网格化匹配的运动目标跟踪检测方法
Amosov et al. Human localization in the video stream using the algorithm based on growing neural gas and fuzzy inference
JP2011165170A (ja) 対象物検出装置及びプログラム
JP7201211B2 (ja) 物体検出方法及び物体検出装置
CN112926463B (zh) 一种目标检测方法和装置
JP6738293B2 (ja) カメラキャリブレーション方法、プログラムおよび装置
CN114898306B (zh) 一种检测目标朝向的方法、装置及电子设备
US9483827B2 (en) Method of object orientation detection
US20230410561A1 (en) Method and apparatus for distinguishing different configuration states of an object based on an image representation of the object
CN114550062A (zh) 图像中运动对象的确定方法、装置、电子设备和存储介质
CN109614841B (zh) 嵌入式系统中的快速人脸检测方法
Garcia et al. Automatic detection of heads in colored images
JP6276504B2 (ja) 画像検出装置及び制御プログラム並びに画像検出方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221215

R150 Certificate of patent or registration of utility model

Ref document number: 7201211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150