JP7196528B2 - Reactive power compensation system - Google Patents

Reactive power compensation system Download PDF

Info

Publication number
JP7196528B2
JP7196528B2 JP2018196011A JP2018196011A JP7196528B2 JP 7196528 B2 JP7196528 B2 JP 7196528B2 JP 2018196011 A JP2018196011 A JP 2018196011A JP 2018196011 A JP2018196011 A JP 2018196011A JP 7196528 B2 JP7196528 B2 JP 7196528B2
Authority
JP
Japan
Prior art keywords
reactive power
substation
fluctuation component
compensation system
power compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018196011A
Other languages
Japanese (ja)
Other versions
JP2020065366A (en
Inventor
健太郎 小藤
孝二郎 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2018196011A priority Critical patent/JP7196528B2/en
Publication of JP2020065366A publication Critical patent/JP2020065366A/en
Application granted granted Critical
Publication of JP7196528B2 publication Critical patent/JP7196528B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、例えば静止型無効電力補償装置(以下、SVC:Static Var Compensatorともいう)により、電力系統の無効電力を補償して電圧を所定値に制御するシステムにおいて、SVCにより系統電源としての変電所の方向を判定可能とした無効電力補償システムに関する。 The present invention provides a system for compensating the reactive power of an electric power system and controlling the voltage to a predetermined value by, for example, a static reactive power compensator (hereinafter also referred to as SVC: Static Var Compensator). The present invention relates to a reactive power compensation system capable of determining the direction of a place.

図6は、従来のSVCの一例を示す構成図であり、特許文献1に記載されているものである。
図6において、100は配電線または送電線等の線路、101,102は変流器、103は計器用変圧器、104は潮流方向検出手段、105は演算手段、106は目標値設定手段、107は制御手段、108は半導体スイッチング素子、コンデンサ、リアクトル等からなるSVC主回路である。
FIG. 6 is a configuration diagram showing an example of a conventional SVC, which is described in Patent Document 1. In FIG.
6, 100 is a distribution line or transmission line, 101 and 102 are current transformers, 103 is a voltage transformer, 104 is power flow direction detection means, 105 is calculation means, 106 is target value setting means, and 107 is control means, and 108 is an SVC main circuit comprising semiconductor switching elements, capacitors, reactors, and the like.

この従来技術では、潮流方向検出手段104が、変流器101及び計器用変圧器103の出力に基づき、有効電力の極性や相電圧と電流との位相差等から線路100の潮流方向を検出する。演算手段105は、検出された潮流方向に応じて、変流器101の出力、または変流器101の反転出力と変流器102の出力との加算値を制御手段107に入力する。制御手段107は、演算手段105の出力と計器用変圧器103の出力とに基づいて潮流方向ごとに力率または無効電力を求め、その値が目標値設定手段106による設定目標値になるように主回路108を動作させて力率一定制御または無効電力一定制御を行っている。 In this prior art, the power flow direction detection means 104 detects the power flow direction of the line 100 from the polarity of the active power, the phase difference between the phase voltage and the current, etc. based on the outputs of the current transformer 101 and the potential transformer 103. . The calculation means 105 inputs the output of the current transformer 101 or the sum of the inverted output of the current transformer 101 and the output of the current transformer 102 to the control means 107 according to the detected power flow direction. The control means 107 obtains the power factor or reactive power for each power flow direction based on the output of the calculation means 105 and the output of the voltage transformer 103, and adjusts the value to the target value set by the target value setting means 106. The main circuit 108 is operated to perform constant power factor control or constant reactive power control.

一方、非特許文献1には、分散電源が連系される電力系統において、自動電圧調整器(以下、SVR:Step Voltage Regulatorともいう)により系統電圧を所定値に制御するSVR制御方式が開示されている。
図7(a)は、SVRの一次側,二次側に変電所a,b、電線用遮断器FCB,FCB、及び負荷LD,LDがそれぞれ接続されている系統モデルにおいて、変電所a,bの何れが電源になるかという系統接続(変電所aが電源となる順送,変電所bが電源となる逆送)と、SVRを通過する電力の方向としての電力潮流(順潮流,逆潮流)とを場合分けした図であり、図7(b)は、系統接続と電力潮流との4通りの組み合わせを運転モードI~IVとして示した図である。
On the other hand, Non-Patent Document 1 discloses an SVR control method that controls the system voltage to a predetermined value by an automatic voltage regulator (hereinafter also referred to as SVR: Step Voltage Regulator) in a power system in which distributed power sources are interconnected. ing.
FIG. 7(a) shows a system model in which substations a and b, wire circuit breakers FCB a and FCB b , and loads LD a and LD b are connected to the primary and secondary sides of an SVR, respectively. Grid connection (forward transmission with substation a as the power source, reverse transmission with substation b as the power source) and power flow as the direction of power passing through the SVR (forward FIG. 7B is a diagram showing four combinations of system connection and power flow as operation modes I to IV.

電力潮流のみから系統接続(順送,逆送)を判定する場合、分散電源が連系されていない状態では、図7(b)の運転モードI,IIのように、順潮流時には順送、逆潮流時には逆送と判定でき、SVRはこれらの判定結果に基づいて電圧調整を行うことができる。
しかし、例えば順送(変電所aが電源である)時に、SVRと遮断器FCBとの間に太陽光発電装置や風力発電装置等の分散電源が接続されると、その発電電力がSVRに逆潮流として流れるため運転モードIIIになるはずであるが、SVRは、逆潮流に基づいて逆送(変電所bが電源)と判断してしまい、運転モードIIと誤認することになる。
When determining the system connection (forward or reverse) only from the power flow, in the state where the distributed power sources are not interconnected, as in operation modes I and II in FIG. When the power flow is reversed, it can be determined that the current is reversed, and the SVR can adjust the voltage based on these determination results.
However, for example, when a distributed power source such as a photovoltaic power generation device or a wind power generation device is connected between the SVR and the circuit breaker FCB b during forward transmission (substation a is the power source), the generated power is transferred to the SVR. Since it flows as a reverse power flow, it should be in operation mode III, but the SVR judges that it is reverse transmission (substation b is the power source) based on the reverse power flow, and misidentifies it as operation mode II.

このため、非特許文献1では、SVRの一次側インピーダンスと二次側インピーダンスとの比であるインピーダンス比等に基づいて系統接続(順送,逆送)を判定し、SVRの二次側または一次側のタップを切り替えて電圧調整を行っている。 For this reason, in Non-Patent Document 1, the system connection (forward or reverse) is determined based on the impedance ratio or the like, which is the ratio between the primary side impedance and the secondary side impedance of the SVR, and the secondary side or primary side of the SVR is determined. The voltage is adjusted by switching the side taps.

特開平9-135535号公報(段落[0012]~[0015]、図1等)JP-A-9-135535 (paragraphs [0012] to [0015], FIG. 1, etc.)

梶田 寛,神部 晃,符川 謙治,角倉 慎哉,「分散電源対応型SVR制御方式の開発」,p.10-16,愛知電機技報,No.26,2005年Hiroshi Kajita, Akira Kanbe, Kenji Fukawa, Shinya Kadokura, "Development of SVR Control System for Distributed Power Sources", pp. 10-16, Aichi Electric Technical Report, No. 26, 2005

特許文献1に記載された従来技術によれば、電力系統の潮流方向が切り替わった時でもSVCを継続的に制御することが可能であるが、分散電源が連系された場合に系統接続を誤認するおそれがある。
図8は、特許文献1と同様にSVCが接続された配電系統の構成図である。図8において、11,12は配電系統20の両端に設置された配電用変電所(以下、単に変電所ともいう)、50はSVC、31,32はSVC50と変電所11,12との間にそれぞれ設置された開閉器、51は変流器、52は計器用変圧器、60は負荷、70は分散電源である。
According to the conventional technology described in Patent Document 1, it is possible to continuously control the SVC even when the power flow direction of the power system is switched. There is a risk of
FIG. 8 is a configuration diagram of a distribution system to which SVCs are connected as in Patent Document 1. In FIG. 8, 11 and 12 are distribution substations (hereinafter simply referred to as substations) installed at both ends of the distribution system 20, 50 is the SVC, and 31 and 32 are between the SVC 50 and the substations 11 and 12. 51 is a current transformer, 52 is a potential transformer, 60 is a load, and 70 is a distributed power source.

いま、通常動作として、変電所11からの電力がON状態の開閉器31を介して負荷60に供給されている場合、SVC50は順潮流を検出し、変電所11が電源である(順送)と判定して無効電力補償動作を行う。しかし、分散電源70が発電を開始すると、図示するように分散電源70の発電電力が配電系統20を逆潮流として流れる。これにより、SVC50は、開閉器32がOFFしているにも関わらず、あたかも他方の変電所12が電源である(逆送)と誤認してしまう。 Now, as a normal operation, when power from the substation 11 is supplied to the load 60 via the switch 31 in the ON state, the SVC 50 detects forward power flow and the substation 11 is the power source (forward). Then, the reactive power compensation operation is performed. However, when the distributed power sources 70 start generating power, the power generated by the distributed power sources 70 flows through the distribution system 20 as a reverse power flow, as illustrated. As a result, the SVC 50 erroneously recognizes that the other substation 12 is the power source (reverse feed) even though the switch 32 is OFF.

SVC50から各変電所までの系統インピーダンスは異なり、SVC50の最適な制御ゲインは系統インピーダンスに応じて異なるので、系統接続を誤認してしまうとSVC50による適切な制御動作は困難になる。また、特許文献1に記載されたSVCは力率一定または無効電力一定制御を行っており、電圧一定制御を行う場合の系統接続の判定方法については何ら言及されていない。
更に、非特許文献1に記載された技術によれば、SVRが接続された電力系統において系統接続の誤判定を防ぐことができるが、この技術をSVCが接続された系統にそのまま適用することはできない。
Since the system impedance from the SVC 50 to each substation differs, and the optimum control gain of the SVC 50 differs according to the system impedance, it becomes difficult for the SVC 50 to perform an appropriate control operation if the system connection is misidentified. Further, the SVC described in Patent Document 1 performs constant power factor control or constant reactive power control, and does not mention at all how to determine grid connection when performing constant voltage control.
Furthermore, according to the technique described in Non-Patent Document 1, it is possible to prevent erroneous determination of system connection in the power system to which the SVR is connected. Can not.

そこで、本発明の解決課題は、SVCが接続された電力系統に分散電源が連系される場合でも、電源である変電所の方向、すなわち系統接続(順送,逆送)を確実に判定して適切な無効電力補償、電圧補償を可能にした無効電力補償システムを提供することにある。 Therefore, the problem to be solved by the present invention is to reliably determine the direction of the substation that is the power supply, that is, the system connection (forward or reverse) even when a distributed power source is interconnected to the power system to which the SVC is connected. The object of the present invention is to provide a reactive power compensation system that enables appropriate reactive power compensation and voltage compensation.

上記課題を解決するため、請求項1に係る発明は、無効電力補償装置により電力系統に無効電力を注入して系統電圧の変動を補償する無効電力補償システムであって、電力系統における前記無効電力補償装置の接続点と電力系統の一端に設置された第1の変電所との間に第1の開閉器が接続され、かつ、電力系統の他端に設置された第2の変電所と前記接続点との間に第2の開閉器が接続された無効電力補償システムにおいて、
前記第1の変電所または前記第2の変電所の何れが電源であるかを判定するための所定周波数の変電所方向判定信号を、前記無効電力補償装置から電力系統に注入する判定信号注入手段と、
前記接続点と前記第1の変電所との間、または、前記接続点と前記第2の変電所との間から、電力または電流の変動成分を検出する変動成分検出手段と、
前記変動成分検出手段により検出された前記変動成分の周波数が前記変電所方向判定信号の所定周波数と等しい場合に、前記変動成分が検出された側の変電所が電源であると判定する比較手段と、
を備えたことを特徴とする。
In order to solve the above problems, the invention according to claim 1 is a reactive power compensation system for injecting reactive power into a power system using a reactive power compensator to compensate for system voltage fluctuations, wherein the reactive power in the power system A first switch is connected between a connection point of the compensator and a first substation installed at one end of the power system, and a second substation installed at the other end of the power system; In a reactive power compensation system in which a second switch is connected between the connection point,
Determination signal injection means for injecting a substation direction determination signal of a predetermined frequency for determining which of the first substation and the second substation is the power supply from the reactive power compensator into the power system. When,
fluctuation component detection means for detecting a fluctuation component of power or current between the connection point and the first substation or between the connection point and the second substation;
comparison means for determining that the substation on which the fluctuation component is detected is a power supply when the frequency of the fluctuation component detected by the fluctuation component detection means is equal to the predetermined frequency of the substation direction determination signal; ,
characterized by comprising

請求項2に係る発明は、無効電力補償装置により電力系統に無効電力を注入して系統電圧の変動を補償する無効電力補償システムであって、電力系統における変電所の接続点と前記無効電力補償装置との間に、第1の開閉器を備えた第1の線路と第2の開閉器を備えた第2の線路とが並列に接続された無効電力補償システムにおいて、
前記第1の線路または前記第2の線路の何れが電源としての前記変電所に接続されているかを判定するための所定周波数の変電所方向判定信号を、前記無効電力補償装置から前記第1の線路または前記第2の線路に注入する判定信号注入手段と、
前記第1の線路または前記第2の線路から、電力または電流の変動成分を検出する変動成分検出手段と、
前記変動成分検出手段により検出された前記変動成分の周波数が前記変電所方向判定信号の所定周波数と等しい場合に、前記変動成分が検出された側の線路が前記変電所に接続されていると判定する比較手段と、
を備えたことを特徴とする。
The invention according to claim 2 is a reactive power compensation system for injecting reactive power into a power system by a reactive power compensator to compensate for system voltage fluctuations, wherein a connection point of a substation in the power system and the reactive power compensation A reactive power compensation system in which a first line having a first switch and a second line having a second switch are connected in parallel between a device,
A substation direction determination signal of a predetermined frequency for determining which of the first line and the second line is connected to the substation as a power supply is transmitted from the reactive power compensator to the first line. determination signal injection means for injecting into the line or the second line;
Fluctuation component detection means for detecting a fluctuation component of electric power or current from the first line or the second line;
When the frequency of the fluctuation component detected by the fluctuation component detection means is equal to the predetermined frequency of the substation direction determination signal, it is determined that the line on which the fluctuation component is detected is connected to the substation. a comparison means to
characterized by comprising

請求項3に係る発明は、請求項1または2に記載した無効電力補償システムにおいて、前記比較手段による判定結果に応じて、予め設定された制御方法または制御パラメータを切り替える手段を有することを特徴とする。 The invention according to claim 3 is the reactive power compensation system according to claim 1 or 2, further comprising means for switching a preset control method or control parameter according to the determination result of the comparison means. do.

請求項4に係る発明は、請求項1または2に記載した無効電力補償システムにおいて、前記比較手段による判定結果に応じて、制御パラメータの更新を外部システムに要求する手段を備えたことを特徴とする。 The invention according to claim 4 is the reactive power compensation system according to claim 1 or 2, further comprising means for requesting an external system to update control parameters according to the determination result of the comparison means. do.

請求項5に係る発明は、請求項3又は4に記載した無効電力補償システムにおいて、前記無効電力補償装置がスロープ特性付きの電圧制御方法によって制御されると共に、前記制御パラメータが、少なくともスロープリアクタンスまたはその逆数に相当する制御ゲインを含むことを特徴とする。
The invention according to claim 5 is the reactive power compensation system according to claim 3 or 4 , wherein the reactive power compensator is controlled by a voltage control method with slope characteristics, and the control parameter is at least slope reactance or It is characterized by including a control gain corresponding to its reciprocal.

請求項6に係る発明は、請求項1~5の何れか1項に記載した無効電力補償システムにおいて、前記比較手段は、前記変動成分の大きさが所定の閾値を超える場合に当該変動成分を有効と判断して前記変電所方向判定信号との比較に用いることを特徴とする。 The invention according to claim 6 is the reactive power compensation system according to any one of claims 1 to 5, wherein the comparison means compares the fluctuation component when the magnitude of the fluctuation component exceeds a predetermined threshold. It is characterized by judging that it is effective and using it for comparison with the substation direction judgment signal.

請求項7に係る発明は、請求項1~6の何れか1項に記載した無効電力補償システムにおいて、前記無効電力補償装置に与える無効電力指令値を、無効電力目標値に前記変電所方向判定信号を重畳して生成することを特徴とする。 The invention according to claim 7 is the reactive power compensation system according to any one of claims 1 to 6, wherein the reactive power command value to be given to the reactive power compensator is set to the reactive power target value. It is characterized in that it is generated by superimposing signals.

請求項8に係る発明は、請求項1~7の何れか1項に記載した無効電力補償システムにおいて、前記変電所方向判定信号が無効電力変動成分または無効電流変動成分であることを特徴とする。 The invention according to claim 8 is the reactive power compensation system according to any one of claims 1 to 7, wherein the substation direction determination signal is a reactive power fluctuation component or a reactive current fluctuation component. .

本発明によれば、SVCが接続された配電系統などの電力系統に分散電源が連系され、この分散電源による潮流が電力系統を流れる場合でも、順送または逆送を正確に検出して電源である変電所を確実に判定することができる。これにより、適切な制御方法や制御パラメータを用いて系統の無効電力補償、電圧補償を行うことが可能である。 According to the present invention, even when a distributed power source is interconnected to a power system such as a distribution system to which an SVC is connected, and a power flow from the distributed power source flows through the power system, forward or reverse power is accurately detected and the power supply is detected. substation can be reliably determined. This makes it possible to perform reactive power compensation and voltage compensation of the system using an appropriate control method and control parameters.

本発明の第1実施形態に係る無効電力補償システムの概略的な構成図である。1 is a schematic configuration diagram of a reactive power compensation system according to a first embodiment of the present invention; FIG. 本発明の第1実施形態に係る無効電力補償システムの概略的な構成図である。1 is a schematic configuration diagram of a reactive power compensation system according to a first embodiment of the present invention; FIG. 本発明の各実施形態におけるSVCの制御回路の構成図である。1 is a configuration diagram of an SVC control circuit in each embodiment of the present invention; FIG. スロープ特性付き電圧制御型SVCの制御特性を示す図である。FIG. 4 is a diagram showing control characteristics of a voltage-controlled SVC with slope characteristics; 本発明の第2実施形態に係る無効電力補償システムの概略的な構成図である。FIG. 5 is a schematic configuration diagram of a reactive power compensation system according to a second embodiment of the present invention; 特許文献1に記載された従来技術の構成図である。1 is a configuration diagram of a conventional technology described in Patent Document 1; FIG. 非特許文献1に記載された、系統接続及び電力潮流の場合分け(図7(a))、及び運転モード(図7(b))を示す図である。7A and 7B are diagrams illustrating the classification of system connection and power flow (FIG. 7(a)) and operation modes (FIG. 7(b)) described in Non-Patent Document 1. FIG. SVCが接続された配電系統に分散電源が連系される場合の構成図である。FIG. 2 is a configuration diagram when distributed power sources are interconnected with a distribution system to which an SVC is connected;

以下、図に沿って本発明の実施形態を説明する。
図1,図2は、本発明の第1実施形態に係る無効電力補償システムの概略的な構成図である。これらの図において、図8と同一部分については同一符号を付して説明を省略し、以下では図8との相違点を中心に説明する。
An embodiment of the present invention will be described below with reference to the drawings.
1 and 2 are schematic configuration diagrams of a reactive power compensation system according to a first embodiment of the present invention. In these figures, the same parts as those in FIG. 8 are denoted by the same reference numerals, and the explanation thereof is omitted.

この第1実施形態では、SVC50が、電源である変電所の方向を判定するための所定周波数の変電所方向判定信号ΔS’を生成して配電系統20に注入する機能を備えている。変電所方向判定信号ΔS’の種類は特に限定されないが、配電系統20には負荷や分散電源等による有効電力や無効電力が存在するため、例えば、所定周波数で変動する無効電力変動成分ΔQ’(または無効電流変動成分)を変電所方向判定信号ΔS’として用いると良い。
以下では、変電所方向判定信号ΔS’=無効電力変動成分ΔQ’として説明を続ける。
In this first embodiment, the SVC 50 has a function of generating a substation direction determination signal ΔS′ of a predetermined frequency for determining the direction of the substation, which is the power source, and injecting it into the distribution system 20 . The type of the substation direction determination signal ΔS′ is not particularly limited, but since the distribution system 20 includes active power and reactive power due to loads, distributed power sources, etc., for example, a reactive power fluctuation component ΔQ′ ( Alternatively, the reactive current fluctuation component) may be used as the substation direction determination signal ΔS′.
In the following description, substation direction determination signal ΔS′=reactive power fluctuation component ΔQ′ is assumed to continue.

まず、図1,図2に示すように、両端に第1,第2の配電用変電所11,12が設置され、SVC50の接続点と変電所11,12との間に第1,第2の開閉器31,32がそれぞれ設けられた配電系統20を想定する。ここで、第1の開閉器31がON、第2の開閉器32がOFFであって第1の配電用変電所11が電源となっている場合(図1)を順送とし、第1の開閉器31がOFF、第2の開閉器32がONであって、第2の配電用変電所12が電源となっている場合(図2)を逆送と定義する。
なお、開閉器31,32は、一方がONし、他方がOFFするように動作するものとする。
First, as shown in FIGS. 1 and 2, the first and second distribution substations 11 and 12 are installed at both ends, and the first and second distribution substations 11 and 12 are installed between the connection point of the SVC 50 and the substations 11 and 12. Assume a distribution system 20 provided with switches 31 and 32 of . Here, the case where the first switch 31 is ON, the second switch 32 is OFF, and the first distribution substation 11 is the power source (FIG. 1) is taken as forward, and the first The case where the switch 31 is OFF, the second switch 32 is ON, and the second distribution substation 12 is the power source (FIG. 2) is defined as reverse feed.
It is assumed that one of the switches 31 and 32 is turned on and the other is turned off.

図1のように変電所11側の開閉器31をONし、変電所12側の開閉器32をOFFすると、SVC50から注入された無効電力変動成分ΔQ’は変電所11側の配電系統20で検出され、変電所12側では検出されない。また、図2のように変電所12側の開閉器32をONし、変電所11側の開閉器31をOFFすると、無効電力変動成分ΔQ’は変電所11側では検出されず、変電所12側の配電系統20で検出される。
従って、潮流方向に着目するのではなく、配電系統20におけるSVC50の接続点を基準として何れの変電所側で無効電力変動成分ΔQ’が検出されるかに基づいて、電源としての変電所を判定することができる。
When the switch 31 on the substation 11 side is turned on and the switch 32 on the substation 12 side is turned off as shown in FIG. detected and not detected on the substation 12 side. When the switch 32 on the substation 12 side is turned on and the switch 31 on the substation 11 side is turned off as shown in FIG. detected in the distribution system 20 on the side.
Therefore, instead of focusing on the power flow direction, the substation as the power source is determined based on which substation side the reactive power fluctuation component ΔQ' is detected with reference to the connection point of the SVC 50 in the distribution system 20. can do.

これにより、例えば、図1の開閉器31,32の間に分散電源(図示せず)が連系され、その発電電力による潮流(ON状態の開閉器31を介して変電所11方向に向かう潮流)をSVC50が検出したとしても、無効電力変動成分ΔQ’ が変電所11側の配電系統20から検出された時には変電所11が電源であること(順送)を判定可能であり、他方の変電所12が電源である(逆送)と誤認するおそれはない。
同様に、図2における開閉器31,32の間に分散電源が連系され、その発電電力による潮流(ON状態の開閉器32を介して変電所12方向に向かう潮流)をSVC50が検出したとしても、無効電力変動成分ΔQ’ が変電所12側の配電系統20から検出された時には変電所12が電源であること(逆送)を判定可能であり、他方の変電所11が電源である(順送)と誤認することはない。
As a result, for example, a distributed power supply (not shown) is interconnected between the switches 31 and 32 in FIG. ) is detected by the SVC 50, when the reactive power fluctuation component ΔQ′ is detected from the distribution system 20 on the substation 11 side, it can be determined that the substation 11 is the power source (forward transmission), and the other substation There is no risk of misidentifying that the point 12 is the power source (reverse feed).
Similarly, assuming that a distributed power source is interconnected between the switches 31 and 32 in FIG. Also, when the reactive power fluctuation component ΔQ′ is detected from the distribution system 20 on the side of the substation 12, it can be determined that the substation 12 is the power source (reverse feed), and the other substation 11 is the power source ( forward delivery).

図3は、無効電力変動成分ΔQ’を検出して変電所方向を判定するための制御回路の構成図である。
無効電力変動成分ΔQ’は加算手段56に入力されて無効電力目標値Q’と加算され、無効電力指令値QとしてSVC50に与えられる。SVC50は、無効電力指令値Qに従って半導体スイッチング素子を制御することにより、配電系統20に無効電力を注入して系統電圧を所定値に制御する。
FIG. 3 is a configuration diagram of a control circuit for detecting the reactive power fluctuation component ΔQ′ and determining the substation direction.
Reactive power fluctuation component ΔQ' is input to adding means 56, added to reactive power target value Q', and given to SVC 50 as reactive power command value Q * . The SVC 50 controls the semiconductor switching elements according to the reactive power command value Q * to inject reactive power into the distribution system 20 and control the system voltage to a predetermined value.

一方、変流器51及び計器用変圧器52は、図8と同様に、配電系統20上のSVC50の接続点から変電所11側に設置されており、これらによる電流検出値I及び電圧検出値Vが無効電力検出手段53に入力されている。無効電力検出手段53では、電流検出値I及び電圧検出値Vから無効電力Qを求め、この無効電力Qはフィルタ54に入力されて変動成分ΔQが抽出される。上記のフィルタ54は、前述した無効電力変動成分ΔQ’と同じ周波数成分を通過させる特性を持つ。 On the other hand, the current transformer 51 and the voltage transformer 52 are installed on the substation 11 side from the connection point of the SVC 50 on the distribution system 20, as in FIG. V is input to the reactive power detection means 53 . The reactive power detection means 53 obtains the reactive power Q from the current detection value I and the voltage detection value V, and this reactive power Q is input to the filter 54 to extract the fluctuation component ΔQ. The filter 54 has a characteristic of passing the same frequency component as the reactive power fluctuation component ΔQ' described above.

フィルタ54から出力された変動成分ΔQは、比較手段55の一方の入力端に信号Aとして入力される。また、無効電力変動成分ΔQ’は、配電系統20において実際に検出されるまでの時間遅れが遅れ調整手段57により調整され、比較手段55の他方の入力端に信号Bとして入力される。 The fluctuation component ΔQ output from the filter 54 is input as a signal A to one input terminal of the comparison means 55 . Further, the reactive power fluctuation component ΔQ′ is adjusted by the delay adjustment means 57 for the time delay until it is actually detected in the power distribution system 20 , and is input as the signal B to the other input terminal of the comparison means 55 .

比較手段55は信号A,Bを比較し、A=Bであれば、開閉器31側の変電所11が電源である(順送)と判定する。つまり、検出された無効電力Qに無効電力変動成分ΔQ’と同じ周波数の変動成分ΔQが含まれている時に、開閉器31がON状態であって当該開閉器31側の変電所11が電源であると判定し、その結果を出力する。
また、A≠Bである場合には、無効電力Qから無効電力変動成分ΔQ’と同じ周波数の変動成分ΔQが検出されなかったため、変電所11側の開閉器31がOFF状態、言い換えれば、他方の開閉器32がON状態であって当該開閉器32側の変電所12が電源である(逆送)と判定し、その結果を出力する。
The comparison means 55 compares the signals A and B, and if A=B, determines that the substation 11 on the switch 31 side is the power supply (forward). That is, when the detected reactive power Q contains the fluctuation component ΔQ of the same frequency as the reactive power fluctuation component ΔQ′, the switch 31 is in the ON state and the substation 11 on the switch 31 side is the power source. Determine that there is, and output the result.
Further, when A≠B, since the fluctuation component ΔQ having the same frequency as the reactive power fluctuation component ΔQ′ was not detected from the reactive power Q, the switch 31 on the substation 11 side is in the OFF state, in other words, the other switch 32 is in the ON state and the substation 12 on the switch 32 side is the power source (reverse feed), and the result is output.

なお、配電系統20には負荷や分散電源が接続されており、これらの接続位置によっては変動成分ΔQが電源でない変電所側に流れることがある。すなわち、系統状態が順送であっても、検出される変動成分ΔQの大きさが所定値に達しないためにA≠Bとなり、結果的に逆送と誤認されることもあり得る。
このような事態を防ぐためには、例えば、変動成分ΔQが所定の閾値を超えている場合に、比較手段55が変動成分ΔQによる信号Aを有効と判断して信号Bとの比較に用いると良い。
It should be noted that loads and distributed power sources are connected to the distribution system 20, and the fluctuation component ΔQ may flow to the substation side, which is not the power source, depending on the connection positions of these. That is, even if the system state is forward transmission, the magnitude of the detected fluctuation component ΔQ does not reach a predetermined value, resulting in A≠B, and as a result, it may be misidentified as reverse transmission.
In order to prevent such a situation, for example, when the fluctuation component ΔQ exceeds a predetermined threshold, the comparison means 55 may determine that the signal A based on the fluctuation component ΔQ is valid and use it for comparison with the signal B. .

この第1実施形態では、変電所11側の変流器51及び計器用変圧器52により検出した無効電力Qから変動成分ΔQ(信号A)を抽出し、A=Bを順送、A≠Bを逆送と判定しているが、他方の変電所12側に設けた変流器及び計器用変圧器により無効電力Qを検出して変動成分ΔQ(信号A)を抽出し、A=Bを逆送、A≠Bを順送と判定しても良い。 In this first embodiment, the fluctuation component ΔQ (signal A) is extracted from the reactive power Q detected by the current transformer 51 and the instrument transformer 52 on the substation 11 side, A=B is forwarded, A≠B is determined to be reverse feed, but the reactive power Q is detected by the current transformer and instrument transformer provided on the other substation 12 side, the fluctuation component ΔQ (signal A) is extracted, and A = B is It is also possible to determine reverse sending and A≠B as forward sending.

前述したように、SVC50から各変電所11,12までの系統インピーダンスは異なり、SVC50の制御パラメータである制御ゲインの最適値は、その逆数に相当する系統インピーダンスによって異なる。
例えば、図1において、順送時の変電所11とSVC50との間の亘長が短い場合、系統インピーダンスは小さいため、SVC50の制御ゲインは大きいことが望ましい。また、図2において、逆送時の変電所12とSVC50との間の亘長が長い場合、系統インピーダンスは大きいため、SVC50の制御ゲインは小さいことが望ましい。
この第1実施形態によれば、開閉器31,32を操作して系統接続(順送,逆送)を切り替えた時にSVC50がこれを判定し、順送または逆送に応じた最適な制御ゲインに切り替えることができる。すなわち、これらの最適な制御ゲインを制御回路のメモリに予め記憶させておき、系統接続の切替時に、自動または手動により所定の制御ゲインをメモリから読み出してSVC50に設定すれば良い。
As described above, the system impedance from the SVC 50 to each of the substations 11 and 12 differs, and the optimum value of the control gain, which is the control parameter of the SVC 50, differs depending on the system impedance corresponding to its reciprocal.
For example, in FIG. 1, when the length of the transmission between the substation 11 and the SVC 50 during forward transmission is short, the system impedance is small, so it is desirable that the control gain of the SVC 50 is large. In addition, in FIG. 2, when the length of transmission between the substation 12 and the SVC 50 during reverse transmission is long, the system impedance is large, so it is desirable that the control gain of the SVC 50 is small.
According to this first embodiment, when the switches 31 and 32 are operated to switch the system connection (forward or reverse), the SVC 50 determines this and obtains the optimum control gain corresponding to forward or reverse. can be switched to That is, these optimum control gains may be stored in advance in the memory of the control circuit, and predetermined control gains may be automatically or manually read out from the memory and set in the SVC 50 when the system connection is switched.

次に、制御ゲインの切替について具体的に説明する。
いわゆるスロープ特性付き電圧制御では、SVCにより補償する無効電力Qと系統電圧Vとの間のスロープ特性に傾き(スロープリアクタンス)を設けて制御の不安定化を防止している。
Next, switching of the control gain will be specifically described.
In so-called voltage control with a slope characteristic, a slope (slope reactance) is provided in the slope characteristic between the reactive power Q compensated by SVC and the system voltage V to prevent destabilization of the control.

図4は、スロープ特性付き電圧制御型SVCの制御特性を示す図である。
図4から明らかなように、スロープリアクタンスXが大きい場合には、電圧偏差に対する無効電力の変化量が小さいため制御が比較的安定しているが、系統インピーダンスが小さい場合には系統電圧が電圧目標値に近付きにくい。
一方、スロープリアクタンスXが小さい場合には、電圧偏差に対する無効電力の変化量が大きいため、制御がやや不安定になって複数のSVCによる制御動作が干渉しやすくなる反面、系統電圧を電圧目標値に近付け易いという利点がある。
FIG. 4 is a diagram showing control characteristics of a voltage-controlled SVC with slope characteristics.
As is clear from FIG. 4, when the slope reactance Xs is large, the amount of change in reactive power with respect to the voltage deviation is small, so the control is relatively stable. It is difficult to approach the target value.
On the other hand, when the slope reactance Xs is small, the amount of change in reactive power with respect to the voltage deviation is large, so the control becomes somewhat unstable and the control operations by multiple SVCs are likely to interfere. There is an advantage that it is easy to approach the value.

従って、前述したように、SVCが順送を判定して系統インピーダンスが小さい場合には、スロープリアクタンスXが小さくなる(制御ゲインが大きくなる)ように制御して系統電圧を電圧目標値に近付き易くし、SVCが逆送を判定して系統インピーダンスが大きい場合には、スロープリアクタンスXが大きくなる(制御ゲインが小さくなる)ように制御することによって無効電力補償を安定的に行うことができる。 Therefore, as described above, when the SVC determines forward feeding and the system impedance is small, control is performed so that the slope reactance Xs becomes small (the control gain becomes large), and the system voltage approaches the voltage target value. When the SVC determines reverse transmission and the system impedance is large, reactive power compensation can be stably performed by controlling the slope reactance X s to increase (control gain to decrease). .

なお、第1実施形態において、SVC50が配電自動化システム等の外部システムと通信可能である場合には、比較手段55による判定結果に応じて、SVC50に設定する制御パラメータを更新するように外部システムに要求する手段をSVC50の制御回路に備え、外部システムがこの要求に従って制御パラメータを更新するようにしても良い。 In the first embodiment, when the SVC 50 can communicate with an external system such as a power distribution automation system, the external system is instructed to update the control parameters set in the SVC 50 according to the determination result of the comparison means 55. Means for requesting may be provided in the control circuitry of the SVC 50 so that the external system updates the control parameters according to this request.

次に、図5は本発明の第2実施形態に係る無効電力補償システムの概略的な構成図である。
図5において、配電用変電所10と配電系統(母線)20との接続点の両側には、線路21,22がループ状に接続され、線路21,22同士の接続点にSVC50が接続されている。つまり、配電系統20における配電用変電所10の接続点とSVC50との間には、線路21,22が並列に接続されている。また、線路21,22はそれぞれ開閉器31,32を備えており、これらの開閉器31,32は、図1,図2と同様に、一方がONしている時に他方がOFFするように制御される。
Next, FIG. 5 is a schematic configuration diagram of a reactive power compensation system according to a second embodiment of the present invention.
In FIG. 5, lines 21 and 22 are connected in a loop on both sides of a connection point between a distribution substation 10 and a distribution system (bus) 20, and an SVC 50 is connected to the connection point between the lines 21 and 22. there is That is, lines 21 and 22 are connected in parallel between the connection point of the distribution substation 10 and the SVC 50 in the distribution system 20 . The lines 21 and 22 are provided with switches 31 and 32, respectively, and these switches 31 and 32 are controlled so that when one is ON, the other is OFF, as in FIGS. be done.

図5に示す系統構成において、線路21,22の亘長が異なる場合にはそれぞれの系統インピーダンスも異なるので、SVC50の制御パラメータである制御ゲインの最適値も異なってくる。
従って、SVC50に最適な制御パラメータを設定するためには、開閉器31のONにより配電用変電所10が線路21を介してSVC50に接続される場合(便宜的に順送とする)と、開閉器32のONにより配電用変電所10が線路22を介してSVC50に接続される場合(同じく逆送とする)とを判別することが必要になる。
In the system configuration shown in FIG. 5, when the lengths of the lines 21 and 22 are different, the system impedances are also different, so the optimum value of the control gain, which is the control parameter of the SVC 50, is also different.
Therefore, in order to set the optimum control parameters for the SVC 50, the switch 31 is turned ON and the distribution substation 10 is connected to the SVC 50 via the line 21 (for convenience, this is referred to as a sequential transmission). It is necessary to determine whether the switch 32 is turned ON and the distribution substation 10 is connected to the SVC 50 via the line 22 (similarly reverse transmission).

そこで、SVC50は、開閉器31,32の何れがONしているか、言い換えれば、線路21側が配電用変電所10に接続されている順送か、或いは、線路22側が配電用変電所10に接続されている逆送かを判別するために、第1実施形態と同様に、所定周波数の変電所方向判定信号ΔS’、例えば無効電力変動成分ΔQ’を生成して線路21または線路22に注入する機能を備えている。
そして、図3に示した制御回路の比較手段55により、線路21または線路22から検出した無効電力Qに無効電力変動成分ΔQ’と同じ周波数の変動成分ΔQが含まれている時に、当該線路側の開閉器がONされていて配電用変電所10までの電路が形成されている(当該線路側が電源である)と判定するものである。
Therefore, the SVC 50 determines which of the switches 31 and 32 is ON. In order to discriminate whether the substation is reverse feed or not, a substation direction determination signal ΔS′ having a predetermined frequency, for example, a reactive power fluctuation component ΔQ′ is generated and injected into the line 21 or line 22 as in the first embodiment. It has functionality.
Then, when the reactive power Q detected from the line 21 or the line 22 contains the fluctuation component ΔQ of the same frequency as the reactive power fluctuation component ΔQ′ by the comparing means 55 of the control circuit shown in FIG. is turned on and an electric circuit is formed to the distribution substation 10 (the line side is the power source).

これにより、例えば開閉器31,32の間に分散電源(図示せず)が連系され、その発電電力による潮流をSVC50が検出したとしても、無効電力変動成分ΔQ’ が検出された線路側が電源であると判定することによって順送、逆送を誤認するおそれはない。
また、負荷や分散電源の接続位置によっては変動成分ΔQが非電源側の線路の一部に流れることがあり、検出される変動成分ΔQの大きさが所定値に達しない場合には順送、逆送を誤認することもあり得る。これを防止するには、前述したごとく、変動成分ΔQが所定の閾値を超えている場合に、比較手段55が変動成分ΔQによる信号Aを有効と判断して信号Bとの比較に用いるようにしても良い。
更に、SVC50が配電自動化システム等の外部システムと通信可能である場合には、比較手段55による判定結果に応じて、外部システムとの通信によりSVC50に設定する制御パラメータを更新する手段を備えても良い。
As a result, for example, a distributed power supply (not shown) is interconnected between the switches 31 and 32, and even if the SVC 50 detects the power flow due to the generated power, the line side where the reactive power fluctuation component ΔQ' is detected is the power supply. By judging that it is, there is no risk of misidentifying forward or reverse.
In addition, depending on the load and the connection position of the distributed power supply, the fluctuation component ΔQ may flow into a part of the line on the non-power supply side. It is also possible to misidentify reverse transmission. In order to prevent this, as described above, when the fluctuation component ΔQ exceeds the predetermined threshold, the comparison means 55 determines that the signal A based on the fluctuation component ΔQ is valid and uses it for comparison with the signal B. can be
Furthermore, when the SVC 50 can communicate with an external system such as a power distribution automation system, means may be provided for updating the control parameters set in the SVC 50 through communication with the external system according to the determination result by the comparison means 55. good.

なお、上記本発明は、特許文献1に記載の分路リアクトル及び調相コンデンサにより構成される他励式SVCにも適用可能であり、また、STATCOM(Static Synchronous Compensator)と呼ばれる自励式SVCに関しても適用することができる。更に、自励式SVC以外の自励式電力変換装置に関しても適用することができる。例えば、分散電源のパワーコンディショナ(PCS)やBTB(Back To Back)装置などは、通常の有効電力出力の制限に加えて、無効電力を供給する能力を持ち、SVC機能を制御に組み込むことができるためである。 The present invention can also be applied to a separately-excited SVC composed of a shunt reactor and a phase-modifying capacitor described in Patent Document 1, and can also be applied to a self-excited SVC called a STATCOM (Static Synchronous Compensator). can do. Furthermore, it can also be applied to self-commutated power converters other than self-commutated SVC. For example, distributed power supply power conditioners (PCS) and BTB (Back To Back) devices have the ability to supply reactive power in addition to limiting the normal active power output, and the SVC function can be incorporated into the control. Because we can.

10,11,12:配電用変電所
20:配電系統
21,22:線路
31,32:開閉器
50:静止型無効電力補償装置(SVC)
51:変流器
52:計器用変圧器
53:無効電力検出手段
54:フィルタ
55:比較手段
56:加算手段
57:遅れ調整手段
60:負荷
70:分散電源
10, 11, 12: Distribution substation 20: Distribution system 21, 22: Lines 31, 32: Switch 50: Static var compensator (SVC)
51: current transformer 52: instrument transformer 53: reactive power detection means 54: filter 55: comparison means 56: addition means 57: delay adjustment means 60: load 70: distributed power supply

Claims (8)

無効電力補償装置により電力系統に無効電力を注入して系統電圧の変動を補償する無効電力補償システムであって、電力系統における前記無効電力補償装置の接続点と電力系統の一端に設置された第1の変電所との間に第1の開閉器が接続され、かつ、電力系統の他端に設置された第2の変電所と前記接続点との間に第2の開閉器が接続された無効電力補償システムにおいて、
前記第1の変電所または前記第2の変電所の何れが電源であるかを判定するための所定周波数の変電所方向判定信号を、前記無効電力補償装置から電力系統に注入する判定信号注入手段と、
前記接続点と前記第1の変電所との間、または、前記接続点と前記第2の変電所との間から、電力または電流の変動成分を検出する変動成分検出手段と、
前記変動成分検出手段により検出された前記変動成分の周波数が前記変電所方向判定信号の所定周波数と等しい場合に、前記変動成分が検出された側の変電所が電源であると判定する比較手段と、
を備えたことを特徴とする無効電力補償システム。
A reactive power compensation system for injecting reactive power into an electric power system using a reactive power compensator to compensate for system voltage fluctuations, wherein the reactive power compensator is installed at a connection point of the reactive power compensator in the electric power system and at one end of the electric power system. A first switch is connected between the first substation and a second switch is connected between the connection point and a second substation installed at the other end of the electric power system. In a reactive power compensation system,
Determination signal injection means for injecting a substation direction determination signal of a predetermined frequency for determining which of the first substation and the second substation is the power supply from the reactive power compensator into the power system. When,
fluctuation component detection means for detecting a fluctuation component of power or current between the connection point and the first substation or between the connection point and the second substation;
comparison means for determining that the substation on which the fluctuation component is detected is a power supply when the frequency of the fluctuation component detected by the fluctuation component detection means is equal to the predetermined frequency of the substation direction determination signal; ,
A reactive power compensation system comprising:
無効電力補償装置により電力系統に無効電力を注入して系統電圧の変動を補償する無効電力補償システムであって、電力系統における変電所の接続点と前記無効電力補償装置との間に、第1の開閉器を備えた第1の線路と第2の開閉器を備えた第2の線路とが並列に接続された無効電力補償システムにおいて、
前記第1の線路または前記第2の線路の何れが電源としての前記変電所に接続されているかを判定するための所定周波数の変電所方向判定信号を、前記無効電力補償装置から前記第1の線路または前記第2の線路に注入する判定信号注入手段と、
前記第1の線路または前記第2の線路から、電力または電流の変動成分を検出する変動成分検出手段と、
前記変動成分検出手段により検出された前記変動成分の周波数が前記変電所方向判定信号の所定周波数と等しい場合に、前記変動成分が検出された側の線路が前記変電所に接続されていると判定する比較手段と、
を備えたことを特徴とする無効電力補償システム。
A reactive power compensation system for injecting reactive power into a power system using a reactive power compensator to compensate for variations in system voltage, wherein a first In a reactive power compensation system in which a first line with a switch and a second line with a second switch are connected in parallel,
A substation direction determination signal of a predetermined frequency for determining which of the first line and the second line is connected to the substation as a power supply is transmitted from the reactive power compensator to the first line. determination signal injection means for injecting into the line or the second line;
Fluctuation component detection means for detecting a fluctuation component of electric power or current from the first line or the second line;
When the frequency of the fluctuation component detected by the fluctuation component detection means is equal to the predetermined frequency of the substation direction determination signal, it is determined that the line on which the fluctuation component is detected is connected to the substation. a comparison means to
A reactive power compensation system comprising:
請求項1または2に記載した無効電力補償システムにおいて、
前記比較手段による判定結果に応じて、予め設定された制御方法または制御パラメータを切り替える手段を有することを特徴とする無効電力補償システム。
In the reactive power compensation system according to claim 1 or 2,
A reactive power compensation system, comprising means for switching a preset control method or control parameter in accordance with the determination result of the comparison means.
請求項1または2に記載した無効電力補償システムにおいて、
前記比較手段による判定結果に応じて、制御パラメータの更新を外部システムに要求する手段を備えたことを特徴とする無効電力補償システム。
In the reactive power compensation system according to claim 1 or 2,
A reactive power compensation system, comprising means for requesting an external system to update control parameters in accordance with the result of determination by said comparison means.
請求項3又は4に記載した無効電力補償システムにおいて、
前記無効電力補償装置がスロープ特性付きの電圧制御方法によって制御されると共に、前記制御パラメータが、少なくともスロープリアクタンスまたはその逆数に相当する制御ゲインを含むことを特徴とする無効電力補償システム。
In the reactive power compensation system according to claim 3 or 4 ,
A reactive power compensation system, wherein said reactive power compensator is controlled by a voltage control method with slope characteristics, and said control parameters include at least a control gain corresponding to a slope reactance or its inverse.
請求項1~5の何れか1項に記載した無効電力補償システムにおいて、
前記比較手段は、前記変動成分の大きさが所定の閾値を超える場合に当該変動成分を有効と判断して前記変電所方向判定信号との比較に用いることを特徴とする無効電力補償システム。
In the reactive power compensation system according to any one of claims 1 to 5,
A reactive power compensation system according to claim 1, wherein said comparison means determines that said fluctuation component is valid when the magnitude of said fluctuation component exceeds a predetermined threshold value, and uses said fluctuation component for comparison with said substation direction determination signal.
請求項1~6の何れか1項に記載した無効電力補償システムにおいて、
前記無効電力補償装置に与える無効電力指令値を、無効電力目標値に前記変電所方向判定信号を重畳して生成することを特徴とする無効電力補償システム。
In the reactive power compensation system according to any one of claims 1 to 6,
A reactive power compensation system, wherein a reactive power command value to be given to the reactive power compensator is generated by superimposing the substation direction determination signal on a reactive power target value.
請求項1~7の何れか1項に記載した無効電力補償システムにおいて、
前記変電所方向判定信号が無効電力変動成分または無効電流変動成分であることを特徴とする無効電力補償システム。
In the reactive power compensation system according to any one of claims 1 to 7,
A reactive power compensation system, wherein the substation direction determination signal is a reactive power fluctuation component or a reactive current fluctuation component.
JP2018196011A 2018-10-17 2018-10-17 Reactive power compensation system Active JP7196528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018196011A JP7196528B2 (en) 2018-10-17 2018-10-17 Reactive power compensation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018196011A JP7196528B2 (en) 2018-10-17 2018-10-17 Reactive power compensation system

Publications (2)

Publication Number Publication Date
JP2020065366A JP2020065366A (en) 2020-04-23
JP7196528B2 true JP7196528B2 (en) 2022-12-27

Family

ID=70387650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018196011A Active JP7196528B2 (en) 2018-10-17 2018-10-17 Reactive power compensation system

Country Status (1)

Country Link
JP (1) JP7196528B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112730971B (en) * 2020-12-17 2023-10-24 广州发展电力科技有限公司 Reactive power measurement system
KR102678822B1 (en) * 2022-01-11 2024-06-28 엘에스일렉트릭(주) Control device of reactive power compensation device and method thereof
CN114268110B (en) * 2022-03-03 2022-06-28 广东电网有限责任公司梅州供电局 Method and device for judging reactive compensation switching-on/off state of distribution transformer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000295774A (en) 1999-04-06 2000-10-20 Tokyo Electric Power Co Inc:The Method and device for judging cause of power reverse flow of automatic voltage regulator for distribution, and method of controlling automatic voltage regulator for distribution at power reverse flow
JP2009131003A (en) 2007-11-21 2009-06-11 Mitsubishi Electric Corp Power system control apparatus and power system control method
JP2014204579A (en) 2013-04-05 2014-10-27 中国電力株式会社 Control system of automatic voltage regulator and automatic voltage regulator
JP2018023263A (en) 2016-08-05 2018-02-08 株式会社東芝 Voltage compensator
JP2019033638A (en) 2017-08-09 2019-02-28 関西電力株式会社 Voltage adjusting device and determining method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08147056A (en) * 1994-11-16 1996-06-07 Ngk Insulators Ltd Reactive power compensating device and its control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000295774A (en) 1999-04-06 2000-10-20 Tokyo Electric Power Co Inc:The Method and device for judging cause of power reverse flow of automatic voltage regulator for distribution, and method of controlling automatic voltage regulator for distribution at power reverse flow
JP2009131003A (en) 2007-11-21 2009-06-11 Mitsubishi Electric Corp Power system control apparatus and power system control method
JP2014204579A (en) 2013-04-05 2014-10-27 中国電力株式会社 Control system of automatic voltage regulator and automatic voltage regulator
JP2018023263A (en) 2016-08-05 2018-02-08 株式会社東芝 Voltage compensator
JP2019033638A (en) 2017-08-09 2019-02-28 関西電力株式会社 Voltage adjusting device and determining method thereof

Also Published As

Publication number Publication date
JP2020065366A (en) 2020-04-23

Similar Documents

Publication Publication Date Title
Norouzi et al. Two control schemes to enhance the dynamic performance of the STATCOM and SSSC
JP7196528B2 (en) Reactive power compensation system
US8830712B2 (en) Controlling an inverter device of a high voltage DC system for supporting an AC system
CN106849172B (en) Light stores up in alternating current-direct current microgrid and off-network seamless switching strategy
CA1140992A (en) Control for var generator with deadband
EP1774420A2 (en) Power flow controller responsive to power circulation demand for optimizing power transfer
CN108199414B (en) Microgrid control method and device, computer equipment and storage medium
JP5367252B2 (en) AC voltage control method
KR20180103178A (en) DC power network voltage control method
AU2021350474B2 (en) Distribution power system fault control apparatus and method
Ismail et al. Improved active and reactive power sharing on distributed generator using auto-correction droop control
Yarlagadda et al. Mitigation of Ferranti effect and voltage control in transmission systems using fuzzy logic controlled SVC
JP7275839B2 (en) Control method and control circuit for reactive power compensator
CN112865160A (en) Adaptive voltage droop control system and method of multi-terminal hybrid direct-current power transmission system
Agnoletto et al. Fuzzy secondary controller applied to autonomous operated AC microgrid
JP6647444B1 (en) Control device
Xie et al. Modeling and simulation of a load transfer controller for uninterrupted operation of low-voltage distribution grids
JP7180258B2 (en) Reactive power compensator and its control circuit
JP2006166683A (en) Method and system for suppressing voltage fluctuation
Lei et al. A universal droop-based control strategy for single-phase two-stage PV inverters
Angamuthu et al. Power quality improvement of distribution power networks using capacitor-less H-bridge inverters for voltage regulation
CN113241802B (en) Microgrid grid-connected point voltage control system and method based on power cooperative regulation
EP4189797B1 (en) Electrical power system
RU2767517C1 (en) Method and device for automatic voltage control in an electric network using an electric energy accumulator
Zhang et al. Grid forming control for solid-state transformer operating in islanding and grid connected conditions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220909

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20220927

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20221006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221128

R150 Certificate of patent or registration of utility model

Ref document number: 7196528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150