JP7199111B2 - Predictive control method and system for rare earth extraction process - Google Patents

Predictive control method and system for rare earth extraction process Download PDF

Info

Publication number
JP7199111B2
JP7199111B2 JP2021124811A JP2021124811A JP7199111B2 JP 7199111 B2 JP7199111 B2 JP 7199111B2 JP 2021124811 A JP2021124811 A JP 2021124811A JP 2021124811 A JP2021124811 A JP 2021124811A JP 7199111 B2 JP7199111 B2 JP 7199111B2
Authority
JP
Japan
Prior art keywords
rare earth
earth extraction
model
output
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021124811A
Other languages
Japanese (ja)
Other versions
JP2022167740A (en
Inventor
チュー,ジィエンヨン
ション,コン
ヤン,フイ
シュウ,ファンピィン
ルー,ロンシュ
ヤン,ルゥオジュン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Jiaotong University
Original Assignee
East China Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Jiaotong University filed Critical East China Jiaotong University
Publication of JP2022167740A publication Critical patent/JP2022167740A/en
Application granted granted Critical
Publication of JP7199111B2 publication Critical patent/JP7199111B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、希土類抽出の技術分野、特に希土類抽出プロセスの予測制御方法及びシステムに関する。 The present invention relates to the technical field of rare earth extraction, and more particularly to predictive control methods and systems for rare earth extraction processes.

希土類元素は、ランタニド、スカンジウム、イットリウムなど17種の元素で構成され、共生鉱物の形態で存在する。二成分希土類元素精製は、主にカスケード抽出および分離プロセスを採用しており、多くの段階がある。 Rare earth elements are composed of 17 kinds of elements such as lanthanides, scandium and yttrium, and exist in the form of symbiotic minerals. Binary rare earth element refining mainly adopts cascade extraction and separation process, which has many stages.

希土類抽出は、抽出剤、供給液、酸性溶液の流量を入力として、抽出しにくい希土類元素と抽出しやすい希土類元素成分の含有量を出力として構成された3入力2出力のシステムである。希土類カスケード抽出プロセスでは、各段階に水相と有機相の2つの相が含まれる。その大きなヒステリシス、強い結合、多変数、非線形等の問題を考慮して、現在使用されている方法の多数は、データ駆動型モデリングとソフトセンシングモデリングである。ただし、実際の作業条件の干渉により、上記の方法を使用した結果には大きな誤差が生じる可能性がある。さらに、現在の希土類産業における生産自動化のレベルは比較的低く、「オフライン分析、手動調整、および経験制御」の状態のままであり、その結果、企業の生産効率が低く、資源消費が高く、製品品質が不安定である。 The rare earth extraction is a 3-input, 2-output system configured by inputting the flow rate of the extractant, feed liquid, and acid solution and outputting the content of rare earth elements that are difficult to extract and rare earth element components that are easy to extract. In the rare earth cascade extraction process, each stage contains two phases, an aqueous phase and an organic phase. Considering its large hysteresis, strong coupling, multi-variable, nonlinear, etc. problems, most of the methods currently used are data-driven modeling and soft-sensing modeling. However, the interference of actual working conditions can lead to large errors in the results using the above methods. In addition, the current level of production automation in the rare earth industry is relatively low, and remains in the state of "offline analysis, manual adjustment, and experience control", resulting in low production efficiency, high resource consumption, high product Inconsistent quality.

本発明は、希土類抽出プロセスの生産効率を改善するための希土類抽出プロセスの予測制御方法及びシステムを提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a predictive control method and system for a rare earth extraction process to improve the production efficiency of the rare earth extraction process.

上記の目的を達成するために、本発明は、希土類抽出プロセスの予測制御方法を提供し、前記方法は、
希土類抽出プロセスにおける抽出剤、供給液、酸性溶液の流量を入力とし、水相と有機相の濃度を状態とし、抽出しにくい希土類元素と抽出しやすい希土類元素成分の含有量を出力として、希土類抽出空間モデルを構築するステップS1と、
前記希土類抽出出力空間モデルを離散化処理して、状態空間増分モデルを取得するステップS2と、
前記状態空間増分モデルに基づいて予測制御出力モデルを構築するステップS3と、
前記予測制御出力モデルに基づいて最適化記述問題を構築するステップS4と、
前記最適化記述問題を解き、最適解を得るステップS5と、
前記最適解に基づいて制御量を決定し、希土類抽出プロセスを制御するステップS6と、を含む。
To achieve the above objectives, the present invention provides a predictive control method for rare earth extraction process, said method comprising:
With the flow rate of the extractant, feed liquid and acid solution in the rare earth extraction process as input, the concentration of the aqueous phase and organic phase as the state, and the content of rare earth elements that are difficult to extract and rare earth elements that are easy to extract as output, rare earth extraction a step S1 of building a spatial model;
step S2 of discretizing the rare earth extraction output space model to obtain a state space incremental model;
a step S3 of constructing a predictive control output model based on the state space incremental model;
Step S4 of constructing an optimization description problem based on the predictive control output model;
a step S5 of solving the optimization description problem and obtaining an optimal solution;
a step S6 of determining control variables based on said optimal solution to control the rare earth extraction process.

任意選択で、前記ステップS1は具体的には、
希土類抽出プロセスにおける抽出剤、供給液、酸性溶液の流量を入力とし、水相と有機相の濃度を状態として、希土類抽出初期状態モデルを構築するステップS11と、
モデルの簡略化条件を構築するステップS12と、
前記モデル簡略化条件に基づいて前記希土類抽出初期状態モデルを簡略化および統合して、希土類抽出状態行列を取得するステップS13と、
水相と有機相の濃度を状態とし、抽出しにくい希土類元素と抽出しやすい希土類元素成分の含有量を出力として、希土類抽出出力行列を構築するステップS14と、
前記希土類抽出状態行列と前記希土類抽出出力行列によって希土類抽出出力空間モデルを構築するステップS15と、を含む。
Optionally, said step S1 specifically includes:
A step S11 of constructing a rare earth extraction initial state model with the flow rates of the extractant, feed liquid, and acid solution in the rare earth extraction process as inputs and the concentrations of the aqueous phase and the organic phase as states;
a step S12 of constructing a simplification condition for the model;
a step S13 of obtaining a rare earth extraction state matrix by simplifying and integrating the rare earth extraction initial state model based on the model simplification condition;
Step S14 of constructing a rare earth extraction output matrix with the concentrations of the aqueous phase and the organic phase as states and the contents of rare earth elements that are difficult to extract and rare earth element components that are easy to extract as outputs;
a step S15 of constructing a rare earth extraction output space model according to the rare earth extraction state matrix and the rare earth extraction output matrix.

任意選択で、前記ステップS2は具体的には、
線形連続時間の前記希土類抽出出力空間モデルを離散化処理して、離散時間の前記希土類抽出出力空間モデルを取得するステップS21と、
離散時間の希土類抽出出力空間モデルを処理して、状態空間増分モデルを取得するステップS22と、を含む。
Optionally, said step S2 specifically includes:
a step S21 of performing a discretization process on the rare earth extraction output space model in linear continuous time to obtain the rare earth extraction output space model in discrete time;
processing the discrete time rare earth extraction output space model to obtain a state space incremental model S22.

任意選択で、希土類抽出初期状態モデルを構築する具体的な式は

Figure 0007199111000001
であり、
Figure 0007199111000002
Figure 0007199111000003
であり、
Figure 0007199111000004
Figure 0007199111000005
酸性溶液の流量値を表す。Optionally, the specific formula for building the rare earth extraction initial state model is
Figure 0007199111000001
and
Figure 0007199111000002
Figure 0007199111000003
and
Figure 0007199111000004
Figure 0007199111000005
Represents the flow rate of an acidic solution.

任意選択で、前記最適解に基づいて制御量を決定し、希土類抽出プロセスを制御する具体的な式は、

Figure 0007199111000006
Optionally, the specific formula for determining control variables based on said optimal solution to control the rare earth extraction process is:
Figure 0007199111000006

本発明はまた、希土類抽出プロセスの予測制御システムを提供し、前記システムは、
希土類抽出プロセスにおける抽出剤、供給液、酸性溶液の流量を入力とし、水相と有機相の濃度を状態とし、抽出しにくい希土類元素と抽出しやすい希土類元素成分の含有量を出力として、希土類抽出空間モデルを構築するための希土類抽出空間モデル構築モジュールと、
前記希土類抽出出力空間モデルを離散化処理して、状態空間増分モデルを取得するための状態空間増分モデル構築モジュールと、
前記状態空間増分モデルに基づいて予測制御出力モデルを構築するための予測制御出力モデル構築モジュールと、
前記予測制御出力モデルに基づいて最適化記述問題を構築するための最適化記述問題構築モジュールと、
前記最適化記述問題を解き、最適解を得るための解きモジュールと、
前記最適解に基づいて制御量を決定し、希土類抽出プロセスを制御するための制御モジュールと、を含む。
The present invention also provides a predictive control system for a rare earth extraction process, said system comprising:
With the flow rate of the extractant, feed liquid and acid solution in the rare earth extraction process as input, the concentration of the aqueous phase and organic phase as the state, and the content of rare earth elements that are difficult to extract and rare earth elements that are easy to extract as output, rare earth extraction a rare earth extraction spatial model building module for building a spatial model;
a state space incremental model building module for discretizing the rare earth extraction output space model to obtain a state space incremental model;
a predictive control output model building module for building a predictive control output model based on the state space incremental model;
an optimization description problem building module for building an optimization description problem based on the predictive control output model;
a solution module for solving the optimization description problem and obtaining an optimal solution;
a control module for determining control variables based on said optimal solution to control the rare earth extraction process.

任意選択で、前記希土類抽出空間モデル構築モジュールは具体的には、
希土類抽出プロセスにおける抽出剤、供給液、酸性溶液の流量を入力とし、水相と有機相の濃度を状態として、希土類抽出初期状態モデルを構築するための希土類抽出初期状態モデル構築ユニットと、
モデルの簡略化条件を構築するための簡略化条件構築ユニットと、
前記モデル簡略化条件に基づいて前記希土類抽出初期状態モデルを簡略化および統合して、希土類抽出状態行列を取得するための希土類抽出状態行列構築ユニットと、
水相と有機相の濃度を状態とし、抽出しにくい希土類元素と抽出しやすい希土類元素成分の含有量を出力として、希土類抽出出力行列を構築するための希土類抽出出力行列構築ユニットと、
前記希土類抽出状態行列と前記希土類抽出出力行列によって希土類抽出出力空間モデルを構築するための希土類抽出出力空間モデル構築ユニットと、を含む。
Optionally, said rare earth extraction space model building module specifically:
a rare earth extraction initial state model construction unit for constructing a rare earth extraction initial state model with the flow rates of the extractant, the feed liquid and the acid solution in the rare earth extraction process as inputs and the concentrations of the aqueous phase and the organic phase as states;
a simplification condition building unit for building simplification conditions for the model;
a rare earth extraction state matrix construction unit for simplifying and integrating the rare earth extraction initial state model based on the model simplification condition to obtain a rare earth extraction state matrix;
a rare earth extraction output matrix construction unit for constructing a rare earth extraction output matrix using the concentrations of the aqueous phase and the organic phase as states and the contents of rare earth elements that are difficult to extract and rare earth element components that are easy to extract as outputs;
a rare earth extraction output space model building unit for building a rare earth extraction output space model according to the rare earth extraction state matrix and the rare earth extraction output matrix.

任意選択で、前記状態空間増分モデル構築モジュールは具体的には、
線形連続時間の前記希土類抽出出力空間モデルを離散化処理して、離散時間の前記希土類抽出出力空間モデルを取得するための離散化処理ユニットと、
離散時間の希土類抽出出力空間モデルを処理して、状態空間増分モデルを取得するための増分化処理ユニットと、を含む。
Optionally, said incremental state-space model building module specifically:
a discretization processing unit for discretizing the rare earth extraction output space model in linear continuous time to obtain the rare earth extraction output space model in discrete time;
an incrementation processing unit for processing the discrete-time rare earth extraction output-space model to obtain a state-space incrementation model.

任意選択で、希土類抽出初期状態モデルを構築する具体的な式は

Figure 0007199111000007
Figure 0007199111000008
あり、
Figure 0007199111000009
Figure 0007199111000010
Optionally, the specific formula for building the rare earth extraction initial state model is
Figure 0007199111000007
Figure 0007199111000008
can be,
Figure 0007199111000009
Figure 0007199111000010

任意選択で、前記最適解に基づいて制御量を決定し、希土類抽出プロセスを制御する具

Figure 0007199111000011
(11)であり、
Figure 0007199111000012
Optionally, a control amount is determined based on said optimal solution to control the rare earth extraction process.
Figure 0007199111000011
(11),
Figure 0007199111000012

本発明によって提供される特定の実施例によれば、本発明は、以下の技術的効果を開示する。 According to the specific embodiments provided by the present invention, the present invention discloses the following technical effects.

本発明は、希土類抽出プロセスの予測制御方法及びシステムを開示して、方法は、希土類抽出プロセスにおける抽出剤、供給液、酸性溶液の流量を入力とし、水相と有機相の濃度を状態とし、抽出しにくい希土類元素と抽出しやすい希土類元素成分の含有量を出力として、希土類抽出空間モデルを構築するステップと、前記希土類抽出出力空間モデルを離散化処理して、状態空間増分モデルを取得するステップと、前記状態空間増分モデルに基づいて予測制御出力モデルを構築するステップと、前記予測制御出力モデルに基づいて最適化記述問題を構築するステップと、前記最適化記述問題を解き、最適解を得るステップと、前記最適解に基づいて制御量を決定し、希土類抽出プロセスを制御するステップと、を含む。制御の難易度が高いという問題を目指して、本発明では、モデル予測制御MPC法を使用して、状態空間増分モデルを処理し、MPCは、モデルに対する要件が低く、多変数オブジェクトに適しており、拘束能力を備えた強力な処理の利点があるため、希土類抽出プロセスの問題を適切に処理でき、希土類抽出プロセスの生産効率と精度を向上させるだけでなく、大量の資源消費と不安定な製品品質の問題を克服する。 The present invention discloses a predictive control method and system for a rare earth extraction process, the method takes as inputs the flow rate of the extractant, the feed liquid, the acid solution in the rare earth extraction process, the concentration of the aqueous phase and the organic phase as the conditions, The step of constructing a rare earth extraction space model using the contents of rare earth elements that are difficult to extract and the rare earth element components that are easy to extract as an output, and the step of discretizing the rare earth extraction output space model to obtain a state space incremental model. constructing a predictive control output model based on the state space incremental model; constructing an optimization description problem based on the predictive control output model; and solving the optimization description problem to obtain an optimal solution. and determining control variables based on the optimal solution to control the rare earth extraction process. Aiming at the problem of high control difficulty, we use the model predictive control MPC method to process the state-space incremental model, MPC has low requirements on the model and is suitable for multivariable objects. , has the advantage of strong processing with binding capacity, so it can properly handle the problems of the rare earth extraction process, which not only improves the production efficiency and accuracy of the rare earth extraction process, but also consumes a large amount of resources and produces unstable products. Overcome quality problems.

本発明の実施例または従来技術の技術的解決手段をより明確に説明するために、以下では、実施例で使用する必要のある図面を簡単に紹介する。明らかに、以下の説明の図面は、本発明のいくつかの実施例に過ぎず、当業者にとって、創造的な労力なしに、これらの図面に基づいて他の図面を得ることができる。 In order to describe the embodiments of the present invention or the technical solutions of the prior art more clearly, the following briefly introduces the drawings that need to be used in the embodiments. Apparently, the drawings in the following description are just some embodiments of the present invention, and those skilled in the art can obtain other drawings based on these drawings without creative efforts.

本発明の実施例1における希土類抽出プロセスのプロセスフローである。1 is a process flow of a rare earth extraction process in Example 1 of the present invention; 本発明の実施例1における状態空間モデルの予測制御の模式図である。FIG. 4 is a schematic diagram of predictive control of the state space model in Example 1 of the present invention; 本発明の実施例1における希土類抽出プロセスの予測制御方法のフローチャートである。1 is a flowchart of a predictive control method for a rare earth extraction process in Example 1 of the present invention; 本発明の実施例2における希土類抽出プロセスの予測制御システムの構造図である。FIG. 4 is a structural diagram of a predictive control system for rare earth extraction process in Embodiment 2 of the present invention; 本発明の実施例3のステップの作用下での操作可能量MVのシミュレーション図である。FIG. 10 is a simulation diagram of the operable amount MV under the action of the steps of Example 3 of the present invention; 本発明の実施例3のステップの作用下での被制御量MOのシミュレーション図である。FIG. 10 is a simulation diagram of the controlled variable MO under the action of the steps of Example 3 of the present invention; 本発明の実施例3における98%および96%の最終値での操作可能量MVシミュレーション図である。FIG. 10 is a operable amount MV simulation diagram at final values of 98% and 96% in Example 3 of the present invention; 本発明の実施例3における98%の最終値での抽出しにくい希土類元素成分含有量Yのシミュレーション図である。FIG. 5 is a simulation diagram of the hard-to-extract rare earth element content Y1 at the final value of 98% in Example 3 of the present invention; 本発明の実施例3における96%の最終値での抽出しやすい希土類元素成分の含有量Yのシミュレーション図である。FIG. 4 is a simulation diagram of the content Y2 of the easy-to-extract rare earth element component at the final value of 96% in Example 3 of the present invention;

以下は、本発明の実施例における添付の図面を参照して、本発明の実施例における技術的解決手段を明確かつ完全に説明する。明らかに、記載された実施例は、本発明の実施例の一部に過ぎず、すべての実施例ではない。本発明の実施例に基づいて、創造的な作業なしに当業者によって得られる他のすべての実施例は、本発明の保護範囲に含まれるものとする。 The following clearly and completely describes the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Apparently, the described embodiments are only some but not all embodiments of the present invention. All other embodiments obtained by persons skilled in the art without creative work based on the embodiments of the present invention shall fall within the protection scope of the present invention.

本発明は、希土類抽出プロセスの生産効率を改善するための希土類抽出プロセスの予測制御方法及びシステムを提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a predictive control method and system for a rare earth extraction process to improve the production efficiency of the rare earth extraction process.

本発明の上記の目的、特徴および利点をより明白かつ理解可能にするために、本発明を、添付の図面および発明を実施するための形態を参照して、以下でさらに詳細に説明する。 In order to make the above objects, features and advantages of the present invention more obvious and comprehensible, the present invention will be described in further detail below with reference to the accompanying drawings and detailed description.

実施例1
図1は、本発明の実施例1における希土類抽出プロセスのプロセスフローである。図1に示すように、P1-P3はすべてポンプを示し、F1-F4はすべて流量計を示し、u-uはそれぞれ希土類抽出プロセスにおける抽出剤、供給液、酸性溶液の流量を示し、YとYはそれぞれ抽出しやすい元素の濃度と抽出しにくい元素の濃度を示し、YとYはそれぞれ、抽出しにくい元素成分の含有量と抽出しやすい元素成分の含有量を示す。
Example 1
FIG. 1 is a process flow of a rare earth extraction process in Example 1 of the present invention. As shown in FIG. 1, P1-P3 all denote pumps, F1-F4 all denote flow meters, u 1 -u 3 denote the flow rates of extractant, feed liquid and acid solution respectively in the rare earth extraction process, YA and YB indicate the concentrations of elements that are easy to extract and the concentrations of elements that are difficult to extract, respectively , and Y1 and Y2 indicate the content of element components that are difficult to extract and the content of element components that are easy to extract, respectively. .

図2-図3に示すように、本発明は、希土類抽出プロセスの予測制御方法を開示する。前記方法は、
希土類抽出プロセスにおける抽出剤、供給液、酸性溶液の流量を入力とし、水相と有機相の濃度を状態とし、抽出しにくい希土類元素と抽出しやすい希土類元素成分の含有量を出力として、希土類抽出空間モデルを構築するステップS1と、
前記希土類抽出出力空間モデルを離散化処理して、状態空間増分モデルを取得するステップS2と、
前記状態空間増分モデルに基づいて予測制御出力モデルを構築するステップS3と、
前記予測制御出力モデルに基づいて最適化記述問題を構築するステップS4と、
前記最適化記述問題を解き、最適解を得るステップS5と、
前記最適解に基づいて制御量を決定し、希土類抽出プロセスを制御するステップS6と、を含むことを特徴とする。
As shown in FIGS. 2-3, the present invention discloses a predictive control method for the rare earth extraction process. The method includes:
With the flow rate of the extractant, feed liquid and acid solution in the rare earth extraction process as input, the concentration of the aqueous phase and organic phase as the state, and the content of rare earth elements that are difficult to extract and rare earth elements that are easy to extract as output, rare earth extraction a step S1 of building a spatial model;
step S2 of discretizing the rare earth extraction output space model to obtain a state space incremental model;
a step S3 of constructing a predictive control output model based on the state space incremental model;
Step S4 of constructing an optimization description problem based on the predictive control output model;
a step S5 of solving the optimization description problem and obtaining an optimal solution;
and step S6 of determining a control amount based on the optimum solution and controlling the rare earth extraction process.

各ステップについては、以下で詳しく説明する。 Each step is described in detail below.

希土類抽出プロセスにおける抽出剤、供給液、酸性溶液の流量を入力とし、水相と有機相の濃度を状態とし、抽出しにくい希土類元素と抽出しやすい希土類元素成分の含有量を出力として、希土類抽出空間モデルを構築するステップS1は、具体的には、
希土類抽出プロセスにおける抽出剤、供給液、酸性溶液の流量を入力とし、水相と有機相の濃度を状態とし、希土類抽出初期状態モデルを構築し、具体的な式が、

Figure 0007199111000013
(1)であり、
Figure 0007199111000014
あり、
Figure 0007199111000015
Figure 0007199111000016
希土類抽出プロセスに追加された酸性溶液の流量値を表すステップS11と、
具体的には
Figure 0007199111000017
3、2つの相の間の第i希土類元素の物質移動速度が0であると仮定すると、つまり、
Figure 0007199111000018
5、入力された抽出液u、供給液u、酸性溶液uの流量が一定であると仮定する場
Figure 0007199111000019
ことを含む、モデル簡略化条件を構築するステップS12と、
前記モデル簡略化条件に基づいて前記希土類抽出初期状態モデルを簡略化および統合して、希土類抽出状態行列を取得し、具体的な式が、
Figure 0007199111000020
Figure 0007199111000021
プS13と、
水相と有機相の濃度を状態とし、抽出しにくい希土類元素と抽出しやすい希土類元素成分の含有量を出力として、希土類抽出出力行列を構築し、具体的な式が、
Figure 0007199111000022
Figure 0007199111000023
S14と、
前記希土類抽出状態行列と前記希土類抽出出力行列によって希土類抽出出力空間モデルを構築し、具体的な式が、
Figure 0007199111000024
ステップS15と、を含む。With the flow rate of the extractant, feed liquid and acid solution in the rare earth extraction process as input, the concentration of the aqueous phase and organic phase as the state, and the content of rare earth elements that are difficult to extract and rare earth elements that are easy to extract as output, rare earth extraction Specifically, the step S1 of constructing the spatial model includes:
Taking the flow rate of the extractant, feed liquid and acid solution in the rare earth extraction process as the input, and the concentration of the aqueous phase and the organic phase as the state, the rare earth extraction initial state model is constructed, the specific formula is
Figure 0007199111000013
(1),
Figure 0007199111000014
can be,
Figure 0007199111000015
Figure 0007199111000016
step S11 representing the flow rate value of the acid solution added to the rare earth extraction process;
in particular
Figure 0007199111000017
3. Assuming that the mass transfer rate of the i-th rare earth element between the two phases is 0, that is,
Figure 0007199111000018
5. Assuming constant flow rates of input extract u 1 , feed u 2 and acid solution u 3
Figure 0007199111000019
a step S12 of constructing a model simplification condition, comprising:
Simplify and integrate the rare earth extraction initial state model based on the model simplification condition to obtain a rare earth extraction state matrix, and a specific formula is
Figure 0007199111000020
Figure 0007199111000021
and
The concentration of the aqueous phase and the organic phase is used as the state, and the content of the rare earth element that is difficult to extract and the rare earth element component that is easy to extract is used as the output to construct a rare earth extraction output matrix.
Figure 0007199111000022
Figure 0007199111000023
S14;
A rare earth extraction output space model is constructed by the rare earth extraction state matrix and the rare earth extraction output matrix, and a specific formula is
Figure 0007199111000024
and step S15.

MPC理論:MPCには、モデル要件が低く、多変数オブジェクトに適しているなどの利点があり、これは、継続的なオンライン限定最適化により、従来の最適制御を置き換える。つまり、MPCは、予測モデル、ローリング最適化、およびフィードバック補正で構成されている。状態空間モデルに基づく予測制御の原理は図2に示され、システムの将来の出力の予測、最適化問題の解き、解いた第1要素のシステムへの応用という3つの部分で大まかに構成される。 MPC Theory: MPC has advantages such as low model requirements and suitability for multi-variable objects, which replaces traditional optimal control by continuous online constrained optimization. In other words, MPC consists of a predictive model, rolling optimization, and feedback correction. The principle of predictive control based on the state-space model is shown in Figure 2 and consists roughly of three parts: predicting the future output of the system, solving the optimization problem, and applying the solved first element to the system. .

前記希土類抽出出力空間モデルを離散化処理して、状態空間増分モデルを取得するステップS2は、具体的には、
線形連続時間の前記希土類抽出出力空間モデルを離散化して、離散時間の前記希土類抽出出力空間モデルを取得し、具体的な式が、

Figure 0007199111000025
離散時間の希土類抽出出力空間モデルを処理して、状態空間増分モデルを取得し、具体的な式が、
Figure 0007199111000026
であるステップS22と、を含む。Step S2 of discretizing the rare earth extraction output space model to obtain a state space incremental model is specifically:
Discretizing the rare earth extraction output space model in linear continuous time to obtain the rare earth extraction output space model in discrete time, the specific formula is
Figure 0007199111000025
The discrete-time rare-earth extraction output-space model is processed to obtain the state-space incremental model, and the specific formula is
Figure 0007199111000026
and a step S22.

前記状態空間増分モデルに基づいて予測制御出力モデルを構築するステップS3は、具体的な式が、

Figure 0007199111000027
The step S3 of constructing a predictive control output model based on the state space incremental model is as follows.
Figure 0007199111000027

前記予測制御出力モデルに基づいて最適化記述問題を構築するステップS4は、具体的な式が、

Figure 0007199111000028
時刻の希土類抽出出力空間モデルの予測に基づくステップ制御出力を表す。The step S4 of constructing an optimization description problem based on the predictive control output model has a specific formula:
Figure 0007199111000028
FIG. 10 represents step control output based on the prediction of the rare earth extraction output space model for time of day.

ステップS5:前記最適化記述問題を解き、最適解

Figure 0007199111000029
Step S5: Solve the optimization description problem and obtain the optimal solution
Figure 0007199111000029

ステップS5の具体的なステップは以下のとおりである:

Figure 0007199111000030
そして、制約なし最適化記述問題は式(10)になり、
Figure 0007199111000031
が最小値をとるときの解であることがわかり、したがって、目的関数の最適解は
Figure 0007199111000032
The specific steps of step S5 are as follows:
Figure 0007199111000030
Then, the unconstrained optimization description problem becomes formula (10),
Figure 0007199111000031
is found to be the solution when takes the minimum value, and therefore the optimal solution for the objective function is
Figure 0007199111000032

前記最適解に基づいて制御量を決定し、希土類抽出プロセスを制御するステップS6は、具体的な式が、

Figure 0007199111000033
The step S6 of determining the control amount based on the optimum solution and controlling the rare earth extraction process is as follows.
Figure 0007199111000033

実施例2
図4に示されるように、本発明はまた、希土類抽出プロセスの予測制御システムを提供し、前記システムは、
希土類抽出プロセスにおける抽出剤、供給液、酸性溶液の流量を入力とし、水相と有機相の濃度を状態とし、抽出しにくい希土類元素と抽出しやすい希土類元素成分の含有量を出力として、希土類抽出空間モデルを構築するための希土類抽出空間モデル構築モジュール401と、
前記希土類抽出出力空間モデルを離散化処理して、状態空間増分モデルを取得するための状態空間増分モデル構築モジュール402と、
前記状態空間増分モデルに基づいて予測制御出力モデルを構築するための予測制御出力モデル構築モジュール403と、
前記予測制御出力モデルに基づいて最適化記述問題を構築するための最適化記述問題構築モジュール404と、
前記最適化記述問題を解き、最適解を得るための解きモジュール405と、
前記最適解に基づいて制御量を決定し、希土類抽出プロセスを制御するための制御モジュール406と、を含む。
Example 2
As shown in FIG. 4, the present invention also provides a predictive control system for a rare earth extraction process, said system comprising:
With the flow rate of the extractant, feed liquid and acid solution in the rare earth extraction process as input, the concentration of the aqueous phase and organic phase as the state, and the content of rare earth elements that are difficult to extract and rare earth elements that are easy to extract as output, rare earth extraction a rare earth extraction spatial model building module 401 for building a spatial model;
a state space incremental model building module 402 for discretizing the rare earth extraction output space model to obtain a state space incremental model;
a predictive control output model building module 403 for building a predictive control output model based on the state space incremental model;
an optimization description problem construction module 404 for constructing an optimization description problem based on the predictive control output model;
a solution module 405 for solving the optimization description problem and obtaining an optimal solution;
a control module 406 for determining control variables based on said optimal solution to control the rare earth extraction process.

任意の実施形態として、本発明の前記希土類抽出空間モデル構築モジュール401は具体的には、
希土類抽出プロセスにおける抽出剤、供給液、酸性溶液の流量を入力とし、水相と有機相の濃度を状態として、希土類抽出初期状態モデルを構築するための希土類抽出初期状態モデル構築ユニットと、
モデルの簡略化条件を構築するための簡略化条件構築ユニットと、
前記モデル簡略化条件に基づいて前記希土類抽出初期状態モデルを簡略化および統合して、希土類抽出状態行列を取得するための希土類抽出状態行列構築ユニットと、
水相と有機相の濃度を状態とし、抽出しにくい希土類元素と抽出しやすい希土類元素成分の含有量を出力として、希土類抽出出力行列を構築するための希土類抽出出力行列構築ユニットと、
前記希土類抽出状態行列と前記希土類抽出出力行列によって希土類抽出出力空間モデルを構築するための希土類抽出出力空間モデル構築ユニットと、を含む。
As an optional embodiment, the rare earth extraction space model construction module 401 of the present invention specifically includes:
a rare earth extraction initial state model construction unit for constructing a rare earth extraction initial state model with the flow rates of the extractant, the feed liquid and the acid solution in the rare earth extraction process as inputs and the concentrations of the aqueous phase and the organic phase as states;
a simplification condition building unit for building simplification conditions for the model;
a rare earth extraction state matrix construction unit for simplifying and integrating the rare earth extraction initial state model based on the model simplification condition to obtain a rare earth extraction state matrix;
a rare earth extraction output matrix construction unit for constructing a rare earth extraction output matrix using the concentrations of the aqueous phase and the organic phase as states and the contents of rare earth elements that are difficult to extract and rare earth element components that are easy to extract as outputs;
a rare earth extraction output space model building unit for building a rare earth extraction output space model according to the rare earth extraction state matrix and the rare earth extraction output matrix.

任意の実施形態として、本発明の前記状態空間増分モデル構築モジュール402は具体的には、
線形連続時間の前記希土類抽出出力空間モデルを離散化処理して、離散時間の前記希土類抽出出力空間モデルを取得するための離散化処理ユニットと、
離散時間の希土類抽出出力空間モデルを処理して、状態空間増分モデルを取得するための増分化処理ユニットと、を含む。
As an optional embodiment, the incremental state-space model building module 402 of the present invention specifically:
a discretization processing unit for discretizing the rare earth extraction output space model in linear continuous time to obtain the rare earth extraction output space model in discrete time;
an incrementation processing unit for processing the discrete-time rare earth extraction output-space model to obtain a state-space incrementation model.

実施例3
MPC理論によれば、コントローラーの場合、設定する必要のあるパラメーターは、予測時間領域P、制御時間領域m、サンプリング時間Ts、および加重行列Qyであった。希土類抽出出力空間モデルの場合、知っておく必要があるのは、a、b、e、H、およびHであった。
Example 3
According to MPC theory, for the controller, the parameters that needed to be set were prediction time domain P, control time domain m, sampling time Ts, and weighting matrix Qy. For the rare earth extraction output space model, all we needed to know were a, b, e, H A , and H O.

ステップ1、モデル構築段階。具体的な希土類分離工場について、既存の状況でのモデ

Figure 0007199111000034
ある:
Figure 0007199111000035
相の累積合計は、それぞれ14.6892と2.6334であった。したがって、ここでは、22段階のそれぞれの水相と有機相の残りの量が等しいと仮定し、それを代入するこ
Figure 0007199111000036
Step 1, model building stage. A model of a specific rare earth separation plant under existing conditions.
Figure 0007199111000034
be:
Figure 0007199111000035
The phase cumulative sums were 14.6892 and 2.6334, respectively. Therefore, here we assume that the remaining amounts of aqueous and organic phases in each of the 22 steps are equal and substitute
Figure 0007199111000036

ステップ2は、シミュレーション検証段階である。コマンドラインにおいて、

Figure 0007199111000037
でその実現可能性を検証し、パラメーターを調整して、より良い効果を取得し、ブロック図を作成して結果を取得し、具体的なステップは次のとおりである。Step 2 is the simulation verification stage. On the command line,
Figure 0007199111000037
to verify its feasibility, adjust the parameters to get a better effect, and create a block diagram to get the results, the specific steps are as follows:

2つの参照軌道がステップとして実行された後、予測時間領域が10、制御時間領域が

Figure 0007199111000038
れ図5と図6に示す。After the two reference trajectories are executed as steps, the prediction time domain is 10 and the control time domain is
Figure 0007199111000038
This is shown in FIGS. 5 and 6.

本発明は、2つの参照軌道ステップの最終値をそれぞれ98%および96%に設定し、操作可能量のMVシミュレーション図、最終値が98%のY1シミュレーション図、および最終値が96%のY2シミュレーション図を取得し、図7-図9に示す。 The present invention sets the final values of the two reference trajectory steps to 98% and 96%, respectively, the MV simulation diagram of the manipulable quantity, the Y1 simulation diagram with a final value of 98%, and the Y2 simulation diagram with a final value of 96%. Figures were obtained and are shown in Figures 7-9.

シミュレーション結果は以下を十分に説明する。第一に、MPCによる希土類抽出の実現可能性、および安定性、速度、精度、等の指標に関する要件を満たすことができ、第二に、MPCは、希土類抽出プロセスなどの多変数オブジェクトの処理に適しており、優れた追跡効果がある。 The simulation results fully explain the following. First, it can meet the requirements on the feasibility of rare earth extraction by MPC and the indicators such as stability, speed, accuracy, etc. Suitable and has good tracking effect.

本明細書の様々な実施例は、漸進的に説明されている。各実施例は、他の実施例との違いに焦点を合わせ、様々な実施例の同じおよび類似の部分については、互いに参照すればよい。実施例に開示されたシステムについては、実施例に開示された方法に対応するため、説明は比較的簡単であり、関連部分は、方法部分の説明を参照すればよい。 Various embodiments herein are described progressively. Each embodiment focuses on its differences from other embodiments, and reference can be made to each other for the same and similar parts of the various embodiments. The system disclosed in the embodiment corresponds to the method disclosed in the embodiment, so the description is relatively simple, and the relevant part can be referred to the description of the method part.

本明細書では、特定の例を使用して、本発明の原理と実施形態を説明し、上記の実施例の説明は、本発明の方法とコアアイデアを理解するのを助けるために使用されるだけであり、同時に、当業者にとって、本発明のアイデアによれば、発明を実施するための形態および応用範囲に変更があり、要約すると、本明細書の内容は、本発明を限定するものとして解釈されるべきではない。 Specific examples are used herein to describe the principles and embodiments of the present invention, and the descriptions of the above examples are used to help understand the methods and core ideas of the present invention. At the same time, for those skilled in the art, according to the idea of the present invention, there are changes in the mode for carrying out the invention and the scope of application. should not be interpreted.

Claims (8)

希土類抽出プロセスにおける抽出剤、供給液、酸性溶液の流量を入力とし、水相と有機相の濃度を状態とし、抽出しにくい希土類元素と抽出しやすい希土類元素成分の含有量を出力として、希土類抽出出力空間モデルを構築するステップS1と、
前記希土類抽出出力空間モデルを離散化処理して、状態空間増分モデルを取得するステップS2と、
前記状態空間増分モデルに基づいて予測制御出力モデルを構築するステップS3と、
前記予測制御出力モデルに基づいて最適化記述問題を構築するステップS4と、
前記最適化記述問題を解き、最適解を得るステップS5と、
前記最適解に基づいて制御量を決定し、希土類抽出プロセスを制御するステップS6と、を含み、
前記ステップS1は具体的には、
希土類抽出プロセスにおける抽出剤、供給液、酸性溶液の流量を入力とし、水相と有機相の濃度を状態として、希土類抽出初期状態モデルを構築するステップS11と、
モデルの簡略化条件を構築するステップS12と、
前記モデル簡略化条件に基づいて前記希土類抽出初期状態モデルを簡略化および統合して、希土類抽出状態行列を取得するステップS13と、
水相と有機相の濃度を状態とし、抽出しにくい希土類元素と抽出しやすい希土類元素成分の含有量を出力として、希土類抽出出力行列を構築するステップS14と、
前記希土類抽出状態行列と前記希土類抽出出力行列によって希土類抽出出力空間モデルを構築するステップS15と、を含むことを特徴とする希土類抽出プロセスの予測制御方法。
With the flow rate of the extractant, feed liquid and acid solution in the rare earth extraction process as input, the concentration of the aqueous phase and organic phase as the state, and the content of rare earth elements that are difficult to extract and rare earth elements that are easy to extract as output, rare earth extraction step S1 of building an output space model;
step S2 of discretizing the rare earth extraction output space model to obtain a state space incremental model;
a step S3 of constructing a predictive control output model based on the state space incremental model;
Step S4 of constructing an optimization description problem based on the predictive control output model;
a step S5 of solving the optimization description problem and obtaining an optimal solution;
determining a control amount based on the optimal solution to control the rare earth extraction process ;
Specifically, the step S1 is
A step S11 of constructing a rare earth extraction initial state model with the flow rates of the extractant, feed liquid, and acid solution in the rare earth extraction process as inputs and the concentrations of the aqueous phase and the organic phase as states;
a step S12 of constructing a simplification condition for the model;
a step S13 of obtaining a rare earth extraction state matrix by simplifying and integrating the rare earth extraction initial state model based on the model simplification condition;
Step S14 of constructing a rare earth extraction output matrix with the concentrations of the aqueous phase and the organic phase as states and the contents of rare earth elements that are difficult to extract and rare earth element components that are easy to extract as outputs;
constructing a rare earth extraction output space model according to the rare earth extraction state matrix and the rare earth extraction output matrix (S15 ).
前記ステップS2は具体的には、
線形連続時間の前記希土類抽出出力空間モデルを離散化処理して、離散時間の前記希土類抽出出力空間モデルを取得するステップS21と、
離散時間の希土類抽出出力空間モデルを処理して、状態空間増分モデルを取得するステップS22と、を含むことを特徴とする請求項1に記載の希土類抽出プロセスの予測制御方法。
Specifically, the step S2 is
a step S21 of performing a discretization process on the rare earth extraction output space model in linear continuous time to obtain the rare earth extraction output space model in discrete time;
and processing the discrete-time rare earth extraction output space model to obtain a state space incremental model.
希土類抽出初期状態モデルを構築する具体的な式は
Figure 0007199111000039
であり、
ここで、
Figure 0007199111000040
Figure 0007199111000041
Figure 0007199111000042
Figure 0007199111000043
Figure 0007199111000044
Figure 0007199111000045
Figure 0007199111000046
Figure 0007199111000047
Figure 0007199111000048
Figure 0007199111000049
ここで、
Figure 0007199111000050
nは抽出セクションの段階数、mは洗浄セクションの段階数、
Figure 0007199111000051
Figure 0007199111000052
Figure 0007199111000053
Figure 0007199111000054
Figure 0007199111000055
を表すことを特徴とする請求項に記載の希土類抽出プロセスの予測制御方法。
The specific formula for constructing the rare earth extraction initial state model is
Figure 0007199111000039
and
here,
Figure 0007199111000040
Figure 0007199111000041
Figure 0007199111000042
Figure 0007199111000043
Figure 0007199111000044
Figure 0007199111000045
Figure 0007199111000046
Figure 0007199111000047
Figure 0007199111000048
Figure 0007199111000049
here,
Figure 0007199111000050
n is the number of extraction section stages, m is the number of washing section stages,
Figure 0007199111000051
Figure 0007199111000052
Figure 0007199111000053
Figure 0007199111000054
Figure 0007199111000055
2. The predictive control method of the rare earth extraction process of claim 1 , wherein:
前記最適解に基づいて制御量を決定し、希土類抽出プロセスを制御する具体的な式は、
Figure 0007199111000056
ここで、
Figure 0007199111000057
Figure 0007199111000058
Figure 0007199111000059
Figure 0007199111000060
を表すことを特徴とする請求項1に記載の希土類抽出プロセスの予測制御方法。
A specific formula for determining the control amount based on the optimum solution and controlling the rare earth extraction process is
Figure 0007199111000056
here,
Figure 0007199111000057
Figure 0007199111000058
Figure 0007199111000059
Figure 0007199111000060
2. The predictive control method of the rare earth extraction process of claim 1, wherein:
希土類抽出プロセスにおける抽出剤、供給液、酸性溶液の流量を入力とし、水相と有機相の濃度を状態とし、抽出しにくい希土類元素と抽出しやすい希土類元素成分の含有量を出力として、希土類抽出出力空間モデルを構築するための希土類抽出出力空間モデル構築モジュールと、
前記希土類抽出出力空間モデルを離散化処理して、状態空間増分モデルを取得するための状態空間増分モデル構築モジュールと、
前記状態空間増分モデルに基づいて予測制御出力モデルを構築するための予測制御出力モデル構築モジュールと、
前記予測制御出力モデルに基づいて最適化記述問題を構築するための最適化記述問題構築モジュールと、
前記最適化記述問題を解き、最適解を得るための解きモジュールと、
前記最適解に基づいて制御量を決定し、希土類抽出プロセスを制御するための制御モジュールと、を含み、
前記希土類抽出出力空間モデル構築モジュールは具体的には、
希土類抽出プロセスにおける抽出剤、供給液、酸性溶液の流量を入力とし、水相と有機相の濃度を状態として、希土類抽出初期状態モデルを構築するための希土類抽出初期状態モデル構築ユニットと、
モデルの簡略化条件を構築するための簡略化条件構築ユニットと、
前記モデル簡略化条件に基づいて前記希土類抽出初期状態モデルを簡略化および統合して、希土類抽出状態行列を取得するための希土類抽出状態行列構築ユニットと、
水相と有機相の濃度を状態とし、抽出しにくい希土類元素と抽出しやすい希土類元素成分の含有量を出力として、希土類抽出出力行列を構築するための希土類抽出出力行列構築ユニットと、
前記希土類抽出状態行列と前記希土類抽出出力行列によって希土類抽出出力空間モデルを構築するための希土類抽出出力空間モデル構築ユニットと、を含む
ことを特徴とする希土類抽出プロセスの予測制御システム。
With the flow rate of the extractant, feed liquid and acid solution in the rare earth extraction process as input, the concentration of the aqueous phase and organic phase as the state, and the content of rare earth elements that are difficult to extract and rare earth elements that are easy to extract as output, rare earth extraction a rare earth extraction output spatial model building module for building an output spatial model;
a state space incremental model building module for discretizing the rare earth extraction output space model to obtain a state space incremental model;
a predictive control output model building module for building a predictive control output model based on the state space incremental model;
an optimization description problem building module for building an optimization description problem based on the predictive control output model;
a solution module for solving the optimization description problem and obtaining an optimal solution;
a control module for determining control variables based on said optimal solution to control the rare earth extraction process ;
Specifically, the rare earth extraction output space model construction module is:
a rare earth extraction initial state model construction unit for constructing a rare earth extraction initial state model with the flow rates of the extractant, the feed liquid and the acid solution in the rare earth extraction process as inputs and the concentrations of the aqueous phase and the organic phase as states;
a simplification condition building unit for building simplification conditions for the model;
a rare earth extraction state matrix construction unit for simplifying and integrating the rare earth extraction initial state model based on the model simplification condition to obtain a rare earth extraction state matrix;
a rare earth extraction output matrix construction unit for constructing a rare earth extraction output matrix using the concentrations of the aqueous phase and the organic phase as states and the contents of rare earth elements that are difficult to extract and rare earth element components that are easy to extract as outputs;
a rare earth extraction output space model building unit for building a rare earth extraction output space model according to the rare earth extraction state matrix and the rare earth extraction output matrix.
A predictive control system for a rare earth extraction process, characterized by:
前記状態空間増分モデル構築モジュールは具体的には、
線形連続時間の前記希土類抽出出力空間モデルを離散化処理して、離散時間の前記希土類抽出出力空間モデルを取得するための離散化処理ユニットと、
離散時間の希土類抽出出力空間モデルを処理して、状態空間増分モデルを取得するための増分化処理ユニットと、を含むことを特徴とする請求項に記載の希土類抽出プロセスの予測制御システム。
Specifically, the state-space incremental model building module includes:
a discretization processing unit for discretizing the rare earth extraction output space model in linear continuous time to obtain the rare earth extraction output space model in discrete time;
and an incremental processing unit for processing the discrete - time rare earth extraction output space model to obtain a state space incremental model.
希土類抽出初期状態モデルを構築する具体的な式は
Figure 0007199111000061
であり、
ここで、
Figure 0007199111000062
Figure 0007199111000063
Figure 0007199111000064
Figure 0007199111000065
Figure 0007199111000066
Figure 0007199111000067
Figure 0007199111000068
Figure 0007199111000069
ここで、
Figure 0007199111000070
nは抽出セクションの段階数、mは洗浄セクションの段階数、
Figure 0007199111000071
Figure 0007199111000072
はそれぞれ入力された供給液及び酸性溶液の流量、Tは、ラグ時定数、
Figure 0007199111000073
Figure 0007199111000074
Figure 0007199111000075
を表すことを特徴とする請求項に記載の希土類抽出プロセスの予測制御システム。
The specific formula for constructing the rare earth extraction initial state model is
Figure 0007199111000061
and
here,
Figure 0007199111000062
Figure 0007199111000063
Figure 0007199111000064
Figure 0007199111000065
Figure 0007199111000066
Figure 0007199111000067
Figure 0007199111000068
Figure 0007199111000069
here,
Figure 0007199111000070
n is the number of extraction section stages, m is the number of washing section stages,
Figure 0007199111000071
Figure 0007199111000072
is the flow rate of the input feed liquid and acid solution respectively, T is the lag time constant,
Figure 0007199111000073
Figure 0007199111000074
Figure 0007199111000075
6. A predictive control system for a rare earth extraction process according to claim 5 , characterized by:
前記最適解に基づいて制御量を決定し、希土類抽出プロセスを制御する具体的な式は
Figure 0007199111000076
ここで、
Figure 0007199111000077
Figure 0007199111000078
Figure 0007199111000079
Figure 0007199111000080
を表すことを特徴とする請求項に記載の希土類抽出プロセスの予測制御システム。
A specific formula for determining the control amount based on the optimum solution and controlling the rare earth extraction process is
Figure 0007199111000076
here,
Figure 0007199111000077
Figure 0007199111000078
Figure 0007199111000079
Figure 0007199111000080
6. A predictive control system for a rare earth extraction process according to claim 5 , characterized by:
JP2021124811A 2021-04-23 2021-06-21 Predictive control method and system for rare earth extraction process Active JP7199111B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110440337.4A CN113126501B (en) 2021-04-23 2021-04-23 Rare earth extraction process prediction control method and system
CN202110440337.4 2021-04-23

Publications (2)

Publication Number Publication Date
JP2022167740A JP2022167740A (en) 2022-11-04
JP7199111B2 true JP7199111B2 (en) 2023-01-05

Family

ID=76779460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021124811A Active JP7199111B2 (en) 2021-04-23 2021-06-21 Predictive control method and system for rare earth extraction process

Country Status (2)

Country Link
JP (1) JP7199111B2 (en)
CN (1) CN113126501B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103744292A (en) 2014-01-22 2014-04-23 东北大学 Rare earth extraction process dynamic operating control method based on data driving
CN109839825A (en) 2019-01-28 2019-06-04 华东交通大学 A kind of forecast Control Algorithm and system of Rare-Earth Extraction Process constituent content
CN111142582A (en) 2020-01-13 2020-05-12 东北大学 Intelligent control system of rare earth extraction production process

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100362440C (en) * 2005-04-14 2008-01-16 东北大学 Rare earth cascade extraction separation intelligence control system and method
CN102004444A (en) * 2010-11-23 2011-04-06 华东交通大学 Multi-model predictive control method for component content in process of extracting rare earth
JP6348796B2 (en) * 2013-07-25 2018-06-27 国立大学法人横浜国立大学 Recovery method of rare earth elements using ionic liquid
CN103466821B (en) * 2013-09-06 2014-10-29 中铝稀土(常熟)有限公司 Device for treating and recycling acid-containing wastewater of extraction raffinate in rare earth extraction process
CN106481507A (en) * 2016-10-28 2017-03-08 华北电力大学 Consider wind turbine model predictive controller and the control method of wind turbulent flow
CN106354017B (en) * 2016-11-14 2019-06-04 华东交通大学 A kind of Rare Earths Countercurrent Extraction Process constituent content range restraint method
CN107236863A (en) * 2017-07-31 2017-10-10 赣州市恒源科技股份有限公司 A kind of utilization saponification is with extraction to reclaim the retracting device of heavy metal in neodymium iron boron waste material
CN108490779B (en) * 2018-03-20 2021-01-08 华东交通大学 Rare earth extraction process decoupling control method
CN108803329B (en) * 2018-06-19 2021-06-18 长春工业大学 Solubility optimization method in supercritical extraction process
CN110223288B (en) * 2019-06-17 2021-01-08 华东交通大学 Method and system for predicting multi-component content in rare earth extraction process
CN110217229B (en) * 2019-06-25 2020-09-18 长春工业大学 Path tracking control method suitable for high-speed limit working condition
US10954582B2 (en) * 2019-07-17 2021-03-23 West Virginia University Systems and processes for recovery of high-grade rare earth concentrate from acid mine drainage
CN111224434B (en) * 2020-03-12 2021-08-06 安徽工程大学 Load frequency coordination optimization control method of light-fire storage hybrid power generation system
CN111894752B (en) * 2020-07-16 2021-05-11 北京交通大学 Model predictive control algorithm-based diesel engine VGT-EGR control method
CN112251602A (en) * 2020-11-25 2021-01-22 包头华美稀土高科有限公司 Method and device for preparing mixed rare earth chloride by continuous extraction and transformation of rare earth sulfate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103744292A (en) 2014-01-22 2014-04-23 东北大学 Rare earth extraction process dynamic operating control method based on data driving
CN109839825A (en) 2019-01-28 2019-06-04 华东交通大学 A kind of forecast Control Algorithm and system of Rare-Earth Extraction Process constituent content
CN111142582A (en) 2020-01-13 2020-05-12 东北大学 Intelligent control system of rare earth extraction production process

Also Published As

Publication number Publication date
CN113126501A (en) 2021-07-16
JP2022167740A (en) 2022-11-04
CN113126501B (en) 2022-07-26

Similar Documents

Publication Publication Date Title
Hermansson et al. Model predictive control of pH neutralization processes: A review
CN109839825B (en) Method and system for predictive control of component content in rare earth extraction process
CN101813916B (en) Self-adaptive prediction function control method for nonlinear production process
CN104950670B (en) A kind of integrated Multiple Model Control Method of CSTR
Guzmán et al. Interactive tool for analysis of time-delay systems with dead-time compensators
CN108931918B (en) Servo motor control method and device
Alla et al. PID control design for second order systems
Nejati et al. Comparison between backstepping and input–output linearization techniques for pH process control
Sigurani et al. Experimental evaluation of two complementary decentralized event-based control methods
CN114995155A (en) Robust decoupling control system and control method for high-purity rectification process
JP7199111B2 (en) Predictive control method and system for rare earth extraction process
Singh et al. Comparative study of integer order PI-PD controller and fractional order PI-PD controller of a DC motor for speed and position control
Yang et al. Adaptive neural tracking control of a class of MIMO pure-feedback time-delay nonlinear systems with input saturation
CN104898423A (en) Controller automatic design method based on library thinking and intelligent optimization algorithm
CN104111605B (en) The controller and control method of single-input single-output integrator plant production process
Caraman et al. Extremum seeking control for an anaerobic digestion process
CN110750049A (en) Intermittent process 2D prediction fault-tolerant control method with time lag and disturbance
Touretzky et al. A framework for integrated scheduling and control using discrete-time dynamic process models
CN106094524A (en) The rapid model prediction control method compensated based on input trend
Shahcheraghi et al. An improved control strategy for an industrial copper solvent extraction process
Ridwan et al. A simulink modeling to develop a control system of stirred tank heater with multifarious operating conditions
Navia et al. Modifier-adaptation based on transient measurements applied to a laboratory-scale flotation column
Ren et al. A new Smith predictor for control of process with long time delays
Grancharova et al. Dual-Mode distributed model predictive control of a quadruple-tank system
Younis et al. Real-Time Model Predictive Control of an Industrial Internet Platform

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221213

R150 Certificate of patent or registration of utility model

Ref document number: 7199111

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150