JP7201172B2 - Atomic interferometer diffraction image detection method, atomic interferometer, atomic gyroscope - Google Patents

Atomic interferometer diffraction image detection method, atomic interferometer, atomic gyroscope Download PDF

Info

Publication number
JP7201172B2
JP7201172B2 JP2019044721A JP2019044721A JP7201172B2 JP 7201172 B2 JP7201172 B2 JP 7201172B2 JP 2019044721 A JP2019044721 A JP 2019044721A JP 2019044721 A JP2019044721 A JP 2019044721A JP 7201172 B2 JP7201172 B2 JP 7201172B2
Authority
JP
Japan
Prior art keywords
atomic
atomic beam
traveling
number density
atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019044721A
Other languages
Japanese (ja)
Other versions
JP2020148535A (en
Inventor
俊之 細谷
遼太郎 井上
幹旺 上妻
敦史 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Tokyo Institute of Technology NUC
Original Assignee
Japan Aviation Electronics Industry Ltd
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd, Tokyo Institute of Technology NUC filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP2019044721A priority Critical patent/JP7201172B2/en
Publication of JP2020148535A publication Critical patent/JP2020148535A/en
Application granted granted Critical
Publication of JP7201172B2 publication Critical patent/JP7201172B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、原子干渉計に関し、特に回折像検出技術に関する。 The present invention relates to an atomic interferometer, and more particularly to diffraction image detection technology.

本願よりも前に出願された国際出願PCT/JP2018/027827号明細書に、本発明に関連する発明としてマッハ-ツェンダー型原子干渉計900(図1参照)が開示されている。 International Application No. PCT/JP2018/027827 filed prior to this application discloses a Mach-Zehnder atomic interferometer 900 (see FIG. 1) as an invention related to the present invention.

マッハ-ツェンダー型原子干渉計900は、n次(ただし、nは2以上の予め定められた正整数である)のBragg回折を利用する。マッハ-ツェンダー型原子干渉計900は、原子線生成装置100と干渉部200と進行光定在波生成部300と観測部400を含む。原子線生成装置100と干渉部200と観測部400は図示しない真空チャンバー内に収容されている。 The Mach-Zehnder atomic interferometer 900 utilizes n-th order (where n is a predetermined positive integer equal to or greater than 2) Bragg diffraction. A Mach-Zehnder atomic interferometer 900 includes an atomic beam generator 100 , an interference section 200 , a traveling light standing wave generator 300 and an observation section 400 . The atomic beam generator 100, the interference section 200, and the observation section 400 are housed in a vacuum chamber (not shown).

原子線生成装置100は、原子線源111と原子線コリメーター113を含む。原子線生成装置100は、個々の原子が同じ状態にある原子線100a(熱的原子線または冷却原子線)を連続生成する。熱的原子線は、例えば、純度の高い金属塊115を原子線源111で昇華させて得られた高速の原子気体を原子線コリメーター113に通すことによって生成される。原子線コリメーター113は、例えば、よく知られているように、原子線100aの進行方向に間隔を空けた複数のスリットで構成される。また、冷却原子線は、例えば、高速の原子気体を図示しないゼーマンスローワー(Zeeman Slower)あるいは2次元冷却装置に通すことによって生成される。本願よりも前に出願された国際出願PCT/JP2018/027825号明細書に、本発明に関連する発明として、原子線の原子が、アルカリ土類金属原子(カルシウム、ストロンチウム、バリウム、ラジウム)、アルカリ土類様金属原子(アルカリ土類金属原子と同様に、基底状態において電子スピンによる磁気モーメントを持たない電子配置を持つ原子であり、ベリリウム、マグネシウム、イッテルビウム、カドミウム、水銀などを例示できる)、アルカリ土類金属原子の安定同位体、あるいはアルカリ土類様金属原子の安定同位体であることが開示されている。特に、アルカリ土類金属原子、アルカリ土類様金属原子、アルカリ土類金属原子の安定同位体、あるいはアルカリ土類様金属原子の安定同位体、のうち核スピンを持たない原子は、環境磁場の影響を全く受けない。 The atomic beam generator 100 includes an atomic beam source 111 and an atomic beam collimator 113 . The atomic beam generator 100 continuously generates atomic beams 100a (thermal atomic beams or cold atomic beams) in which individual atoms are in the same state. A thermal atomic beam is generated, for example, by passing a high-speed atomic gas obtained by sublimating a high-purity metal mass 115 with an atomic beam source 111 through an atomic beam collimator 113 . The atomic beam collimator 113 is composed of, for example, a plurality of slits spaced apart in the traveling direction of the atomic beam 100a, as is well known. Also, the cooled atomic beam is generated, for example, by passing high-speed atomic gas through a Zeeman Slower (not shown) or a two-dimensional cooling device. International Application No. PCT/JP2018/027825 filed before the present application describes, as an invention related to the present invention, that the atoms of the atomic beam are alkaline earth metal atoms (calcium, strontium, barium, radium), alkali metal atoms (calcium, strontium, barium, radium), Earth-like metal atoms (similar to alkaline-earth metal atoms, atoms with an electronic configuration that does not have a magnetic moment due to electron spin in the ground state, examples include beryllium, magnesium, ytterbium, cadmium, mercury, etc.), alkali It is disclosed to be a stable isotope of an earth metal atom, or a stable isotope of an alkaline earth-like metal atom. In particular, among alkaline-earth metal atoms, alkaline-earth-like metal atoms, stable isotopes of alkaline-earth-like metal atoms, and stable isotopes of alkaline-earth-like metal atoms, atoms that do not have nuclear spins are affected by the environmental magnetic field. Not affected at all.

進行光定在波生成部300は、n次Bragg回折条件を満たす3個の進行光定在波(第1の進行光定在波200a、第2の進行光定在波200b、第3の進行光定在波200c)を生成する。n次Bragg回折条件を満たす進行光定在波については後で説明を加える。 The traveling light standing wave generator 300 generates three traveling light standing waves (a first traveling light standing wave 200a, a second traveling light standing wave 200b, a third Generating an optical standing wave 200c). The traveling light standing wave that satisfies the n-order Bragg diffraction condition will be explained later.

原子線100aは干渉部200で3個の進行光定在波200a,200b,200cを通過する。アルカリ土類金属原子、アルカリ土類様金属原子、アルカリ土類金属原子の安定同位体、およびアルカリ土類様金属原子の安定同位体は超微細構造を持たないので、マッハ-ツェンダー型原子干渉計900では、同じ内部状態における異なる2個の運動量状態|g, p0>と|g, p1>との間の光照射による遷移が利用される。干渉部200は、原子線100aと3個の進行光定在波200a,200b,200cとが相互作用した結果の原子線(回折像)100bを得る。 The atomic beam 100a passes through three traveling light standing waves 200a, 200b, and 200c in the interference section 200. FIG. Since alkaline-earth metal atoms, alkaline-earth-like metal atoms, stable isotopes of alkaline-earth metal atoms, and stable isotopes of alkaline-earth-like metal atoms do not have hyperfine structures, Mach-Zehnder atomic interferometers At 900, a photoirradiated transition between two different momentum states |g, p 0 > and |g, p 1 > at the same internal state is utilized. The interference unit 200 obtains an atomic beam (diffraction image) 100b as a result of interaction between the atomic beam 100a and the three traveling light standing waves 200a, 200b, and 200c.

原子線生成装置100からの原子線100aが第1の進行光定在波200aを通過すると、初期状態が|g, p0>にある個々の原子の状態は|g, p0>と|g, p1>との重ね合わせ状態に変化する。第1の進行光定在波200aと原子との相互作用を適切に設定すると、第1の進行光定在波200aを通過した直後の|g, p0>の存在確率と|g, p1>の存在確率の比は1対1になる。原子は、対向して進む2n個の光子の吸収・放出を通して、|g, p0>から|g, p1>に遷移する際に光子2n個分の運動量(=p1-p0)を得る。したがって、状態|g, p1>の原子の運動方向は、状態|g, p0>の原子の運動方向から大きくずれる。つまり、原子線が第1の進行光定在波200aを通過すると、原子線100aは、1対1の割合で、状態|g, p0>の原子からなる原子線と状態|g, p1>の原子からなる原子線に分裂する。第1の進行光定在波200aは、π/2パルスと呼ばれ、原子線のスプリッターとしての機能を持つ。状態|g, p1>の原子からなる原子線の進行方向はn次Bragg回折条件に基づく方向である。0次光の方向(つまり、Bragg回折しなかった状態|g, p0>の原子からなる原子線100aの進行方向)とn次Bragg回折条件に基づく方向とが成す角は、0次光の方向と1次Bragg回折条件に基づく方向とが成す角のn倍である。つまり、状態|g, p0>の原子からなる原子線の進行方向と状態|g, p1>の原子からなる原子線の進行方向の広がり(換言すると、乖離)を大きくできる。 When the atomic beam 100a from the atomic beam generator 100 passes through the first traveling optical standing wave 200a, the states of individual atoms whose initial states are |g, p 0 > and |g , p 1 >. If the interaction between the first traveling light standing wave 200a and atoms is set appropriately, the existence probability of |g, p 0 > immediately after passing through the first traveling light standing wave 200a and |g, p 1 The ratio of existence probability of > is 1:1. Through the absorption and emission of 2n photons traveling in opposite directions, an atom acquires the momentum of 2n photons (=p 1 -p 0 ) when transitioning from |g, p 0 > to |g, p 1 >. obtain. Therefore, the direction of motion of atoms in state |g, p 1 > deviates greatly from the direction of motion of atoms in state |g, p 0 >. That is, when the atomic beam 100a passes through the first traveling optical standing wave 200a, the atomic beam 100a consists of atoms in state |g, p 0 > and state |g, p 1 in a one-to-one ratio. It splits into atomic lines consisting of > atoms. The first traveling optical standing wave 200a is called a π/2 pulse and functions as an atomic beam splitter. The traveling direction of an atomic beam composed of atoms in the state |g, p 1 > is based on the n-order Bragg diffraction condition. The angle between the direction of the 0th-order light (that is, the traveling direction of the atomic beam 100a composed of atoms in the state |g, p 0 > without Bragg diffraction) and the direction based on the n-th order Bragg diffraction condition is the angle of the 0th-order light. It is n times the angle between the direction and the direction based on the first-order Bragg diffraction condition. In other words, it is possible to increase the spread (in other words, divergence) between the traveling direction of the atomic beam composed of the atoms in the state |g, p 0 > and the traveling direction of the atomic beam composed of the atoms in the state |g, p 1 >.

分裂後、状態|g, p0>の原子からなる原子線と状態|g, p1>の原子からなる原子線は、第2の進行光定在波200bを通過する。このとき、第2の進行光定在波200bと原子との相互作用を適切に設定すると、第2の進行光定在波200bを通過することによって、状態|g, p0>の原子からなる原子線は通過過程で状態|g, p1>の原子からなる原子線に反転し、状態|g, p1>の原子からなる原子線は通過過程で状態|g, p0>の原子からなる原子線に反転する。このとき、前者については、|g, p0>から|g, p1>に遷移した原子の進行方向は、上述のとおり、状態|g, p0>の原子の運動方向からずれる。この結果、第2の進行光定在波200bを通過後の状態|g, p1>の原子からなる原子線の進行方向は、第1の進行光定在波200aを通過後の状態|g, p1>の原子からなる原子線の進行方向と平行になる。また、後者については、原子は、対向して進む2n個の光子の吸収・放出を通して、|g, p1>から|g, p0>に遷移する際に2n個の光子から得た運動量と同じ運動量を失う。つまり、|g, p1>から|g, p0>に遷移した原子の運動方向は、遷移前の状態|g, p1>の原子の運動方向からずれる。この結果、第2の進行光定在波200bを通過後の状態|g, p0>の原子からなる原子線の進行方向は、第1の進行光定在波200aを通過後の状態|g, p0>の原子からなる原子線の進行方向と平行になる。第2の進行光定在波200bは、πパルスと呼ばれ、原子線のミラーとしての機能を持つ。 After the splitting, the atomic beam composed of atoms in the state |g, p 0 > and the atomic beam composed of atoms in the state |g, p 1 > pass through the second traveling optical standing wave 200b. At this time, if the interaction between the second traveling light standing wave 200b and the atoms is appropriately set, the atoms in the state |g, p 0 > are formed by passing through the second traveling light standing wave 200b. The atomic beam is reversed to an atomic beam composed of atoms in state |g, p 1 > during the transit process, and an atomic beam composed of atoms in state |g, p 1 > is reversed from an atom in state |g, p 0 > during the transit process. Inverts to a new atomic line. At this time, as for the former, the traveling direction of the atoms transitioning from |g, p 0 > to |g, p 1 > deviates from the motion direction of the atoms in the state |g, p 0 > as described above. As a result, the traveling direction of the atomic beam composed of atoms in the state |g, p 1 > after passing through the second traveling light standing wave 200b is changed to the state |g after passing through the first traveling light standing wave 200a. , p 1 >. As for the latter, the atom acquires the momentum and Lose the same momentum. That is, the direction of motion of the atoms in the transition from |g, p 1 > to |g, p 0 > deviates from the direction of motion of the atoms in the pre-transition state |g, p 1 >. As a result, the traveling direction of an atomic beam composed of atoms in the state |g, p 0 > after passing through the second traveling light standing wave 200b is changed to the state |g after passing through the first traveling light standing wave 200a. , p 0 >. The second traveling optical standing wave 200b is called a π pulse and functions as a mirror of atomic beams.

反転後、状態|g, p0>の原子からなる原子線と状態|g, p1>の原子からなる原子線は、第3の進行光定在波200cを通過する。この通過時点にて、反転後の状態|g, p0>の原子からなる原子線と反転後の状態|g, p1>の原子からなる原子線は互いに交差する。このとき、第3の進行光定在波200cと原子との相互作用を適切に設定すると、状態|g, p0>の原子からなる原子線と状態|g, p1>の原子からなる原子線との交差領域に含まれる個々の原子の|g, p0>と|g, p1>との重ね合わせ状態に応じた原子線(回折像)100bが得られる。第3の進行光定在波200cを通過した後に得られる原子線100bの進行方向は、理論的には、0次光の方向と平行な方向とn次Bragg回折条件に基づく方向のいずれか一方または両方である。この原子線100bが、干渉部200の出力である。第3の進行光定在波200cは、π/2パルスと呼ばれ、原子線のコンバイナーとしての機能を持つ。 After the inversion, the atomic beam composed of atoms in state |g, p 0 > and the atomic beam composed of atoms in state |g, p 1 > pass through the third traveling optical standing wave 200c. At this passing point, the atomic line composed of the atoms in the post-inversion state |g, p 0 > and the atomic line composed of the atoms in the post-inversion state |g, p 1 > intersect each other. At this time, if the interaction between the third traveling light standing wave 200c and atoms is appropriately set, an atomic line composed of atoms in the state |g, p 0 > and an atom composed of atoms in the state |g, p 1 > An atomic beam (diffraction image) 100b corresponding to the overlapping state of |g, p 0 > and |g, p 1 > of individual atoms included in the intersecting region with the line is obtained. Theoretically, the traveling direction of the atomic beam 100b obtained after passing through the third traveling light standing wave 200c is either the direction parallel to the direction of the 0th order light or the direction based on the nth order Bragg diffraction condition. or both. This atomic beam 100 b is the output of the interference section 200 . The third traveling optical standing wave 200c is called a π/2 pulse and functions as a combiner of atomic beams.

マッハ-ツェンダー型原子干渉計900に、第1の進行光定在波200aの作用から第3の進行光定在波200cの作用までの原子線の2個の経路を含む平面内の角速度または加速度が加わると、第1の進行光定在波200aの作用から第3の進行光定在波200cの作用までの原子線の2個の経路に位相差が生じ、この位相差が第3の進行光定在波200cを通過した個々の原子の状態|g, p0>の存在確率と状態|g, p1>の存在確率に反映される。したがって、観測部400は、干渉部200からの原子線100b(つまり、第3の進行光定在波200cを通過した後に得られる原子線100b)を観測することによって角速度または加速度を検出する。例えば、観測部400は、干渉部200からの原子線100bにプローブ光408を照射して、状態|g, p1>の原子からの蛍光を光検出器409によって検出する。光検出器409としては、光電子増倍管、蛍光フォトディテクタなどを例示できる。また、本実施形態によると空間分解が向上する、つまり第3の進行光定在波を通過した後の2個の経路(状態|g, p0>の原子からなる原子線と状態|g, p1>の原子からなる原子線)の間隔が広いので、光検出器409としてCCDイメージセンサを用いることもできる。あるいは、光検出器409としてチャンネルトロンを用いる場合は、第3の進行光定在波を通過した後の2個の経路の一方の原子線を、プローブ光の替わりにレーザー光等によってイオン化し、チャンネルトロンでイオンを検出してもよい。 Angular velocities or accelerations in the plane containing the two paths of the atomic beam from the action of the first traveling optical standing wave 200a to the action of the third traveling optical standing wave 200c in the Mach-Zehnder atomic interferometer 900. is applied, a phase difference occurs between the two paths of the atomic beam from the action of the first traveling optical standing wave 200a to the action of the third traveling optical standing wave 200c. This is reflected in the existence probability of the state |g, p 0 > and the existence probability of the state |g, p 1 > of each atom that has passed through the optical standing wave 200c. Therefore, the observation unit 400 detects the angular velocity or acceleration by observing the atomic beam 100b from the interference unit 200 (that is, the atomic beam 100b obtained after passing through the third traveling optical standing wave 200c). For example, the observation unit 400 irradiates the atomic beam 100b from the interference unit 200 with the probe light 408, and the photodetector 409 detects the fluorescence from the atoms in the state |g, p 1 >. Examples of the photodetector 409 include a photomultiplier tube and a fluorescence photodetector. In addition, according to this embodiment, the spatial resolution is improved, that is, two paths after passing through the third traveling light standing wave (an atomic beam composed of atoms of state |g, p 0 > and a state |g, A CCD image sensor can also be used as the photodetector 409 because the intervals between the atomic lines (atomic lines composed of atoms with p 1 >) are wide. Alternatively, when a channeltron is used as the photodetector 409, the atomic beam on one of the two paths after passing through the third traveling light standing wave is ionized by laser light or the like instead of the probe light, Ions may be detected with a channeltron.

上述のとおり、第1の進行光定在波200aはスプリッターとしての機能を持ち、第2の進行光定在波200bはミラーとしての機能を持ち、第3の進行光定在波200cはコンバイナーとしての機能を持つ。このような諸条件を満たす3個の進行光定在波(第1の進行光定在波200a、第2の進行光定在波200b、第3の進行光定在波200c)はそれぞれ、ガウシアンビーム(Gaussian Beam)のビームウェスト、波長、光強度、さらに、対向するレーザー光間の差周波数をそれぞれ適切に設定することによって実現される。なお、ガウシアンビームのビームウェストは光学的に設定でき(例えばレーザー光をレンズで集光する)、ガウシアンビームの光強度は電気的に設定できる(例えばガウシアンビームの出力を調整する)。3個の進行光定在波200a,200b,200cを生成する進行光定在波生成部300の光学的構成自体は公知であるから説明を省略する(図1では、概略としてレーザー光源、レンズ、ミラー、音響光学変調器(AOM(Acousto-Optic Modulator))などが図示されている)。 As described above, the first traveling optical standing wave 200a functions as a splitter, the second traveling optical standing wave 200b functions as a mirror, and the third traveling optical standing wave 200c functions as a combiner. have the function of Each of the three traveling light standing waves (the first traveling light standing wave 200a, the second traveling light standing wave 200b, and the third traveling light standing wave 200c) satisfying these conditions is Gaussian. It is realized by appropriately setting the beam waist, wavelength, light intensity of the beam (Gaussian beam), and the difference frequency between the opposing laser beams. The beam waist of the Gaussian beam can be set optically (for example, laser light is focused by a lens), and the light intensity of the Gaussian beam can be set electrically (for example, the power of the Gaussian beam is adjusted). The optical configuration itself of the traveling light standing wave generator 300 that generates the three traveling light standing waves 200a, 200b, and 200c is well known, so the description is omitted (in FIG. 1, the laser light source, lens, Mirrors, Acousto-Optic Modulators (AOMs), etc. are shown).

原子線100aは、通常、微小立体角で広がり、原子線100aの進行方向と直交する方向(以下、単に直交方向と呼称する。)の速さ成分を持つ原子を含む。このため、3個の進行光定在波200a,200b,200cと相互作用しなかった原子に起因して、原子線100aは観測部400の位置にて広がりを持つ。 The atomic beam 100a usually spreads at a small solid angle and includes atoms having a velocity component in a direction orthogonal to the traveling direction of the atomic beam 100a (hereinafter simply referred to as the orthogonal direction). Therefore, the atomic beam 100a spreads at the position of the observation section 400 due to the atoms that have not interacted with the three traveling light standing waves 200a, 200b, and 200c.

n次(n≧2)のBragg回折を利用するマッハ-ツェンダー型原子干渉計900によると、干渉部200からの原子線100bにおいてn次Bragg回折条件に基づく原子の進路はnの値に応じて0次光の方向から乖離する。したがって、nの値が大きければ、n次Bragg回折条件に基づく原子の進路は原子線100aの広がりの外側に形成される。つまり、n次Bragg回折条件に基づく原子の進路は原子線100aに埋没しないので、観測部400は回折像を精度良く観測できる。しかし、高次Bragg回折条件を実現するためには、高出力のレーザー光が必要になる。このため、省電力の観点から、nの値は小さい方が好ましい。 According to the Mach-Zehnder atomic interferometer 900 that utilizes the n-th order (n≧2) Bragg diffraction, the path of the atoms in the atomic beam 100b from the interference section 200 based on the n-th order Bragg diffraction condition depends on the value of n. It diverges from the direction of the 0th order light. Therefore, if the value of n is large, the path of atoms based on the n-order Bragg diffraction condition is formed outside the spread of the atomic beam 100a. In other words, the observation unit 400 can accurately observe the diffraction image because the atomic path based on the nth-order Bragg diffraction condition is not buried in the atomic beam 100a. However, high-power laser light is required to achieve the high-order Bragg diffraction condition. Therefore, from the viewpoint of power saving, it is preferable that the value of n is small.

nの値が小さい場合においてn次Bragg回折条件に基づく原子の進路が原子線100aに埋没しないためには、原子線100aを十分にコリメーションする必要がある。しかし、原子線100aの進行方向に間隔を空けた複数のスリットを用いて原子線100aを十分にコリメーションすると、原子線100aのフラックスが低下し、原子干渉計のSN比が悪化する。 When the value of n is small, the atomic beam 100a must be sufficiently collimated so that the path of the atoms based on the n-order Bragg diffraction condition is not buried in the atomic beam 100a. However, if the atomic beam 100a is sufficiently collimated using a plurality of slits spaced apart in the traveling direction of the atomic beam 100a, the flux of the atomic beam 100a is reduced and the SN ratio of the atomic interferometer is deteriorated.

本発明は、原子線のフラックスを確保でき且つ低次Bragg回折条件下でも良好に回折像を観測できる、原子干渉計における回折像検出技術を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a diffraction image detection technique in an atom interferometer that can ensure the flux of atomic beams and can satisfactorily observe diffraction images even under low-order Bragg diffraction conditions.

本発明の回折像検出方法は、原子干渉計の回折像検出方法である。当該原子干渉計は、アルカリ土類金属原子、アルカリ土類様金属原子、アルカリ土類金属原子の安定同位体、あるいはアルカリ土類様金属原子の安定同位体である個々の原子が同じ状態にある原子線を連続生成する原子線生成装置と、低次Bragg回折条件を満たす3個以上の進行光定在波を生成する進行光定在波生成部と、原子線と3個以上の進行光定在波とが相互作用した結果の原子線を得る干渉部と、干渉部からの原子線を観測する観測部とを含む。そして、当該回折像検出方法は、(1)原子線生成装置が、原子線の原子数密度が一様である範囲を含む原子数密度分布を観測部の位置で持つ原子線を生成する第1ステップと、(2)進行光定在波の全てが存在しない状況下で、観測部が干渉部からの原子線を観測し、回折像が形成されていない原子数密度分布を得る第2ステップと、(3)進行光定在波の全てが存在する状況下で、観測部が干渉部からの原子線を観測し、低次Bragg回折条件による回折像が前記範囲内で形成された原子数密度分布を得る第3ステップと、(4)第2ステップの処理で得られた原子数密度分布と第3ステップの処理で得られた原子数密度分布との差に基づいて回折像を得る第4ステップと、を有する。 A diffraction image detection method of the present invention is a diffraction image detection method for an atomic interferometer. The atom interferometer detects that individual atoms that are alkaline earth metal atoms, alkaline earth-like metal atoms, stable isotopes of alkaline earth metal atoms, or stable isotopes of alkaline earth-like metal atoms are in the same state. an atomic beam generator for continuously generating atomic beams; a traveling light standing wave generator for generating three or more traveling light standing waves that satisfy the low-order Bragg diffraction condition; and an atomic beam and three or more traveling light constants. It includes an interference section that obtains an atomic beam resulting from interaction with existing waves, and an observation section that observes the atomic beam from the interference section. In the diffraction image detection method, (1) the atomic beam generator generates an atomic beam having an atomic number density distribution including a range in which the atomic number density of the atomic beam is uniform at the position of the observation unit; (2) a second step in which the observation unit observes the atomic beam from the interference unit under conditions where no standing wave of traveling light exists to obtain an atomic number density distribution in which no diffraction image is formed; , (3) the atomic number density at which the observation unit observes the atomic beam from the interference unit in the presence of all the traveling light standing waves, and the diffraction image under the low-order Bragg diffraction condition is formed within the range (4) a fourth step of obtaining a diffraction image based on the difference between the atomic number density distribution obtained in the second step and the atomic number density distribution obtained in the third step; and a step.

また、本発明の原子干渉計は、個々の原子が同じ状態にある原子線を連続生成する原子線生成装置と、3個以上の進行光定在波を生成する進行光定在波生成部と、原子線と3個以上の進行光定在波とが相互作用した結果の原子線を得る干渉部と、干渉部からの原子線を観測する観測部とを含む。原子は、アルカリ土類金属原子、アルカリ土類様金属原子、アルカリ土類金属原子の安定同位体、あるいはアルカリ土類様金属原子の安定同位体である。各進行光定在波は低次Bragg回折条件を満たす。原子線生成装置は、原子線源と、原子線源からの原子線の進行方向に配置された2個以上のスリットを含む原子線コリメーターとを含む。原子線は、原子線コリメーターによって、低次Bragg回折条件による回折像が原子線の内部に含まれる程度にコリメーションされる。 Further, the atom interferometer of the present invention comprises an atomic beam generator that continuously generates atomic beams in which individual atoms are in the same state, and a traveling light standing wave generator that generates three or more traveling light standing waves. , an interference unit for obtaining an atomic beam resulting from interaction between the atomic beam and three or more traveling optical standing waves, and an observation unit for observing the atomic beam from the interference unit. The atoms are alkaline earth metal atoms, alkaline earth-like metal atoms, stable isotopes of alkaline earth metal atoms, or stable isotopes of alkaline earth-like metal atoms. Each traveling optical standing wave satisfies the lower-order Bragg diffraction condition. The atomic beam generator includes an atomic beam source and an atomic beam collimator including two or more slits arranged in the traveling direction of the atomic beam from the atomic beam source. The atomic beam is collimated by the atomic beam collimator to such an extent that the diffraction image under the low-order Bragg diffraction condition is included inside the atomic beam.

また、別の観点から述べると、本発明の原子干渉計は、個々の原子が同じ状態にある原子線を連続生成する原子線生成装置と、3個以上の進行光定在波を生成する進行光定在波生成部と、原子線と3個以上の進行光定在波とが相互作用した結果の原子線を得る干渉部と、干渉部からの原子線を観測する観測部とを含む。原子は、アルカリ土類金属原子、アルカリ土類様金属原子、アルカリ土類金属原子の安定同位体、あるいはアルカリ土類様金属原子の安定同位体である。各進行光定在波は低次Bragg回折条件を満たす。原子線生成装置は、原子線の原子数密度が一様である範囲を含む原子数密度分布を観測部の位置で持つ原子線を生成する。低次Bragg回折条件による回折像は、当該範囲内で形成される。 Stated from another point of view, the atom interferometer of the present invention comprises an atomic beam generator that continuously generates atomic beams in which individual atoms are in the same state, and a traveling beam generator that generates three or more traveling optical standing waves. An optical standing wave generator, an interference unit for obtaining an atomic beam resulting from interaction between the atomic beam and three or more traveling optical standing waves, and an observation unit for observing the atomic beam from the interference unit. The atoms are alkaline earth metal atoms, alkaline earth-like metal atoms, stable isotopes of alkaline earth metal atoms, or stable isotopes of alkaline earth-like metal atoms. Each traveling optical standing wave satisfies the lower-order Bragg diffraction condition. The atomic beam generator generates an atomic beam having an atomic number density distribution including a range in which the atomic number density of the atomic beam is uniform at the position of the observation unit. A diffraction image under the low-order Bragg diffraction condition is formed within this range.

本発明によれば、原子干渉計において、原子線のフラックスを確保でき且つ低次Bragg回折条件下でも良好に回折像を観測できる。 According to the present invention, in an atom interferometer, it is possible to secure the flux of the atomic beam and to observe the diffraction image satisfactorily even under the conditions of low-order Bragg diffraction.

関連発明のマッハ-ツェンダー型原子干渉計。A related invention Mach-Zehnder atomic interferometer. 実施形態のマッハ-ツェンダー型原子干渉計。A Mach-Zehnder atomic interferometer of an embodiment. 原子線生成装置が生成する原子線の原子数密度分布。Atomic number density distribution of the atomic beam generated by the atomic beam generator. 回折像が形成された原子線の原子数密度分布。Atomic number density distribution of the atomic beam on which the diffraction image was formed. 回折像検出処理フロー。Diffraction image detection processing flow.

マッハ-ツェンダー型原子干渉スキームを例に採って本発明の実施形態を説明する。なお、図2は実施形態の理解のためのものであり、図示される各構成要素の寸法は実際の寸法と異なる。 Embodiments of the present invention are described by taking a Mach-Zehnder atomic interference scheme as an example. Note that FIG. 2 is for understanding the embodiment, and the dimensions of each component illustrated are different from the actual dimensions.

本実施形態のマッハ-ツェンダー型原子干渉計は上述のマッハ-ツェンダー型原子干渉計900と部分的に同じであるから、ここでは両者の相違点を説明する。両者に共通する技術事項については上述のマッハ-ツェンダー型原子干渉計900の説明をここに組み込み、これによって共通事項の重複説明を省略する。 Since the Mach-Zehnder atomic interferometer of this embodiment is partially the same as the Mach-Zehnder atomic interferometer 900 described above, the differences between the two will be described here. As for the technical matters common to both, the description of the Mach-Zehnder atomic interferometer 900 described above is incorporated here, thereby omitting the redundant description of the common matters.

この実施形態では、進行光定在波生成部300は、n次Bragg回折条件を満たす3個の進行光定在波(第1の進行光定在波200a、第2の進行光定在波200b、第3の進行光定在波200c)を生成する。この実施形態ではn=1を想定するものの、nの値は小さい値が好ましい(例えばnは1,2,3,4のいずれかの値である)。 In this embodiment, the traveling light standing wave generator 300 generates three traveling light standing waves (a first traveling light standing wave 200a and a second traveling light standing wave 200b) that satisfy the n-order Bragg diffraction condition. , to generate a third traveling optical standing wave 200c). Although n=1 is assumed in this embodiment, a small value for n is preferred (eg, n is 1, 2, 3, or 4).

原子線生成装置100は、進行光定在波の全てが存在しない状況下において観測部400の位置で所定の原子数密度分布を持つ原子線100aを生成する(ステップS1)。「所定の原子数密度分布」は、「原子線100aの原子数密度が一様である範囲Wを含む原子数密度分布」である。「原子線100aの原子数密度が一様である範囲W」は、例えば、位置に係らず原子数密度の変化が微小範囲に収まる範囲であり、好ましくは図3に示すように、原子線100aの原子数密度が原子線100aの進行方向と直交する方向に一定である範囲である。図3は、原子種をカルシウムとし、原子線源111での加熱温度を513℃とし、原子線コリメーター113を構成する二つのスリットの各幅を0.1mmとし、二つのスリットの間隔を280mmとし、原子線コリメーター113から第1の進行光定在波200aまでの距離を126mmとし、第1の進行光定在波200aと第2の進行光定在波200bの間隔を252mmとし、第2の進行光定在波200bと第3の進行光定在波200cの間隔を252mmとし、第3の進行光定在波200cから観測部400までの距離を504mmとしたときの原子数密度のシミュレーションである。図3において横軸の「位置」は、原子線100aの中心から直交方向への距離を意味する。「所定の原子数密度分布」は、さらに好ましくは再現性を持つ。つまり、原子線100aは、進行光定在波の全てが存在しない状況下における観測部400の位置で、異なる時刻においてほぼ同じ原子数密度分布を持つ。 The atomic beam generator 100 generates an atomic beam 100a having a predetermined atomic number density distribution at the position of the observation unit 400 under conditions where no standing wave of traveling light exists (step S1). The "predetermined atomic number density distribution" is an "atomic number density distribution including a range W in which the atomic beam 100a has a uniform atomic number density". The “range W in which the atomic number density of the atomic beam 100a is uniform” is, for example, a range in which the change in the atomic number density is within a minute range regardless of the position. Preferably, as shown in FIG. is a range in which the atomic number density of is constant in the direction perpendicular to the traveling direction of the atomic beam 100a. In FIG. 3, the atomic species is calcium, the heating temperature in the atomic beam source 111 is 513° C., the width of each of the two slits constituting the atomic beam collimator 113 is 0.1 mm, and the interval between the two slits is 280 mm. , the distance from the atomic beam collimator 113 to the first traveling light standing wave 200a is set to 126 mm, the interval between the first traveling light standing wave 200a and the second traveling light standing wave 200b is set to 252 mm, and the second The distance between the traveling light standing wave 200b and the third traveling light standing wave 200c is 252 mm, and the distance from the third traveling light standing wave 200c to the observation unit 400 is 504 mm. is. "Position" on the horizontal axis in FIG. 3 means the distance in the orthogonal direction from the center of the atomic line 100a. The "predetermined atomic number density distribution" more preferably has reproducibility. That is, the atomic beam 100a has substantially the same atomic number density distribution at different times at the position of the observation section 400 under the condition that no traveling optical standing wave exists.

このような所定の原子数密度分布を持つ原子線100aは、例えば、従来と同様に、複数のスリットで構成される原子線コリメーター113で、低次Bragg回折条件を満たす進行光定在波200a,200b,200cによる回折像100cが原子線100aの内部に(より正確には範囲Wに)含まれる程度にコリメーションされることによって形成される。この結果、原子線100aと低次Bragg回折条件を満たす進行光定在波200a,200b,200cとが相互作用した結果である回折像100cは、範囲W内で原子数密度の変化として現れる(図4参照)。回折像100cの原子数密度のピーク値は原子干渉計に加わる角速度あるいは加速度に応じて変化する。図4では、一例として、原子数密度のピーク値が最大となる時(これは明干渉であり、上記シミュレーションにおいて入力角速度が0 mrad/secの時に相当する)の回折像100cと、原子数密度のピーク値が最小となる時(これは暗干渉であり、上記シミュレーションにおいて入力角速度が0.48 mrad/secの時に相当する)の回折像100cを示している。 The atomic beam 100a having such a predetermined atomic number density distribution can be produced by, for example, an atomic beam collimator 113 composed of a plurality of slits as in the conventional art, and a traveling light standing wave 200a that satisfies the low-order Bragg diffraction condition. , 200b, and 200c are collimated to such an extent that the diffraction image 100c is included inside the atomic beam 100a (more precisely, within the range W). As a result, a diffraction image 100c, which is the result of interaction between the atomic beam 100a and the traveling light standing waves 200a, 200b, and 200c that satisfy the lower-order Bragg diffraction condition, appears as a change in the atomic number density within the range W (Fig. 4). The peak value of the atomic number density of the diffraction image 100c changes according to the angular velocity or acceleration applied to the atom interferometer. In FIG. 4, as an example, when the peak value of the atomic number density is maximized (this is bright interference, which corresponds to when the input angular velocity is 0 mrad/sec in the above simulation), the diffraction image 100c and the atomic number density shows the diffraction image 100c when the peak value of is minimized (this is dark interference and corresponds to the input angular velocity of 0.48 mrad/sec in the above simulation).

したがって、正確な回折像100cを得るためには、進行光定在波の全てが存在しない状況下での範囲Wの原子数密度を取得すればよい。このため、観測部400は、進行光定在波の全てが存在しない状況下で、干渉部200からの原子線100aを観測し、進行光定在波による回折像100cが形成されていない原子線100aの原子数密度分布(図3参照)を得る(ステップS2)。 Therefore, in order to obtain an accurate diffraction image 100c, it is sufficient to obtain the atomic number density in the range W under the condition that all the traveling light standing waves do not exist. Therefore, the observation unit 400 observes the atomic beam 100a from the interference unit 200 under the condition that no traveling light standing wave exists, and detects the atomic beam 100c for which no diffraction image 100c is formed by the traveling light standing wave. An atomic number density distribution (see FIG. 3) of 100a is obtained (step S2).

さらに、観測部400は、進行光定在波の全てが存在する状況下で、干渉部200からの原子線100aを観測し、低次Bragg回折条件を満たす進行光定在波200a,200b,200cによる回折像100cが範囲W内で形成された原子線100aの原子数密度分布(図4参照)を得る(ステップS3)。 Furthermore, the observation unit 400 observes the atomic beam 100a from the interference unit 200 in the presence of all traveling light standing waves, and the traveling light standing waves 200a, 200b, and 200c that satisfy the low-order Bragg diffraction condition. Obtain the atomic number density distribution (see FIG. 4) of the atomic beam 100a in which the diffraction image 100c is formed within the range W (step S3).

そして、観測部400は、ステップS2の処理で得られた原子数密度分布とステップS3の処理で得られた原子数密度分布との差に基づいて、低次Bragg回折条件を満たす進行光定在波200a,200b,200cによる回折像100cを得る(ステップS4)。このように、ステップS3の処理で得られた原子数密度分布から、ステップS2の処理で得られた回折像100cの無い原子数密度分布を除去することによって、正確な回折像100cを得ることができる。 Then, the observation unit 400, based on the difference between the atomic number density distribution obtained in the process of step S2 and the atomic number density distribution obtained in the process of step S3, the standing traveling light that satisfies the low-order Bragg diffraction condition. A diffraction image 100c is obtained from the waves 200a, 200b, and 200c (step S4). Thus, by removing the atomic number density distribution without the diffraction image 100c obtained in the process of step S2 from the atomic number density distribution obtained in the process of step S3, an accurate diffraction image 100c can be obtained. can.

なお、ステップS2の処理とステップS3の処理の順序を逆にしてもよい。 Note that the order of the processing in step S2 and the processing in step S3 may be reversed.

また、マッハ-ツェンダー型原子干渉計900を原子ジャイロスコープとして利用する場合、観測部400は、さらに、ステップS4の処理で得られた回折像100cから角速度または加速度を検出する処理を行ってもよい。原子干渉による回折像から角速度または加速度を検出する処理は良く知られているので説明を省略する。 Further, when the Mach-Zehnder atomic interferometer 900 is used as an atomic gyroscope, the observation unit 400 may further perform processing for detecting angular velocity or acceleration from the diffraction image 100c obtained in the processing of step S4. . Since the process of detecting the angular velocity or acceleration from the diffraction image by atomic interference is well known, the description thereof will be omitted.

上述の原子干渉計の例では、3個の進行光定在波を用いて、1回の分裂と1回の反転と1回の混合を行うマッハ-ツェンダー型原子干渉スキームを利用しているが、このタイプに限定されず、例えば、複数回の分裂と複数回の反転と複数回の混合を行う多段のマッハ-ツェンダー型原子干渉スキームを利用してもよい。このような多段のマッハ-ツェンダー型原子干渉スキームについては、参考文献1を参照のこと。
(参考文献1)Takatoshi Aoki et al., “High-finesse atomic multiple-beam interferometer comprised of copropagating stimulated Raman-pulse fields,” Phys. Rev. A 63, 063611 (2001) - Published 16 May 2001.
The atomic interferometer example above uses a Mach-Zehnder atomic interference scheme with one splitting, one flipping and one mixing using three traveling optical standing waves. , but not limited to this type, for example, a multistage Mach-Zehnder atomic interference scheme with multiple splittings, multiple flips, and multiple mixings may be utilized. See reference 1 for such a multistage Mach-Zehnder atomic interference scheme.
(Reference 1) Takatoshi Aoki et al., “High-finesse atomic multiple-beam interferometer comprised of copropagating stimulated Raman-pulse fields,” Phys. Rev. A 63, 063611 (2001) - Published 16 May 2001.

また、本発明の原子干渉計は、マッハ-ツェンダー型原子干渉計に限らず、例えばラムゼー-ボーデ型原子干渉計であってもよい。 Further, the atomic interferometer of the present invention is not limited to the Mach-Zehnder atomic interferometer, and may be, for example, a Ramsey-Bode atomic interferometer.

この他、本発明は上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更が可能である。例えば、原子線100aは、上述の熱的原子線に限らず、冷却原子線でもよい。 In addition, the present invention is not limited to the above-described embodiments, and can be modified as appropriate without departing from the scope of the present invention. For example, the atomic beam 100a is not limited to the thermal atomic beam described above, and may be a cold atomic beam.

100 原子線生成装置
100a 原子線
100b 原子線
100c 回折像
111 原子線源
113 原子線コリメーター
115 金属塊
200 干渉部
200a 第1の進行光定在波
200b 第2の進行光定在波
200c 第3の進行光定在波
300 進行光定在波生成部
400 観測部
408 プローブ光
409 光検出器
900 マッハ-ツェンダー型原子干渉計
100 Atomic beam generator 100a Atomic beam 100b Atomic beam 100c Diffraction image 111 Atomic beam source 113 Atomic beam collimator 115 Metal mass 200 Interference part 200a First traveling light standing wave 200b Second traveling light standing wave 200c Third traveling optical standing wave 300 traveling optical standing wave generator 400 observation unit 408 probe light 409 photodetector 900 Mach-Zehnder atomic interferometer

Claims (5)

アルカリ土類金属原子、アルカリ土類様金属原子、アルカリ土類金属原子の安定同位体、あるいはアルカリ土類様金属原子の安定同位体である個々の原子が同じ状態にある原子線を連続生成する原子線生成装置と、
低次Bragg回折条件を満たす3個以上の進行光定在波を生成する進行光定在波生成部と

前記原子線と前記3個以上の進行光定在波とが相互作用した結果の原子線を得る干渉部と、
前記干渉部からの前記原子線を観測する観測部と
を含む原子干渉計の回折像検出方法であって、
前記原子線生成装置が、前記原子線の原子数密度が一様である範囲を含む原子数密度分布を前記観測部の位置で持つ前記原子線を生成する第1ステップと、
前記進行光定在波の全てが存在しない状況下で、前記観測部が前記干渉部からの前記原子線を観測し、回折像が形成されていない前記原子数密度分布を得る第2ステップと、
前記進行光定在波の全てが存在する状況下で、前記観測部が前記干渉部からの前記原子線を観測し、前記低次Bragg回折条件による回折像が前記範囲内で形成された原子数密度
分布を得る第3ステップと、
前記第2ステップの処理で得られた前記原子数密度分布と前記第3ステップの処理で得られた前記原子数密度分布との差に基づいて前記回折像を得る第4ステップと
を有する回折像検出方法。
Continuous generation of atomic beams in which individual atoms that are alkaline-earth metal atoms, alkaline-earth-like metal atoms, stable isotopes of alkaline-earth metal atoms, or stable isotopes of alkaline-earth-like metal atoms are in the same state. an atomic beam generator;
a traveling light standing wave generator for generating three or more traveling light standing waves that satisfy the low-order Bragg diffraction condition;
an interference unit that obtains an atomic beam as a result of interaction between the atomic beam and the three or more traveling optical standing waves;
A diffraction image detection method for an atom interferometer including an observation unit that observes the atomic beam from the interference unit,
a first step in which the atomic beam generator generates the atomic beam having an atomic number density distribution including a range in which the atomic number density of the atomic beam is uniform at the position of the observation unit;
a second step in which the observation unit observes the atomic beam from the interference unit under a condition in which all of the traveling optical standing waves do not exist to obtain the atomic number density distribution in which no diffraction image is formed;
The number of atoms for which the observation unit observes the atomic beam from the interference unit under the condition that all the traveling light standing waves exist, and the diffraction image under the low-order Bragg diffraction condition is formed within the range. a third step of obtaining a density distribution;
a diffraction image having a fourth step of obtaining the diffraction image based on the difference between the atomic number density distribution obtained in the process of the second step and the atomic number density distribution obtained in the process of the third step; Detection method.
請求項1に記載の回折像検出方法において、
前記範囲は、前記進行光定在波の全てが存在しない状況下で前記原子線の原子数密度が前記原子線の進行方向と直交する方向に一定である範囲である
ことを特徴とする回折像検出方法。
In the diffraction image detection method according to claim 1,
The diffraction image, wherein the range is a range in which the atomic number density of the atomic beam is constant in a direction orthogonal to the traveling direction of the atomic beam under a condition where all the traveling light standing waves do not exist. Detection method.
個々の原子が同じ状態にある原子線を連続生成する原子線生成装置と、
3個以上の進行光定在波を生成する進行光定在波生成部と、
前記原子線と前記3個以上の進行光定在波とが相互作用した結果の原子線を得る干渉部と、
前記干渉部からの前記原子線を観測する観測部と
を含む原子干渉計であって、
前記原子は、アルカリ土類金属原子、アルカリ土類様金属原子、アルカリ土類金属原子の安定同位体、あるいはアルカリ土類様金属原子の安定同位体であり、
各前記進行光定在波は低次Bragg回折条件を満たし、
前記原子線生成装置は、前記原子線の原子数密度が一様である範囲を含む原子数密度分布を前記観測部の位置で持つ前記原子線を生成し、
前記低次Bragg回折条件による回折像は、前記範囲内で形成され、
前記観測部は、前記進行光定在波の全てが存在しない状況下で観測を行って第1の原子数密度分布を取得し、前記進行光定在波の全てが存在する状況下で観測を行って第2の原子数密度分布を取得し、前記第1の原子数密度分布と前記第2の原子数密度分布の差を用いて前記回折像を得る
原子干渉計。
an atomic beam generator for continuously generating atomic beams in which individual atoms are in the same state;
a traveling light standing wave generator for generating three or more traveling light standing waves;
an interference unit that obtains an atomic beam as a result of interaction between the atomic beam and the three or more traveling optical standing waves;
an observation unit that observes the atomic beam from the interference unit,
said atom is an alkaline earth metal atom, an alkaline earth-like metal atom, a stable isotope of an alkaline earth metal atom, or a stable isotope of an alkaline earth-like metal atom;
each said traveling optical standing wave satisfies a low-order Bragg diffraction condition,
The atomic beam generating device generates the atomic beam having an atomic number density distribution including a range in which the atomic number density of the atomic beam is uniform at the position of the observation unit;
A diffraction image under the low-order Bragg diffraction condition is formed within the range ,
The observation unit obtains a first atomic number density distribution by performing observation under a condition in which all of the traveling light standing waves do not exist, and performs observation under a condition in which all of the traveling light standing waves exist. to obtain a second atomic number density distribution, and obtain the diffraction image using the difference between the first atomic number density distribution and the second atomic number density distribution
atomic interferometer.
請求項に記載の原子干渉計において、
前記範囲は、前記進行光定在波の全てが存在しない状況下で前記原子線の原子数密度が前記原子線の進行方向と直交する方向に一定である範囲である
ことを特徴とする原子干渉計。
In the atomic interferometer according to claim 3 ,
The atomic interference, wherein the range is a range in which the atomic number density of the atomic beam is constant in a direction perpendicular to the traveling direction of the atomic beam under a condition in which all of the traveling optical standing waves do not exist. Total.
原子ジャイロスコープであって、
請求項3または請求項4のいずれかに記載の原子干渉計を含み、
前記原子干渉計に含まれる前記観測部は、前記干渉部からの前記原子線を観測することによって角速度または加速度を検出する
原子ジャイロスコープ。
an atomic gyroscope,
An atom interferometer according to either claim 3 or claim 4 ,
The observation section included in the atomic interferometer is an atomic gyroscope that detects angular velocity or acceleration by observing the atomic beam from the interference section.
JP2019044721A 2019-03-12 2019-03-12 Atomic interferometer diffraction image detection method, atomic interferometer, atomic gyroscope Active JP7201172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019044721A JP7201172B2 (en) 2019-03-12 2019-03-12 Atomic interferometer diffraction image detection method, atomic interferometer, atomic gyroscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019044721A JP7201172B2 (en) 2019-03-12 2019-03-12 Atomic interferometer diffraction image detection method, atomic interferometer, atomic gyroscope

Publications (2)

Publication Number Publication Date
JP2020148535A JP2020148535A (en) 2020-09-17
JP7201172B2 true JP7201172B2 (en) 2023-01-10

Family

ID=72429577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019044721A Active JP7201172B2 (en) 2019-03-12 2019-03-12 Atomic interferometer diffraction image detection method, atomic interferometer, atomic gyroscope

Country Status (1)

Country Link
JP (1) JP7201172B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008544284A (en) 2005-06-22 2008-12-04 ノースロップ グラマン ガイダンス アンド エレクトロニクス カンパニー,インコーポレーテッド Device and method for integrating continuous and discontinuous inertial instrument measurements in navigation systems.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4992656A (en) * 1987-10-26 1991-02-12 Clauser John F Rotation, acceleration, and gravity sensors using quantum-mechanical matter-wave interferometry with neutral atoms and molecules
JPH04167560A (en) * 1990-10-31 1992-06-15 Matsushita Electric Ind Co Ltd Quantum wave interference element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008544284A (en) 2005-06-22 2008-12-04 ノースロップ グラマン ガイダンス アンド エレクトロニクス カンパニー,インコーポレーテッド Device and method for integrating continuous and discontinuous inertial instrument measurements in navigation systems.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
R. Delhuille,High-contrast Mach-Zehnder lithium-atom interferometer in the Bragg regime,Applied Physics B,74,Springer Nature,2002年04月01日,489-493

Also Published As

Publication number Publication date
JP2020148535A (en) 2020-09-17

Similar Documents

Publication Publication Date Title
JP6860154B2 (en) Gyroscope based on atomic interference
WO2019073655A1 (en) Gyroscope based on mach-zehnder-type atomic interference
JP6650647B2 (en) Cooled atom beam generation method, cooled atom beam generator, atomic interferometer
Depierreux et al. First observation of ion acoustic waves produced by the langmuir decay instability
EP3203184B1 (en) Systems and methods for eliminating multi-path errors from atomic inertial sensors
JP6713643B2 (en) Atomic beam collimation method, atomic beam collimator, atomic interferometer, atomic gyroscope
JP7201172B2 (en) Atomic interferometer diffraction image detection method, atomic interferometer, atomic gyroscope
WO2019073657A1 (en) Gyroscope based on mach-zehnder-type atomic interference
US11808577B2 (en) Atomic gyroscope and atomic interferometer
Freytag Simultaneous magneto-optical trapping of ytterbium and caesium
US20230332895A1 (en) Inertial sensor, atomic interferometer, method for adjusting speeds of atoms, and apparatus for adjusting speeds of atoms
US20230332893A1 (en) Inertial sensor, atomic interferometer, method for adjusting speed and course of atomic beam, and apparatus for adjusting speed and course of atomic beam
CN114421273B (en) Laser frequency shift method and device based on precise spectrum of alkali metal atoms
US20230281498A1 (en) Quantum simulator and quantum simulation method
Di Domenico et al. High efficiency generation of path entangled bi-photons directly from 2D poled nonlinear crystal
Robert Toward an experiment of matter-wave interferometry based on strontium
Liu Efficiency Limitations of Stimulated Raman Adiabatic Passage Towards Unity Rydberg Excitation
Petersen Quantum Simulations in Ion Traps--Towards Simulating the Early Expanding Universe
Balykin Atom optics and its applications
Moore Towards interferometry with ultra-cold atoms in crossed optical waveguides
Petersen Quantum simulations in ion traps
Gregory Phase and intensity control of lasers for atom interferometry
VOGL et al. Poster No. Title Authors

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221214

R150 Certificate of patent or registration of utility model

Ref document number: 7201172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150