JP7192707B2 - Semiconductor manufacturing equipment - Google Patents

Semiconductor manufacturing equipment Download PDF

Info

Publication number
JP7192707B2
JP7192707B2 JP2019147474A JP2019147474A JP7192707B2 JP 7192707 B2 JP7192707 B2 JP 7192707B2 JP 2019147474 A JP2019147474 A JP 2019147474A JP 2019147474 A JP2019147474 A JP 2019147474A JP 7192707 B2 JP7192707 B2 JP 7192707B2
Authority
JP
Japan
Prior art keywords
wafer
stage
fork
semiconductor manufacturing
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019147474A
Other languages
Japanese (ja)
Other versions
JP2021028935A (en
Inventor
勝也 久保田
照宏 村本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2019147474A priority Critical patent/JP7192707B2/en
Publication of JP2021028935A publication Critical patent/JP2021028935A/en
Application granted granted Critical
Publication of JP7192707B2 publication Critical patent/JP7192707B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

本発明は、半導体製造装置に関するものであり、特に、処理するウエハが置かれるステージがウエハを固定保持する機構を持たない半導体製造装置に関する。 The present invention relates to a semiconductor manufacturing apparatus, and more particularly to a semiconductor manufacturing apparatus in which a stage on which a wafer to be processed is placed does not have a mechanism for fixing and holding the wafer.

半導体製造装置において、ウエハの裏面にフォークを入れてウエハを搬送して処理装置内のステージの上面に置く。製品によってウエハの裏面の状態と重量が異なる。ウエハの裏面の摩擦抵抗が少なく重量が軽いと、ステージ上でウエハの位置ずれ又は横滑りが生じる。これを防ぐために、ステージの上面に複数の溝を設け、溝内にステージを貫通する複数の通気孔を設けた半導体製造装置が知られている(例えば、特許文献1参照)。 In a semiconductor manufacturing apparatus, a fork is inserted into the rear surface of a wafer to transport the wafer and place it on the upper surface of a stage in the processing apparatus. The state and weight of the back surface of the wafer differ depending on the product. If the frictional resistance of the back surface of the wafer is low and the weight is light, the wafer may shift position or slide sideways on the stage. In order to prevent this, there is known a semiconductor manufacturing apparatus in which a plurality of grooves are provided on the upper surface of the stage and a plurality of ventilation holes are provided in the grooves so as to penetrate the stage (see, for example, Patent Document 1).

特開2002-57209号公報JP-A-2002-57209

従来の半導体製造装置では、ウエハの下面とステージの上面との間に存在するガスを逃がすためにステージの上面全面に多くの溝を形成している。溝の部分ではウエハとステージが接触しないため、温度調整性能が低下してウエハの面内温度分布がばらつく。これによりウエハに形成した薄膜の膜質異常などの問題が生じていた。 In a conventional semiconductor manufacturing apparatus, many grooves are formed on the entire upper surface of the stage in order to release gas existing between the lower surface of the wafer and the upper surface of the stage. Since there is no contact between the wafer and the stage in the groove portion, the temperature control performance is degraded and the in-plane temperature distribution of the wafer varies. As a result, problems such as abnormal film quality of the thin film formed on the wafer have arisen.

本発明は、上述のような課題を解決するためになされたもので、その目的はウエハの面内温度ばらつきを防ぎつつ、ステージに置くウエハの位置精度を向上させることができる半導体製造装置を得るものである。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a semiconductor manufacturing apparatus capable of improving the positional accuracy of a wafer placed on a stage while preventing in-plane temperature variations of the wafer. It is.

本発明に係る半導体製造装置は、ウエハを持ち上げて搬送するフォークと、上面に前記ウエハが置かれるステージとを備え、前記ステージの前記上面に、前記フォークが入るフォーク収容溝と、前記フォーク収容溝とは異なる位置に設けられ前記フォーク収容溝に連通した複数のガス抜き穴とが設けられていることを特徴とする。
A semiconductor manufacturing apparatus according to the present invention includes a fork for lifting and conveying a wafer, and a stage on which the wafer is placed. and a plurality of gas release holes communicating with the fork accommodating grooves provided at different positions.

本発明では、ウエハをステージに置く際にウエハの下面とステージの上面との間に存在するガスをガス抜き溝とフォーク収容溝を介して逃がすことができる。これにより、ウエハの位置ずれ及び横滑りを抑制することができるため、ステージに置くウエハの位置精度を向上させることができる。また、ウエハをステージに置くために元々設けられているフォーク収容溝とそれに連通したガス抜き溝をガスの排出に用いることで、従来のようにステージの上面に多くの溝を形成しなくてもよい。従って、温度調整性能があまり低下しないため、ウエハの面内温度ばらつきを防ぐことができる。 In the present invention, the gas present between the lower surface of the wafer and the upper surface of the stage when the wafer is placed on the stage can be released through the gas release groove and the fork housing groove. As a result, it is possible to suppress the positional deviation and lateral slip of the wafer, so that the positional accuracy of the wafer placed on the stage can be improved. In addition, by using the fork housing groove originally provided for placing the wafer on the stage and the gas release groove communicating with it for gas discharge, there is no need to form many grooves on the upper surface of the stage as in the conventional case. good. Therefore, since the temperature adjustment performance does not deteriorate so much, it is possible to prevent in-plane temperature variations of the wafer.

実施の形態1に係る半導体製造装置を示す上面図である。1 is a top view showing a semiconductor manufacturing apparatus according to Embodiment 1; FIG. ウエハがステージに正しく置かれた状態でデポを行う様子を示す断面図である。FIG. 4 is a cross-sectional view showing how deposition is performed with the wafer correctly placed on the stage; ウエハの位置がずれた状態でデポを行う様子を示す断面図である。FIG. 4 is a cross-sectional view showing how deposition is performed in a state where the position of the wafer is displaced; 実施の形態1に係る半導体製造装置のステージを示す上面図である。2 is a top view showing the stage of the semiconductor manufacturing apparatus according to Embodiment 1; FIG. 図4のI-IIに沿った斜視断面図である。FIG. 5 is a perspective sectional view along I-II of FIG. 4; 実施の形態2に係る半導体製造装置のステージを示す上面図である。FIG. 11 is a top view showing a stage of a semiconductor manufacturing apparatus according to Embodiment 2; 図6のIII-IVに沿った断面図である。7 is a cross-sectional view along III-IV of FIG. 6; FIG. 実施の形態2の変形例に係る半導体製造装置のステージを示す上面図である。FIG. 11 is a top view showing a stage of a semiconductor manufacturing apparatus according to a modification of Embodiment 2; 図8のV-VIに沿った断面図である。FIG. 9 is a cross-sectional view along V-VI in FIG. 8;

実施の形態に係る半導体製造装置について図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。 A semiconductor manufacturing apparatus according to an embodiment will be described with reference to the drawings. The same reference numerals are given to the same or corresponding components, and repetition of description may be omitted.

実施の形態1.
図1は、実施の形態1に係る半導体製造装置を示す上面図である。この半導体製造装置100は、ウエハ上に薄膜を形成するCVD(Chemical Vapor Deposition)装置である。そして、半導体製造装置100は、アーム構造を有する搬送ロボット1、ロードロックチャンバー2、ロードロックチャンバー2内に設けられたローダー3、回転軸に取り付けられた複数のフォーク5、処理室を構成するチャンバ6、チャンバ6内にあって複数のウエハ4を搭載可能なステージ7などを備えている。これに限らず、半導体製造装置100はウエハを自重で位置決めする半導体製造装置であればよい。半導体製造装置100は、研究室、実験室、又は量産工場のものを含む。
Embodiment 1.
FIG. 1 is a top view showing a semiconductor manufacturing apparatus according to Embodiment 1. FIG. This semiconductor manufacturing apparatus 100 is a CVD (Chemical Vapor Deposition) apparatus for forming a thin film on a wafer. The semiconductor manufacturing apparatus 100 includes a transfer robot 1 having an arm structure, a load-lock chamber 2, a loader 3 provided in the load-lock chamber 2, a plurality of forks 5 attached to a rotating shaft, and a chamber constituting a processing chamber. 6. It has a stage 7 in a chamber 6 on which a plurality of wafers 4 can be mounted. The semiconductor manufacturing apparatus 100 is not limited to this, and may be any semiconductor manufacturing apparatus that positions a wafer by its own weight. The semiconductor manufacturing equipment 100 may be that of a laboratory, laboratory, or mass production plant.

搬送ロボット1がロードロックチャンバー2内のローダー3からウエハ4を取り出す。次に搬送ロボット1はウエハ4をチャンバ6内のフォーク5の上方に運ぶ。その後、フォーク5を上昇させることでウエハ4を持ち上げ、その状態でチャンバ6内のステージ7の処理領域8上まで回転移動し、フォーク5を降下させることでウエハ4をステージ7上に置く。円形の大きなステージ7の外周に沿って複数の処理領域8が設けられている。ステージ7は、真空吸着する吸着穴、位置決めピン、座操などのウエハ4を固定保持する機能を持たない。 A transfer robot 1 takes out a wafer 4 from a loader 3 in a load lock chamber 2 . The transfer robot 1 then carries the wafer 4 over the forks 5 in the chamber 6 . After that, the fork 5 is lifted to lift the wafer 4 , and in this state, the stage 7 in the chamber 6 is rotated above the processing area 8 , and the fork 5 is lowered to place the wafer 4 on the stage 7 . A plurality of processing areas 8 are provided along the outer circumference of a large circular stage 7 . The stage 7 does not have functions for fixing and holding the wafer 4, such as suction holes for vacuum suction, positioning pins, and seats.

図2は、ウエハがステージに正しく置かれた状態でデポを行う様子を示す断面図である。ステージ7と上部電極9の間に電圧が印加されて、チャンバ6内で両者の間にプラズマ10が発生する。ウエハ4がチャンバ6内で上部電極9の真下の処理領域8に配置されることで、ウエハ4の表面に均一に成膜することができる。図3は、ウエハの位置がずれた状態でデポを行う様子を示す断面図である。ウエハ4が上部電極9の真下の処理領域8からずれていると、デポ異常が発生する。 FIG. 2 is a cross-sectional view showing how deposition is performed with the wafer correctly placed on the stage. A voltage is applied between the stage 7 and the upper electrode 9 to generate a plasma 10 between them within the chamber 6 . By arranging the wafer 4 in the processing area 8 immediately below the upper electrode 9 in the chamber 6 , the film can be uniformly formed on the surface of the wafer 4 . FIG. 3 is a cross-sectional view showing how deposition is performed in a state where the position of the wafer is shifted. Deposition anomalies occur when the wafer 4 is displaced from the processing region 8 directly below the upper electrode 9 .

図4は、実施の形態1に係る半導体製造装置のステージを示す上面図である。図5は図4のI-IIに沿った斜視断面図である。ステージ7は例えばアルミからなる。ステージ7の上面に、フォーク5が入る2本のフォーク収容溝11と、フォーク収容溝11とは異なる位置に設けられフォーク収容溝11に連通した2本のガス抜き溝12とが設けられている。2本のフォーク収容溝11は、処理領域8の外側から中央部に向かって延び、互いに平行に配置されている。ガス抜き溝12は、この例では2本のフォーク収容溝11の間においてフォーク収容溝11に直交して互いに平行に配置されている。ガス抜き溝12は、断面が三角形の凹部と、凹部に隣接して設けられステージ7の平坦面よりも突出した凸部とからなる凸凹構造を有する。ガス抜き溝12はフォーク収容溝11よりも幅が細く、深さは凸凹構造の高低差として30~50μmと浅い。 4 is a top view showing a stage of the semiconductor manufacturing apparatus according to Embodiment 1. FIG. 5 is a perspective cross-sectional view along I-II of FIG. 4. FIG. The stage 7 is made of aluminum, for example. Two fork housing grooves 11 into which the forks 5 are inserted and two gas release grooves 12 provided at different positions from the fork housing grooves 11 and communicating with the fork housing grooves 11 are provided on the upper surface of the stage 7. . The two fork receiving grooves 11 extend from the outside of the processing area 8 toward the center and are arranged parallel to each other. In this example, the gas release grooves 12 are arranged between two fork housing grooves 11 and perpendicular to the fork housing grooves 11 in parallel with each other. The gas release groove 12 has a concave-convex structure consisting of a concave portion having a triangular cross section and a convex portion provided adjacent to the concave portion and protruding from the flat surface of the stage 7 . The gas release groove 12 is narrower in width than the fork housing groove 11, and has a shallow depth of 30 to 50 μm in terms of height difference of the uneven structure.

ウエハ4をステージ7に置く際にウエハ4の下面とステージ7の上面との間に存在するガス13をガス抜き溝12を介してフォーク収容溝11内に逃がすことができる。加えて、ガス抜き溝12が凸凹構造を有することで摩擦力も増す。これにより、ウエハ4の横滑りを抑制することができるため、ウエハ4の裏面の状態、重量、ステージの状態の良し悪しに左右されることなく、ステージ7に置くウエハ4の位置精度を向上させることができる。 When the wafer 4 is placed on the stage 7 , the gas 13 existing between the lower surface of the wafer 4 and the upper surface of the stage 7 can be released into the fork accommodation groove 11 through the gas release groove 12 . In addition, the gas release groove 12 has an uneven structure, thereby increasing the frictional force. As a result, the lateral slip of the wafer 4 can be suppressed, so that the positional accuracy of the wafer 4 placed on the stage 7 can be improved regardless of the state of the back surface of the wafer 4, the weight of the wafer, and the state of the stage. can be done.

また、ウエハ4をステージ7に置くために元々設けられているフォーク収容溝11とそれに連通したガス抜き溝12をガス13の排出に用いることで、従来のようにステージ7の上面に多くの溝を形成しなくてもよい。従って、温度調整性能があまり低下しないため、ウエハ4の面内温度ばらつきを防ぐことができる。この結果、ウエハ4への成膜の面内均一性が安定する。 Further, by using the fork housing groove 11 originally provided for placing the wafer 4 on the stage 7 and the gas release groove 12 communicating with it for discharging the gas 13, many grooves can be formed on the upper surface of the stage 7 as in the conventional art. need not be formed. Therefore, since the temperature adjustment performance does not deteriorate so much, in-plane temperature variation of the wafer 4 can be prevented. As a result, the in-plane uniformity of film formation on the wafer 4 is stabilized.

また、ガス抜き溝12をフォーク収容溝11とは異なる位置に設けることで、フォーク収容溝11以外の領域でもガス抜きを行うことができる。従って、ウエハ4の面内のガス抜きを瞬時に行ってウエハ4の横滑りを抑制することができる。そして、温度調整性能の低下を防ぐために、ガス抜き溝12の幅をフォーク収容溝11の幅よりも細くすることが好ましい。なお、ガス抜き溝12の配置に関しては、フォーク収容溝11に直交して配置させる必要は無く、ウエハ4の横滑り方向に応じて摩擦力が増える角度、形状、及び配置とすればよい。また、ガス抜き溝12の両端をフォーク収容溝11に繋げる必要は無く、少なくともその一端がフォーク収容溝11と繋がっていればよい。 Further, by providing the gas release groove 12 at a position different from the fork accommodation groove 11, gas release can be performed in a region other than the fork accommodation groove 11 as well. Therefore, the side slip of the wafer 4 can be suppressed by instantaneously degassing the in-plane of the wafer 4 . In order to prevent deterioration in temperature control performance, it is preferable to make the width of the gas vent groove 12 narrower than the width of the fork housing groove 11 . As for the arrangement of the gas release groove 12, it is not necessary to arrange it orthogonally to the fork accommodation groove 11, and the angle, shape, and arrangement may be such that the frictional force increases according to the lateral sliding direction of the wafer 4. FIG. Moreover, it is not necessary to connect both ends of the gas release groove 12 to the fork housing groove 11 , and at least one end thereof should be connected to the fork housing groove 11 .

実施の形態2.
図6は、実施の形態2に係る半導体製造装置のステージを示す上面図である。図7は図6のIII-IVに沿った断面図である。ステージ7の上面に複数のガス抜き穴14が設けられている。ガス抜き穴14は、フォーク収容溝11とは異なる位置に設けられ、フォーク収容溝11に連通している。ここでは、ガス抜き穴14はフォーク収容溝11の延長線上に設けられている。
Embodiment 2.
FIG. 6 is a top view showing stages of the semiconductor manufacturing apparatus according to the second embodiment. FIG. 7 is a cross-sectional view along III-IV of FIG. A plurality of gas vent holes 14 are provided on the upper surface of the stage 7 . The gas release hole 14 is provided at a position different from the fork accommodation groove 11 and communicates with the fork accommodation groove 11 . Here, the gas release hole 14 is provided on an extension line of the fork housing groove 11 .

ウエハ4をステージ7に置く際にウエハ4の下面とステージ7の上面との間に存在するガス13をガス抜き穴14とフォーク収容溝11を介して逃がすことができる。これにより、ウエハ4の横滑りを抑制することができるため、ウエハ4の裏面の状態、重量、ステージの状態の良し悪しに左右されることなく、ステージ7に置くウエハ4の位置精度を向上させることができる。 When the wafer 4 is placed on the stage 7 , the gas 13 existing between the lower surface of the wafer 4 and the upper surface of the stage 7 can be released through the gas vent hole 14 and the fork accommodating groove 11 . As a result, the lateral slip of the wafer 4 can be suppressed, so that the positional accuracy of the wafer 4 placed on the stage 7 can be improved regardless of the state of the back surface of the wafer 4, the weight of the wafer, and the state of the stage. can be done.

また、ウエハ4をステージ7に置くために元々設けられているフォーク収容溝11とそれに連通したガス抜き穴14をガス13の排出に用いることで、従来のようにステージ7の上面に多くの溝を形成しなくてもよい。従って、温度調整性能があまり低下しないため、ウエハ4の面内温度ばらつきを防ぐことができる。この結果、ウエハ4への成膜の面内均一性が安定する。 Further, by using the fork housing groove 11 originally provided for placing the wafer 4 on the stage 7 and the gas release hole 14 communicating with the fork housing groove 11 for discharging the gas 13, many grooves can be formed on the upper surface of the stage 7 as in the conventional art. need not be formed. Therefore, since the temperature adjustment performance does not deteriorate so much, in-plane temperature variation of the wafer 4 can be prevented. As a result, the in-plane uniformity of film formation on the wafer 4 is stabilized.

また、ステージ7の上面においてフォーク収容溝11の周辺に、粗仕上げにより粗面構造領域15が設けられている。これにより、鏡面仕上げの場合に比べて摩擦抵抗が大きくなるため、ウエハ4がステージ7上で横滑りし難くなる。粗面構造領域15の具体的な表面粗さとしては、ガス抜き効果、横滑り防止、面内温度分布のばらつきとの関係を鑑みて、最大高さRmaxを50aとすることが好ましい。 A rough surface structure region 15 is provided around the fork housing groove 11 on the upper surface of the stage 7 by rough finishing. As a result, the wafer 4 is less likely to slide sideways on the stage 7 because the frictional resistance is greater than in the case of mirror finishing. As for the specific surface roughness of the rough surface structure region 15, it is preferable to set the maximum height Rmax to 50a in view of the relationship between the gas venting effect, the side slip prevention, and the variation in the in-plane temperature distribution.

図8は、実施の形態2の変形例に係る半導体製造装置のステージを示す上面図である。図9は図8のV-VIに沿った断面図である。ガス抜き穴14と粗面構造領域15がフォーク収容溝11の周辺に設けられている。このようにガス抜き穴14は加工が可能であればウエハ4の上面のどこに設けてもよい。また、ガス抜き穴14をフォーク収容溝11とは異なる位置に設けることで、フォーク収容溝11以外の領域でもガス抜きを行うことができる。従って、ウエハ4の面内のガス抜きを瞬時に行ってウエハ4の横滑りを抑制することができる。 FIG. 8 is a top view showing stages of a semiconductor manufacturing apparatus according to a modification of the second embodiment. 9 is a cross-sectional view along V-VI in FIG. 8. FIG. A vent hole 14 and a roughened area 15 are provided around the fork receiving groove 11 . As described above, the gas release hole 14 may be provided anywhere on the upper surface of the wafer 4 as long as it can be processed. Further, by providing the gas release hole 14 at a position different from the fork accommodation groove 11, gas release can be performed in a region other than the fork accommodation groove 11 as well. Therefore, the side slip of the wafer 4 can be suppressed by instantaneously degassing the in-plane of the wafer 4 .

4 ウエハ、5 フォーク、7 ステージ、11 フォーク収容溝、12 ガス抜き溝、14 ガス抜き穴、15 粗面構造領域 4 Wafer 5 Fork 7 Stage 11 Fork Receiving Groove 12 Degassing Groove 14 Degassing Hole 15 Rough Surface Structure Area

Claims (2)

ウエハを持ち上げて搬送するフォークと、
上面に前記ウエハが置かれるステージとを備え、
前記ステージの前記上面に、前記フォークが入るフォーク収容溝と、前記フォーク収容溝とは異なる位置に設けられ前記フォーク収容溝に連通した複数のガス抜き穴とが設けられていることを特徴とする半導体製造装置。
a fork for lifting and transferring the wafer;
A stage on which the wafer is placed on the upper surface,
The upper surface of the stage is provided with a fork housing groove into which the fork is placed, and a plurality of gas release holes provided at positions different from the fork housing groove and communicating with the fork housing groove. Semiconductor manufacturing equipment.
前記ステージの前記上面に粗面構造領域が設けられていることを特徴とする請求項に記載の半導体製造装置。 2. The semiconductor manufacturing apparatus according to claim 1 , wherein said upper surface of said stage is provided with a rough surface structure region.
JP2019147474A 2019-08-09 2019-08-09 Semiconductor manufacturing equipment Active JP7192707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019147474A JP7192707B2 (en) 2019-08-09 2019-08-09 Semiconductor manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019147474A JP7192707B2 (en) 2019-08-09 2019-08-09 Semiconductor manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2021028935A JP2021028935A (en) 2021-02-25
JP7192707B2 true JP7192707B2 (en) 2022-12-20

Family

ID=74667511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019147474A Active JP7192707B2 (en) 2019-08-09 2019-08-09 Semiconductor manufacturing equipment

Country Status (1)

Country Link
JP (1) JP7192707B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002057209A (en) 2000-06-01 2002-02-22 Tokyo Electron Ltd Single-wafer processing apparatus and single-wafer processing method
JP2015088573A (en) 2013-10-30 2015-05-07 株式会社日立ハイテクノロジーズ Plasma processing apparatus
JP2016201528A (en) 2015-04-07 2016-12-01 株式会社Sumco Susceptor, vapor deposition apparatus, vapor deposition method and epitaxial silicon wafer
JP2018182289A (en) 2017-04-18 2018-11-15 日新イオン機器株式会社 Electrostatic chuck

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940524A (en) * 1982-08-31 1984-03-06 Toshiba Corp Cvd apparatus
JPH06260431A (en) * 1993-03-08 1994-09-16 Sony Corp Vacuum wafer treatment device
JP3636864B2 (en) * 1997-06-11 2005-04-06 東京エレクトロン株式会社 Processing device and stage device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002057209A (en) 2000-06-01 2002-02-22 Tokyo Electron Ltd Single-wafer processing apparatus and single-wafer processing method
JP2015088573A (en) 2013-10-30 2015-05-07 株式会社日立ハイテクノロジーズ Plasma processing apparatus
JP2016201528A (en) 2015-04-07 2016-12-01 株式会社Sumco Susceptor, vapor deposition apparatus, vapor deposition method and epitaxial silicon wafer
JP2018182289A (en) 2017-04-18 2018-11-15 日新イオン機器株式会社 Electrostatic chuck

Also Published As

Publication number Publication date
JP2021028935A (en) 2021-02-25

Similar Documents

Publication Publication Date Title
JP7169334B2 (en) Substrate transfer robot end effector
KR102330713B1 (en) Substrate support apparatus having reduced substrate particle generation
US6062853A (en) Heat-treating boat for semiconductor wafers
JP4652177B2 (en) Manufacturing method of semiconductor device and manufacturing apparatus used for carrying out the manufacturing method
KR102702089B1 (en) Substrate processing apparatus including edge ring
KR102544974B1 (en) Patterned chuck for double-sided processing
WO2020129805A1 (en) Substrate tray
US10490437B2 (en) Susceptor, vapor deposition apparatus, vapor deposition method and epitaxial silicon wafer
KR20180045053A (en) Large Area Dual Board Processing System
JP7192707B2 (en) Semiconductor manufacturing equipment
KR20200110710A (en) Deposition ring for processing reduced size substrates
KR100976369B1 (en) A wafer boat for a semiconductor device fabrication
TWI788397B (en) Wafer transmission device, wafer processing system and method
JP7194552B2 (en) vacuum suction device
KR20200110460A (en) Process kit for processing reduced size substrates
JP2020113574A (en) Wafer transporting tray
TWI729045B (en) Wafer support pedestal with wafer anti-slip and anti-rotation features
US9478697B2 (en) Reusable substrate carrier
KR20120038287A (en) Susceptor
KR20210077089A (en) Loadlock apparatus and method for aligning a substrate
JP2008021824A (en) Boat tray, and heat treating furnace for wafer
CN112436016B (en) Preparation method of three-dimensional memory and pneumatic mechanical device
KR20170099520A (en) Substrate tray
JP5917750B2 (en) Load lock device and vacuum processing device
KR100620167B1 (en) Calibration plate of a wafer type for setting a shadow ring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220816

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221121

R150 Certificate of patent or registration of utility model

Ref document number: 7192707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150