JP7196285B2 - Brazing tube, manufacturing method thereof, and heat exchanger - Google Patents

Brazing tube, manufacturing method thereof, and heat exchanger Download PDF

Info

Publication number
JP7196285B2
JP7196285B2 JP2021509596A JP2021509596A JP7196285B2 JP 7196285 B2 JP7196285 B2 JP 7196285B2 JP 2021509596 A JP2021509596 A JP 2021509596A JP 2021509596 A JP2021509596 A JP 2021509596A JP 7196285 B2 JP7196285 B2 JP 7196285B2
Authority
JP
Japan
Prior art keywords
brazing
composition layer
tube
brazing composition
short side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021509596A
Other languages
Japanese (ja)
Other versions
JPWO2020196763A1 (en
Inventor
隆二 植杉
靖憲 兵庫
淑夫 久米
Original Assignee
Maアルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maアルミニウム株式会社 filed Critical Maアルミニウム株式会社
Publication of JPWO2020196763A1 publication Critical patent/JPWO2020196763A1/en
Application granted granted Critical
Publication of JP7196285B2 publication Critical patent/JP7196285B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Geometry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、ろう付け用チューブおよびその製造方法と熱交換器に関する。
本願は、2019年3月26日に、日本に出願された特願2019-058262号に基づき優先権を主張し、その内容をここに援用する。
TECHNICAL FIELD The present invention relates to a brazing tube, its manufacturing method, and a heat exchanger.
This application claims priority based on Japanese Patent Application No. 2019-058262 filed in Japan on March 26, 2019, the contents of which are incorporated herein.

扁平多穴管、フィン及びヘッダーパイプを主構成要素とし、これらをろう付けすることにより構成されるアルミニウム合金製熱交換器が知られている。
そして、この種の熱交換器を製造するため、ろう付け用のSi粉末と、フッ化物系フラックスに加え、樹脂と溶剤からなるバインダとの混合物とした粉末ろう組成物が提供されている。また、前記粉末ろう組成物を表裏面に塗布した扁平多穴管とフィン及びヘッダーパイプとをろう付けすることによって、安価に熱交換器を製造する方法が提案されている。(例えば、特許文献1、特許文献2参照)。
BACKGROUND ART An aluminum alloy heat exchanger is known which has flat multi-hole tubes, fins and header pipes as main components and is constructed by brazing these components.
In order to manufacture this type of heat exchanger, a powder brazing composition is provided which is a mixture of Si powder for brazing, a fluoride-based flux, and a binder consisting of a resin and a solvent. Further, a method of manufacturing a heat exchanger at low cost has been proposed by brazing flat multi-hole tubes coated with the above-mentioned powder brazing composition on the front and back surfaces, fins and header pipes. (For example, see Patent Document 1 and Patent Document 2).

日本国特開平7-227695号公報(A)Japanese Patent Laid-Open No. 7-227695 (A) 日本国特開2004-330233号公報(A)Japanese Patent Application Laid-Open No. 2004-330233 (A)

特許文献1および特許文献2に記載の粉末ろう組成物、熱交換器を用いることにより、扁平多穴管からなるチューブとフィンとのろう付け接合部に選択腐食を発生することがなく、信頼性の高い、工業上実用性の高い熱交換器が得られている。
上述の粉末ろう組成物を扁平多穴管に塗布する場合、扁平多穴管においてフィンに接する部分が表面もしくは裏面のため、表面もしくは裏面に粉末ろう組成物を塗布している。
扁平多穴管の表裏面に粉末ろう組成物を塗布することにより、粉末ろう組成物に含まれる成分の一部がろう付け時に扁平多穴管の表面側もしくは裏面側に拡散し、犠牲陽極層を形成する。この犠牲陽極層の存在により、犠牲防食効果を得ることができ、ろう付け部分の選択腐食を抑制できる。
By using the brazing powder composition and the heat exchanger described in Patent Documents 1 and 2, selective corrosion does not occur at the brazed joint between the flat multi-hole tube and the fins, resulting in high reliability. Thus, a heat exchanger with a high heat resistance and high industrial practicality is obtained.
When the above-described brazing powder composition is applied to a flat multi-hole pipe, the powder brazing composition is applied to the front surface or the back surface because the portion of the flat multi-hole pipe that contacts the fins is the front surface or the back surface.
By applying the powdered brazing composition to the front and back surfaces of the flat multi-hole pipe, part of the components contained in the powder brazing composition diffuse to the front surface side or back surface side of the flat multi-hole pipe during brazing, forming a sacrificial anode layer. to form Due to the presence of this sacrificial anode layer, a sacrificial anti-corrosion effect can be obtained, and selective corrosion of the brazed portion can be suppressed.

従来、粉末ろう組成物を扁平多穴管に塗布する場合、その表裏面にバーコーターやロールコーターなどの塗布装置を用いて塗布することが一般的である。これは、フィンに接触する部分が扁平管の表裏面であること、これら塗布装置によりろう付け組成物を目的のスピードで均一塗布できること、大量生産に好適であることなどによる。 Conventionally, when a brazing powder composition is applied to a multi-hole flat pipe, it is common practice to apply the composition to the front and back surfaces of the pipe using an applicator such as a bar coater or a roll coater. This is because the parts that come into contact with the fins are the front and back surfaces of the flat tube, the brazing composition can be applied uniformly at a desired speed by these coating devices, and the coating is suitable for mass production.

ところで、熱交換器には、更なる小型化、軽量化が進められており、ろう付け部分の信頼性のより一層の向上対策などが求められている。この見地から粉末ろう組成物を用いたろう付け部分の更なる信頼性向上について検討すると、扁平多穴管の側面側にろう付け組成物を塗布していないため、扁平多穴管の側面側において腐食が進行するおそれがある。
扁平多穴管の側面側は平坦な広い表裏面側とは異なり、曲面状の部分があり、幅狭の側面であるため、扁平多穴管の側面側にろう付け用組成物を均一に塗布することが困難な問題がある。
例えば、曲面を有し、幅狭の側面にバーコーターやロールコーターでろう付け組成物を均一には塗布できない問題がある。特に、扁平多穴管の表裏面と側面の境界部分であり、曲面でもあるコーナー部分にろう付け組成物を均一塗布することが難しい問題がある。
By the way, heat exchangers are being further reduced in size and weight, and measures to further improve the reliability of brazed portions are required. From this point of view, further improvement in the reliability of the brazed part using the powder brazing composition was investigated. may progress.
Unlike the flat and wide front and back sides, the side surfaces of the flat multi-hole pipe have curved portions and narrow side surfaces, so the brazing composition can be evenly applied to the side surfaces of the flat multi-hole pipe. I have a problem that is difficult to do.
For example, there is a problem that the brazing composition cannot be uniformly applied to curved and narrow side surfaces using a bar coater or a roll coater. In particular, it is difficult to evenly apply the brazing composition to the corners, which are the boundaries between the front and back surfaces and the side surfaces of the flat multi-hole pipe, and which are also curved surfaces.

また、熱交換器に適用される扁平多穴管とフィンとを接合する構造において、フィンに形成したスリット状の孔部に扁平多穴管を差し込んで両者を位置決めし、ろう付けする構造が知られている。この構造においては、スリット状の孔部に扁平多穴管を差し込む必要があるため、孔部内縁に沿って扁平多穴管を摺り合わせしながら差し込む必要がある。この場合、扁平多穴管の側面側に不均一な厚さのろう付け組成物が塗布されていると、孔部内面との摺り合わせ時にろう付け組成物が剥離する問題がある。 In addition, in the structure for joining flat multi-hole tubes and fins applied to heat exchangers, a structure is known in which the flat multi-hole tubes are inserted into slit-shaped holes formed in the fins to position them and brazed. It is In this structure, since it is necessary to insert the flat multi-hole pipe into the slit-shaped hole, it is necessary to insert the flat multi-hole pipe while sliding it along the inner edge of the hole. In this case, if the brazing composition is applied to the side surface of the multi-hole flat pipe with an uneven thickness, there is a problem that the brazing composition peels off when it is rubbed against the inner surface of the hole.

本願発明は、これらの事情に鑑みなされたもので、扁平型のチューブ本体の短側面側におけるろう付け組成物の剥離を防止し、チューブ本体短側面側での確実なろう付け性を確保できるようにしたろう付け用チューブの提供およびその製造方法の提供を目的とする。
本発明は、フィンの孔部に挿通してフィンと組み合わせ構造とする場合であっても、ろう付け組成物の剥離を生じ難いろう付け用チューブの提供およびその製造方法の提供を目的とする。
本発明は、前述のろう付け用チューブを備えた熱交換器の提供を目的とする。
The present invention has been devised in view of these circumstances. It is an object of the present invention to provide a brazed tube and a method for manufacturing the same.
SUMMARY OF THE INVENTION It is an object of the present invention to provide a brazing tube in which the brazing composition is less likely to peel off even when it is inserted into the holes of the fins to form a combined structure with the fins, and to provide a method for producing the same.
An object of the present invention is to provide a heat exchanger comprising a brazing tube as described above.

本願発明は以下の態様を備える。 The present invention has the following aspects.

(1)表面と裏面と短側面を有する扁平型のチューブ本体からなり、前記表面側と前記裏面側と前記短側面側にろう付け組成物層が形成されたアルミニウムまたはアルミニウム合金製のろう付け用チューブであって、前記短側面に厚さ5~30μmの第1のろう付け組成物層が形成され、前記表面から前記短側面に至る表面側コーナー部分と前記裏面から前記短側面に至る部分の裏面側コーナー部分に、厚さ0.5~15μmの第2のろう付け組成物層が形成され、前記表面と前記裏面に主ろう付組成物層が形成されるとともに、前記第1のろう付け組成物層と前記第2のろう付け組成物層と前記主ろう付け組成物層が、Si粉末とZn含有フラックスと非Zn含有フラックスをいずれか1種以上を含み、更に、バインダを含むろう付け組成物層であることを特徴とするろう付け用チューブ。 (1) An aluminum or aluminum alloy brazing material comprising a flat tube body having a front surface, a back surface, and short side surfaces, and having a brazing composition layer formed on the front surface side, the back surface side, and the short side surface. A tube, wherein a first brazing composition layer having a thickness of 5 to 30 μm is formed on the short side surface, and includes corner portions extending from the front surface to the short side surface and portions extending from the back surface to the short side surface. A second brazing composition layer having a thickness of 0.5 to 15 μm is formed on the back side corner portion, a main brazing composition layer is formed on the front surface and the back surface, and the first brazing Brazing wherein the composition layer, the second brazing composition layer, and the main brazing composition layer contain at least one of Si powder, Zn-containing flux, and Zn-free flux, and further contain a binder A brazing tube characterized by being a composition layer .

)前記主ろう付け組成物層はSi粉末:1~5g/mを含むことを特徴とする前記(1)に記載のろう付け用チューブ。 ( 2 ) The brazing tube according to (1), wherein the main brazing composition layer contains Si powder: 1-5 g/m 2 .

)前記主ろう付け組成物層はZn含有フラックス:3~20g/mを含むことを特徴とする前記(1)または(2)に記載のろう付け用チューブ。 ( 3 ) The brazing tube according to (1) or (2) above, wherein the main brazing composition layer contains Zn-containing flux: 3-20 g/m 2 .

)前記主ろう付け組成物層は非Zn含有フラックス:1~10g/mを含むことを特徴とする前記(1)~()のいずれか一つに記載のろう付け用チューブ。 ( 4 ) The brazing tube according to any one of (1) to ( 3 ) above, wherein the main brazing composition layer contains 1 to 10 g/m 2 of Zn-free flux.

)前記主ろう付け組成物層はバインダ:0.2~8.5g/mを含むことを特徴とする前記(1)~()のいずれか一つに記載のろう付け用チューブ。 ( 5 ) The brazing tube according to any one of (1) to ( 4 ) above, wherein the main brazing composition layer contains a binder: 0.2 to 8.5 g/m 2 . .

)前記チューブ本体がその内部に複数の流路を設けた押出多穴管からなることを特徴とする前記(1)~()のいずれか一つに記載のろう付け用チューブ。 ( 6 ) The brazing tube according to any one of (1) to ( 5 ) above, wherein the tube main body comprises an extruded multi-hole tube having a plurality of flow paths therein.

)表面と裏面と短側面を有する扁平型のチューブ本体に対し、前記短側面に対向させて設置したエアースプレー装置から、Si粉末とZn含有フラックスと非Zn含有フラックスをいずれか1種以上を含み、更に、バインダと溶剤を含むろう付け液状組成物を噴射し、前記短側面に厚さ5~30μmの第1のろう付け組成物層を形成し、前記表面から前記短側面に至る表面側コーナー部分と前記裏面から前記短側面に至る部分の裏面側コーナー部分に、厚さ0.5~15μmの第2のろう付け組成物層を形成することを特徴とするろう付け用チューブの製造方法。 ( 7 ) One or more of Si powder, Zn-containing flux, and Zn-free flux are sprayed from an air spray device facing the short side of a flat tube body having a front surface, a back surface, and a short side surface. and further spraying a brazing liquid composition containing a binder and a solvent to form a first brazing composition layer having a thickness of 5 to 30 μm on the short side, and a surface from the surface to the short side Manufacture of a brazing tube characterized by forming a second brazing composition layer having a thickness of 0.5 to 15 μm on the side corner portions and the back side corner portions of the portion extending from the back surface to the short side surface. Method.

)Si粉末:1~5g/mを含む主ろう付け組成物層を前記チューブ本体の前記表面と前記裏面に形成することを特徴とする前記(7)に記載のろう付け用チューブの製造方法。 ( 8 ) The brazing tube according to (7) , characterized in that a main brazing composition layer containing Si powder: 1 to 5 g/m 2 is formed on the front surface and the back surface of the tube body. Production method.

)Zn含有フラックス:3~20g/mを含む主ろう付け組成物層を前記チューブ本体の前記表面と前記裏面に形成することを特徴とする前記(7)または(8)に記載のろう付け用チューブの製造方法。 ( 9 ) The above-mentioned (7) or (8) , characterized in that a main brazing composition layer containing Zn-containing flux: 3 to 20 g/m 2 is formed on the front surface and the back surface of the tube body. A method of manufacturing a brazed tube.

10)非Zn含有フラックス:1~10g/mを含む主ろう付け組成物層を前記チューブ本体の前記表面と前記裏面に形成することを特徴とする前記()~()のいずれか一つに記載のろう付け用チューブの製造方法。 ( 10 ) Any one of the above ( 7 ) to ( 9 ), wherein a main brazing composition layer containing 1 to 10 g/m 2 of Zn-free flux is formed on the front surface and the back surface of the tube body. A method for manufacturing a brazing tube according to any one of the above.

11)バインダ:0.2~8.5g/mを含む主ろう付け組成物層を前記チューブ本体体の前記表面と前記裏面に形成することを特徴とする前記()~(10)のいずれか一つに記載のろう付け用チューブの製造方法。 ( 11 ) The above ( 7 ) to ( 10 ), wherein a main brazing composition layer containing a binder: 0.2 to 8.5 g/m 2 is formed on the front surface and the back surface of the tube body. A method for manufacturing a brazing tube according to any one of .

12)前記(1)~()のいずれか一つに記載のろう付け用チューブと該ろう付用チューブを挿通する長孔を有するフィンとを有し、前記長孔に前記ろう付用チューブが挿通され、前記ろう付用チューブと前記フィンとがろう付けされた熱交換器であって、前記ろう付け組成物層の溶融凝固物であるフィレットにより前記ろう付用チューブと前記フィンとがろう付けされたことを特徴とする熱交換器。
( 12 ) The brazing tube according to any one of (1) to ( 6 ) above and a fin having an elongated hole through which the brazing tube is inserted ; A heat exchanger in which a tube is inserted and the brazing tube and the fins are brazed together, wherein the brazing tube and the fins are joined together by a fillet that is a melted and solidified product of the brazing composition layer. A heat exchanger characterized by being brazed.

本形態に係るろう付け用チューブであるならば、扁平型のチューブ本体の短側面側におけるろう付け組成物の剥離を防止し、チューブ本体短側面側での確実なろう付け性を確保できる。本形態は、フィンの孔部に挿通してフィンと組み合わせ構造とする場合であっても、ろう付け組成物の剥離を生じ難くして確実なろう付けができるようにしたろう付け用チューブを提供できる。 With the brazing tube according to the present embodiment, it is possible to prevent the brazing composition from peeling off on the short side surfaces of the flat tube main body, and to ensure reliable brazing properties on the short side surfaces of the tube main body. This embodiment provides a brazing tube in which the brazing composition is less likely to peel off even when it is inserted into the holes of the fins to form a combined structure with the fins, so that the brazing tube can be reliably brazed. can.

本形態に係るろう付け用チューブは、表裏面と短側面との境界部分であるコーナー部分や短側面にそれぞれ好適な厚さのろう付け組成物層を設けた構成を採用した。これにより、フィンと扁平管との組み立て時におけるろう付け組成物の剥離を防止し、コーナー部分や短側面側において確実なろう付けを実現できる。また、チューブ本体を折り曲げて使用する場合においてもフィン倒れを生じない、ろう付け部分の品質の優れたろう付け構造を提供できる。
上述のような好適な厚さのろう付け組成物層を備えたろう付け用チューブを備え、ろう付けされた熱交換器であれば、ろう付け部分の品質が高く、フィンの挿通孔にチューブ本体を嵌合した構造としてもフィンに変形を生じ難く、チューブを折り曲げて使用したとしてもフィン倒れを生じ難い熱交換器を提供できる。
The brazing tube according to this embodiment employs a configuration in which a brazing composition layer having a suitable thickness is provided on each of corner portions and short side surfaces, which are boundary portions between the front and back surfaces and the short side surfaces. As a result, peeling of the brazing composition can be prevented when assembling the fins and the flat tube, and reliable brazing can be achieved at corner portions and short side surfaces. Further, it is possible to provide a brazing structure in which the fins do not collapse even when the tube body is bent and used, and the quality of the brazed portion is excellent.
A brazed heat exchanger comprising a brazing tube with a brazing composition layer of suitable thickness as described above would have a high quality brazed part and the tube body would be inserted into the through holes of the fins. It is possible to provide a heat exchanger in which the fins are unlikely to be deformed even when the tubes are fitted together, and the fins are unlikely to collapse even when the tubes are used with the tubes bent.

本形態に係る第1実施形態のろう付け用チューブの横断面図である。1 is a cross-sectional view of a brazing tube of a first embodiment according to this form; FIG. 図1に示すチューブにフィンがろう付けされた熱交換器の一例を示す斜視図である。FIG. 2 is a perspective view showing an example of a heat exchanger in which fins are brazed to the tubes shown in FIG. 1; 同熱交換器におけるチューブとフィンの接合部分を示す部分断面図である。FIG. 4 is a partial cross-sectional view showing a joint portion between tubes and fins in the same heat exchanger. 図2に示す熱交換器においてろう付けする前の状態を示す部分断面図である。FIG. 3 is a partial cross-sectional view showing a state before brazing in the heat exchanger shown in FIG. 2; 図2に示す熱交換器においてろう付け後の状態を示す部分断面図である。FIG. 3 is a partial cross-sectional view showing a state after brazing in the heat exchanger shown in FIG. 2; 図2に示す熱交換器を組み立てる場合においてコーナー部分にろう付け組成物層を備えていないチューブをフィンの孔部に差し込む状態の一例を示す説明図である。FIG. 3 is an explanatory view showing an example of a state in which a tube without a brazing composition layer on its corner portion is inserted into a hole of a fin when assembling the heat exchanger shown in FIG. 2 ; 図2に示す熱交換器を組み立てる場合においてコーナー部分にろう付け組成物層を備えたチューブをフィンの孔部に差し込む状態の一例を示す説明図である。FIG. 3 is an explanatory diagram showing an example of a state in which a tube having a brazing composition layer on its corner portion is inserted into a hole of a fin when assembling the heat exchanger shown in FIG. 2 ; 図1に示すろう付け用チューブに対しエアスプレー装置によってろう付け組成物を塗布している状態を示す説明図である。FIG. 2 is an explanatory diagram showing a state in which a brazing composition is being applied to the brazing tube shown in FIG. 1 by an air spray device; 図7に示す状態においてチューブをフィンの孔部に挿入する際に生じる摩擦の一例を示すグラフである。8 is a graph showing an example of friction that occurs when the tube is inserted into the hole of the fin in the state shown in FIG. 7; 図6に示す状態においてチューブをフィンの孔部に挿入する際に生じる摩擦の一例を示すグラフである。7 is a graph showing an example of friction that occurs when the tube is inserted into the hole of the fin in the state shown in FIG. 6; エアスプレー装置によって扁平多穴管の短側面側に塗布したろう付け組成物の塗布状態の一例を示す写真である。4 is a photograph showing an example of a state of application of a brazing composition applied to a short side surface of a multi-hole flat tube by an air spray device.

以下、添付図面に基づき、本発明の実施形態の一例について詳細に説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際のチューブや熱交換器と同じであるとは限らない。 An example of an embodiment of the present invention will be described in detail below with reference to the accompanying drawings. In the drawings used in the following explanation, in order to make the features easier to understand, the characteristic parts may be enlarged for convenience, and the dimensional ratios of each component may differ from the actual tubes and heat exchangers. not necessarily the same.

「第1実施形態」
図1は、図2、図3に示す熱交換器11に適用されている扁平型のチューブ22の断面構造を示すもので、このチューブ22はアルミニウムあるいはアルミニウム合金を押出することにより形成された押出材であるチューブ本体12からなる。
第1実施形態の熱交換器11は、ルームエアコンディショナーの室内・室外機用の熱交換器、あるいは、HVAC(Heating Ventilating Air Conditioning)用の室外機、自動車用の熱交換器などの用途に使用されるオールアルミニウム熱交換器である。
"First Embodiment"
FIG. 1 shows the cross-sectional structure of a flat tube 22 applied to the heat exchanger 11 shown in FIGS. It consists of a tube body 12 made of material.
The heat exchanger 11 of the first embodiment is used for applications such as heat exchangers for indoor/outdoor units of room air conditioners, outdoor units for HVAC (Heating Ventilating Air Conditioning), and heat exchangers for automobiles. It is an all-aluminum heat exchanger with

図1に示すチューブ22はろう付けする前の状態を示しており、水平に設置されたチューブ本体12の外周面にろう付け組成物層が被覆された状態を示している。
チューブ本体12は、幅広の表面壁12Aと裏面壁12Bとそれらの左右両端側を個々に接続した背の低い側面壁12C、12Cとチューブ本体12の内部を複数の流路12Dに仕切る複数の隔壁12Eとから構成されている。この例において複数の流路12Dはいずれも矩形状の類似断面形状に形成され、図1に示す例においてはチューブ本体内に26個の流路12Dが形成されている。
なお、図1に示すチューブ本体12は1つの例であって、各部の幅、厚さ、扁平度(幅と厚さの比率)、流路12Dの形状や個数はいずれも任意に設定することができる。
The tube 22 shown in FIG. 1 shows a state before brazing, in which the outer peripheral surface of the tube body 12 placed horizontally is coated with a brazing composition layer.
The tube body 12 includes a wide surface wall 12A, a back wall 12B, short side walls 12C, 12C connecting the left and right end sides thereof individually, and a plurality of partition walls partitioning the inside of the tube body 12 into a plurality of flow paths 12D. 12E. In this example, all of the plurality of channels 12D are formed to have a similar rectangular cross-sectional shape, and in the example shown in FIG. 1, 26 channels 12D are formed in the tube body.
Note that the tube main body 12 shown in FIG. 1 is just an example, and the width, thickness, flatness (ratio of width and thickness) of each part, and the shape and number of the flow paths 12D can be set arbitrarily. can be done.

換言すると、チューブ本体12は、幅の広い平坦な表面(上面)12a及び裏面(下面)12bと、それらの両端側を個々に接続する平坦な短側面12c、12cとを有する扁平型に形成されている。また、チューブ本体12において表面12aの幅方向端部から短側面12cに至る部分には所定の曲率で円弧状に形成されたコーナー部12fが形成され、裏面12bの幅方向端部から短側面12cに至る部分にも所定の曲率で円弧状に形成されたコーナー部12gが形成されている。短側面12cにおいて上下のコーナー部12f、12gを除く部分は表面12aと裏面12bに対しほぼ直角に対向する平面状に形成されている。
なお、短側面12cの形状は特に制限されるものではなく、湾曲面や傾斜面であっても良い。
In other words, the tube body 12 is formed in a flat shape having a wide flat front surface (upper surface) 12a and a wide rear surface (lower surface) 12b, and flat short side surfaces 12c, 12c connecting the two ends individually. ing. A corner portion 12f formed in an arc shape with a predetermined curvature is formed in the tube body 12 from the widthwise end of the front surface 12a to the short side 12c. A corner portion 12g formed in an arc shape with a predetermined curvature is also formed in the portion extending to the end. A portion of the short side 12c, excluding the upper and lower corner portions 12f and 12g, is formed in a planar shape facing the front surface 12a and the rear surface 12b substantially perpendicularly.
The shape of the short side surface 12c is not particularly limited, and may be a curved surface or an inclined surface.

図1に示すチューブ本体12においてその表面12aと裏面12bには後述する組成のろう付け組成物の塗膜からなる主ろう付け組成物層15が形成されている。また、チューブ本体12において短側面12cの外方に後述する組成を有する第1のろう付け組成物層16が形成され、コーナー部12f、12gの外方に後述する組成を有する第2のろう付け組成物層17が形成されている。
本実施形態において主ろう付け組成物層15と第1のろう付け組成物層16と第2のろう付け組成物層17は後述する同一組成のろう付け組成物からなり、それらの塗布量と厚さが異なっている。
A main brazing composition layer 15 comprising a coating film of a brazing composition having a composition described later is formed on the front surface 12a and the back surface 12b of the tube body 12 shown in FIG. A first brazing composition layer 16 having a composition described later is formed on the outer side of the short side 12c of the tube body 12, and a second brazing composition layer 16 having a composition described later is formed on the outer side of the corner portions 12f and 12g. A composition layer 17 is formed.
In this embodiment, the main brazing composition layer 15, the first brazing composition layer 16 and the second brazing composition layer 17 are made of the brazing composition having the same composition as described later. are different.

図2は、図1に示す複数のチューブ22をヘッダ管14にろう付けにより接合し、複数のチューブ22を複数のフィン13にろう付けにより接合して構成された熱交換器11の全体構造を示す。
この熱交換器11は、図2に示すように左右に離間し平行に立設配置された一対のヘッダ管14と、一対のヘッダ管14の間に上下に相互に間隔を保って水平に、かつ、ヘッダ管14に対してほぼ直角に接合された複数本のチューブ22(チューブ本体12)と、チューブ本体12の表面12aまたは裏面12bにろう付けされ、外気に熱を放散するための複数枚のフィン13とを備えている。
FIG. 2 shows the overall structure of the heat exchanger 11 shown in FIG. 1, which is constructed by brazing the plurality of tubes 22 shown in FIG. show.
As shown in FIG. 2, the heat exchanger 11 is composed of a pair of header pipes 14 vertically spaced apart from each other and arranged vertically in parallel, and vertically spaced between the pair of header pipes 14 horizontally. A plurality of tubes 22 (tube bodies 12) joined substantially perpendicularly to the header tubes 14, and a plurality of tubes brazed to the front surface 12a or rear surface 12b of the tube bodies 12 for dissipating heat to the outside air. of fins 13.

左右一対のヘッダ管14のうち一方の上端部には、ヘッダ管14を介しチューブ22に冷媒を供給する供給管18Aが接続されている。また、他方のヘッダ管14の下端部には、チューブ22を経由した冷媒を回収する回収管18Bが接続されている。チューブ22、フィン13、ヘッダ管14、供給管18A、回収管18Bは、いずれもアルミニウムまたはアルミニウム合金から構成されている。 A supply pipe 18</b>A for supplying refrigerant to the tubes 22 via the header pipes 14 is connected to one upper end portion of the pair of left and right header pipes 14 . A collection pipe 18B for collecting the refrigerant that has passed through the tube 22 is connected to the lower end of the other header pipe 14 . Tubes 22, fins 13, header pipe 14, supply pipe 18A, and recovery pipe 18B are all made of aluminum or an aluminum alloy.

図3は、チューブ22の長さ方向に直交する面に沿って横断面をとった熱交換器11の部分断面図である。図3に示すように、チューブ22を構成するチューブ本体12の内部には幅方向に沿って並ぶ複数(本実施形態では26個)の冷媒流路12Dが形成されている。また、図3に示すようにフィン13には、チューブ22の断面形状に対応する形状のスリット状の孔部19が、上下に所定の間隔をあけて複数個々に水平に形成されている。これらの孔部19は図3に示すようにフィン13の左側端部から右側端部近くまで形成され、孔部19の最奥部はフィン13の右側端部より若干手前側に位置されている。 FIG. 3 is a partial cross-sectional view of heat exchanger 11 taken along a plane orthogonal to the length direction of tube 22 . As shown in FIG. 3, a plurality of (26 in this embodiment) refrigerant flow paths 12D are formed inside the tube main body 12 that constitutes the tube 22 and are aligned along the width direction. Further, as shown in FIG. 3, a plurality of slit-shaped holes 19 having a shape corresponding to the cross-sectional shape of the tube 22 are horizontally formed in the fins 13 at predetermined vertical intervals. As shown in FIG. 3, these holes 19 are formed from the left end to near the right end of the fins 13, and the deepest part of the holes 19 is located slightly forward of the right end of the fins 13. .

これらの孔部19には、それぞれチューブ22が嵌合され、個々のチューブ22がろう付けにより複数のフィン13に固定されている。フィン13に形成された孔部19の長さ(図3に示す水平長さ)はフィン13の幅よりも若干短く、この孔部19に挿入されているチューブ22の幅方向一側の短側面12cは孔部19の最奥部まで挿入され、ろう付けされている。 Tubes 22 are fitted into these holes 19, and the individual tubes 22 are fixed to the plurality of fins 13 by brazing. The length of the hole 19 formed in the fin 13 (horizontal length shown in FIG. 3) is slightly shorter than the width of the fin 13, and the tube 22 inserted into the hole 19 has a short side surface on one side in the width direction. 12c is inserted to the deepest part of the hole 19 and brazed.

図4、図5は、図2、図3に示す熱交換器11において、チューブ22の長さ方向に沿って縦断面をとった部分断面図であり、図4はろう付け前の状態を示し、図5はろう付け後の状態を示す。フィン13は、チューブ22の長さ方向に沿って(図4、図5の左右方向に沿って)複数枚、並列配置され、個々の孔部19にチューブ22が挿通されている。
複数のフィン13は、一定の間隔をおいて相互に平行に並列配置されている。フィン13は、孔部19の周縁部に沿ってフィン13の厚さ方向一側に屈曲した屈曲部20を有している。屈曲部20は、例えば、バーリング加工などの加工法により形成される。
4 and 5 are partial cross-sectional views taken along the longitudinal direction of the tubes 22 in the heat exchanger 11 shown in FIGS. 2 and 3, and FIG. 4 shows the state before brazing. , and FIG. 5 shows the state after brazing. A plurality of fins 13 are arranged in parallel along the length direction of the tube 22 (along the left-right direction in FIGS. 4 and 5), and the tube 22 is inserted through each hole 19 .
The plurality of fins 13 are arranged parallel to each other at regular intervals. The fin 13 has a bent portion 20 bent to one side in the thickness direction of the fin 13 along the peripheral portion of the hole portion 19 . The bent portion 20 is formed by a processing method such as burring, for example.

図5に示すようにチューブ22とフィン13は、一定間隔に並べた複数のフィン13をチューブ22が串刺し貫通するように配置され、フィン13とチューブ22が個々にろう付けにより固定されている。
図4に示すろう付け前の状態において、フィン13の孔部19に形成された屈曲部20とチューブ22の表面または裏面との隙間は10μm以下程度に形成されている。この隙間が大きすぎる場合は、後述するろう付け工程において溶融したろうの回り込み量が不足し、ろう付け不良を引き起こすおそれがある。
As shown in FIG. 5, the tubes 22 and the fins 13 are arranged so that the tubes 22 are skewered and pass through the plurality of fins 13 arranged at regular intervals, and the fins 13 and the tubes 22 are individually fixed by brazing.
In the state before brazing shown in FIG. 4, the gap between the bent portion 20 formed in the hole portion 19 of the fin 13 and the front or back surface of the tube 22 is formed to be approximately 10 μm or less. If the gap is too large, the amount of melted brazing filler metal will be insufficient in the brazing process, which will be described later, and this may cause brazing failure.

本実施形態のフィン13は、図3に示すように孔部19に対しチューブ22を貫通させているが、孔部19に代えてフィン13の幅方向両端側に到達しない水平長さのスリット状の貫通孔を設け、これらの貫通孔にチューブ22を通した構成としても良い。この構成の場合、図3に示す状態に対比すると、貫通孔の内側にのみチューブ22が存在し、チューブ22の幅方向一端側がフィン13の外側には突出しない構成となる。
以上説明の如くフィン13に対するチューブ22の貫通位置に特に制限はなく、フィン13とチューブ22のろう付けにより良好な熱伝導性を確保できる接合位置や接合形状であれば良い。
In the fins 13 of the present embodiment, as shown in FIG. through-holes may be provided, and the tube 22 may be passed through these through-holes. In this configuration, compared to the state shown in FIG. 3 , the tube 22 exists only inside the through hole, and one widthwise end of the tube 22 does not protrude outside the fins 13 .
As described above, there is no particular limitation on the position where the tube 22 penetrates the fins 13, and any joint position or joint shape that ensures good thermal conductivity by brazing the fins 13 and the tube 22 may be used.

以下、熱交換器11の主な構成要素についてより詳細に説明する。
<<フィンとその構成材料>>
図4、図5に拡大して示すようにフィン13は、板状の基材3と、基材3の第1の面3a及び第2の面3bに被覆された親水性皮膜1を有していることが好ましい。
フィン13の基材3は、JIS1050系などの純アルミニウム系あるいはJIS3003系のアルミニウム合金を主体とした合金からなる。また、基材3は、JIS3003系のアルミニウム合金に質量%で2%程度のZnを添加したアルミニウム合金からなるものであっても良い。
フィン13の基材3は、前記アルミニウム合金を常法により溶製し、熱間圧延工程、冷間圧延工程、プレス工程などを経て加工される。なお、基材3の製造方法は、本発明において特に限定されるものではなく、既知の製法を適宜採用することができる。
The main components of the heat exchanger 11 are described in more detail below.
<<Fins and their constituent materials>>
As shown in enlarged view in FIGS. 4 and 5, the fin 13 has a plate-like substrate 3 and a hydrophilic film 1 coated on the first surface 3a and the second surface 3b of the substrate 3. preferably.
The base material 3 of the fin 13 is made of an alloy mainly composed of pure aluminum such as JIS 1050 series or JIS 3003 series aluminum alloy. Further, the base material 3 may be made of an aluminum alloy obtained by adding about 2% by mass of Zn to a JIS3003 series aluminum alloy.
The base material 3 of the fins 13 is produced by melting the aluminum alloy by a conventional method, and processed through a hot rolling process, a cold rolling process, a pressing process, and the like. In addition, the manufacturing method of the base material 3 is not particularly limited in the present invention, and a known manufacturing method can be appropriately adopted.

<<ヘッダー管の構成材料>>
ヘッダー管14を構成するアルミニウム合金は、Al-Mn系をベースとしたアルミニウム合金が好ましい。例えば、Mn:0.05~1.50%を含有することが好ましく、他の元素として、Cu:0.05~0.8%、Zr:0.05~0.15%を含有することができる。
<<Constituent material of header pipe>>
The aluminum alloy forming the header tube 14 is preferably an aluminum alloy based on an Al--Mn system. For example, it is preferable to contain Mn: 0.05 to 1.50%, and as other elements, Cu: 0.05 to 0.8% and Zr: 0.05 to 0.15%. can.

<<チューブの構成>>
図1に示すように、ろう付け前のチューブ22は、チューブ本体12と、その外周面に形成されたろう付け組成物層15、16、17を有している。
チューブ本体12は、例えば、JIS1050系などの純アルミニウム系あるいはJIS3003系のアルミニウム合金を主体とした合金からなる。一例として、Si:0.10~0.60%、Fe:0.1~0.6質量%、Mn:0.1~0.6質量%、Ti:0.005~0.2質量%、Cu:0.1質量%未満、残部がアルミニウム及び不可避的不純物からなるアルミニウム合金からなり、これらのアルミニウム合金を押出することにより作製されたものである。
<<Tube configuration>>
As shown in FIG. 1, the tube 22 before brazing has a tube body 12 and brazing composition layers 15, 16, 17 formed on its outer peripheral surface.
The tube main body 12 is made of, for example, an alloy mainly composed of pure aluminum such as JIS1050 series or JIS3003 series aluminum alloy. As an example, Si: 0.10 to 0.60%, Fe: 0.1 to 0.6% by mass, Mn: 0.1 to 0.6% by mass, Ti: 0.005 to 0.2% by mass, Cu: Less than 0.1% by mass, the balance is made of an aluminum alloy consisting of aluminum and unavoidable impurities, and is produced by extruding these aluminum alloys.

<<主ろう付け組成物層15の構成材料>>
図1、図4に示すろう付け前のチューブ本体12に形成されている主ろう付け組成物層15は、少なくともフィン3がろう付け接合される部分に対応して塗布された塗膜である。
主ろう付け組成物層15は、一例として、Si粉末:1~5g/mと、Zn含有フラックス(KZnF):3~20g/mと、非Zn含有フラックス:1~10g/mのいずれか一種類又は2種類以上を含み、更に、バインダ(例えば、アクリル系樹脂):0.2~8.5g/mを含むろう付用塗膜であることが好ましい。なお、これらの成分に対し適切な量の溶剤を配合することでろう付け液状組成物が構成される。
<<Constituent Material of Main Brazing Composition Layer 15>>
The main brazing composition layer 15 formed on the tube body 12 before brazing shown in FIGS. 1 and 4 is a coating film applied at least to the portion where the fins 3 are joined by brazing.
The main brazing composition layer 15 includes, for example, Si powder: 1-5 g/m 2 , Zn-containing flux (KZnF 3 ): 3-20 g/m 2 , Zn-free flux: 1-10 g/m 2 and a binder (for example, acrylic resin): 0.2 to 8.5 g/m 2 . A liquid brazing composition is formed by adding an appropriate amount of solvent to these components.

以下、主ろう付け組成物層15を構成するろう付け組成物の構成材料について説明する。
<Si粉末>
Si粉末は、チューブ本体12を構成するAlとろう付け時に反応し、フィン3とチューブ本体12を接合するろうを形成するが、ろう付け時にZn含有フラックスとSi粉末が溶融してろう液となる。
このろう液にフラックス中のZnが均一に拡散し、チューブ本体12の表面と裏面に均一に広がる。液相であるろう液内でのZnの拡散速度は固相内の拡散速度より著しく大きいので、これによりチューブ表面と裏面に均一なZn拡散がなされ、チューブ表面と裏面の面方向のZn濃度がほぼ均一となる。また、チューブ本体12の表面から深さ方向への拡散について見ると、SiはAlと共晶となって融点を下げるので、チューブ本体12の表面では共晶組成となった状態にZnが拡散しチューブ本体12の表面側と裏面側に所定厚さのZn溶融拡散層が生成する。このZn溶融拡散層が犠牲陽極層となるので、チューブ本体12の表面側と裏面側のろう付け部分の耐食性を向上できる。
なお、本実施形態ではチューブ本体12の短側面側にもろう付け組成物層16、17が形成されているので、これらろう付け組成物層16、17に含まれているZnとSiの拡散がなされ、チューブ本体12の短側面側にも犠牲陽極層が形成される。
The constituent materials of the brazing composition forming the main brazing composition layer 15 are described below.
<Si powder>
The Si powder reacts with Al constituting the tube main body 12 during brazing to form brazing that joins the fins 3 and the tube main body 12. During brazing, the Zn-containing flux and the Si powder melt to form a brazing liquid. .
Zn in the flux is uniformly diffused into this brazing liquid, and spreads uniformly over the front and back surfaces of the tube body 12 . Since the diffusion rate of Zn in the brazing liquid, which is a liquid phase, is significantly higher than the diffusion rate in the solid phase, Zn is uniformly diffused on the tube surface and the back surface, and the Zn concentration in the plane direction of the tube surface and the back surface is increased. almost uniform. As for the diffusion in the depth direction from the surface of the tube body 12, since Si becomes a eutectic with Al to lower the melting point, Zn diffuses in a state of eutectic composition on the surface of the tube body 12. A Zn melt diffusion layer having a predetermined thickness is formed on the front surface side and the rear surface side of the tube body 12 . Since this Zn fusion diffusion layer becomes a sacrificial anode layer, the corrosion resistance of the brazed portions on the front side and the back side of the tube body 12 can be improved.
In this embodiment, since the brazing composition layers 16 and 17 are also formed on the short side surfaces of the tube body 12, the Zn and Si contained in these brazing composition layers 16 and 17 do not diffuse. A sacrificial anode layer is also formed on the short side surface of the tube body 12 .

<Si粉末塗布量:1~5g/m
Si粉末の塗布量が1g/m未満であると、ろう形成が不十分となるおそれがあり、塗布量が5g/mを超えると、チューブ本体12の溶融量が増加してチューブ本体12の肉厚が減少して、好ましくない。このため、主ろう付け組成物層15におけるSi粉末の含有量は1~5g/mとすることが好ましい。
<Si粉末粒度:最大粒径:D(99):30μm以下>
Si粉末の粒度がD(99)において30μm以下であれば、均一なZn溶融拡散層を形成することが可能である反面、30μmを超えると、局部的に深いエロージョンが生成し、均一なZn溶融拡散層を形成できなくなるおそれがある。このため、Si粉末の粒度は、最大粒径D(99)において30μm以下が好ましい。なお、D(99)とは、体積割合で小さい粒から累積し、全体の99%となる粒の粒径のことである。これらの値は、いずれもレーザ光散乱法で測定することができる。
<Si powder coating amount: 1 to 5 g/m 2 >
If the amount of Si powder applied is less than 1 g/m 2 , brazing formation may be insufficient. It is not preferable because the thickness of the Therefore, the content of Si powder in the main brazing composition layer 15 is preferably 1-5 g/m 2 .
<Si powder particle size: maximum particle size: D (99): 30 μm or less>
If the particle size of the Si powder is 30 μm or less in D(99), it is possible to form a uniform Zn fusion diffusion layer. There is a possibility that the diffusion layer cannot be formed. Therefore, the particle size of the Si powder is preferably 30 μm or less at the maximum particle size D(99). Note that D(99) is the particle diameter of particles that accumulate from particles having a small volume ratio and form 99% of the total. All of these values can be measured by a laser light scattering method.

<Zn含有フラックス、非Zn含有フラックス>
Zn含有フラックスは、ろう付けに際し、チューブ本体12の表面側と裏面側にZn溶融拡散層を形成し、耐孔食性を向上させる効果がある。また、ろう付け時にチューブ3の外面の酸化膜を破壊し、ろうの広がり、ぬれを促進してろう付け性を向上させる作用を奏する。このZn含有フラックスは、Znを含まないフラックスに比べ活性度が高いので、比較的微細なSi粉末を用いても良好なろう付け性が得られる。Zn含有フラックスは、KZnF、ZnF、ZnClのうち、1種または2種以上を用いることができる。Zn含有フラックスに対し、非Zn含有フラックスを添加しても良い。
<Zn-containing flux, Zn-free flux>
The Zn-containing flux has the effect of forming Zn melt diffusion layers on the front and back sides of the tube body 12 during brazing, thereby improving pitting corrosion resistance. In addition, it has the effect of destroying the oxide film on the outer surface of the tube 3 during brazing, promoting the spread and wetting of the braze, and improving the brazeability. Since this Zn-containing flux has higher activity than a Zn-free flux, good brazeability can be obtained even with relatively fine Si powder. One or more of KZnF 3 , ZnF 2 and ZnCl 2 can be used as the Zn-containing flux. A non-Zn containing flux may be added to the Zn containing flux.

非Zn含有フラックスとしてフッ化物系フラックスあるいはフルオロアルミン酸カリウム系のフラックスはKAlFを主成分とするフラックスであり、添加物を加えた種々の組成が知られている。KAlF+KAlF(K1-3AlF6-4)なる組成のもの、Cs(x)(y)(z)などを例示できる。他に、LiF、KF、CaF、AlF、KSiF等のフッ化物を添加したフッ化物系フラックス(例えば、フルオロアルミン酸カリウム系のフラックス)を用いることもできる。Znフラックスに加えてフッ化物系フラックス(例えばフルオロアルミン酸カリウム系のフラックス)を添加することでろう付け性向上に寄与する。Fluoride-based fluxes and potassium fluoroaluminate-based fluxes as Zn-free fluxes are fluxes containing KAlF 4 as the main component, and various compositions with additives are known. Examples include a composition of K 3 AlF 6 +KAlF 4 (K 1-3 AlF 6-4 ), Cs (x) K (y) F (z) , and the like. In addition, a fluoride-based flux (for example, a potassium fluoroaluminate-based flux) to which a fluoride such as LiF, KF, CaF 2 , AlF 3 , or K 2 SiF 6 is added can also be used. Addition of fluoride-based flux (for example, potassium fluoroaluminate-based flux) in addition to Zn flux contributes to improvement in brazeability.

<フラックス塗布量:3~20g/m
Zn含有フラックスの塗布量が3g/m未満であると、熱交換器11とした場合の電位差が低くなり、犠牲効果が発揮されないおそれがある。また、チューブ本体12の表面酸化皮膜の破壊除去が不十分なためにろう付け不良を招くおそれがある。一方、塗布量が20g/mを超えると、電位差が過大となり、腐食速度が増加し、Zn溶融拡散層の存在による防食効果が短時間になるおそれがある。このため、Zn含有フラックスの塗布量を3~20g/mとすることが好ましい。Zn含有フラックスは、一例としてKZnFを用いることができる。前述の非Zn含有フラックスは、Zn含有フラックスに加えて添加することができる。
<Amount of flux applied: 3 to 20 g/m 2 >
If the coating amount of the Zn-containing flux is less than 3 g/m 2 , the potential difference in the heat exchanger 11 will be low, and the sacrificial effect may not be exhibited. In addition, insufficient removal of the oxide film on the surface of the tube body 12 may lead to poor brazing. On the other hand, if the coating amount exceeds 20 g/m 2 , the potential difference becomes excessive, the corrosion rate increases, and there is a possibility that the anti-corrosion effect due to the presence of the Zn fusion diffusion layer will be short-lived. Therefore, the amount of Zn-containing flux applied is preferably 3 to 20 g/m 2 . Zn-containing flux can use KZnF3 as an example. The non-Zn containing fluxes described above can be added in addition to the Zn containing fluxes.

<バインダ塗布量:0.2~8.5g/m
ろう付け組成物層15には、Si粉末、Zn含有フラックスに加えてバインダを含むことができる。バインダの一例として、アクリル系樹脂を挙げることができる。
バインダはZn溶融拡散層の形成に必要なSi粉末とZn含有フラックスをチューブ22の表面と裏面に固着する作用があるが、バインダの塗布量が0.2g/m未満であると、ろう付け時にSi粉末やZnフラックスがチューブ本体12から脱落し、均一なZn溶融拡散層が形成されないおそれがある。一方、バインダの塗布量が8.5g/mを超えると、バインダ残渣によりろう付け性が低下し、均一なZn溶融拡散層が形成されないおそれがある。このため、バインダの塗布量は、0.2~8.5g/mとすることが好ましい。なお、バインダは、通常、ろう付けの際の加熱により蒸散する。
<Binder application amount: 0.2 to 8.5 g/m 2 >
The brazing composition layer 15 may contain a binder in addition to Si powder and Zn-containing flux. An example of the binder is an acrylic resin.
The binder has the effect of fixing the Si powder and Zn-containing flux necessary for forming the Zn melt - diffusion layer to the front and back surfaces of the tube 22. Sometimes Si powder and Zn flux fall off from the tube main body 12, and there is a possibility that a uniform Zn fusion diffusion layer is not formed. On the other hand, if the coating amount of the binder exceeds 8.5 g/m 2 , there is a risk that the brazeability will be degraded due to the binder residue, and a uniform Zn fusion diffusion layer will not be formed. Therefore, it is preferable that the coating amount of the binder is 0.2 to 8.5 g/m 2 . Note that the binder usually evaporates due to heating during brazing.

Si粉末、フラックス及びバインダからなるろう付け組成物層15の形成方法は、本実施形態において特に限定されるものではなく、スプレー法、シャワー法、フローコータ法、バーコーター法、ロールコーター法、刷毛塗り法、浸漬法、静電塗布法などの適宜の方法によって行うことができる。 The method of forming the brazing composition layer 15 consisting of Si powder, flux and binder is not particularly limited in this embodiment, and may be spray method, shower method, flow coater method, bar coater method, roll coater method, or brush. Appropriate methods such as a coating method, an immersion method, and an electrostatic coating method can be used.

<<第1、第2のろう付け組成物層の構成材料>>
図1に示すチューブ本体12の側面側に形成されている第1のろう付け組成物層16、第2のろう付け組成物層17は、基本的に先の主ろう付け組成物層15を構成する材料と同等の材料からなる。即ち、Si粉末とZn含有フラックスと、非Zn含有フラックスのいずれか1種類又は2種類以上を含み、更に、バインダとを含む。あるいは、Si粉末とZn含有フラックスと、非Zn含有フラックスのいずれか1種類又は2種類以上を含み、更に、バインダと溶剤とを含む。
ただし、第1のろう付け組成物層16、第2のろう付け組成物層17は個々に以下に説明する望ましい厚さに形成されている。第1のろう付け組成物層16は、5~30μmの範囲の厚さに形成されていることが望ましい。第2のろう付け組成物層17は、0.5~15μmの範囲の厚さに形成されていることが望ましい。
<<Materials Constituting the First and Second Brazing Composition Layers>>
The first brazing composition layer 16 and the second brazing composition layer 17 formed on the side surface of the tube body 12 shown in FIG. 1 basically constitute the main brazing composition layer 15. made of the same material as the That is, it contains one or more of Si powder, Zn-containing flux, and non-Zn-containing flux, and further contains a binder. Alternatively, it contains one or more of Si powder, Zn-containing flux, and non-Zn-containing flux, and further contains a binder and a solvent.
However, the first brazing composition layer 16 and the second brazing composition layer 17 are individually formed to desired thicknesses as described below. The first brazing composition layer 16 is desirably formed to a thickness in the range of 5-30 μm. The second brazing composition layer 17 is desirably formed with a thickness in the range of 0.5 to 15 μm.

第1のろう付け組成物層16はチューブ本体12の短側面上に形成されたろう付け用塗膜である。ろう付け時にこの塗膜が溶融し、凝固してチューブ本体12の短側面側をフィン13の孔部19の最奥側にろう付け固定する。
第2のろう付け組成物層17はチューブ本体12の短側面側のコーナー部分に形成されたろう付け用塗膜である。ろう付け時にこの塗膜が溶融し、凝固してチューブ本体12の短側面コーナー部分をフィン13の孔部19の最奥側にろう付け固定する。
これら第1、第2のろう付け組成物層16、17が無い場合、チューブ本体12の短側面側をフィン13にろう付け固定する固定力が不足する。
A first brazing composition layer 16 is a brazing coating formed on the short sides of the tube body 12 . During brazing, this coating melts and solidifies to fix the short side surface of the tube body 12 to the innermost side of the hole 19 of the fin 13 by brazing.
The second brazing composition layer 17 is a brazing coating formed on the short side corners of the tube body 12 . During brazing, this coating melts and solidifies to braze and fix the corner portions of the short side surfaces of the tube body 12 to the innermost sides of the holes 19 of the fins 13 .
Without these first and second brazing composition layers 16 and 17, the fixing force for brazing the short sides of the tube body 12 to the fins 13 is insufficient.

例えば、室外機の小型化、コンパクト化の要求に応じ、熱交換器の一部を平面視L字型に折り曲げて室外機に収容する構成が知られている。このように熱交換器の一部を平面視L字型に折り曲げる際、チューブ本体12の短側面側をフィン13の孔部19の最奥側にろう付け固定する力が不足していると、折り曲げ部分において複数のフィン13の一部が倒れるおそれがある。チューブ本体12の短側面側に設けた第1、第2のろう付け組成物層16、17を十分な厚さとしておくならば、フィン13のろう付け固定力を十分に確保することができる。このため、チューブ本体12を平面視L字型に折り曲げた場合であってもフィン倒れを起こすことなく折り曲げ加工ができる。
なお、チューブ本体12をL字型に折り曲げる構造の場合、例えば、チューブ本体12の座屈等を防止するためにチューブ本体12の冷媒流路数を少なくして扁平率の低い構成が採用される。
For example, there is known a configuration in which a part of the heat exchanger is bent into an L shape in plan view and accommodated in the outdoor unit in response to the demand for downsizing and compactness of the outdoor unit. When a portion of the heat exchanger is bent into an L shape in plan view, if the short side of the tube body 12 is insufficiently brazed to the innermost side of the hole 19 of the fin 13, A part of the plurality of fins 13 may collapse at the bent portion. If the first and second brazing composition layers 16 and 17 provided on the short side of the tube body 12 are sufficiently thick, the fins 13 can be sufficiently secured by brazing. Therefore, even when the tube main body 12 is bent into an L shape in plan view, the bending process can be performed without causing the fins to collapse.
In the case of a structure in which the tube main body 12 is bent into an L-shape, for example, in order to prevent buckling or the like of the tube main body 12, a configuration having a low oblateness is adopted by reducing the number of refrigerant passages in the tube main body 12. .

また、前記第2のろう付け組成物層17が無い場合か、薄過ぎる場合、フィン13の孔部19にチューブ本体12を差し込み、孔部19の開口部分にチューブ本体12のコーナー部分が擦れると、挿入抵抗が大きくなり、孔部19にチューブ本体12の短側面側を挿入する場合に支障を生じるおそれがある。 When the second brazing composition layer 17 is absent or too thin, the tube body 12 is inserted into the hole 19 of the fin 13 and the corner of the tube body 12 is rubbed against the opening of the hole 19. , the insertion resistance increases, and there is a risk of causing trouble when inserting the short side of the tube main body 12 into the hole 19 .

図2、図3に示す熱交換器11を組み立てる場合、複数のフィン13を隣接配置した状態で全ての孔部19に図2に示す如く上下に並ぶ8本のチューブ体12を挿入する必要がある。ここで複数のフィン13を整列させて精密に配置していたとしても各フィン13の孔部19は製造誤差等も起因して多少上下にあるいは左右に位置ずれしているおそれがある。
また、図2に示す8本のチューブ本体12が精密に製造され、それらの厚さが全て均一に形成され、ヘッダ管14に形成したチューブ挿通用の孔部が全て均一に正確な位置に形成されていたとしても、それら各部の製造誤差等から、上下に隣接配置されたチューブ本体12が多少位置ずれしていることも考えられる。
When assembling the heat exchanger 11 shown in FIGS. 2 and 3, it is necessary to insert the eight tube bodies 12 vertically aligned as shown in FIG. be. Even if the plurality of fins 13 are aligned and arranged precisely, the holes 19 of the fins 13 may be slightly displaced vertically or horizontally due to manufacturing errors or the like.
In addition, the eight tube bodies 12 shown in FIG. 2 are manufactured with precision, all of them have a uniform thickness, and all the holes formed in the header tube 14 for inserting the tubes are uniformly formed at accurate positions. Even if it is, it is conceivable that the tube bodies 12 arranged vertically adjacent to each other may be slightly displaced due to manufacturing errors of each part.

上述のようにフィン13の孔部19とチューブ本体12の端部が多少でも位置ずれしていると図6に示すように孔部19に対しチューブ本体12の端部を挿入する場合、チューブ本体12のコーナー部分は孔部19の開口部内周縁を擦りながらの挿入動作となる。
ここで、フィン13がアルミニウム又はアルミニウム合金製であり、チューブ12もアルミニウム又はアルミニウム合金製であると、アルミニウムどうしの擦り合いとなる。
アルミニウムどうしの擦り合いは金属どうし擦り合いの中でも、摩擦抵抗が大きい擦り合いであるので、孔部19に対するチューブ本体12の挿入時の摩擦抵抗の変動が大きくなり、状況によっては嵌合時に薄いフィン13を変形させるおそれがある。
この点において、図7に示すようにチューブ本体12のコーナー部に適度な厚さのろう付け組成物層17、17が設けられていると、塗膜とアルミニウムとの摩擦となるので、アルミニウムどうしの摩擦抵抗よりは抵抗が少なくなり、よりスムーズな挿入作業が可能となる。
As described above, if the holes 19 of the fins 13 and the ends of the tube body 12 are misaligned even a little, when inserting the ends of the tube body 12 into the holes 19 as shown in FIG. The corner portion of 12 is inserted while rubbing the inner peripheral edge of the opening of the hole portion 19 .
Here, if the fins 13 are made of aluminum or an aluminum alloy, and the tube 12 is also made of aluminum or an aluminum alloy, aluminum rubs against each other.
Rubbing between aluminum is a rubbing with a large frictional resistance among rubbings between metals, so the frictional resistance fluctuates greatly when the tube body 12 is inserted into the hole 19, and depending on the situation, a thin fin may be formed at the time of fitting. 13 may be deformed.
In this regard, if brazing composition layers 17, 17 of appropriate thickness are provided at the corners of the tube body 12 as shown in FIG. The resistance is less than the frictional resistance of , and smoother insertion work is possible.

このため、第2のろう付け組成物層17は0.5~15μmの範囲の厚さに形成されていることが望ましい。ろう付け組成物層17の厚さが0.5μm未満では挿入時の摩擦抵抗を減少させる効果が不足する。ろう付け組成物層17の厚さが15μmを超えるとコーナー部分に厚すぎるろう付け組成物層17が存在することとなり、チューブ本体12を孔部19に挿入する際、ろう付け組成物層17が剥離する不具合を生じるおそれがある。 Therefore, it is desirable that the second brazing composition layer 17 is formed with a thickness in the range of 0.5 to 15 μm. If the thickness of the brazing composition layer 17 is less than 0.5 μm, the effect of reducing the frictional resistance during insertion is insufficient. When the thickness of the brazing composition layer 17 exceeds 15 μm, the brazing composition layer 17 is too thick at the corner portions, and when the tube body 12 is inserted into the hole 19 , the brazing composition layer 17 is not thick enough. There is a possibility that the problem of peeling may occur.

図4は、チューブ本体12をフィン13の孔部19に挿入した状態の縦断面を示すが、チューブ本体12の主ろう付け組成物層15は、フィン13の屈曲部20のチューブ本体12と対向する部分(対向面20a)とチューブ本体12の間に位置する。主ろう付け組成物層15は、600℃前後の加熱(ろう付け加熱)後に冷却されることで、対向面20aとチューブ本体12との間に満たされた状態で固化し、図5に示すようにフィレット15Aを形成してフィン13とチューブ本体12を接合する。また、チューブ本体12の短側面側とそのコーナー部分に形成されているろう付け組成物層16、17はろう付け後にフィレット15Aとなって、孔部19の最奥側にチューブ本体12の短側面側とコーナー部分側を接合する。 FIG. 4 shows a vertical cross-section of the tube body 12 inserted into the holes 19 of the fins 13. The main brazing composition layer 15 of the tube body 12 faces the tube body 12 at the bends 20 of the fins 13. It is located between the portion (the facing surface 20 a ) and the tube body 12 . The main brazing composition layer 15 is solidified in a state filled between the opposing surface 20a and the tube body 12 by cooling after heating (brazing heating) at around 600° C., as shown in FIG. The fins 13 and the tube body 12 are joined by forming a fillet 15A. Further, the brazing composition layers 16 and 17 formed on the short side surfaces of the tube body 12 and the corner portions thereof become fillets 15A after brazing, and the short side surfaces of the tube body 12 are formed on the innermost side of the hole portion 19. Join the side and the corner part side.

主ろう付け組成物層15は、フィン13と当接する領域に、即ち、チューブ本体12の表面12aと裏面12bに形成されている。また、ろう付け前の主ろう付け組成物層15に含まれていたSiとZnがろう付け温度でチューブ本体12側に拡散し、チューブ本体12の表裏面の表層部にSiとZnを含む犠牲陽極層を形成する。
また、ろう付け組成物層16、17に含まれていたSiとZnもろう付け時にチューブ本体12の短側面側とコーナー部分側に拡散し、これらの部分にSiとZnを含む犠牲陽極層を形成する。このため、ろう付け後、チューブ本体12の全周に犠牲陽極層を形成できる。
The main brazing composition layer 15 is formed on the areas contacting the fins 13 , ie, on the front surface 12 a and the back surface 12 b of the tube body 12 . In addition, Si and Zn contained in the main brazing composition layer 15 before brazing are diffused toward the tube body 12 at the brazing temperature, and the surface layers of the front and back surfaces of the tube body 12 contain Si and Zn. Form the anode layer.
In addition, Si and Zn contained in the brazing composition layers 16 and 17 are also diffused to the short side and corner portion sides of the tube body 12 during brazing, and a sacrificial anode layer containing Si and Zn is formed in these portions. Form. Therefore, a sacrificial anode layer can be formed on the entire circumference of the tube body 12 after brazing.

<<ろう付け組成物層の形成方法>>
チューブ本体12に対し、主ろう付け組成物層15を形成し、更に、第1、第2のろう付け組成物層16、17を形成する方法について以下に説明する。
Si粉末、フラックス、バインダからなる主ろう付け組成物層15の形成方法は、本実施形態において特に限定されるものではない。Si粉末、フラックス、バインダに溶剤を添加してろう付け液状組成物とした塗料を以下の方法により塗布し、乾燥すればよい。
塗布は、スプレー法、シャワー法、フローコータ法、バーコーター法、ロールコーター法、刷毛塗り法、浸漬法、静電塗布法などの適宜の方法によって塗布することができる。これらの方法により必要な塗布量でチューブ本体12の表面12aと裏面12bの必要な範囲に主ろう付け組成物層15を形成することができる。
例えば、チューブ本体12の表面12aと裏面12bにおいてそれらのほぼ全面に主ろう付け組成物層15を形成することができる。
<<Method of Forming Brazing Composition Layer>>
The method of forming the primary braze composition layer 15 and the first and second braze composition layers 16, 17 on the tube body 12 will now be described.
The method of forming the main brazing composition layer 15 consisting of Si powder, flux, and binder is not particularly limited in this embodiment. A liquid brazing composition obtained by adding a solvent to Si powder, flux, and binder may be applied by the following method and dried.
Coating can be performed by an appropriate method such as a spray method, a shower method, a flow coater method, a bar coater method, a roll coater method, a brush coating method, an immersion method, or an electrostatic coating method. By these methods, the main brazing composition layer 15 can be formed in the required range of the front surface 12a and the back surface 12b of the tube body 12 with the required coating amount.
For example, the main brazing composition layer 15 can be formed over substantially the entire surface 12a and back surface 12b of the tube body 12 .

次に、チューブ本体12の短側面12cから所定距離離れた位置に図8に示すようにエアースプレー方式の塗布装置30を設置し、短側面12cとコーナー部12f、12gにろう付け液状組成物をスプレー塗布する。
ここで用いるろう付け液状組成物とは、前述のSi粉末と、Zn含有フラックス(KZnF)と、バインダ(例えば、アクリル系樹脂)に必要量の溶剤を添加して液状としたろう付液状組成物を意味する。
あるいは、前述のSi粉末と、Zn含有フラックス(例えば、KZnF)と、非Zn含有フラックスと、バインダ(例えば、アクリル系樹脂)に必要量の溶剤を添加してエアースプレー方式に望ましい粘度の液状としたろう付液状組成物を意味する。
あるいは、前述のSi粉末と、非Zn含有フラックスと、バインダ(例えば、アクリル系樹脂)に必要量の溶剤を添加してエアースプレー方式に望ましい粘度の液状としたろう付液状組成物を意味する。
Next, as shown in FIG. 8, an air spray coating device 30 is installed at a position a predetermined distance from the short side 12c of the tube body 12, and the liquid brazing composition is applied to the short side 12c and the corners 12f and 12g. Spray on.
The brazing liquid composition used here is a brazing liquid composition obtained by adding a necessary amount of solvent to the aforementioned Si powder, Zn-containing flux (KZnF 3 ), and binder (for example, acrylic resin). means things.
Alternatively, the aforementioned Si powder, Zn-containing flux (e.g., KZnF3 ), non-Zn-containing flux, and binder (e.g., acrylic resin) are mixed with a required amount of solvent to form a liquid having a desired viscosity for the air spray method. means a liquid brazing composition of
Alternatively, it means a liquid brazing composition obtained by adding a necessary amount of a solvent to the aforementioned Si powder, a non-Zn-containing flux, and a binder (for example, an acrylic resin) to obtain a liquid with a desirable viscosity for an air spray method.

図8に示す塗布装置30は、先端にノズル31を有するスプレーガン32を備え、スプレーガン32の流路の途中に液体供給用の導入管33を備え、スプレーガン32の後端部に図示略のエアー供給装置が接続されたエアースプレー方式の塗布装置である。
この塗布装置30を用いて図8に示すようにチューブ本体12の短側面側にろう付け液状組成物をスプレー塗布することで第1のろう付け組成物層16と第2のろう付け組成物層17を形成できる。塗布装置30の具体例として、株式会社サンエイテック製エアスプレーバルブ塗布装置などを用いることができる。
チューブ本体12の短側面12cに対しノズル31の上下位置調節および前後位置調節と噴射圧力の調節を行い、短側面12c上に対する塗膜量とコーナー部12f、12g上に対する塗膜量を目的の範囲に調整できる。
A coating device 30 shown in FIG. 8 includes a spray gun 32 having a nozzle 31 at its tip, an introduction pipe 33 for supplying liquid in the middle of the flow path of the spray gun 32, and is an air spray type coating device to which an air supply device is connected.
Using this applicator 30, as shown in FIG. 8, the liquid brazing composition is spray-coated on the short side of the tube body 12 to form a first brazing composition layer 16 and a second brazing composition layer. 17 can be formed. As a specific example of the coating device 30, an air spray valve coating device manufactured by Sanei Tech Co., Ltd. can be used.
Adjust the vertical position of the nozzle 31 with respect to the short side 12c of the tube body 12, adjust the position of the nozzle 31 forward and backward, and adjust the injection pressure to adjust the amount of coating on the short side 12c and the amount of coating on the corners 12f and 12g to the desired range. can be adjusted to

この後、複数枚並列設置したフィン13の孔部19にチューブ本体12を差し込んで嵌合し、図2に近い状態に組み付け、ろう付けを行う。
ろう付けは、ろう付け組成物層15、16、17の融点以上の温度、例えば580~620℃に加熱炉において数分間程度加熱するろう付け工程を行う。加熱によって、ろう付け組成物層15、16、17が溶融し、ろう液となる。このろう液は、チューブ本体12とフィン13の屈曲部20との間の隙間に流れ、これらの隙間を満たす。また、上述のろう液は、孔部19の最奥位置に嵌合されているチューブ本体12の短側面側の隙間にも流れてこの隙間を満たす。
After that, the tube bodies 12 are inserted into the holes 19 of the fins 13 arranged in parallel and fitted, assembled in a state similar to that shown in FIG. 2, and brazed.
Brazing is carried out in a heating furnace for several minutes at a temperature above the melting point of the brazing composition layers 15, 16, 17, eg, 580 to 620°C. The heating melts the brazing composition layers 15, 16, 17 into a brazing liquid. This brazing liquid flows into the gaps between the tube body 12 and the bent portions 20 of the fins 13 to fill these gaps. In addition, the brazing liquid described above also flows into the gap on the short side of the tube body 12 fitted at the innermost position of the hole 19 to fill the gap.

続いて、冷却することで、図5に示すように、ろう液が固化し、フィレット15Aが形成される。これらのフィレット15Aにより、チューブ本体12とフィン13とが接合される。
ろう付け組成物層15、16、17が溶融した部分ではろう付けによってフラックス中のSiとZnが拡散し、チューブ本体12の表裏面に加え、短側面側にもZn溶融拡散層(犠牲陽極層)が形成される。
Subsequently, by cooling, as shown in FIG. 5, the brazing liquid solidifies to form a fillet 15A. The tube main body 12 and the fins 13 are joined by these fillets 15A.
In the portions where the brazing composition layers 15, 16, 17 are melted, Si and Zn in the flux are diffused by brazing, and in addition to the front and back surfaces of the tube body 12, Zn melt diffusion layers (sacrificial anode layers) are formed on the short side surfaces. ) is formed.

なお、この形態では主ろう付け組成物層15を形成した後に第1、第2のろう付け組成物層16、17を形成したが、これらを形成する順番はいずれが先であっても良く、これらを同時に形成しても良い。
例えば、押出材からなる長いチューブ本体12を搬送途中で塗布装置30により短側面側にろう付け組成物層16、17を形成後、バーコーターやロールコーターを用いて表裏面に主ろう付け組成物層15を形成しても良い。また、バーコーターやロールコーターを用いて表裏面に主ろう付け組成物層15を形成するとともに、バーコーターやロールコーターに隣接させて設けた塗布装置30により連続的に短側面側にろう付け組成物層16、17を形成しても良い。押出材からなる長いチューブ本体12にこれらの組成物層を形成した後、チューブ本体12を必要な長さに切断することで、熱交換器用のろう付け用チューブ22を得ることができる。
In this embodiment, after the main brazing composition layer 15 is formed, the first and second brazing composition layers 16 and 17 are formed. These may be formed simultaneously.
For example, after the brazing composition layers 16 and 17 are formed on the short side surfaces of the long tube body 12 made of an extruded material by means of the applicator 30 while it is being conveyed, the main brazing composition is applied to the front and back surfaces using a bar coater or a roll coater. A layer 15 may be formed. Further, the main brazing composition layer 15 is formed on the front and back surfaces using a bar coater or roll coater, and the brazing composition is continuously applied to the short sides by a coating device 30 provided adjacent to the bar coater or roll coater. Layers 16 and 17 may be formed. After forming these composition layers on a long tube body 12 made of an extruded material, the tube body 12 is cut to a required length to obtain a brazing tube 22 for a heat exchanger.

<<効果>>
本実施形態の構造によれば、ろう付け組成物層15、16、17を備えたチューブ22と複数枚のフィン13を組み合わせてろう付けすることにより熱交換器11を構成できる。この場合、チューブ本体12の表裏面側に設けたろう付け組成物層15により、チューブ本体12の表裏面側にフィン13を確実にろう付けできる。その上、チューブ本体12の短側面側に設けたろう付け組成物層16、17により、チューブ本体12の短側面側をフィン13に確実にろう付けできる。このため、チューブ本体12の全体をフィン13に対し十分な接合強度で確実にろう付け接合できる。即ち、熱交換器11において高品質なろう付け接合ができる。
また、フィン13の孔部19にチューブ本体12を挿入して組み立てる際、チューブ本体12のコーナー部に設けたろう付け組成物層17がフィン13の孔部内周縁を擦る際の摩擦を緩和し、孔部19に対するチューブ本体12のスムーズな挿入を可能とする。
このため、チューブ22とフィン13を組み立てる際、フィン13に変形を生じさせることなく組立が可能となる。また、フィン13の孔部19に対しチューブ本体12の嵌合作業を行う場合、ろう付け組成物層17の剥離を抑制しながら嵌合作業ができる。
<< effect >>
According to the structure of this embodiment, the heat exchanger 11 can be configured by combining and brazing the tube 22 having the brazing composition layers 15, 16, 17 and the plurality of fins 13. FIG. In this case, the fins 13 can be reliably brazed to the front and rear surfaces of the tube body 12 by the brazing composition layers 15 provided on the front and back surfaces of the tube body 12 . Moreover, the brazing composition layers 16 and 17 provided on the short sides of the tube body 12 allow the short sides of the tube body 12 to be reliably brazed to the fins 13 . Therefore, the entire tube main body 12 can be reliably brazed to the fins 13 with sufficient joint strength. That is, high quality brazing can be performed in the heat exchanger 11 .
In addition, when the tube body 12 is inserted into the hole 19 of the fin 13 for assembly, the brazing composition layer 17 provided at the corner of the tube body 12 reduces the friction when rubbing the inner peripheral edge of the hole of the fin 13, Smooth insertion of the tube body 12 into the portion 19 is enabled.
Therefore, when assembling the tube 22 and the fins 13, the fins 13 can be assembled without deformation. Further, when fitting the tube main body 12 into the holes 19 of the fins 13 , the fitting work can be performed while suppressing peeling of the brazing composition layer 17 .

前述のろう付け組成物層15、16、17を用いてろう付けするならば、チューブ12の表面側と裏面側は勿論、短側面12c側とコーナー部12f側、コーナー部12g側に対しZnを拡散させることができ、チューブ12の全周に犠牲陽極層を形成することができる。犠牲陽極層の生成部分は孔食ではなく面食として腐食進行するので、チューブ12に腐食による貫通孔が生じ難い構造を提供できる。
また、チューブ本体12の全周に犠牲陽極層を形成することで、犠牲陽極層に隣接するろう付け部分の腐食を抑制できる防食構造の熱交換器11を提供できる。
If brazing is performed using the brazing composition layers 15, 16, and 17 described above, Zn is added to the short side 12c side, the corner portion 12f side, and the corner portion 12g side, as well as the front and back sides of the tube 12. It can be diffused and a sacrificial anode layer can be formed all around the tube 12 . Since the portion where the sacrificial anode layer is formed corrodes not as pitting but as surface corrosion, it is possible to provide a structure in which through-holes due to corrosion are less likely to occur in the tube 12 .
In addition, by forming the sacrificial anode layer around the entire circumference of the tube main body 12, it is possible to provide the heat exchanger 11 having an anti-corrosion structure that can suppress corrosion of the brazed portion adjacent to the sacrificial anode layer.

なお、主ろう付け組成物層15、第1のろう付け組成物層16及び第2のろう付け組成物層17は、Si粉末及びZn含有フラックスを含んでもよい。
また、主ろう付け組成物層15、第1のろう付け組成物層16及び第2のろう付け組成物層17は、Si粉末、Zn含有フラックス及び非Zn含有フラックスを含んでもよい。
It should be noted that the main brazing composition layer 15, the first brazing composition layer 16 and the second brazing composition layer 17 may contain Si powder and Zn-containing flux.
The primary braze composition layer 15, first braze composition layer 16 and second braze composition layer 17 may also include Si powder, Zn-containing flux and non-Zn-containing flux.

主ろう付け組成物層15、第1のろう付け組成物層16及び第2のろう付け組成物層17は、非Zn含有フラックスを含んでもよい。
主ろう付け組成物層15、第1のろう付け組成物層16及び第2のろう付け組成物層17は、Zn含有フラックスを含んでもよい。
Primary brazing composition layer 15, first brazing composition layer 16 and second brazing composition layer 17 may comprise non-Zn containing fluxes.
The primary brazing composition layer 15, the first brazing composition layer 16 and the second brazing composition layer 17 may comprise Zn-containing flux.

また、主ろう付け組成物層15、第1のろう付け組成物層16及び第2のろう付け組成物層17は、Zn含有フラックス及び非Zn含有フラックスを含んでもよい。 The primary brazing composition layer 15, first brazing composition layer 16 and second brazing composition layer 17 may also include Zn-containing fluxes and non-Zn-containing fluxes.

主ろう付け組成物層15、第1のろう付け組成物層16及び第2のろう付け組成物層17は、それぞれ成分が異なっていてもよい。
主ろう付け組成物層15、第1のろう付け組成物層16及び第2のろう付け組成物層17のいずれかがSi粉末を含まない層として形成された場合、ブレージングシート、ブレージングロッド等の使用により、ろう材を接合部に供給することができる。
The main brazing composition layer 15, the first brazing composition layer 16 and the second brazing composition layer 17 may each have different compositions.
When any one of the main brazing composition layer 15, the first brazing composition layer 16 and the second brazing composition layer 17 is formed as a layer that does not contain Si powder, brazing sheets, brazing rods, etc. With use, brazing material can be supplied to the joint.

主ろう付け組成物層15は、Si粉末及びZn含有フラックスを含み、第1のろう付け組成物層16及び第2のろう付け組成物層17はZn含有フラックスを含んでもよい。
また、主ろう付け組成物層15は、Si粉末、Zn含有フラックス及び非Zn含有フラックスを含み、第1のろう付け組成物層16及び第2のろう付け組成物層17はZn含有フラックス及び非Zn含有フラックスを含んでもよい。
The main brazing composition layer 15 may contain Si powder and a Zn-containing flux, and the first brazing composition layer 16 and the second brazing composition layer 17 may contain Zn-containing flux.
Also, the main brazing composition layer 15 contains Si powder, a Zn-containing flux and a non-Zn containing flux, and the first brazing composition layer 16 and the second brazing composition layer 17 contain a Zn-containing flux and a non-Zn containing flux. A Zn-containing flux may be included.

主ろう付け組成物層15は、非Zn含有フラックスを含み、第1のろう付け組成物層16及び第2のろう付け組成物層17はSi粉末及びZn含有フラックスを含んでもよい。
また、主ろう付け組成物層15は、非Zn含有フラックスを含み、第1のろう付け組成物層16及び第2のろう付け組成物層17はSi粉末、Zn含有フラックス及び非Zn含有フラックスを含んでもよい。
The primary brazing composition layer 15 may contain a non-Zn containing flux and the first brazing composition layer 16 and the second brazing composition layer 17 may contain Si powder and a Zn containing flux.
Also, the main brazing composition layer 15 contains a non-Zn containing flux, and the first brazing composition layer 16 and the second brazing composition layer 17 contain Si powder, a Zn containing flux and a non-Zn containing flux. may contain.

主ろう付け組成物層15は、Zn含有フラックスを含み、第1のろう付け組成物層16及び第2のろう付け組成物層17はSi粉末及びZn含有フラックスを含んでもよい。
また、主ろう付け組成物層15は、Zn含有フラックス及び非Zn含有フラックスを含み、第1のろう付け組成物層16及び第2のろう付け組成物層17はSi粉末、Zn含有フラックス及び非Zn含有フラックスを含んでもよい。
The main brazing composition layer 15 may contain a Zn-containing flux, and the first brazing composition layer 16 and the second brazing composition layer 17 may contain Si powder and a Zn-containing flux.
Also, the main brazing composition layer 15 comprises a Zn-containing flux and a non-Zn-containing flux, and the first brazing composition layer 16 and the second brazing composition layer 17 comprise Si powder, a Zn-containing flux and a non-Zn-containing flux. A Zn-containing flux may be included.

以下、実施例を示して本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
<<サンプルの作製>>
Si:0.4~0.6質量%、Mn:1.0~2.0質量%、Zn:1.0~3.5質量%を含み、残部不可避不純物とAlからなるアルミニウム合金の板材からなるフィン縦100mm×横20mm×厚さ0.1mm)を10枚用意した。これらフィンにスリット状の孔部(幅1.6mm、長さ18mm)を25列、一定間隔で形成し、これらの孔部に以下に説明する扁平多穴管(チューブ)を嵌合し、熱交換器ミニコア体を作製した。
EXAMPLES The present invention will be described in more detail below with reference to Examples, but the present invention is not limited to these Examples.
<<Preparation of sample>>
From an aluminum alloy plate material containing Si: 0.4 to 0.6% by mass, Mn: 1.0 to 2.0% by mass, Zn: 1.0 to 3.5% by mass, and the balance being inevitable impurities and Al Ten fins each having a length of 100 mm, a width of 20 mm, and a thickness of 0.1 mm were prepared. 25 rows of slit-shaped holes (width 1.6 mm, length 18 mm) were formed in these fins at regular intervals, and flat multi-hole pipes (tubes) described below were fitted into these holes, and heat was applied. An exchanger mini-core body was fabricated.

Si:0.3~0.5質量%、Mn:0.2~0.4質量%を含み、残部不可避不純物とAlからなるアルミニウム合金の扁平多穴管を用意した。この扁平多穴管は、幅17mm、厚さ1.5mm、表裏面と短側面との境界のコーナー部分に曲率半径0.3mmのコーナー部を有する。 A flat multi-hole tube made of an aluminum alloy containing 0.3 to 0.5% by mass of Si, 0.2 to 0.4% by mass of Mn, and the balance being inevitable impurities and Al was prepared. This flat multi-hole tube has a width of 17 mm, a thickness of 1.5 mm, and a corner portion having a radius of curvature of 0.3 mm at the boundary between the front and back surfaces and the short side surface.

実施例1~10、51~60及び比較例1~4、22~24では、扁平多穴管の表面と裏面にバーコーターを用いてSi粉末:3g/m、Zn含有フラックス(KZnF):6g/m、バインダとしてのアクリル系樹脂:1g/mを溶剤に分散させたろう付け液状組成物を塗布し、150℃にて5分間乾燥させて主ろう付け組成物層を形成した。In Examples 1 to 10, 51 to 60 and Comparative Examples 1 to 4, 22 to 24, Si powder: 3 g/m 2 and Zn-containing flux (KZnF 3 ) were applied to the front and back surfaces of the multi-hole flat tube using a bar coater. : 6 g/m 2 and acrylic resin as a binder: 1 g/m 2 dispersed in a solvent to form a brazing liquid composition and dried at 150°C for 5 minutes to form a main brazing composition layer.

実施例11~20、61~70及び比較例5~8、25~28では、扁平多穴管の表面と裏面にバーコーターを用いてSi粉末:3g/m、Zn含有フラックス(KZnF):5g/m、非Zn含有フラックス(K1-3AlF6-4):1g/m、バインダとしてのアクリル系樹脂:1g/mを溶剤に分散させたろう付け液状組成物を塗布し、150℃にて5分間乾燥させて主ろう付け組成物層を形成した。In Examples 11 to 20, 61 to 70 and Comparative Examples 5 to 8, 25 to 28, Si powder: 3 g/m 2 and Zn-containing flux (KZnF 3 ) were applied to the front and back surfaces of the flat multi-hole tube using a bar coater. : 5 g/m 2 , Zn-free flux (K 1-3 AlF 6-4 ): 1 g/m 2 , acrylic resin as binder: 1 g/m 2 , dispersed in a solvent. , 150° C. for 5 minutes to form the main brazing composition layer.

実施例21~30、71~90及び比較例9~12、22~27では、扁平多穴管の表面と裏面にバーコーターを用いて非Zn含有フラックス(K1-3AlF6-4):9g/m、バインダとしてのアクリル系樹脂:1g/mを溶剤に分散させたろう付け液状組成物を塗布し、150℃にて5分間乾燥させて主ろう付け組成物層を形成した。In Examples 21 to 30, 71 to 90 and Comparative Examples 9 to 12, 22 to 27, a non-Zn-containing flux (K 1-3 AlF 6-4 ) was applied to the front and back surfaces of the multi-hole flat tube using a bar coater: A brazing liquid composition in which 9 g/m 2 of acrylic resin as a binder and 1 g/m 2 of acrylic resin as a binder were dispersed in a solvent was applied and dried at 150° C. for 5 minutes to form a main brazing composition layer.

実施例31~40、91~100及び比較例13~16、37~40では、扁平多穴管の表面と裏面にバーコーターを用いてZn含有フラックス(KZnF):9g/m、バインダとしてのアクリル系樹脂:1g/mを溶剤に分散させたろう付け液状組成物を塗布し、150℃にて5分間乾燥させて主ろう付け組成物層を形成した。In Examples 31-40, 91-100 and Comparative Examples 13-16, 37-40, a Zn-containing flux (KZnF 3 ): 9 g/m 2 was applied as a binder using a bar coater to the front and back surfaces of the flat multi-hole tube. 1 g/m 2 of acrylic resin in a solvent was applied and dried at 150° C. for 5 minutes to form a main brazing composition layer.

実施例41~50、101~110及び比較例17~20、41~44では、扁平多穴管の表面と裏面にバーコーターを用いてZn含有フラックス(KZnF):5g/m、非Zn含有フラックス(K1-3AlF6-4):4g/m、バインダとしてのアクリル系樹脂:1g/mを溶剤に分散させたろう付け液状組成物を塗布し、150℃にて5分間乾燥させて主ろう付け組成物層を形成した。In Examples 41-50, 101-110 and Comparative Examples 17-20, 41-44, a Zn-containing flux (KZnF 3 ): 5 g/m 2 , non-Zn Containing flux (K 1-3 AlF 6-4 ): 4 g/m 2 , Acrylic resin as binder: 1 g/m 2 , dispersed in a solvent A brazing liquid composition is applied and dried at 150° C. for 5 minutes. to form a primary brazing composition layer.

次に、扁平多穴管の短側面側に対し、株式会社サンエイテック製エアスプレーバルブ装置を用いて図8に示すようにろう付け組成物を吹き付け塗布した。塗布に際しては、扁平多穴管を固定し、エアスプレーバルブ装置を移動させながら塗布しても良いし、エアスプレーバルブ装置を固定し、扁平多穴管を移動させながら塗布しても良い。尚、この時は扁平多穴管を固定し、エアスプレーバルブ装置を移動させながら塗布した。また、エアスプレーバルブ装置の吐出開口径は0.2mmのものを使用した。 Next, a brazing composition was applied by spraying to the short side of the multi-hole flat tube using an air spray valve device manufactured by Sanei Tech Co., Ltd., as shown in FIG. When applying, the multi-hole flat tube may be fixed and the air spray valve device may be moved while applying, or the air spray valve device may be fixed and the multi-hole flat pipe may be moved while applying. At this time, the flat multi-hole tube was fixed and the air spray valve device was moved while applying. In addition, an air spray valve device having a discharge opening diameter of 0.2 mm was used.

実施例1~10、71~80、91~100及び比較例1~4、29~32、37~40では、上述の方法で扁平多穴管の短側面にSi粉末、Zn含有フラックス(KZnF)、バインダとしてのアクリル系樹脂を溶剤(3-メトキシ-3-メチル-1-ブタノールとイソプロピルアルコールの混合物)に分散させたろう付け液状組成物を塗布後、乾燥(150℃×5分間)することにより、第1、第2のろう付け組成物層により外周面を被覆したろう付け用チューブを得た。
塗布したろう付用液状組成物は、Si粉末(D(99)粒度10μm)30部と、Zn含有フラックス(KZnF粉末:D(50)粒度2.0μm)60部、アクリル系樹脂バインダ10部、溶剤としての3-メトキシ-3-メチル-1-ブタノールとイソプロピルアルコールの混合物100部からなるろう付け液状組成物である。
In Examples 1 to 10, 71 to 80, 91 to 100 and Comparative Examples 1 to 4, 29 to 32, 37 to 40, Si powder and Zn-containing flux (KZnF 3 ), and after applying a brazing liquid composition in which an acrylic resin as a binder is dispersed in a solvent (a mixture of 3-methoxy-3-methyl-1-butanol and isopropyl alcohol), drying (150° C. for 5 minutes). Thus, a brazing tube having its outer peripheral surface coated with the first and second brazing composition layers was obtained.
The applied liquid brazing composition consisted of 30 parts Si powder (D(99) particle size 10 μm), 60 parts Zn-containing flux ( KZnF3 powder: D(50) particle size 2.0 μm), and 10 parts acrylic resin binder. , and 100 parts of a mixture of 3-methoxy-3-methyl-1-butanol and isopropyl alcohol as solvents.

実施例11~20、81~90、101~110及び比較例5~8、33~36、41~44では、上述の方法で扁平多穴管の短側面にSi粉末、Zn含有フラックス(KZnF)、非Zn含有フラックス(K1-3AlF6-4)、バインダとしてのアクリル系樹脂を溶剤(3-メトキシ-3-メチル-1-ブタノールとイソプロピルアルコールの混合物)に分散させたろう付け液状組成物を塗布後、乾燥(150℃×5分間)することにより、第1、第2のろう付け組成物層により外周面を被覆したろう付け用チューブを得た。
塗布したろう付用液状組成物は、Si粉末(D(99)粒度10μm)30部と、Zn含有フラックス(KZnF粉末:D(50)粒度2.0μm)50部、非Zn含有フラックス(K1-3AlF6-4粉末:D(50)粒度2.0μm)10部、アクリル系樹脂バインダ10部、溶剤としての3-メトキシ-3-メチル-1-ブタノールとイソプロピルアルコールの混合物100部からなるろう付け液状組成物である。
In Examples 11-20, 81-90, 101-110 and Comparative Examples 5-8, 33-36, 41-44, Si powder and Zn-containing flux (KZnF 3 ), a Zn-free flux (K 1-3 AlF 6-4 ), and an acrylic resin as a binder dispersed in a solvent (a mixture of 3-methoxy-3-methyl-1-butanol and isopropyl alcohol). After applying the product, the product was dried (150° C.×5 minutes) to obtain a brazing tube whose outer peripheral surface was coated with the first and second brazing composition layers.
The applied liquid brazing composition consisted of 30 parts Si powder (D(99) particle size 10 μm), 50 parts Zn-containing flux ( KZnF3 powder: D(50) particle size 2.0 μm), and Zn-free flux (K 1-3 AlF 6-4 powder: from 10 parts D(50) particle size 2.0 μm), 10 parts acrylic resin binder, 100 parts mixture of 3-methoxy-3-methyl-1-butanol and isopropyl alcohol as solvent It is a brazing liquid composition.

実施例21~30及び比較例9~12では、上述の方法で扁平多穴管の短側面に非Zn含有フラックス(K1-3AlF6-4)、バインダとしてのアクリル系樹脂を溶剤(3-メトキシ-3-メチル-1-ブタノールとイソプロピルアルコールの混合物)に分散させたろう付け液状組成物を塗布後、乾燥(150℃×5分間)することにより、第1、第2のろう付け組成物層により外周面を被覆したろう付け用チューブを得た。
塗布したろう付用液状組成物は、非Zn含有フラックス(K1-3AlF6-4粉末:D(50)粒度2.0μm)90部、アクリル系樹脂バインダ10部、溶剤としての3-メトキシ-3-メチル-1-ブタノールとイソプロピルアルコールの混合物100部からなるろう付け液状組成物である。
In Examples 21 to 30 and Comparative Examples 9 to 12, a non-Zn-containing flux (K 1-3 AlF 6-4 ) and an acrylic resin as a binder were applied to the short side of the multi-hole flat tube by the above-described method. A mixture of methoxy-3-methyl-1-butanol and isopropyl alcohol) was applied and then dried (150°C for 5 minutes) to obtain the first and second brazing compositions. A brazing tube with a layer covering the outer circumference was obtained.
The applied liquid brazing composition consisted of 90 parts of Zn-free flux (K 1-3 AlF 6-4 powder: D(50) particle size 2.0 μm), 10 parts of acrylic resin binder, 3-methoxy -A liquid brazing composition consisting of 100 parts of a mixture of 3-methyl-1-butanol and isopropyl alcohol.

実施例31~40、51~60及び比較例13~16、21~24では、上述の方法で扁平多穴管の短側面にZn含有フラックス(KZnF)、バインダとしてのアクリル系樹脂を溶剤(3-メトキシ-3-メチル-1-ブタノールとイソプロピルアルコールの混合物)に分散させたろう付け液状組成物を塗布後、乾燥(150℃×5分間)することにより、第1、第2のろう付け組成物層により外周面を被覆したろう付け用チューブを得た。
塗布したろう付用液状組成物は、Zn含有フラックス(KZnF粉末:D(50)粒度2.0μm)90部、アクリル系樹脂バインダ10部、溶剤としての3-メトキシ-3-メチル-1-ブタノールとイソプロピルアルコールの混合物100部からなるろう付け液状組成物である。
In Examples 31 to 40, 51 to 60 and Comparative Examples 13 to 16, 21 to 24, Zn-containing flux (KZnF 3 ) and acrylic resin as a binder were applied to the short sides of the flat multi-hole pipe by the above-described method. A mixture of 3-methoxy-3-methyl-1-butanol and isopropyl alcohol) was applied and dried (150° C. for 5 minutes) to form the first and second brazing compositions. A brazing tube having an outer peripheral surface coated with a material layer was obtained.
The applied liquid brazing composition consisted of 90 parts of Zn-containing flux ( KZnF3 powder: D(50) particle size 2.0 μm), 10 parts of acrylic resin binder, 3-methoxy-3-methyl-1- A brazing liquid composition comprising 100 parts of a mixture of butanol and isopropyl alcohol.

実施例41~50、61~70及び比較例17~20、25~28では、上述の方法で扁平多穴管の短側面にZn含有フラックス(KZnF)、非Zn含有フラックス(K1-3AlF6-4)、バインダとしてのアクリル系樹脂を溶剤(3-メトキシ-3-メチル-1-ブタノールとイソプロピルアルコールの混合物)に分散させたろう付け液状組成物を塗布後、乾燥(150℃×5分間)することにより、第1、第2のろう付け組成物層により外周面を被覆したろう付け用チューブを得た。
塗布したろう付用液状組成物は、Zn含有フラックス(KZnF粉末:D(50)粒度2.0μm)50部、非Zn含有フラックス(K1-3AlF6-4粉末:D(50)粒度2.0μm)40部、アクリル系樹脂バインダ10部、溶剤としての3-メトキシ-3-メチル-1-ブタノールとイソプロピルアルコールの混合物100部からなるろう付け液状組成物である。
In Examples 41-50, 61-70 and Comparative Examples 17-20, 25-28, Zn-containing flux (KZnF 3 ), Zn-free flux (K 1-3 AlF 6-4 ) and acrylic resin as a binder are dispersed in a solvent (a mixture of 3-methoxy-3-methyl-1-butanol and isopropyl alcohol). minutes) to obtain a brazing tube having its outer peripheral surface coated with the first and second brazing composition layers.
The applied liquid brazing composition consisted of 50 parts of Zn-containing flux (KZnF 3 powder: D(50) particle size 2.0 μm) and 50 parts of Zn-free flux (K 1-3 AlF 6-4 powder: D(50) particle size 2.0 μm), 10 parts of an acrylic resin binder, and 100 parts of a mixture of 3-methoxy-3-methyl-1-butanol and isopropyl alcohol as a solvent.

表1~3に実施例1~50及び比較例1~15における、短側面へ塗布された塗布膜の厚さ及びコーナー部へ塗布された塗膜の厚さを示す。 Tables 1 to 3 show the thickness of the coating film applied to the short sides and the thickness of the coating film applied to the corner portions in Examples 1 to 50 and Comparative Examples 1 to 15.

ろう付け液状組成物の塗布後、150℃に5分間加熱して乾燥し、溶剤を揮発させて先の主ろう付け組成物層と第1、第2のろう付け組成物層により外周面を被覆したろう付け用チューブを得た。 After applying the liquid brazing composition, it is dried by heating at 150° C. for 5 minutes to volatilize the solvent, and the outer peripheral surface is covered with the previous main brazing composition layer and the first and second brazing composition layers. A brazed tube was obtained.

ろう付け用チューブを製造する場合、前記エアスプレーバルブ装置により扁平多穴管の短側面上に形成した第1のろう付け組成物層の厚さ(μm)と、扁平多穴管の短側面側のコーナー部分に形成した第2のろう付け組成物層の厚さ(μm)について個々の厚さを変更して複数のろう付け用チューブを作製した。各ろう付け組成物層の厚さは、エアスプレーバルブ装置の噴射圧力と扁平多穴管の短側面側からのノズル間隔の大小と噴射位置により調整した。
前記のように25枚、並列配置したフィンに形成されている孔部に対しろう付け塗膜を被覆したろう付け用チューブを嵌合し、熱交換器ミニコア体を組み立てた。
この熱交換器ミニコア体を観察し、フィンの変形の有無を調査し、フィンとチューブの嵌合時に生じた塗膜剥離について調査した。
When manufacturing a brazing tube, the thickness (μm) of the first brazing composition layer formed on the short side of the flat multi-hole tube by the air spray valve device and the short side of the flat multi-hole tube A plurality of brazing tubes were manufactured by changing the thickness (μm) of the second brazing composition layer formed on the corner portions of the tubes. The thickness of each brazing composition layer was adjusted by the injection pressure of the air spray valve device, the distance between the nozzles from the short side of the multi-hole flat tube, and the injection position.
A heat exchanger mini-core body was assembled by fitting brazing tubes coated with a brazing film into the holes formed in the 25 fins arranged in parallel as described above.
This heat exchanger mini-core body was observed to investigate the presence or absence of deformation of the fins, and to investigate peeling of the paint film that occurred when the fins and tubes were fitted.

フィン変形の有無は、熱交換器ミニコア体を組み立て後、フィンに全く変形を生じていないサンプルを合格Aと判断し、フィンの一部に(曲がりや折れ等の変形を生じている)サンプルを不合格Bと判定した。
フィンとチューブ嵌合時の塗膜剥離については、塗膜に全く剥離を生じていないサンプルを合格Aと判断し、面積として1mm角以上の程度塗膜剥離を確認できたサンプルを不合格Bと判断した。
For the presence or absence of fin deformation, after assembling the heat exchanger mini-core body, a sample in which the fins did not deform at all was judged as Pass A, and a sample in which a part of the fins (bent, broken, or other deformation occurred) was judged to pass. It was judged as disqualified B.
Regarding the peeling of the paint film when fitting the fin and the tube, the sample with no peeling of the paint film was judged as pass A, and the sample with the peeling of the paint film over an area of 1 mm square or more was judged as fail B. It was judged.

組み立てた熱交換器ミニコア体を窒素ガス雰囲気としたろう付け炉において600℃に3分間加熱し、ろう付けした。
ろう付けにより得られた熱交換器について、チューブの長さ方向中央部を平面視L字型になるように90°折り曲げ加工し、折り曲げ加工した部分においてフィンのろう付け部分がチューブから分離することによるフィン倒れ発生の有無を確認した。フィン倒れが発生していないサンプルは合格Aと判断し、1ヶ所でもフィン倒れを生じたサンプルは不合格Bと判断した。
以上の結果を以下の表1~6にまとめて示す。
The assembled heat exchanger mini-core bodies were brazed by heating to 600° C. for 3 minutes in a brazing furnace in a nitrogen gas atmosphere.
Regarding the heat exchanger obtained by brazing, the center part of the tube in the length direction is bent 90 degrees so that it becomes an L shape in plan view, and the brazed part of the fin is separated from the tube at the bent part. It was confirmed whether or not the fin collapsed due to Samples in which the fins did not collapse were judged as pass A, and samples in which the fins collapsed at even one place were judged as fail B.
The above results are summarized in Tables 1 to 6 below.

Figure 0007196285000001
Figure 0007196285000001

Figure 0007196285000002
Figure 0007196285000002

Figure 0007196285000003
Figure 0007196285000003

Figure 0007196285000004
Figure 0007196285000004

Figure 0007196285000005
Figure 0007196285000005

Figure 0007196285000006
Figure 0007196285000006

表1~6に示す結果が示す実施例1~110のサンプルのように、扁平多穴管の短側面に形成したろう付け組成物からなる塗膜の厚さについて、厚さ5~30μmの範囲であれば、曲げ加工時にフィン倒れを生じないことがわかった。比較例3、7、11、15、19、23、27、31、35、39、43のサンプルはろう付け組成物の塗膜厚さ3μmの試料であるが、ろう付け組成物層が薄すぎるため、ろう付け強度が不足し、曲げ加工時にフィン倒れを発生した。比較例4、8、12、16、20、24、28、32、36、40、44のサンプルはろう付け組成物の塗膜厚さ32μmの試料であるが、ろう付け組成物層が厚すぎるため、曲げ加工時にフィンに応力が掛かることにより、フィン倒れを発生した。
扁平多穴管の短側面側コーナー部分の塗膜については、0.5~15μmの範囲であれば、フィンと扁平多穴管の嵌合時にフィンの変形を生じないことがわかった。しかし、比較例2、6、10、14、18、22、26、30、34、38、42のサンプルのように17μmの塗膜厚では塗膜剥がれを生じ、比較例1、5、9、13、17、21、25、29、33、37、41のサンプルのように0.3μmの塗膜厚ではフィンと扁平多穴管の嵌合時にフィンの変形を生じた。
このことから、扁平多穴管の短側面側コーナー部分の塗膜については、塗膜剥がれを防止し、フィン変形を防止するために、0.5~15μmの範囲の厚さが好ましいと推定できる。
As in the samples of Examples 1 to 110, the results of which are shown in Tables 1 to 6, the thickness of the coating film made of the brazing composition formed on the short side of the flat multi-hole tube was in the range of 5 to 30 μm. If so, it was found that the fins do not collapse during bending. The samples of Comparative Examples 3, 7, 11, 15, 19, 23, 27, 31, 35, 39, 43 are samples with a coating thickness of 3 μm of the brazing composition, but the brazing composition layer is too thin. Therefore, the brazing strength was insufficient, and the fins collapsed during bending. The samples of Comparative Examples 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44 are samples with a brazing composition coating thickness of 32 μm, but the brazing composition layer is too thick. Therefore, stress was applied to the fins during bending, causing the fins to collapse.
It was found that if the thickness of the coating film on the short side corners of the flat multi-hole pipe is in the range of 0.5 to 15 μm, the fins are not deformed when the fins and the flat multi-hole pipe are fitted. However, as in the samples of Comparative Examples 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, and 42, the coating film peeled off at a coating thickness of 17 μm, and Comparative Examples 1, 5, 9, As with samples 13, 17, 21, 25, 29, 33, 37, and 41, when the coating thickness was 0.3 μm, deformation of the fins occurred when the fins and the flat multi-hole tube were fitted.
From this, it can be estimated that the thickness of the coating film on the short side corners of the flat multi-hole pipe is preferably in the range of 0.5 to 15 μm in order to prevent peeling of the coating film and deformation of the fins. .

これらの試験結果から、扁平多穴管の短側面に形成した第1のろう付け組成物層の厚さについて、厚さ5~30μmの範囲が望ましく、短側面側のコーナー部分に形成した第2のろう付け組成物層の厚さについて、厚さ0.5~15μmの範囲が望ましいことがわかった。 From these test results, the thickness of the first brazing composition layer formed on the short side of the flat multi-hole pipe is preferably in the range of 5 to 30 μm, and the thickness of the second brazing composition layer formed on the corner portion of the short side is desirable. It has been found that a thickness range of 0.5 to 15 μm is desirable for the thickness of the brazing composition layer.

図9は、摩擦測定装置(ブルカー株式会社製、型番:UMT Tribo)を用い、図7に示すようにコーナー部分にろう付け組成物層を塗布した状態のチューブを用いてチューブのコーナー部分のろう付け組成物層とフィンを構成するアルミニウム合金板とが擦れ合った場合の摩擦係数の変動状況について測定した結果を示すグラフである。
図10は摩擦測定装置(ブルカー株式会社製、型番:UMT Tribo)を用い、図6に示すようにコーナー部分にろう付け組成物層を塗布していない状態のチューブを用いてチューブのコーナー部分のアルミニウム合金とフィンを構成するアルミニウム合金とが擦れ合った場合の摩擦係数の変動状況について測定した結果を示すグラフである。
FIG. 9 shows the results of brazing the corners of a tube with a brazing composition layer applied to the corners as shown in FIG. 4 is a graph showing the results of measurement of changes in the coefficient of friction when the coating composition layer and the aluminum alloy plate forming the fins are rubbed against each other.
FIG. 10 shows the results of measuring the corners of a tube with no brazing composition layer applied to the corners as shown in FIG. FIG. 5 is a graph showing the results of measurement of changes in coefficient of friction when an aluminum alloy and an aluminum alloy forming a fin rub against each other. FIG.

図9に示す結果において、3本の測定結果を示す折れ線の内、一点鎖線が摩擦係数を示し、実線が垂直荷重を示し、点線が摩擦力を示す。
図10に示す結果において、3本の測定結果を示す折れ線の内、比較的安定した値を示す実線が垂直荷重を示し、大きく上下変動している一点鎖線と点線が、各々摩擦係数と摩擦力を示す。
In the results shown in FIG. 9, among the three lines showing the measurement results, the dashed-dotted line indicates the coefficient of friction, the solid line indicates the vertical load, and the dotted line indicates the frictional force.
In the results shown in FIG. 10, among the three broken lines showing the measurement results, the solid line showing a relatively stable value shows the vertical load, and the one-dot chain line and the dotted line, which fluctuate greatly up and down, show the coefficient of friction and the friction force, respectively. indicates

図9に示す結果と図10に示す結果を対比すると明らかなように、図7に示すようにコーナー部分にろう付け組成物層を設けたチューブをフィンの孔部に嵌合する方が、摩擦力と摩擦係数の両方で変動の少ない嵌合作業ができるとわかる。即ち、フィンを変形させることなくチューブの嵌合作業ができると想定できる。
これに対し、図10に示す結果から、コーナー部分にろう付け組成物層を有していないチューブをフィンの孔部に嵌合すると、大きな摩擦変動を生じるので、この摩擦変動に応じて無理な力を付加してチューブを孔部に嵌め込む動作が生じると思われ、この場合にフィンを変形させるおそれが高いことがわかる。
これらの対比から、フィン13の孔部19にチューブ本体12を嵌合する場合、チューブ本体12のコーナー部分に第2のろう付け用組成物層17を形成した方がスムーズに嵌合作業ができるとわかった。このため、チューブ本体12の嵌合時にフィン13に変形を生じさせることなくチューブ本体12の取り付けを実施できる効果がある。
As is clear from a comparison of the results shown in FIG. 9 and the results shown in FIG. 10, fitting a tube provided with a brazing composition layer at the corners as shown in FIG. It can be seen that fitting work can be performed with little variation in both force and coefficient of friction. That is, it can be assumed that the fitting operation of the tube can be performed without deforming the fins.
On the other hand, from the results shown in FIG. 10, when a tube without a brazing composition layer at the corner portion is fitted into the hole of the fin, a large frictional fluctuation occurs. It can be seen that there is a high possibility that the fins will be deformed in this case, assuming that force is applied to fit the tube into the hole.
From these comparisons, when fitting the tube body 12 into the holes 19 of the fins 13, the fitting work can be performed more smoothly if the second brazing composition layer 17 is formed on the corner portion of the tube body 12. I understand. Therefore, there is an effect that the tube main body 12 can be attached without causing deformation of the fins 13 when the tube main body 12 is fitted.

図11は、エアスプレー装置によって扁平多穴管の短側面側に塗布したろう付け組成物の塗布状態の一例を示す写真である。
図11に示すようにエアスプレー装置によって扁平多穴管の短側面側とコーナー部分側を完全に覆うことができるろう付け組成物層を形成できることがわかる。
FIG. 11 is a photograph showing an example of the application state of the brazing composition applied to the short side of the multi-hole flat tube by an air spray device.
As shown in FIG. 11, it can be seen that a brazing composition layer capable of completely covering the short sides and corner portions of the multi-hole flat tube can be formed by the air spray device.

本発明の一態様のろう付け用チューブによれば、扁平型のチューブ本体の短側面側におけるろう付け組成物の剥離を防止し、チューブ本体短側面側での確実なろう付け性を確保できる。また、フィンの孔部に挿通してフィンと組み合わせ構造とする場合でも、ろう付け組成物の剥離を生じ難くして確実なろう付けができるようにしたろう付け用チューブを提供できる。 According to the brazing tube of one aspect of the present invention, it is possible to prevent the peeling of the brazing composition on the short side surfaces of the flat tube main body, and ensure reliable brazing properties on the short side surfaces of the tube main body. Further, even when the tube is inserted into the holes of the fins and combined with the fins, it is possible to provide a brazing tube that makes it difficult for the brazing composition to peel off and enables reliable brazing.

11 熱交換器
12 チューブ本体
12A 表面壁
12a 表面(上面)
12B 裏面壁
12b 裏面(下面)
12C 側面壁
12c 短側面
12d コーナー部
12D 流路
12E 隔壁
13 フィン
14 ヘッダ管
15 主ろう付け組成物層
16 第1のろう付け組成物層
17 第2のろう付け組成物層
19 孔部
20 折曲部
22 ろう付け用チューブ
30 塗布装置
31 ノズル
32 スプレーガン
33 導入管
REFERENCE SIGNS LIST 11 heat exchanger 12 tube body 12A surface wall 12a surface (upper surface)
12B back wall 12b back (lower surface)
12C side wall 12c short side 12d corner 12D channel 12E partition wall 13 fin 14 header pipe 15 main brazing composition layer 16 first brazing composition layer 17 second brazing composition layer 19 hole 20 bent Part 22 Brazing tube 30 Application device 31 Nozzle 32 Spray gun 33 Introduction pipe

Claims (12)

表面と裏面と短側面を有する扁平型のチューブ本体からなり、前記表面側と前記裏面側と前記短側面側にろう付け組成物層が形成されたアルミニウムまたはアルミニウム合金製のろう付け用チューブであって、
前記短側面に厚さ5~30μmの第1のろう付け組成物層が形成され、
前記表面から前記短側面に至る表面側コーナー部分と前記裏面から前記短側面に至る部分の裏面側コーナー部分に、厚さ0.5~15μmの第2のろう付け組成物層が形成され、
前記表面と前記裏面に主ろう付組成物層が形成されるとともに、
前記第1のろう付け組成物層と前記第2のろう付け組成物層と前記主ろう付け組成物層が、Si粉末とZn含有フラックスと非Zn含有フラックスをいずれか1種以上を含み、更に、バインダを含むろう付け組成物層であることを特徴とするろう付け用チューブ。
A brazing tube made of aluminum or an aluminum alloy, comprising a flat tube body having a front surface, a back surface and short side surfaces, wherein a brazing composition layer is formed on the front surface side, the back surface side and the short side surfaces. hand,
forming a first brazing composition layer having a thickness of 5 to 30 μm on the short side;
A second brazing composition layer having a thickness of 0.5 to 15 μm is formed on the front side corner portion extending from the front surface to the short side surface and the back side corner portion of the portion extending from the back surface to the short side surface,
A main brazing composition layer is formed on the front surface and the back surface, and
said first brazing composition layer, said second brazing composition layer and said main brazing composition layer comprising at least one of Si powder, Zn-containing flux and non-Zn-containing flux; , a brazing composition layer containing a binder .
前記第1のろう付け組成物層と前記第2のろう付け組成物層と前記主ろう付け組成物層は、いずれもSi粉末:1~5g/mを含むことを特徴とする請求項1に記載のろう付け用チューブ。 1. The first brazing composition layer, the second brazing composition layer and the main brazing composition layer all contain Si powder: 1-5 g/m 2 . Brazing tube according to . 前記第1のろう付け組成物層と前記第2のろう付け組成物層と前記主ろう付け組成物層は、いずれもZn含有フラックス:3~20g/mを含むことを特徴とする請求項1または2に記載のろう付け用チューブ。 The first brazing composition layer, the second brazing composition layer, and the main brazing composition layer all contain Zn-containing flux: 3 to 20 g/m 2 . 3. The brazing tube according to 1 or 2 . 前記第1のろう付け組成物層と前記第2のろう付け組成物層と前記主ろう付け組成物層は、いずれも非Zn含有フラックス:1~10g/mを含むことを特徴とする請求項1~3のいずれか一項に記載のろう付け用チューブ。 The first brazing composition layer, the second brazing composition layer, and the main brazing composition layer all contain a Zn-free flux: 1 to 10 g/m 2 . Item 4. The brazing tube according to any one of items 1 to 3 . 前記第1のろう付け組成物層と前記第2のろう付け組成物層と前記主ろう付け組成物層は、いずれもバインダ:0.2~8.5g/mを含むことを特徴とする請求項1~4のいずれか一項に記載のろう付け用チューブ。 The first brazing composition layer, the second brazing composition layer and the main brazing composition layer all contain a binder of 0.2 to 8.5 g/m 2 . Brazing tube according to any one of claims 1-4 . 前記チューブ本体がその内部に複数の流路を設けた押出多穴管からなることを特徴とする請求項1~5のいずれか一項に記載のろう付け用チューブ。 The brazing tube according to any one of claims 1 to 5, wherein the tube main body is made of an extruded multi-hole tube having a plurality of flow paths inside. 表面と裏面と短側面を有する扁平型のチューブ本体に対し、前記短側面に対向させて設置したエアースプレー装置から、
Si粉末とZn含有フラックスと非Zn含有フラックスをいずれか1種以上を含み、更に、バインダと溶剤を含むろう付け液状組成物を噴射し、前記短側面に厚さ5~30μmの第1のろう付け組成物層を形成し、前記表面から前記短側面に至る表面側コーナー部分と前記裏面から前記短側面に至る部分の裏面側コーナー部分に、厚さ0.5~15μmの第2のろう付け組成物層を形成することを特徴とするろう付け用チューブの製造方法。
From an air spray device installed facing the short side of a flat tube body having a front surface, a back surface and a short side,
A brazing liquid composition containing at least one of Si powder, Zn-containing flux, and Zn-free flux, and further containing a binder and a solvent is sprayed to form a first brazing material having a thickness of 5 to 30 μm on the short side surface. A second brazing layer having a thickness of 0.5 to 15 μm is applied to a front side corner portion extending from the front surface to the short side surface and a back side corner portion extending from the back surface to the short side surface. A method for producing a brazing tube, characterized by forming a composition layer.
Si粉末:1~5g/mを含む主ろう付け組成物層を前記チューブ本体の前記表面と前記裏面に形成することを特徴とする請求項7に記載のろう付け用チューブの製造方法。 8. The method of manufacturing a brazing tube according to claim 7, wherein a main brazing composition layer containing Si powder: 1-5 g/m 2 is formed on the front surface and the back surface of the tube body. Zn含有フラックス:3~20g/mを含む主ろう付け組成物層を前記チューブ本体の前記表面と前記裏面に形成することを特徴とする請求項7または8に記載のろう付け用チューブの製造方法。 A brazing tube according to claim 7 or 8 , characterized in that a main brazing composition layer containing Zn-containing flux: 3-20 g/m 2 is formed on the front surface and the back surface of the tube body. Method. 非Zn含有フラックス:1~10g/mを含む主ろう付け組成物層を前記チューブ本体の前記表面と前記裏面に形成することを特徴とする請求項7~9のいずれか一項に記載のろう付け用チューブの製造方法。 A main brazing composition layer comprising a Zn-free flux: 1-10 g/m 2 is formed on the front surface and the back surface of the tube body according to any one of claims 7-9 . A method of manufacturing a brazed tube. バインダ:0.2~8.5g/mを含む主ろう付け組成物層を前記チューブ本体の前記表面と前記裏面に形成することを特徴とする請求項7~10のいずれか一項に記載のろう付け用チューブの製造方法。 11. The method according to any one of claims 7 to 10 , characterized in that a main brazing composition layer containing a binder: 0.2 to 8.5 g/m 2 is formed on the front surface and the back surface of the tube body. method of manufacturing a brazing tube. 請求項1~請求項6のいずれか一項に記載のろう付け用チューブと該ろう付用チューブを挿通する長孔を有するフィンとを有し、前記長孔に前記ろう付用チューブが挿通され、前記ろう付用チューブと前記フィンとがろう付けされた熱交換器であって、前記ろう付け組成物層の溶融凝固物であるフィレットにより前記ろう付用チューブと前記フィンとがろう付けされたことを特徴とする熱交換器。 A brazing tube according to any one of claims 1 to 6 and a fin having an elongated hole through which the brazing tube is inserted, wherein the brazing tube is inserted through the elongated hole. , a heat exchanger in which the brazing tube and the fins are brazed, wherein the brazing tube and the fins are brazed by a fillet that is a molten solidified product of the brazing composition layer A heat exchanger characterized by:
JP2021509596A 2019-03-26 2020-03-26 Brazing tube, manufacturing method thereof, and heat exchanger Active JP7196285B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019058262 2019-03-26
JP2019058262 2019-03-26
PCT/JP2020/013693 WO2020196763A1 (en) 2019-03-26 2020-03-26 Brazing tube, method for manufacturing same, and heat exchanger

Publications (2)

Publication Number Publication Date
JPWO2020196763A1 JPWO2020196763A1 (en) 2021-11-18
JP7196285B2 true JP7196285B2 (en) 2022-12-26

Family

ID=72611105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021509596A Active JP7196285B2 (en) 2019-03-26 2020-03-26 Brazing tube, manufacturing method thereof, and heat exchanger

Country Status (2)

Country Link
JP (1) JP7196285B2 (en)
WO (1) WO2020196763A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113941797B (en) * 2021-10-27 2022-10-04 浙江亚通焊材有限公司 Grid-shaped composite strip of high-tin-content copper-tin brazing filler metal and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161792A1 (en) 2012-04-27 2013-10-31 三菱電機株式会社 Heat exchanger, method for producing same, and refrigeration cycle device
WO2018147375A1 (en) 2017-02-13 2018-08-16 株式会社Uacj Aluminum extruded flat perforated pipe exhibiting excellent brazing properties and outer-surface corrosion resistance, and aluminum heat exchanger obtained using same
JP2019011922A (en) 2017-06-30 2019-01-24 三菱アルミニウム株式会社 Method for manufacturing aluminum alloy heat exchanger with excellent anticorrosion, and aluminum alloy heat exchanger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161792A1 (en) 2012-04-27 2013-10-31 三菱電機株式会社 Heat exchanger, method for producing same, and refrigeration cycle device
WO2018147375A1 (en) 2017-02-13 2018-08-16 株式会社Uacj Aluminum extruded flat perforated pipe exhibiting excellent brazing properties and outer-surface corrosion resistance, and aluminum heat exchanger obtained using same
JP2019011922A (en) 2017-06-30 2019-01-24 三菱アルミニウム株式会社 Method for manufacturing aluminum alloy heat exchanger with excellent anticorrosion, and aluminum alloy heat exchanger

Also Published As

Publication number Publication date
JPWO2020196763A1 (en) 2021-11-18
WO2020196763A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
EP1475598B1 (en) Heat exchange tube
JP5658227B2 (en) Aluminum alloy heat exchanger
US6800345B2 (en) Aluminum-extruded multi-cavity flat tube having excellent brazing characteristics for use in automotive heat exchanger and manufacturing method therefor
WO2011090059A1 (en) Heat exchanger tube
JP6468620B2 (en) Mixed composition paint for brazing
JP2013204070A (en) Extruded heat-conducting tube for heat-exchanger and manufacturing method therefor
JP7030605B2 (en) Aluminum fins for heat exchangers with excellent hydrophilicity, heat exchangers and their manufacturing methods
JP7196285B2 (en) Brazing tube, manufacturing method thereof, and heat exchanger
US6153021A (en) Method of brazing aluminum
CA2184431A1 (en) Method of brazing aluminum and aluminum brazing material
JP6860968B2 (en) Aluminum alloy tube for heat exchanger, heat exchanger and its manufacturing method
JP6770983B2 (en) Flux composition for brazing, powder brazing composition, aluminum alloy member and heat exchanger
JP7198346B2 (en) Brazing tube, manufacturing method thereof, and heat exchanger
JP6968598B2 (en) Manufacturing method of aluminum alloy heat exchanger with excellent corrosion resistance and aluminum alloy heat exchanger
JP7131950B2 (en) Pre-coated fin stock for brazed heat exchangers and heat exchangers
JP7196032B2 (en) Brazing flux composition and brazing powder composition, aluminum alloy member and heat exchanger, and method for producing aluminum alloy member and heat exchanger
JP6976041B2 (en) Heat exchanger
WO2019102915A1 (en) Aluminum fin having excellent hydrophilicity after brazing, and heat exchanger and method for producing same
JP2019143068A (en) Coating composition for forming hydrophilic coating film, aluminum fin and heat exchanger
JP2019155430A (en) Mixed composition coating for brazing
JP7012529B2 (en) Single-sided wax fin material for heat exchangers and heat exchangers and their manufacturing methods
CN111344530A (en) Aluminum fin having excellent hydrophilicity after soldering treatment, heat exchanger, and method for manufacturing same
JP6776405B2 (en) Heat exchanger and manufacturing method of heat exchanger
JP2023064350A (en) Tube for heat exchanger having good brazing property and heat exchanger
WO2021014607A1 (en) Brazing-use flux composition and powder brazing composition, aluminum alloy member and heat exchanger, and aluminum alloy member production method and heat exchanger production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210602

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221214

R150 Certificate of patent or registration of utility model

Ref document number: 7196285

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150