JP7192473B2 - Optical analysis system and optical analysis method - Google Patents

Optical analysis system and optical analysis method Download PDF

Info

Publication number
JP7192473B2
JP7192473B2 JP2018235827A JP2018235827A JP7192473B2 JP 7192473 B2 JP7192473 B2 JP 7192473B2 JP 2018235827 A JP2018235827 A JP 2018235827A JP 2018235827 A JP2018235827 A JP 2018235827A JP 7192473 B2 JP7192473 B2 JP 7192473B2
Authority
JP
Japan
Prior art keywords
raw material
product
optical analysis
optical
spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018235827A
Other languages
Japanese (ja)
Other versions
JP2020098122A (en
Inventor
篤志 伊東
広大 村山
潤一 小川
俊一 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2018235827A priority Critical patent/JP7192473B2/en
Priority to EP19814893.4A priority patent/EP3816610B1/en
Priority to AU2019283225A priority patent/AU2019283225B2/en
Priority to US16/972,790 priority patent/US20210247302A1/en
Priority to PCT/JP2019/022417 priority patent/WO2019235542A1/en
Priority to CN201980037896.1A priority patent/CN112236667A/en
Publication of JP2020098122A publication Critical patent/JP2020098122A/en
Application granted granted Critical
Publication of JP7192473B2 publication Critical patent/JP7192473B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本開示は、光学分析システム及び光学分析方法に関する。 The present disclosure relates to optical analysis systems and optical analysis methods.

異なる原料を合成して生成物を得る化学反応系に関連する技術が従来から知られている。 Techniques related to chemical reaction systems for synthesizing different raw materials to obtain products have been known for some time.

例えば、特許文献1には、1つ以上の反応カラムからの溶出液中の反応生成物と未反応物及び副産物とを分離する分離手段を有する糖鎖合成装置が開示されている。例えば、特許文献2には、化合物合成の手段となりうるマイクロフルイディック・システムに関する装置及び方法が開示されている。 For example, Patent Literature 1 discloses a sugar chain synthesizer having separation means for separating reaction products from unreacted substances and by-products in eluates from one or more reaction columns. For example, Patent Literature 2 discloses an apparatus and method relating to a microfluidic system that can be used as a means of synthesizing compounds.

従来の化学反応系において、生成物の収率が高くなる最適な化学反応条件を決定するために、様々な条件に基づいて合成実験が実施される。その際、収率を算出するためのいくつかの算出方法が知られている。一つの算出方法は、核磁気共鳴分析(Nuclear Magnetic Resonance(NMR))法により目的の生成物が得られているか否かを定性的に確認した後、精製工程により抽出された生成物の量を直接測定する方法である。他の算出方法は、高速液体クロマトグラフィー(High Performance Liquid Chromatography(HPLC))法により、生成物の光吸収スペクトルのピーク面積から相対的に収率を算出する方法である。 In conventional chemical reaction systems, synthetic experiments are performed under various conditions to determine the optimal chemical reaction conditions that result in high product yields. Several calculation methods are known for calculating the yield. One calculation method is to qualitatively confirm whether or not the target product is obtained by a nuclear magnetic resonance (NMR) method, and then calculate the amount of the product extracted by the purification process. It is a method of direct measurement. Another calculation method is a method of relatively calculating the yield from the peak area of the light absorption spectrum of the product by High Performance Liquid Chromatography (HPLC).

従来の化学反応系において、互いに光学異性体の関係を有する一対の化合物を生成物が含む場合がある。光学活性が異なるこのような一対の化合物を分析するためのいくつかの分析方法が知られている。一つの分析方法は、キラルカラムを用いたHPLC法である。他の分析方法は、円二色性分散計を用いる方法である。 In a conventional chemical reaction system, the product may include a pair of compounds having an optical isomer relationship with each other. Several analytical methods are known for analyzing such pairs of compounds with different optical activities. One analytical method is the HPLC method using a chiral column. Another analytical method is a method using a circular dichroism spectrometer.

特許第4005557号公報Japanese Patent No. 4005557 特許第5859393号公報Japanese Patent No. 5859393

従来、生成物の収率等を含む化学反応に関するパラメータ及びその経時変化、並びに生成物の光学異性に関する情報等を含む化学反応に関する情報を算出又は分析するとき、化学反応終了後、又は化学反応中に測定用のサンプルを抽出する必要がある。加えて、抽出されたサンプルは、算出又は分析用に処理され、算出又は分析後は破棄されていた。 Conventionally, when calculating or analyzing parameters related to chemical reactions including product yields and their changes over time, and information related to chemical reactions including information related to optical isomerism of products, etc., after the completion of the chemical reaction, or during the chemical reaction It is necessary to extract a sample for measurement at Additionally, extracted samples were processed for calculation or analysis and discarded after calculation or analysis.

本開示は、化学反応に関する情報を、サンプルを抽出する必要なく、かつ非破壊的に分析できる光学分析システム及び光学分析方法を提供することを目的とする。 An object of the present disclosure is to provide an optical analysis system and an optical analysis method that can non-destructively analyze information about chemical reactions without the need to extract samples.

幾つかの実施形態に係る光学分析システムは、第1原料と第2原料とを合成して生成物を得る化学反応系において、合成開始前の前記第1原料及び前記第2原料それぞれに照射光を照射し、かつ前記第1原料、前記第2原料、及び前記生成物を含む合成開始後の混合物に照射光を複数の反応時間ごとに照射する照射部と、前記照射部によって照射された前記照射光に基づく測定光であって、前記第1原料、前記第2原料、及び前記混合物それぞれの分光スペクトルに関する情報を含む前記測定光を検出する検出部と、前記第1原料、前記第2原料、及び前記混合物それぞれの分光スペクトルを算出し、各分光スペクトルに基づいて、前記生成物の分光スペクトルを算出する演算部と、を備え、前記演算部は、複数の反応時間ごとに算出された前記生成物の前記分光スペクトルに基づいて、化学反応に関するパラメータの経時変化を算出する。化学合成によって得られる化学反応に関するパラメータの経時変化は、演算部によって算出された生成物の分光スペクトルに基づいて算出可能である。したがって、実施形態に係る光学分析システムによれば、化学反応に関するパラメータの経時変化を、サンプルを抽出する必要なく、かつ非破壊的に分析できる。 In an optical analysis system according to some embodiments, in a chemical reaction system for synthesizing a first raw material and a second raw material to obtain a product, irradiation light is applied to each of the first raw material and the second raw material before the start of synthesis. and an irradiation unit that irradiates the mixture after the start of synthesis containing the first raw material, the second raw material, and the product with irradiation light every a plurality of reaction times, and the irradiated by the irradiation unit a detection unit for detecting the measurement light based on the irradiation light, the measurement light including information on the spectral spectra of the first raw material, the second raw material, and the mixture; and the first raw material and the second raw material. , and a calculation unit that calculates the spectral spectrum of each of the mixtures and calculates the spectral spectrum of the product based on each spectral spectrum, wherein the calculation unit calculates the spectral spectrum of the product for each of a plurality of reaction times Based on the spectroscopy spectrum of the product, changes over time in parameters relating to the chemical reaction are calculated. Changes over time in parameters relating to chemical reactions obtained by chemical synthesis can be calculated based on the spectroscopic spectrum of the product calculated by the calculation unit. Therefore, according to the optical analysis system according to the embodiment, it is possible to non-destructively analyze changes in parameters related to chemical reactions over time without extracting samples.

一実施形態において、前記演算部は、前記混合物の分光スペクトルから前記第1原料及び前記第2原料それぞれの分光スペクトルを差し引くことで、前記生成物の分光スペクトルを算出してもよい。これにより、混合物の分光スペクトルに埋没している生成物の分光スペクトルが抽出される。したがって、分光スペクトルに基づく、化学反応に関するパラメータの経時変化の算出に関する精度が向上する。 In one embodiment, the computing unit may calculate the spectral spectrum of the product by subtracting the spectral spectra of the first raw material and the second raw material from the spectral spectrum of the mixture. Thereby, the spectroscopic spectrum of the product buried in the spectroscopic spectrum of the mixture is extracted. Therefore, the accuracy of the calculation of changes over time in parameters relating to chemical reactions based on spectroscopic spectra is improved.

一実施形態において、前記化学反応系は、前記第1原料、前記第2原料、及び前記混合物それぞれが流路の内部を流れるフロー式の合成反応系を含んでもよい。これにより、測定用のサンプルを抽出することが困難であるフロー式の合成反応系においても、サンプルを抽出する必要なく光学的手法により非接触で光吸収スペクトルが測定される。したがって、化学反応に関するパラメータの経時変化がリアルタイムに算出可能である。 In one embodiment, the chemical reaction system may include a flow-type synthetic reaction system in which the first raw material, the second raw material, and the mixture each flow inside a channel. As a result, even in a flow-type synthesis reaction system in which it is difficult to extract a sample for measurement, the optical absorption spectrum can be measured in a non-contact manner by an optical technique without the need to extract a sample. Therefore, it is possible to calculate the temporal change of the parameters related to the chemical reaction in real time.

一実施形態において、前記照射部は、前記混合物が流れる前記流路に沿った複数の位置それぞれにおいて前記照射光を照射してもよい。これにより、混合物が流路の内部を流れるフロー式の合成反応系においても、複数の反応時間ごとに生成物の分光スペクトルが算出可能である。したがって、サンプルを抽出する必要なく、かつ光学的手法により非破壊的に化学反応に関するパラメータの経時変化がリアルタイムに算出可能である。 In one embodiment, the irradiation unit may irradiate the irradiation light at each of a plurality of positions along the flow path through which the mixture flows. As a result, even in a flow-type synthetic reaction system in which a mixture flows inside a channel, the spectroscopic spectrum of the product can be calculated for each of a plurality of reaction times. Therefore, it is possible to calculate changes over time in parameters relating to chemical reactions in real time in a non-destructive manner by an optical method without the need to extract samples.

一実施形態において、前記化学反応に関するパラメータは、前記生成物の収率を含んでもよい。これにより、化学反応系における生成物の収率の経時変化が分析可能となる。 In one embodiment, parameters relating to the chemical reaction may include the yield of the product. This makes it possible to analyze changes in product yield over time in a chemical reaction system.

一実施形態において、前記第1原料及び前記第2原料それぞれは、アミノ酸を含み、前記生成物は、ペプチド結合により形成された化合物を含んでもよい。これにより、複数のアミノ酸によって構成されるペプチドを対象とした分析が可能となる。 In one embodiment, each of said first source and said second source may comprise an amino acid and said product may comprise a compound formed by a peptide bond. This makes it possible to analyze peptides composed of multiple amino acids.

一実施形態において、前記測定光が有する波長帯域は、1800nmから2500nmまでの近赤外領域に含まれてもよい。これにより、光学分析システムは、当該近赤外領域に現れる、化合物の所定構造に起因する分光スペクトルを算出することができる。 In one embodiment, the wavelength band of the measurement light may be included in the near-infrared region from 1800 nm to 2500 nm. Thereby, the optical analysis system can calculate the spectroscopic spectrum due to the predetermined structure of the compound appearing in the near-infrared region.

一実施形態において、前記測定光は、前記第1原料、前記第2原料、及び前記混合物それぞれを透過した、前記照射光に基づく透過光を含み、前記分光スペクトルは、光吸収スペクトルを含んでもよい。例えば、蛍光分光法及びラマン分光法等の他の分光法では、蛍光及びラマン光等の測定光の強度は弱く、測定光の検出は容易でない。これに対して、吸収分光法を用いることで測定光の強度が増大し、測定光の検出が容易となる。したがって、光学分析システムは、分光スペクトルを容易に算出可能である。 In one embodiment, the measurement light may include transmitted light based on the irradiation light that has passed through the first raw material, the second raw material, and the mixture, and the spectral spectrum may include a light absorption spectrum. . For example, in other spectroscopic methods, such as fluorescence spectroscopy and Raman spectroscopy, the intensity of measurement light, such as fluorescence and Raman light, is weak and detection of the measurement light is not easy. On the other hand, the use of absorption spectroscopy increases the intensity of the measurement light, facilitating the detection of the measurement light. Therefore, the optical analysis system can easily calculate the spectroscopic spectrum.

幾つかの実施形態に係る光学分析方法は、第1原料と第2原料とを合成して生成物を得る化学反応系において、合成開始前の前記第1原料及び前記第2原料それぞれに照射光を照射し、かつ前記第1原料、前記第2原料、及び前記生成物を含む合成開始後の混合物に照射光を複数の反応時間ごとに照射するステップと、照射された前記照射光に基づく測定光であって、前記第1原料、前記第2原料、及び前記混合物それぞれの分光スペクトルに関する情報を含む前記測定光を検出するステップと、前記第1原料、前記第2原料、及び前記混合物それぞれの分光スペクトルを算出し、各分光スペクトルに基づいて、前記生成物の分光スペクトルを算出するステップと、複数の反応時間ごとに算出された前記生成物の前記分光スペクトルに基づいて、化学反応に関するパラメータの経時変化を算出するステップと、を含む。化学合成によって得られる化学反応に関するパラメータの経時変化は、算出された生成物の分光スペクトルに基づいて算出可能である。したがって、実施形態に係る光学分析方法によれば、化学反応に関するパラメータの経時変化を、サンプルを抽出する必要なく、かつ非破壊的に分析できる。 In the optical analysis method according to some embodiments, in a chemical reaction system in which a first raw material and a second raw material are synthesized to obtain a product, irradiation light is applied to each of the first raw material and the second raw material before the start of synthesis. and irradiating the mixture after the synthesis initiation containing the first raw material, the second raw material, and the product with irradiation light every a plurality of reaction times, and measuring based on the irradiated irradiation light a step of detecting the measurement light, which is light and includes information on the spectral spectra of each of the first raw material, the second raw material, and the mixture; calculating a spectroscopic spectrum, calculating a spectroscopic spectrum of the product based on each spectroscopic spectrum, and calculating a parameter related to a chemical reaction based on the spectroscopic spectrum of the product calculated for each of a plurality of reaction times; and calculating a change over time. Changes over time in parameters related to chemical reactions obtained by chemical synthesis can be calculated based on the calculated spectroscopic spectrum of the product. Therefore, according to the optical analysis method according to the embodiment, it is possible to non-destructively analyze changes in parameters related to chemical reactions over time without extracting samples.

一実施形態では、前記生成物の分光スペクトルを算出するステップにおいて、前記混合物の分光スペクトルから前記第1原料及び前記第2原料それぞれの分光スペクトルを差し引くことで、前記生成物の分光スペクトルを算出してもよい。これにより、混合物の分光スペクトルに埋没している生成物の分光スペクトルが抽出される。したがって、分光スペクトルに基づく、化学反応に関するパラメータの経時変化の算出に関する精度が向上する。 In one embodiment, in the step of calculating the spectroscopic spectrum of the product, the spectroscopic spectrum of the product is calculated by subtracting the spectroscopic spectrum of each of the first raw material and the second raw material from the spectroscopic spectrum of the mixture. may Thereby, the spectroscopic spectrum of the product buried in the spectroscopic spectrum of the mixture is extracted. Therefore, the accuracy of the calculation of changes over time in parameters relating to chemical reactions based on spectroscopic spectra is improved.

本開示によれば、化学反応に関する情報を、サンプルを抽出する必要なく、かつ非破壊的に分析できる光学分析システム及び光学分析方法を提供可能である。 According to the present disclosure, it is possible to provide an optical analysis system and an optical analysis method that can non-destructively analyze information about chemical reactions without the need to extract samples.

第1実施形態に係る光学分析システムの構成の一例を示す模式図である。It is a mimetic diagram showing an example of composition of an optical analysis system concerning a 1st embodiment. 図1の光学分析システムのブロック図である。2 is a block diagram of the optical analysis system of FIG. 1; FIG. 第1原料の光吸収スペクトルの一例を示す模式図である。It is a schematic diagram which shows an example of the optical absorption spectrum of a 1st raw material. 第2原料の光吸収スペクトルの一例を示す模式図である。It is a schematic diagram which shows an example of the optical absorption spectrum of a 2nd raw material. 混合物の光吸収スペクトルの一例を示す模式図である。It is a schematic diagram which shows an example of the light absorption spectrum of a mixture. 生成物の光吸収スペクトルの一例を示す模式図である。It is a schematic diagram which shows an example of the optical absorption spectrum of a product. 位置P1における生成物の光吸収スペクトルの一例を示す模式図である。It is a schematic diagram which shows an example of the optical absorption spectrum of the product in the position P1. 位置P2における生成物の光吸収スペクトルの一例を示す模式図である。It is a schematic diagram which shows an example of the optical absorption spectrum of the product in the position P2. 位置P3における生成物の光吸収スペクトルの一例を示す模式図である。FIG. 4 is a schematic diagram showing an example of the light absorption spectrum of the product at position P3. 位置P4における生成物の光吸収スペクトルの一例を示す模式図である。It is a schematic diagram which shows an example of the optical absorption spectrum of the product in the position P4. 位置P5における生成物の光吸収スペクトルの一例を示す模式図である。It is a schematic diagram which shows an example of the optical absorption spectrum of the product in the position P5. 図1の光学分析システムの動作の一例を示すフローチャートである。2 is a flow chart showing an example of the operation of the optical analysis system of FIG. 1; 位置P1における生成物の光吸収スペクトルの一例を示す模式図である。It is a schematic diagram which shows an example of the optical absorption spectrum of the product in the position P1. 位置P2における生成物の光吸収スペクトルの一例を示す模式図である。It is a schematic diagram which shows an example of the optical absorption spectrum of the product in the position P2. 位置P3における生成物の光吸収スペクトルの一例を示す模式図である。FIG. 4 is a schematic diagram showing an example of the light absorption spectrum of the product at position P3. 位置P4における生成物の光吸収スペクトルの一例を示す模式図である。It is a schematic diagram which shows an example of the optical absorption spectrum of the product in the position P4. 位置P5における生成物の光吸収スペクトルの一例を示す模式図である。It is a schematic diagram which shows an example of the optical absorption spectrum of the product in the position P5. 第3実施形態に係る光学分析システムの演算部によって算出される化学反応に関するパラメータの経時変化の一例を示す図である。FIG. 11 is a diagram showing an example of temporal changes in parameters relating to chemical reactions calculated by the computing unit of the optical analysis system according to the third embodiment. 第3実施形態に係る光学分析システムの動作の一例を示すフローチャートである。10 is a flow chart showing an example of the operation of the optical analysis system according to the third embodiment; 第1実施形態乃至第3実施形態に係る光学分析システムの変形例のブロック図である。FIG. 4 is a block diagram of a modification of the optical analysis system according to the first to third embodiments; FIG.

(第1実施形態)
本開示の第1実施形態について主に説明する。第1実施形態では、化学反応に関する情報は、主に生成物の収率である。第1実施形態では、生成物の収率に主に着目して説明を行う。初めに、従来技術の問題点について説明する。
(First embodiment)
A first embodiment of the present disclosure will be mainly described. In a first embodiment, the information about the chemical reaction is primarily product yield. In the first embodiment, description will be made mainly focusing on the yield of the product. First, the problems of the prior art will be explained.

化学反応において生成物が合成されているか否かを確認する方法として、NMR法が汎用的に用いられている。NMR法で得られるNMRスペクトルは、例えば有機化合物等に存在する官能基に基づく特徴的なピークを示す。生成物に特有のNMRスペクトルが得られているか否かを分析することで、作業者は、生成物が合成されているか否かを把握する。 The NMR method is commonly used as a method for confirming whether or not a product is synthesized in a chemical reaction. An NMR spectrum obtained by the NMR method shows characteristic peaks based on functional groups present in, for example, organic compounds. By analyzing whether an NMR spectrum peculiar to the product is obtained, the operator can ascertain whether the product has been synthesized.

生成物の収率を算出するためには、化学合成が完全に進行したときの生成物の量に対する、実際に得られた生成物の量の割合を算出する必要がある。生成物の収率を算出するための最も直接的な方法は、生成物を精製して、その量を直接測定する方法である。化学合成が完全に進行したときの生成物の量は理論的に容易に算出可能であるので、生成物の量を直接測定することで、生成物の収率が容易に算出される。 In order to calculate the yield of the product, it is necessary to calculate the ratio of the amount of product actually obtained to the amount of product when chemical synthesis proceeds to completion. The most direct method for calculating the product yield is to purify the product and measure the amount directly. Since the amount of product when the chemical synthesis has proceeded to completion can be theoretically easily calculated, the yield of the product can be easily calculated by directly measuring the amount of product.

一方で、HPLC法は、生成物の精製が困難な場合に用いられる。HPLC法は、化合物の化学的性質、例えば疎水性相互作用等の差分を利用して生成物と夾雑物とを分離し、生成物の量を紫外線の吸収量から算出する方法である。HPLC法を用いると、生成物及び夾雑物の紫外吸収スペクトルが得られる。この紫外吸収スペクトルのピーク面積を全て足し合わせた数値が、分析対象とする化学反応系に存在する全化合物の量を示す。したがって、生成物に基づくピーク面積を測定し、当該ピーク面積の全ピーク面積に対する比を算出することにより、生成物の収率が算出される。 On the other hand, the HPLC method is used when product purification is difficult. The HPLC method is a method in which a product and contaminants are separated by using differences in chemical properties of compounds, such as hydrophobic interactions, and the amount of the product is calculated from the absorption of ultraviolet rays. Using the HPLC method, ultraviolet absorption spectra of the product and contaminants are obtained. A numerical value obtained by adding up all the peak areas of the ultraviolet absorption spectrum indicates the amount of all compounds present in the chemical reaction system to be analyzed. Therefore, by measuring the peak area based on the product and calculating the ratio of the peak area to the total peak area, the yield of the product is calculated.

従来技術では、化学反応終了後、又は化学反応中に測定用のサンプルを抽出し、分析装置にかける必要がある。したがって、化学反応が進行している時点から分析結果を知るまでの間にタイムラグが存在する。これにより、作業者は、対象とする化学反応系において、生成物の量をリアルタイムに測定できない。加えて、抽出されたサンプルは分析用に処理されるため、分析後は破棄されていた。すなわち、従来技術では破壊的な分析が行われていた。また、化学反応系が例えばフロー式の合成反応系である場合、流路の内部を流れている溶液から測定用のサンプルを抽出することはそもそも困難である。 In the prior art, it is necessary to extract a sample for measurement after the chemical reaction is completed or during the chemical reaction and apply it to an analyzer. Therefore, there is a time lag between when the chemical reaction is in progress and when the analytical results are known. Accordingly, the operator cannot measure the amount of the product in real time in the target chemical reaction system. In addition, extracted samples were processed for analysis and were discarded after analysis. That is, destructive analysis was performed in the prior art. Further, when the chemical reaction system is, for example, a flow-type synthesis reaction system, it is originally difficult to extract a sample for measurement from the solution flowing inside the channel.

従来技術では、生成物の収率が高くなる最適な化学反応条件を決定するために、様々な条件に基づいて合成実験が実施される。このとき、作業者は、合成実験のたびに、NMR分析、生成物の精製、及び量の測定、又はHPLC分析等の手順を繰り返す必要がある。したがって、化学反応条件を最適化するための作業工程が増大し、最適化のための作業効率が低下していた。 In the prior art, synthetic experiments are performed under various conditions to determine the optimal chemical reaction conditions that give high product yields. At this time, the operator needs to repeat procedures such as NMR analysis, product purification and amount measurement, or HPLC analysis for each synthesis experiment. Therefore, the work steps for optimizing the chemical reaction conditions are increased, and the work efficiency for optimization is lowered.

NMR法を用いた従来技術では、NMR分析に必要な核磁気共鳴を引き起こすための大規模な装置が必要である。したがって、分析装置が高額であり、またメンテナンスコストも高かった。分析を行うために一定以上の純度が要求される場合には分析用の精製工程が必要となり、分析に必要なコストはさらに増大していた。同様に、HPLC法を用いた従来技術では、カラム及び溶液を取り回すための機構が必要である。したがって、分析装置が高額であり、またメンテナンスコストも高かった。 Prior art techniques using NMR methods require large-scale equipment to generate the nuclear magnetic resonance required for NMR analysis. Therefore, the analyzer is expensive, and the maintenance cost is also high. When a certain level of purity is required for analysis, a purification process for analysis is required, further increasing the cost required for analysis. Similarly, prior art techniques using HPLC methods require columns and mechanisms for routing solutions. Therefore, the analyzer is expensive, and the maintenance cost is also high.

本開示の第1実施形態に係る光学分析システム1は、これらの問題点を解決し、化学反応系30において合成された生成物ABの量を、サンプルを抽出する必要なく、かつ非破壊的に分析できる。以下、本開示の第1実施形態に係る光学分析システム1について、添付図面を参照しながら説明する。 The optical analysis system 1 according to the first embodiment of the present disclosure solves these problems and measures the amount of the product AB synthesized in the chemical reaction system 30 without the need to extract a sample and nondestructively. can be analyzed. An optical analysis system 1 according to a first embodiment of the present disclosure will be described below with reference to the accompanying drawings.

図1は、第1実施形態に係る光学分析システム1の構成の一例を示す模式図である。図2は、図1の光学分析システム1のブロック図である。図1及び図2を参照しながら、第1実施形態に係る光学分析システム1の構成及び機能について主に説明する。 FIG. 1 is a schematic diagram showing an example of the configuration of an optical analysis system 1 according to the first embodiment. FIG. 2 is a block diagram of the optical analysis system 1 of FIG. The configuration and functions of the optical analysis system 1 according to the first embodiment will be mainly described with reference to FIGS. 1 and 2. FIG.

光学分析システム1は、例えば、第1原料Aと第2原料Bとを合成して生成物ABを得る化学反応系30に設置される。光学分析システム1は、化学反応系30に対して、照射光L1a、L1b、及びL1cを含む照射光L1を照射する。光学分析システム1は、合成開始前の第1原料A、合成開始前の第2原料B、並びに第1原料A、第2原料B、及び生成物ABを含む合成開始後の混合物Cそれぞれの分光スペクトルを算出する。光学分析システム1は、各分光スペクトルに基づいて、生成物ABの分光スペクトルを算出する。 The optical analysis system 1 is installed, for example, in a chemical reaction system 30 that synthesizes a first raw material A and a second raw material B to obtain a product AB. The optical analysis system 1 irradiates the chemical reaction system 30 with irradiation light L1 including irradiation light L1a, L1b, and L1c. The optical analysis system 1 spectroscopy each of the first raw material A before the start of synthesis, the second raw material B before the start of synthesis, and the mixture C after the start of synthesis containing the first raw material A, the second raw material B, and the product AB. Calculate the spectrum. The optical analysis system 1 calculates the spectroscopic spectrum of the product AB based on each spectroscopic spectrum.

化学反応系30は、送液ポンプ31と、フロー化学反応チューブ32と、マイクロリアクター33とを有する。化学反応系30は、例えば、合成開始前の第1原料A、合成開始前の第2原料B、並びに第1原料A、第2原料B、及び生成物ABを含む合成開始後の混合物Cそれぞれが、フロー化学反応チューブ32の内部を流れる連続フロー式の合成反応系を含む。第1原料A及び第2原料Bそれぞれは、異なる送液ポンプ31により送り出され、異なるフロー化学反応チューブ32を通過してマイクロリアクター33に導入される。このとき、第1原料Aと第2原料Bとが瞬間的に混合されて、化学合成が開始する。第1原料A、第2原料B、及び生成物ABを含む合成開始後の混合物Cは、マイクロリアクター33よりも下流側のフロー化学反応チューブ32の内部をさらに流れる。その後、化学合成が完結する。 The chemical reaction system 30 has a liquid transfer pump 31 , a flow chemical reaction tube 32 and a microreactor 33 . The chemical reaction system 30 includes, for example, a first raw material A before the start of synthesis, a second raw material B before the start of synthesis, and a mixture C after the start of synthesis containing the first raw material A, the second raw material B, and the product AB. contains a continuous flow synthetic reaction system flowing inside a flow chemistry reaction tube 32 . The first raw material A and the second raw material B are respectively delivered by different liquid-sending pumps 31 and passed through different flow chemical reaction tubes 32 to be introduced into the microreactor 33 . At this time, the first raw material A and the second raw material B are instantaneously mixed to start chemical synthesis. The mixture C containing the first source material A, the second source material B, and the product AB after the start of synthesis further flows inside the flow chemical reaction tube 32 on the downstream side of the microreactor 33 . The chemical synthesis is then completed.

化学反応系30における第1原料A及び第2原料Bそれぞれは、任意の化合物を含む。第1原料A及び第2原料Bそれぞれは、例えばアミノ酸を含んでもよい。同様に、生成物ABは、ポリマー又はオリゴマー等の任意の化合物を含む。生成物ABは、例えばアミド結合により形成された化合物を含んでもよいし、複数のアミノ酸に基づくペプチド結合により形成された化合物を含んでもよい。 Each of the first raw material A and the second raw material B in the chemical reaction system 30 contains an arbitrary compound. Each of the first raw material A and the second raw material B may contain, for example, an amino acid. Similarly, product AB includes any compound such as a polymer or oligomer. The product AB may include, for example, compounds formed by amide bonds, and compounds formed by peptide bonds based on multiple amino acids.

光学分析システム1は、上記のような化学反応系30に設置される。光学分析システム1は、光学測定装置10と、光学分析装置20とを有する。 The optical analysis system 1 is installed in the chemical reaction system 30 as described above. The optical analysis system 1 has an optical measurement device 10 and an optical analysis device 20 .

光学測定装置10は、例えば、後述する測定光L2a、L2b、及びL2cを含む測定光L2の波長ごとの光吸収量を測定可能な任意の測定機器を含む。図2に一例として示すように、光学測定装置10は、照射部11と、検出部12と、制御部13と、通信部14と、記憶部15と、を有する。光学測定装置10は、フロー化学反応チューブ32の内部に向けて照射部11から照射される照射光L1に基づき、例えば1800nmから2500nmまでの近赤外領域に含まれる波長帯域を有する測定光L2の波長ごとの光吸収量を測定する。測定光L2は、第1原料A、第2原料B、及び混合物Cそれぞれを透過した、照射光L1に基づく透過光を含む。すなわち、照射部11から照射された照射光L1は、第1原料A、第2原料B、及び混合物Cそれぞれを透過して、測定光L2として検出部12により検出される。 The optical measuring device 10 includes, for example, any measuring instrument capable of measuring the light absorption amount for each wavelength of the measuring light L2 including the measuring lights L2a, L2b, and L2c, which will be described later. As shown in FIG. 2 as an example, the optical measurement device 10 has an irradiation section 11 , a detection section 12 , a control section 13 , a communication section 14 and a storage section 15 . The optical measurement device 10 measures measurement light L2 having a wavelength band included in the near-infrared region from 1800 nm to 2500 nm, for example, based on irradiation light L1 emitted from the irradiation unit 11 toward the inside of the flow chemical reaction tube 32. Measure the amount of light absorption for each wavelength. The measurement light L2 includes transmitted light based on the irradiation light L1 that has passed through the first raw material A, the second raw material B, and the mixture C, respectively. That is, the irradiation light L1 emitted from the irradiation unit 11 passes through the first raw material A, the second raw material B, and the mixture C, and is detected by the detection unit 12 as the measurement light L2.

照射部11は、例えば半導体レーザー等の任意の光源と、当該光源から照射された照射光L1をフロー化学反応チューブ32の内部に導く光ファイバ等の任意の導光部品とを有する。照射部11は、化学反応系30のフロー化学反応チューブ32の内部に、例えば1800nmから2500nmまでの近赤外領域に含まれる波長帯域を有する照射光L1を照射する。 The irradiation unit 11 has an arbitrary light source such as a semiconductor laser, and an arbitrary light guide component such as an optical fiber that guides the irradiation light L1 emitted from the light source into the flow chemical reaction tube 32 . The irradiation unit 11 irradiates the inside of the flow chemical reaction tube 32 of the chemical reaction system 30 with irradiation light L1 having a wavelength band included in the near-infrared region from 1800 nm to 2500 nm, for example.

より具体的には、照射部11は、合成開始前の第1原料A及び第2原料Bに照射光L1a及びL1bをそれぞれ照射する。照射部11は、合成開始後の混合物Cに照射光L1cを照射する。一例として、照射部11は、マイクロリアクター33よりも下流側のフロー化学反応チューブ32における5つの位置P1、P2、P3、P4、及びP5それぞれにおいて照射光L1cを照射する。フロー化学反応チューブ32における5つの位置P1、P2、P3、P4、及びP5は、マイクロリアクター33から順に離れている。すなわち、位置P1からP5に向かうにつれて、混合物Cにおける第1原料A及び第2原料Bの割合が減少し、混合物Cにおける生成物ABの割合が増大する。 More specifically, the irradiation unit 11 irradiates the first raw material A and the second raw material B before the start of synthesis with the irradiation light L1a and L1b, respectively. The irradiation unit 11 irradiates the mixture C after the start of synthesis with the irradiation light L1c. As an example, the irradiation unit 11 irradiates the irradiation light L1c at each of five positions P1, P2, P3, P4, and P5 in the flow chemical reaction tube 32 on the downstream side of the microreactor 33 . Five positions P 1 , P 2 , P 3 , P 4 and P 5 in the flow chemical reaction tube 32 are separated from the microreactor 33 in order. That is, from position P1 to P5, the ratio of first raw material A and second raw material B in mixture C decreases, and the ratio of product AB in mixture C increases.

検出部12は、例えばフォトダイオード等の任意の光検出器と、フロー化学反応チューブ32の内部を透過した測定光L2を光検出器まで導く光ファイバ等の任意の導光部品とを有する。検出部12は、フロー化学反応チューブ32の内部を透過した、例えば1800nmから2500nmまでの近赤外領域に含まれる波長帯域を有する測定光L2を検出する。 The detection unit 12 has, for example, an arbitrary photodetector such as a photodiode, and an arbitrary light guide component such as an optical fiber that guides the measurement light L2 transmitted through the flow chemical reaction tube 32 to the photodetector. The detection unit 12 detects measurement light L2 having a wavelength band included in the near-infrared region from 1800 nm to 2500 nm, which has passed through the inside of the flow chemical reaction tube 32, for example.

より具体的には、検出部12は、合成開始前の第1原料A及び第2原料Bを透過した測定光L2a及びL2bをそれぞれ検出する。検出部12は、合成開始後の混合物Cを透過した測定光L2cを検出する。一例として、検出部12は、フロー化学反応チューブ32における5つの位置P1、P2、P3、P4、及びP5それぞれにおいて測定光L2cを検出する。このように、検出部12は、照射部11によって照射された照射光L1に基づく測定光L2であって、第1原料A、第2原料B、及び混合物Cそれぞれの分光スペクトルに関する情報を含む測定光L2を検出する。 More specifically, the detection unit 12 detects the measurement lights L2a and L2b that have passed through the first raw material A and the second raw material B before the start of synthesis, respectively. The detection unit 12 detects the measurement light L2c that has passed through the mixture C after the start of synthesis. As an example, the detection unit 12 detects the measurement light L2c at each of five positions P1, P2, P3, P4, and P5 in the flow chemical reaction tube 32. FIG. In this way, the detection unit 12 measures the measurement light L2 based on the irradiation light L1 emitted by the irradiation unit 11, which includes information on the respective spectral spectra of the first raw material A, the second raw material B, and the mixture C. Light L2 is detected.

制御部13は、1つ以上のプロセッサを含む。例えば、制御部13は、光学測定装置10に関する処理を可能にするプロセッサを含む。制御部13は、光学測定装置10を構成する各構成部に接続され、各構成部をはじめとして光学測定装置10全体を制御及び管理する。制御部13は、検出部12によって検出された測定光L2の検出情報を検出部12から取得する。制御部13は、検出部12から取得した検出情報に基づき、測定光L2の波長ごとの光吸収量を測定する。制御部13は、取得された波長ごとの光吸収量データを通信部14に出力し、光学分析装置20に送信させる。制御部13は、取得された波長ごとの光吸収量データを必要に応じて記憶部15に記憶させる。 Control unit 13 includes one or more processors. For example, controller 13 includes a processor that enables processing relating to optical measurement device 10 . The control unit 13 is connected to each component constituting the optical measurement device 10 and controls and manages the entire optical measurement device 10 including each component. The control unit 13 acquires detection information of the measurement light L2 detected by the detection unit 12 from the detection unit 12 . Based on the detection information acquired from the detection unit 12, the control unit 13 measures the light absorption amount for each wavelength of the measurement light L2. The control unit 13 outputs the acquired light absorption amount data for each wavelength to the communication unit 14 and causes the optical analysis device 20 to transmit the data. The control unit 13 stores the acquired light absorption amount data for each wavelength in the storage unit 15 as necessary.

通信部14は、有線又は無線を介する任意の通信規格に対応した通信インタフェースを含む。通信部14は、例えば、データ通信ケーブル40を介して光学分析装置20と通信接続可能である。通信部14は、例えば、制御部13から取得した波長ごとの光吸収量データを、データ通信ケーブル40を介して光学分析装置20に送信する。通信部14は、例えば、光学分析装置20を用いて作業者により設定された、測定光L2の波長ごとの光吸収量の測定に関する設定情報を光学分析装置20から受信する。 The communication unit 14 includes a communication interface compatible with any communication standard via wire or wireless. The communication unit 14 can be communicatively connected to the optical analysis device 20 via, for example, a data communication cable 40 . The communication unit 14 transmits, for example, the light absorption amount data for each wavelength acquired from the control unit 13 to the optical analysis device 20 via the data communication cable 40 . The communication unit 14 receives from the optical analysis device 20, for example, setting information regarding the measurement of the light absorption amount for each wavelength of the measurement light L2, which is set by the operator using the optical analysis device 20. FIG.

記憶部15は、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)、EEPROM(Electrically Erasable Programmable Read-Only Memory)、ROM(Read-Only Memory)、及びRAM(Random Access Memory)等の任意の記憶装置を含む。記憶部15は、光学測定装置10が処理する各種データ及びプログラム等を記憶する。記憶部15は、例えば主記憶装置、補助記憶装置、又はキャッシュメモリとして機能してもよい。記憶部15は、光学測定装置10に内蔵されるものに限定されず、USB等のデジタル入出力ポート等によって接続された外付け型の記憶装置であってもよい。記憶部15は、波長ごとの光吸収量データを必要に応じて制御部13から取得し、これらのデータを記憶する。 The storage unit 15 is, for example, an HDD (Hard Disk Drive), an SSD (Solid State Drive), an EEPROM (Electrically Erasable Programmable Read-Only Memory), a ROM (Read-Only Memory), and a RAM (Random) memory. of memory. The storage unit 15 stores various data and programs processed by the optical measurement device 10 . The storage unit 15 may function, for example, as a main storage device, an auxiliary storage device, or a cache memory. The storage unit 15 is not limited to one built in the optical measurement device 10, and may be an external storage device connected via a digital input/output port such as a USB. The storage unit 15 acquires light absorption amount data for each wavelength from the control unit 13 as necessary, and stores this data.

光学分析装置20は、例えば、携帯電話、スマートフォン、タブレットPC、デスクトップコンピュータ、及びモバイルコンピュータ等の任意の汎用電子機器、並びに光学測定装置10によって取得された測定データの処理に特化した専用の情報処理機器を含む。光学分析装置20は、通信部21と、演算部22と、表示部23と、操作部24と、記憶部25とを有する。光学分析装置20は、光学測定装置10によって取得された測定データを分析する。 The optical analyzer 20 can be any general-purpose electronic device such as, for example, a mobile phone, smart phone, tablet PC, desktop computer, and mobile computer, as well as dedicated information specialized for processing the measurement data acquired by the optical measuring device 10. Including processing equipment. The optical analysis device 20 has a communication section 21 , a calculation section 22 , a display section 23 , an operation section 24 and a storage section 25 . The optical analysis device 20 analyzes measurement data acquired by the optical measurement device 10 .

通信部21は、有線又は無線を介する任意の通信規格に対応した通信インタフェースを含む。通信部21は、例えば、データ通信ケーブル40を介して光学測定装置10と通信接続可能である。通信部21は、例えば、光学測定装置10において取得された波長ごとの光吸収量データを、データ通信ケーブル40を介して光学測定装置10から受信する。通信部21は、例えば、操作部24を用いて作業者により設定された、測定光L2の波長ごとの光吸収量の測定に関する設定情報を光学測定装置10に送信する。 The communication unit 21 includes a communication interface compatible with any communication standard via wire or wireless. The communication unit 21 can be communicatively connected to the optical measurement device 10 via, for example, a data communication cable 40 . The communication unit 21 receives, for example, light absorption amount data for each wavelength acquired by the optical measurement device 10 from the optical measurement device 10 via the data communication cable 40 . For example, the communication unit 21 transmits, to the optical measurement apparatus 10, setting information regarding the measurement of the light absorption amount for each wavelength of the measurement light L2, which is set by the operator using the operation unit 24. FIG.

演算部22は、1つ以上のプロセッサを含む。より具体的には、演算部22は、汎用のプロセッサ及び特定の処理に特化した専用のプロセッサ等の任意のプロセッサを含む。演算部22は、例えば、携帯電話、スマートフォン、タブレットPC、デスクトップコンピュータ、及びモバイルコンピュータ等の任意の汎用電子機器に搭載されたプロセッサ、並びに光学測定装置10によって取得された測定データの処理に特化した専用の情報処理機器に搭載されたプロセッサを含んでもよい。演算部22は、光学分析装置20を構成する各構成部に接続され、各構成部をはじめとして光学分析装置20全体を制御及び管理する。 The computing unit 22 includes one or more processors. More specifically, the computing unit 22 includes arbitrary processors such as general-purpose processors and dedicated processors specialized for specific processing. The computing unit 22 specializes in processing measurement data acquired by a processor installed in any general-purpose electronic device such as a mobile phone, a smartphone, a tablet PC, a desktop computer, and a mobile computer, and by the optical measurement device 10. It may also include a processor mounted on a dedicated information processing device. The computing unit 22 is connected to each component constituting the optical analysis device 20, and controls and manages the entire optical analysis device 20 including each component.

演算部22は、通信部21を介して取得した、光学測定装置10による測定データに対して様々な処理を行う。例えば、演算部22は、合成開始前の第1原料A、合成開始前の第2原料B、及び合成開始後の混合物Cそれぞれの分光スペクトルを算出する。演算部22は、各分光スペクトルに基づいて、生成物ABの分光スペクトルを算出する。分光スペクトルは、例えば光吸収スペクトルを含む。演算部22は、例えば、光学測定装置10において取得された波長ごとの光吸収量データに基づいてそれぞれの光吸収スペクトルを算出する。 The calculation unit 22 performs various processes on the measurement data obtained by the optical measurement device 10 through the communication unit 21 . For example, the calculation unit 22 calculates the respective spectral spectra of the first raw material A before the start of synthesis, the second raw material B before the start of synthesis, and the mixture C after the start of synthesis. The calculation unit 22 calculates the spectrum of the product AB based on each spectrum. Spectral spectrum includes, for example, optical absorption spectrum. For example, the calculation unit 22 calculates each light absorption spectrum based on the light absorption amount data for each wavelength acquired by the optical measurement device 10 .

演算部22は、算出された光吸収スペクトルに基づいて、生成物ABが得られているか否かを判定してもよい。例えば、演算部22は、作業者により設定された所定の波長における光吸収スペクトルピークの高さが所定値を超えたか否かを判定することで、生成物ABが得られているか否かを判定してもよい。演算部22は、生成物ABが得られていると判定した場合、生成物ABの収率をさらに算出してもよい。ここで説明した、生成物ABが得られているか否かの判定及び生成物ABの収率の算出は、光学分析装置20によって実行されなくてもよい。この場合、生成物ABが得られているか否かの判定及び生成物ABの収率の算出は、作業者自身によって実行されてもよい。 The calculation unit 22 may determine whether or not the product AB is obtained based on the calculated light absorption spectrum. For example, the calculation unit 22 determines whether the product AB is obtained by determining whether the height of the light absorption spectrum peak at a predetermined wavelength set by the operator exceeds a predetermined value. You may When determining that the product AB is obtained, the calculation unit 22 may further calculate the yield of the product AB. The determination of whether the product AB is obtained and the calculation of the yield of the product AB described here need not be performed by the optical analysis device 20 . In this case, the determination of whether the product AB is obtained and the calculation of the yield of the product AB may be performed by the operator himself.

演算部22は、算出された各光吸収スペクトルに関する情報を表示部23に出力し、各光吸収スペクトルを必要に応じて表示させる。演算部22は、例えば、表示部23に表示された光吸収スペクトルに対する作業者からの任意の操作を、操作部24を介して受け付ける。演算部22は、算出された各光吸収スペクトルに関する情報を必要に応じて記憶部25に記憶させる。 The calculation unit 22 outputs information on each calculated light absorption spectrum to the display unit 23 to display each light absorption spectrum as necessary. The calculation unit 22 receives, for example, an operator's arbitrary operation on the light absorption spectrum displayed on the display unit 23 via the operation unit 24 . The calculation unit 22 stores information on each calculated light absorption spectrum in the storage unit 25 as necessary.

表示部23は、作業者の視覚に作用する任意の出力インタフェースを含む。表示部23を構成する出力インタフェースは、例えば、液晶ディスプレイ等の任意の表示機器を含む。表示部23は、例えば、モバイルコンピュータに一体的に備わっている液晶ディスプレイを含んでもよい。表示部23は、演算部22によって算出された各光吸収スペクトルを必要に応じて表示する。 The display 23 includes any output interface that affects the operator's vision. An output interface that configures the display unit 23 includes, for example, any display device such as a liquid crystal display. The display unit 23 may include, for example, a liquid crystal display that is integral with the mobile computer. The display unit 23 displays each light absorption spectrum calculated by the calculation unit 22 as necessary.

操作部24は、キーボード、マウス、タッチパッド、及び音声により各種の指示が入力されるマイクロホン等の任意の入力インタフェースを含む。操作部24は、例えば、タッチパネルとして、表示部23を構成する液晶ディスプレイと一体に構成されてもよい。操作部24は、例えば、表示部23に表示された光吸収スペクトルに対する作業者からの任意の操作を受け付ける。その他にも、操作部24は、例えば、光学測定装置10を用いた測定に関する設定情報の入力操作を作業者から受け付ける。 The operation unit 24 includes arbitrary input interfaces such as a keyboard, mouse, touch pad, and microphone for inputting various instructions by voice. The operation unit 24 may be configured integrally with a liquid crystal display that constitutes the display unit 23 as a touch panel, for example. The operation unit 24 receives, for example, an operator's arbitrary operation on the light absorption spectrum displayed on the display unit 23 . In addition, the operation unit 24 receives, for example, an input operation of setting information regarding measurement using the optical measurement device 10 from the operator.

記憶部25は、例えば、HDD、SSD、EEPROM、ROM、及びRAM等の任意の記憶装置を含む。記憶部25は、光学分析装置20が処理する各種情報及びプログラム等を記憶する。記憶部25は、例えば主記憶装置、補助記憶装置、又はキャッシュメモリとして機能してもよい。記憶部25は、光学分析装置20に内蔵されるものに限定されず、USB等のデジタル入出力ポート等によって接続された外付け型の記憶装置であってもよい。記憶部25は、算出された各光吸収スペクトルに関する情報を必要に応じて演算部22から取得し、これらの情報を記憶する。 The storage unit 25 includes, for example, any storage device such as HDD, SSD, EEPROM, ROM, and RAM. The storage unit 25 stores various information and programs processed by the optical analysis device 20 . The storage unit 25 may function, for example, as a main storage device, an auxiliary storage device, or a cache memory. The storage unit 25 is not limited to one built in the optical analysis device 20, and may be an external storage device connected via a digital input/output port such as a USB. The storage unit 25 acquires information on each calculated light absorption spectrum from the calculation unit 22 as necessary, and stores this information.

図3Aは、第1原料Aの光吸収スペクトルの一例を示す模式図である。図3Bは、第2原料Bの光吸収スペクトルの一例を示す模式図である。図3Cは、混合物Cの光吸収スペクトルの一例を示す模式図である。図3Dは、生成物ABの光吸収スペクトルの一例を示す模式図である。図3C及び図3Dは、一例として、フロー化学反応チューブ32における5つの位置P1、P2、P3、P4、及びP5のうち、中央の位置P3における混合物C及び生成物ABの光吸収スペクトルをそれぞれ示す。 3A is a schematic diagram showing an example of the light absorption spectrum of the first raw material A. FIG. 3B is a schematic diagram showing an example of the light absorption spectrum of the second raw material B. FIG. 3C is a schematic diagram showing an example of the light absorption spectrum of the mixture C. FIG. FIG. 3D is a schematic diagram showing an example of the light absorption spectrum of product AB. 3C and 3D show, as an example, optical absorption spectra of mixture C and product AB at center position P3 among five positions P1, P2, P3, P4, and P5 in flow chemical reaction tube 32, respectively. .

第1原料A、第2原料B、及び生成物ABそれぞれを構成する化合物は、電子準位、振動準位、及び回転準位を含む複雑なエネルギー準位構造に基づいて、複数の光吸収スペクトルピークを示すのが一般的である。しかしながら、図3A、図3B、及び図3Dでは、説明の簡便のために、それぞれ1つの光吸収スペクトルのみが例示されている。 The compounds constituting each of the first raw material A, the second raw material B, and the product AB have multiple light absorption spectra based on complex energy level structures including electronic levels, vibrational levels, and rotational levels. It is common to show peaks. However, in FIGS. 3A, 3B, and 3D, only one optical absorption spectrum is illustrated for convenience of explanation.

光学測定装置10によって取得された測定光L2の波長ごとの光吸収量データに基づくグラフは、測定光L2が透過した化合物が有するエネルギー準位構造の特定の吸収遷移波長においてディップを示す。光学分析装置20は、光学測定装置10によるこのような測定データを処理して、図3A乃至図3Dに示すような光吸収スペクトルを算出する。 A graph based on light absorption data for each wavelength of the measurement light L2 acquired by the optical measurement device 10 shows a dip at a specific absorption transition wavelength of the energy level structure of the compound through which the measurement light L2 is transmitted. The optical analysis device 20 processes such measurement data from the optical measurement device 10 to calculate optical absorption spectra as shown in FIGS. 3A to 3D.

得られた光吸収スペクトルは、化合物の所定構造の量を反映する。化合物の所定構造は、例えば、アミド結合及びペプチド結合等を含む。すなわち、化合物の所定構造の量が多い程、光吸収スペクトルピークは高くなる。加えて、化合物の所定構造に起因するエネルギー準位は、その構造の左右を構成する分子の重さに依存して変化する。したがって、第1原料A、第2原料B、及び生成物ABに起因する光吸収スペクトルピークの波長位置は、互いに異なるのが一般的である。 The resulting light absorption spectrum reflects the amount of given structure in the compound. Predetermined structures of compounds include, for example, amide bonds, peptide bonds, and the like. That is, the higher the amount of a given structure in a compound, the higher the light absorption spectral peak. In addition, the energy levels resulting from a given structure of a compound vary depending on the weights of the molecules that make up the left and right sides of that structure. Therefore, the wavelength positions of the light absorption spectrum peaks caused by the first raw material A, the second raw material B, and the product AB are generally different from each other.

例えば、1800nmから2500nmまでの近赤外領域において、アミド結合又はペプチド結合を示す光吸収スペクトルピークが存在する。当該波長領域の近赤外光吸収スペクトルの帯域における測定光L2の光吸収量を測定することで、測定地点における生成物AB中のアミド結合又はペプチド結合の量が定量的に算出可能である。アミド結合又はペプチド結合の量を算出することにより、光学分析システム1は、化学反応系30における生成物ABの収率をリアルタイムに算出可能である。 For example, in the near-infrared region from 1800 nm to 2500 nm, there are optical absorption spectral peaks indicative of amide bonds or peptide bonds. By measuring the light absorption amount of the measurement light L2 in the near-infrared light absorption spectrum band of the wavelength region, the amount of amide bond or peptide bond in the product AB at the measurement point can be quantitatively calculated. By calculating the amount of amide bonds or peptide bonds, the optical analysis system 1 can calculate the yield of the product AB in the chemical reaction system 30 in real time.

例えば、図3Aを参照すると、第1原料Aの光吸収スペクトルピークは、1800nmから2500nmまでの近赤外領域において、より短波長側に現れる。例えば、図3Bを参照すると、第2原料Bの光吸収スペクトルピークは、1800nmから2500nmまでの近赤外領域において、より長波長側に現れる。 For example, referring to FIG. 3A, the light absorption spectrum peak of the first raw material A appears on the shorter wavelength side in the near-infrared region from 1800 nm to 2500 nm. For example, referring to FIG. 3B, the light absorption spectrum peak of the second raw material B appears on the longer wavelength side in the near-infrared region from 1800 nm to 2500 nm.

例えば、位置P3では化学合成が未完結であるため、混合物Cの中に第1原料A及び第2原料Bが多く残存している。したがって、図3Cに示すように、混合物Cの光吸収スペクトル測定において、第1原料A及び第2原料Bそれぞれの光吸収スペクトルピークに対応する複数のピークが現れる。これに加えて、位置P3では混合物Cにおける生成物ABの割合が増大している。したがって、図3Cに示す光吸収スペクトル中に、生成物ABに起因する光吸収スペクトルピークが存在する。 For example, since the chemical synthesis is incomplete at position P3, a large amount of the first raw material A and the second raw material B remain in the mixture C. Therefore, as shown in FIG. 3C, in the light absorption spectrum measurement of the mixture C, a plurality of peaks corresponding to the light absorption spectrum peaks of the first raw material A and the second raw material B appear. In addition to this, the proportion of product AB in mixture C increases at position P3. Therefore, in the optical absorption spectrum shown in FIG. 3C, there is an optical absorption spectral peak attributed to the product AB.

第1原料A及び第2原料Bの光吸収スペクトルピークに対して生成物ABの光吸収スペクトルピークが十分に高い場合、混合物Cの光吸収スペクトルにおいても生成物ABの光吸収スペクトルが明瞭に突出し、その測定は容易である。しかしながら、第1原料A及び第2原料Bの光吸収スペクトルピークに対して生成物ABの光吸収スペクトルピークの高さが同程度以下である場合、生成物ABの光吸収スペクトルが混合物Cの光吸収スペクトルに埋没し、その測定は困難である。 When the light absorption spectrum peak of the product AB is sufficiently higher than the light absorption spectrum peaks of the first raw material A and the second raw material B, the light absorption spectrum of the product AB is clearly prominent in the light absorption spectrum of the mixture C. , which is easy to measure. However, when the height of the light absorption spectrum peak of the product AB is about the same or less than the light absorption spectrum peaks of the first raw material A and the second raw material B, the light absorption spectrum of the product AB is the light of the mixture C. Buried in the absorption spectrum, its measurement is difficult.

生成物ABの光吸収スペクトルが混合物Cの光吸収スペクトルに埋没するような場合においても生成物ABの光吸収スペクトルの測定を容易にするために、演算部22は、混合物Cの光吸収スペクトルから第1原料A及び第2原料Bそれぞれの光吸収スペクトルを差し引く。これにより、演算部22は、図3Dに示すような生成物ABの光吸収スペクトルを算出する。例えば、演算部22は、図3A及び図3Bにそれぞれ示す第1原料A及び第2原料Bの光吸収スペクトルのピークに所定の比率を掛け合わせて、これらの高さを、混合物Cの対応する光吸収スペクトルピークの高さと略一致させる。その後、演算部22は、混合物Cの光吸収スペクトルから第1原料A及び第2原料Bそれぞれの光吸収スペクトルを差し引く。 In order to facilitate the measurement of the light absorption spectrum of product AB even when the light absorption spectrum of product AB is buried in the light absorption spectrum of mixture C, operation unit 22 extracts the light absorption spectrum of mixture C from The optical absorption spectra of each of the first raw material A and the second raw material B are subtracted. Thereby, the calculation unit 22 calculates the optical absorption spectrum of the product AB as shown in FIG. 3D. For example, the calculation unit 22 multiplies the peaks of the light absorption spectra of the first raw material A and the second raw material B shown in FIGS. The height is approximately equal to the height of the light absorption spectrum peak. After that, the calculation unit 22 subtracts the light absorption spectrum of each of the first raw material A and the second raw material B from the light absorption spectrum of the mixture C.

このように、光学分析システム1では、生成物ABの光吸収スペクトルピークの高さに基づいて例えば演算部22が生成物ABの収率を算出する。生成物ABの収率の算出方法はこれに限定されず、任意の方法を含んでもよい。例えば、演算部22は、光吸収スペクトルピークの高さに加えて、光吸収スペクトルの幅も考慮して生成物ABの収率を算出してもよい。 Thus, in the optical analysis system 1, for example, the calculation unit 22 calculates the yield of the product AB based on the height of the light absorption spectrum peak of the product AB. The method for calculating the yield of product AB is not limited to this, and may include any method. For example, the calculation unit 22 may calculate the yield of the product AB in consideration of the width of the light absorption spectrum in addition to the height of the light absorption spectrum peak.

図4Aは、位置P1における生成物ABの光吸収スペクトルの一例を示す模式図である。図4Bは、位置P2における生成物ABの光吸収スペクトルの一例を示す模式図である。図4Cは、位置P3における生成物ABの光吸収スペクトルの一例を示す模式図である。図4Dは、位置P4における生成物ABの光吸収スペクトルの一例を示す模式図である。図4Eは、位置P5における生成物ABの光吸収スペクトルの一例を示す模式図である。 FIG. 4A is a schematic diagram showing an example of the light absorption spectrum of product AB at position P1. FIG. 4B is a schematic diagram showing an example of the light absorption spectrum of product AB at position P2. FIG. 4C is a schematic diagram showing an example of the light absorption spectrum of product AB at position P3. FIG. 4D is a schematic diagram showing an example of the optical absorption spectrum of product AB at position P4. FIG. 4E is a schematic diagram showing an example of the optical absorption spectrum of product AB at position P5.

例えば、図1に示すとおり、フロー化学反応チューブ32における複数の位置P1乃至P5で測定を実施することで、複数設置された検出部12を用いて反応時間の経過ごとに生成物ABの光吸収スペクトルが得られる。これにより、各地点の生成物ABに関して、化合物の所定構造の量が定量的に算出可能である。したがって、生成物ABの光吸収スペクトルの経時変化が把握可能であり、結果として、生成物ABに関する化合物の所定構造の量の経時変化が定量的に算出可能である。 For example, as shown in FIG. 1, by performing measurements at a plurality of positions P1 to P5 in the flow chemical reaction tube 32, a plurality of detection units 12 are used to measure the light absorption of the product AB each time the reaction time elapses. A spectrum is obtained. This allows quantitative calculation of the amount of the given structure of the compound for the product AB at each point. Therefore, it is possible to grasp the temporal change of the light absorption spectrum of the product AB, and as a result, it is possible to quantitatively calculate the temporal change of the amount of the predetermined structure of the compound related to the product AB.

例えば、図4Aから図4Eまでを順に参照すると、位置P1から位置P5に向かうにつれて混合物Cにおける生成物ABの割合が次第に増大することに伴い、生成物ABの光吸収スペクトルピークが次第に高くなっている。このとき、混合物Cにおける第1原料A及び第2原料Bの割合は次第に減少するので、第1原料A及び第2原料Bそれぞれの光吸収スペクトルピークは次第に小さくなる。 For example, referring to FIGS. 4A through 4E in sequence, as the proportion of product AB in mixture C gradually increases from position P1 to position P5, the optical absorption spectral peak of product AB becomes progressively higher. there is At this time, the proportions of the first raw material A and the second raw material B in the mixture C gradually decrease, so that the light absorption spectrum peaks of the first raw material A and the second raw material B gradually decrease.

仮に、フロー化学反応チューブ32の内部における溶液の流速が速く、第1原料A及び第2原料Bの混合直後から化学合成が完結するまでの時間が例えば0.1sから0.5sのように非常に短いような場合に測定用のサンプルを抽出すると、反応時間の規定が困難である。一方で、第1実施形態に係る光学分析システム1ではサンプルを抽出することなく光学的に分析可能であるので、混合してから何秒後の状態を分析しているのかということが正確に把握可能である。 Suppose that the flow velocity of the solution inside the flow chemical reaction tube 32 is high, and the time from immediately after the mixing of the first source material A and the second source material B to the completion of the chemical synthesis is very high, such as 0.1 s to 0.5 s. It is difficult to specify the reaction time when extracting a sample for measurement when the reaction time is short. On the other hand, in the optical analysis system 1 according to the first embodiment, optical analysis is possible without extracting the sample, so it is possible to accurately grasp how many seconds after mixing the state is being analyzed. It is possible.

図5は、図1の光学分析システム1の動作の一例を示すフローチャートである。図5を参照しながら、光学分析システム1を用いた光学分析方法の主なフローについて説明する。 FIG. 5 is a flow chart showing an example of the operation of the optical analysis system 1 of FIG. A main flow of an optical analysis method using the optical analysis system 1 will be described with reference to FIG.

ステップS101では、光学分析システム1は、光学測定装置10の照射部11を用いて、合成開始前の第1原料A及び第2原料Bそれぞれに照射光L1を照射し、かつ合成開始後の混合物Cに照射光L1を照射する。 In step S101, the optical analysis system 1 uses the irradiation unit 11 of the optical measurement device 10 to irradiate each of the first raw material A and the second raw material B before the start of synthesis with irradiation light L1, and the mixture after the start of synthesis C is irradiated with irradiation light L1.

ステップS102では、光学分析システム1は、光学測定装置10の検出部12を用いて、第1原料A、第2原料B、及び混合物Cそれぞれの分光スペクトルに関する情報を含む測定光L2を検出する。 In step S102, the optical analysis system 1 uses the detection unit 12 of the optical measurement device 10 to detect the measurement light L2 including information on the spectral spectra of the first raw material A, the second raw material B, and the mixture C.

ステップS103では、光学分析システム1は、光学分析装置20の演算部22を用いて、第1原料A、第2原料B、及び混合物Cそれぞれの分光スペクトルを算出する。 In step S<b>103 , the optical analysis system 1 uses the calculation unit 22 of the optical analysis device 20 to calculate the spectral spectra of the first raw material A, the second raw material B, and the mixture C, respectively.

ステップS104では、光学分析システム1は、光学分析装置20の演算部22を用いて、生成物ABの分光スペクトルを算出する。このとき、演算部22は、混合物Cの分光スペクトルから第1原料A及び第2原料Bそれぞれの分光スペクトルを差し引くことで、生成物ABの分光スペクトルを算出する。 In step S104, the optical analysis system 1 uses the calculation unit 22 of the optical analysis device 20 to calculate the spectrum of the product AB. At this time, the calculation unit 22 subtracts the spectral spectra of the first raw material A and the second raw material B from the spectral spectrum of the mixture C to calculate the spectral spectrum of the product AB.

以上のような第1実施形態に係る光学分析システム1によれば、化学合成によって得られる生成物ABの収率は、演算部22によって算出された生成物ABの分光スペクトルに基づいて算出可能である。したがって、第1実施形態に係る光学分析システム1によれば、化学反応系30において合成された生成物ABの量を、サンプルを抽出する必要なく、かつ非破壊的に分析できる。光学分析システム1によれば、光学測定装置10を用いて光学的手法により非接触で光吸収スペクトルが測定されるので、生成物ABの収率がリアルタイムに算出可能である。光学分析システム1によれば、生成物ABの量を測定するために混合物Cから生成物ABを分離する必要はなく、光学的に分離された光吸収スペクトルに基づいて、生成物ABの収率が迅速かつ容易に算出される。 According to the optical analysis system 1 according to the first embodiment as described above, the yield of the product AB obtained by chemical synthesis can be calculated based on the spectroscopic spectrum of the product AB calculated by the calculation unit 22. be. Therefore, according to the optical analysis system 1 according to the first embodiment, the amount of the product AB synthesized in the chemical reaction system 30 can be analyzed non-destructively without the need to extract a sample. According to the optical analysis system 1, the optical absorption spectrum is measured by an optical method in a non-contact manner using the optical measurement device 10, so the yield of the product AB can be calculated in real time. According to optical analysis system 1, it is not necessary to separate product AB from mixture C to determine the amount of product AB, and based on the optically separated light absorption spectrum, the yield of product AB is calculated quickly and easily.

光学分析システム1によれば、化学反応系30に影響を与えず非破壊的な分析が可能であるので、分析対象となる試料の廃棄コストが抑制される。光学分析システム1によれば、高額な分析装置を用いる必要がなく、またメンテナンスコストも抑制される。すなわち、光学測定装置10及び光学分析装置20を含むシンプルかつ低コストな分析システムが実現可能である。 According to the optical analysis system 1, non-destructive analysis is possible without affecting the chemical reaction system 30, so the disposal cost of the sample to be analyzed is suppressed. According to the optical analysis system 1, there is no need to use an expensive analyzer, and maintenance costs are also suppressed. That is, a simple and low-cost analysis system including the optical measurement device 10 and the optical analysis device 20 can be realized.

光学分析システム1によれば、化学反応条件を最適化するための作業工程が簡素化され、最適化のための作業効率が向上する。より具体的には、光学分析システム1は、化合物の所定構造の量をモニタリングする際に、これらの所定構造を示す光吸収スペクトルピークが変化していないにも関わらず光吸収スペクトルの他のピークにおける変化を検知することで、主反応とは別の所望しない副反応が進行していると判定することができる。したがって、光学分析システム1によれば、反応異常の迅速な検知が可能となる。これにより、作業者は、化学反応条件を最適化するための情報を迅速に獲得できる。作業者は、このような情報を用いて、生成物ABの収率を向上させることができる。 According to the optical analysis system 1, the work process for optimizing chemical reaction conditions is simplified, and the work efficiency for optimization is improved. More specifically, when monitoring the amount of predetermined structures in a compound, the optical analysis system 1 detects other peaks in the light absorption spectrum even though the light absorption spectrum peaks indicating these predetermined structures have not changed. By detecting a change in , it can be determined that an undesired side reaction other than the main reaction is proceeding. Therefore, according to the optical analysis system 1, rapid detection of reaction abnormality is possible. This allows the operator to quickly acquire information for optimizing chemical reaction conditions. Such information can be used by the operator to improve the yield of product AB.

第1実施形態において、演算部22は、混合物Cの分光スペクトルから第1原料A及び第2原料Bそれぞれの分光スペクトルを差し引くことで、生成物ABの分光スペクトルを算出してもよい。これにより、混合物Cの分光スペクトルに埋没している生成物ABの分光スペクトルが抽出される。したがって、分光スペクトルに基づく生成物ABの収率の算出に関する精度が向上する。 In the first embodiment, the calculation unit 22 may subtract the spectral spectra of the first raw material A and the second raw material B from the spectral spectrum of the mixture C to calculate the spectral spectrum of the product AB. Thereby, the spectral spectrum of the product AB buried in the spectral spectrum of the mixture C is extracted. Therefore, the accuracy of calculating the yield of the product AB based on the spectroscopic spectrum is improved.

第1実施形態において、化学反応系30は、第1原料A、第2原料B、及び混合物Cそれぞれが流路の内部を流れるフロー式の合成反応系を含んでもよい。これにより、測定用のサンプルを抽出することが困難であるフロー式の合成反応系においても、サンプルを抽出する必要なく光学的手法により非接触で光吸収スペクトルが測定される。したがって、生成物ABの収率がリアルタイムに算出可能である。 In the first embodiment, the chemical reaction system 30 may include a flow-type synthesis reaction system in which the first raw material A, the second raw material B, and the mixture C each flow inside the flow path. As a result, even in a flow-type synthesis reaction system in which it is difficult to extract a sample for measurement, the optical absorption spectrum can be measured in a non-contact manner by an optical technique without the need to extract a sample. Therefore, the yield of product AB can be calculated in real time.

(第2実施形態)
本開示の第2実施形態について主に説明する。第2実施形態では、化学反応に関する情報は、主に生成物ABの光学異性に関する情報である。第2実施形態では、生成物ABの光学異性に関する情報に主に着目して説明を行う。初めに、従来技術の問題点について説明する。
(Second embodiment)
A second embodiment of the present disclosure will be mainly described. In the second embodiment, the information on the chemical reaction is primarily information on the optical isomerism of the product AB. In the second embodiment, description will be made mainly focusing on the information on the optical isomerism of the product AB. First, the problems of the prior art will be explained.

従来、例えば、生成物がペプチド結合により形成された化合物、すなわちペプチドを含む場合、上述したキラルカラムを用いたHPLC法及び円二色性分散計を用いる方法等を含む分析方法に基づいて、ペプチドを構成するアミノ酸の光学異性に関する情報が分析される。光学異性に関する情報は、例えば、互いに光学異性体の関係を有する一対の化合物それぞれの生成の有無、一対の化合物の両方が生成されているときの互いの存在比率、及びそれぞれの量等の情報を含む。 Conventionally, for example, when the product contains a compound formed by a peptide bond, i.e., a peptide, the peptide is analyzed based on the above-described analytical methods including the HPLC method using a chiral column and the method using a circular dichroism spectrometer. Information about the optical isomerism of the constituent amino acids is analyzed. Information on optical isomerism includes, for example, whether or not each of a pair of compounds having an optical isomer relationship with each other is produced, the abundance ratio of each when both of the pair of compounds are produced, and the amount of each. include.

ペプチドを構成するアミノ酸残基の光学異性に関する情報を分析するためには、初めに分析対象のペプチドのN末端側から加水分解によりアミノ酸を1残基ずつ切り出す作業が行われる。次に、切り出されたアミノ酸を、例えばキラルカラムを有するHPLC分析装置にかける。キラルカラムにかけられた試料アミノ酸がD体及びL体のいずれを構成するかによって、キラルカラムと相互作用する時間が異なる。したがって、D体及びL体のいずれを構成するかによって溶出されてくる時間が異なる。この時間差を利用して光学異性に関する情報を分析する。 In order to analyze information on the optical isomerism of amino acid residues constituting a peptide, first, amino acids are cut out one by one by hydrolysis from the N-terminal side of the peptide to be analyzed. The cleaved amino acid is then subjected to, for example, an HPLC analyzer with a chiral column. Depending on whether the sample amino acid applied to the chiral column constitutes the D-form or the L-form, the interaction time with the chiral column differs. Therefore, the elution time differs depending on whether the D-isomer or L-isomer is formed. This time difference is used to analyze information on optical isomerism.

一方で、例えば、円二色性分散計を用いる方法においても、キラルカラムを用いたHPLC法と同様に、アミノ酸を切り出す作業が行われる。その後、各アミノ酸溶液の円二色スペクトルを取得する。光学活性物質が有する旋光性に基づいて、右回り円偏光及び左回り円偏光に対する光吸収量がそれぞれ異なる。分析対象物が有する吸収遷移に対応する波長で右回り円偏光及び左回り円偏光を照射し、その吸収量の差に基づいて円二色スペクトルが測定される。円二色スペクトルの分析によって光学活性物質がD体及びL体のいずれであるかを識別することができる。 On the other hand, for example, also in the method using a circular dichroism spectrometer, an operation of cleaving amino acids is performed in the same manner as in the HPLC method using a chiral column. A circular dichroism spectrum is then obtained for each amino acid solution. Based on the optical rotatory power of the optically active substance, the light absorption amounts for right-handed circularly polarized light and left-handed circularly polarized light are different. Right-handed circularly polarized light and left-handed circularly polarized light are irradiated at wavelengths corresponding to absorption transitions possessed by the analyte, and a circular dichroism spectrum is measured based on the difference in the amount of absorption. Analysis of the circular dichroism spectrum makes it possible to distinguish whether the optically active substance is in the D-form or the L-form.

このような従来技術では、ペプチドを構成するアミノ酸の光学異性に関する情報を分析するに際し、測定用のサンプルを抽出して、ペプチドからアミノ酸を加水分解して切り出す必要がある。このため、分析作業が煩雑で、かつ作業時間が増大していた。さらに、抽出されたサンプルは光学異性体の分析用に処理され、分析後は破棄されていた。すなわち、従来技術では破壊的な分析が行われていた。分析対象物が希少である場合、このような破壊分析によってコストが増大していた。 In such conventional techniques, when analyzing information on optical isomerism of amino acids that constitute a peptide, it is necessary to extract a sample for measurement and hydrolyze and cut out the amino acids from the peptide. Therefore, the analysis work was complicated and the work time was increased. In addition, extracted samples were processed for optical isomer analysis and discarded after analysis. That is, destructive analysis was performed in the prior art. Such destructive analysis was costly when the analytes were rare.

本開示の第2実施形態に係る光学分析システム1は、これらの問題点を解決し、化学反応系30において合成された生成物ABの光学異性に関する情報を、サンプルを抽出する必要なく、かつ非破壊的に分析できる。以下、本開示の第2実施形態に係る光学分析システム1について、添付図面を参照しながら説明する。 The optical analysis system 1 according to the second embodiment of the present disclosure solves these problems, and provides information on the optical isomerism of the product AB synthesized in the chemical reaction system 30 without the need to extract a sample and without can be destructively analyzed. An optical analysis system 1 according to a second embodiment of the present disclosure will be described below with reference to the accompanying drawings.

第2実施形態に係る光学分析システム1の構成及び機能は、図1乃至図3D、及び図5を用いて説明した第1実施形態に関する上記の内容と同一である。したがって、第1実施形態において説明した対応する内容は、第2実施形態においても同様に当てはまる。以下では、第1実施形態と異なる点について主に説明する。 The configuration and functions of the optical analysis system 1 according to the second embodiment are the same as those described above regarding the first embodiment described with reference to FIGS. 1 to 3D and FIG. Accordingly, the corresponding content described in the first embodiment applies equally to the second embodiment. Differences from the first embodiment will be mainly described below.

図3A乃至図3Dでは、光学分析システム1による基本的な処理を説明するために、生成物ABを構成する化合物の異性化については考慮していなかった。生成物ABを構成する化合物の異性化について図6A乃至図6Eを用いて説明する。 3A-3D did not consider the isomerization of the compounds that make up the product AB in order to explain the basic processing by the optical analysis system 1. FIG. The isomerization of the compounds that make up the product AB will be explained with reference to Figures 6A to 6E.

図6Aは、位置P1における生成物ABの光吸収スペクトルの一例を示す模式図である。図6Bは、位置P2における生成物ABの光吸収スペクトルの一例を示す模式図である。図6Cは、位置P3における生成物ABの光吸収スペクトルの一例を示す模式図である。図6Dは、位置P4における生成物ABの光吸収スペクトルの一例を示す模式図である。図6Eは、位置P5における生成物ABの光吸収スペクトルの一例を示す模式図である。 FIG. 6A is a schematic diagram showing an example of the light absorption spectrum of product AB at position P1. FIG. 6B is a schematic diagram showing an example of the light absorption spectrum of product AB at position P2. FIG. 6C is a schematic diagram showing an example of the light absorption spectrum of the product AB at position P3. FIG. 6D is a schematic diagram showing an example of the optical absorption spectrum of product AB at position P4. FIG. 6E is a schematic diagram showing an example of the optical absorption spectrum of product AB at position P5.

化学反応系30における化学反応条件によっては、生成物ABを構成する化合物が異性化して、互いに光学異性体の関係を有する一対の化合物を生成物ABが含む。以下では、図6A乃至図6Eを参照しながら、互いに光学異性体の関係を有する一対の化合物を生成物ABが含む場合について考える。 Depending on the chemical reaction conditions in the chemical reaction system 30, the compounds constituting the product AB are isomerized, and the product AB includes a pair of compounds having an optical isomer relationship with each other. In the following, with reference to FIGS. 6A to 6E, consider the case where product AB includes a pair of compounds having an optical isomer relationship with each other.

このとき、例えば、図6Cに示すとおり、生成物ABの光吸収スペクトルにおいて、異性化が起こっていない場合に現れる図3Dに示すようなピークに加えて、異なる波長で新たなピークが現れる。すなわち、図3Dに示すようなピークに対応する、生成物AB1に起因する光吸収スペクトルピークと、生成物AB1を構成する化合物c1の光学異性体c2から構成される生成物AB2に起因する光吸収スペクトルピークとが現れる。このとき、生成物ABは、生成物AB1と生成物AB2とを含む。 At this time, for example, as shown in FIG. 6C, in the optical absorption spectrum of product AB, in addition to the peaks shown in FIG. 3D that appear when isomerization does not occur, new peaks appear at different wavelengths. That is, the light absorption spectrum peak caused by the product AB1 and the light absorption caused by the product AB2 composed of the optical isomer c2 of the compound c1 constituting the product AB1 corresponding to the peaks shown in FIG. 3D A spectral peak appears. At this time, product AB includes product AB1 and product AB2.

このように、本開示は、生成物ABにおいて異性化が起こったときに、周囲に存在する溶媒等の他の化学物質との相互作用が化合物c1と光学異性体c2との間で異なり、吸収遷移波長が互いに異なるという新たな知見に基づく。相互作用は、例えば分子の振動状態に影響を与える任意の相互作用を含み、引力又は斥力の作用、結合の形成、及び結合の強さの程度の変化を意味する。相互作用は、例えば、ファンデルワールス力の作用、水素結合、及びイオン結合等を含む。 Thus, the present disclosure shows that when isomerization occurs in product AB, interactions with other chemicals such as solvents present in the environment differ between compound c1 and optical isomer c2, and absorption It is based on the new finding that the transition wavelengths are different from each other. Interactions include, for example, any interaction that affects the vibrational state of a molecule, and means the action of attractive or repulsive forces, the formation of bonds, and changes in the degree of bond strength. Interactions include, for example, the action of van der Waals forces, hydrogen bonding, ionic bonding, and the like.

例えば、化合物c1及び光学異性体c2それぞれの周囲に他の化学物質が存在せず、各々が単体で存在する場合、化合物c1の光吸収スペクトルと光学異性体c2の光吸収スペクトルとは、互いに一致する。化合物c1と他の化学物質とによる相互作用と、光学異性体c2と他の化学物質とによる相互作用とが互いに異なることで、それぞれのエネルギー準位構造の変化に差が生じる。この差に起因して、化合物c1の光吸収スペクトルと光学異性体c2の光吸収スペクトルとにおいて互いに異なる波長位置でピークが現れる。 For example, when there is no other chemical substance around each of the compound c1 and the optical isomer c2 and each exists alone, the light absorption spectrum of the compound c1 and the light absorption spectrum of the optical isomer c2 match each other. do. The difference between the interaction between the compound c1 and the other chemical substance and the interaction between the optical isomer c2 and the other chemical substance causes a difference in the change in the energy level structure of each. Due to this difference, peaks appear at different wavelength positions in the light absorption spectrum of compound c1 and the light absorption spectrum of optical isomer c2.

例えば、ペプチドの化学合成においてアミノ酸を連続的に連結させる反応の際に異性化が発生した場合、上述したような周辺分子との相互作用の差が発生する。このような相互作用の差に起因して、波長1800nmから2500nmまでの近赤外領域で光吸収スペクトル形状の差が生じる。したがって、波長1800nmから2500nmまでの近赤外光吸収スペクトルの帯域における測定光L2の光吸収量を測定することで、合成されたペプチドの光学異性体c2の量が定量的に算出可能である。 For example, when isomerization occurs during the reaction of consecutively linking amino acids in chemical peptide synthesis, differences in interaction with peripheral molecules as described above occur. Due to such a difference in interaction, a difference in optical absorption spectrum shape occurs in the near-infrared region with wavelengths from 1800 nm to 2500 nm. Therefore, the amount of the optical isomer c2 of the synthesized peptide can be quantitatively calculated by measuring the light absorption of the measurement light L2 in the near-infrared light absorption spectrum band from 1800 nm to 2500 nm.

例えば、図1に示すとおり、フロー化学反応チューブ32における複数の位置P1乃至P5で測定を実施することで、複数設置された検出部12を用いて反応時間の経過ごとに生成物AB1及び生成物AB2の光吸収スペクトルが得られる。これにより、各地点において、化学反応系30により合成された生成物ABの光学異性に関する情報が定量的に分析可能である。したがって、生成物ABの光学異性に関する情報の経時変化が把握可能である。例えば、化合物c1及び光学異性体c2の量の経時変化が定量的に算出可能である。 For example, as shown in FIG. 1, by performing measurements at a plurality of positions P1 to P5 in the flow chemical reaction tube 32, using a plurality of detection units 12, the product AB1 and the product Absorption spectra of AB2 are obtained. As a result, information on the optical isomerism of the product AB synthesized by the chemical reaction system 30 can be quantitatively analyzed at each point. Therefore, it is possible to grasp the temporal change of the information on the optical isomerism of the product AB. For example, changes over time in the amounts of compound c1 and optical isomer c2 can be quantitatively calculated.

例えば、図6Aから図6Eまでを順に参照すると、位置P1から位置P5に向かうにつれて混合物Cにおける生成物AB1及び生成物AB2の割合が次第に増大することに伴い、各々の光吸収スペクトルピークが次第に高くなっている。このとき、混合物Cにおける第1原料A及び第2原料Bの割合は次第に減少するので、第1原料A及び第2原料Bそれぞれの光吸収スペクトルピークは次第に小さくなる。 For example, referring to FIGS. 6A through 6E in sequence, as the proportion of product AB1 and product AB2 in mixture C gradually increases from position P1 to position P5, each optical absorption spectral peak becomes progressively higher. It's becoming At this time, the proportions of the first raw material A and the second raw material B in the mixture C gradually decrease, so that the light absorption spectrum peaks of the first raw material A and the second raw material B gradually decrease.

仮に、フロー化学反応チューブ32の内部における溶液の流速が速く、第1原料A及び第2原料Bの混合直後から化学合成が完結するまでの時間が例えば0.1sから0.5sのように非常に短いような場合に測定用のサンプルを抽出すると、反応時間の規定が困難である。一方で、第2実施形態に係る光学分析システム1ではサンプルを抽出することなく光学的に分析可能であるので、混合してから何秒後の状態を分析しているのかということが正確に把握可能である。 Suppose that the flow velocity of the solution inside the flow chemical reaction tube 32 is high, and the time from immediately after the mixing of the first source material A and the second source material B to the completion of the chemical synthesis is very high, such as 0.1 s to 0.5 s. It is difficult to specify the reaction time when extracting a sample for measurement when the reaction time is short. On the other hand, in the optical analysis system 1 according to the second embodiment, optical analysis is possible without extracting the sample, so it is possible to accurately grasp how many seconds after mixing the state is being analyzed. It is possible.

以上のような第2実施形態に係る光学分析システム1によれば、化学合成によって得られる生成物ABの光学異性に関する情報は、演算部22によって算出された生成物ABの分光スペクトルに基づいて分析可能である。したがって、第2実施形態に係る光学分析システム1によれば、化学反応系30において合成された生成物ABの光学異性に関する情報を、サンプルを抽出する必要なく、かつ非破壊的に分析できる。生成物ABは、上述したとおり、異性化していない化合物、及び互いに光学異性体の関係を有する一対の化合物のうちいずれかを含む。例えば、光学分析システム1によれば、化合物c1の光吸収スペクトルピークから分離したピークに基づいて、ペプチドの化学反応系30における光学異性体c2の量が定量的に算出可能である。 According to the optical analysis system 1 according to the second embodiment as described above, the information on the optical isomerism of the product AB obtained by chemical synthesis is analyzed based on the spectroscopic spectrum of the product AB calculated by the calculation unit 22. It is possible. Therefore, according to the optical analysis system 1 according to the second embodiment, information on the optical isomerism of the product AB synthesized in the chemical reaction system 30 can be analyzed non-destructively without the need to extract a sample. Product AB includes either a non-isomerized compound or a pair of compounds having an optical isomer relationship with each other, as described above. For example, according to the optical analysis system 1, the amount of the optical isomer c2 in the peptide chemical reaction system 30 can be quantitatively calculated based on the peak separated from the light absorption spectrum peak of the compound c1.

光学分析システム1によれば、光学測定装置10を用いて光学的手法により非接触で光吸収スペクトルが測定されるので、生成物ABの収率がリアルタイムに算出可能である。光学分析システム1によれば、生成物ABの量を測定するために混合物Cから生成物ABを分離する必要はなく、光学的に分離された光吸収スペクトルに基づいて、生成物ABの収率が迅速かつ容易に算出される。 According to the optical analysis system 1, the optical absorption spectrum is measured by an optical method in a non-contact manner using the optical measurement device 10, so the yield of the product AB can be calculated in real time. According to optical analysis system 1, it is not necessary to separate product AB from mixture C to determine the amount of product AB, and based on the optically separated light absorption spectrum, the yield of product AB is calculated quickly and easily.

光学分析システム1によれば、化学反応系30に影響を与えず非破壊的な分析が可能であるので、分析対象となる試料の廃棄コストが抑制される。光学分析システム1によれば、高額な分析装置を用いる必要がなく、またメンテナンスコストも抑制される。すなわち、光学測定装置10及び光学分析装置20を含むシンプルかつ低コストな分析システムが実現可能である。 According to the optical analysis system 1, non-destructive analysis is possible without affecting the chemical reaction system 30, so the disposal cost of the sample to be analyzed is suppressed. According to the optical analysis system 1, there is no need to use an expensive analyzer, and maintenance costs are also suppressed. That is, a simple and low-cost analysis system including the optical measurement device 10 and the optical analysis device 20 can be realized.

光学分析システム1によれば、化学反応条件を最適化するための作業工程が簡素化され、最適化のための作業効率が向上する。より具体的には、光学分析システム1は、化合物の所定構造の量をモニタリングする際に、これらの所定構造を示す光吸収スペクトルピークが変化していないにも関わらず光吸収スペクトルの他のピークにおける変化を検知することで、主反応とは別の所望しない副反応が進行していると判定することができる。したがって、光学分析システム1によれば、反応異常の迅速な検知が可能となる。これにより、作業者は、化学反応条件を最適化するための情報を迅速に獲得できる。作業者は、このような情報を用いて、生成物ABの収率を向上させたり、異性化の発生率を抑制したりすることができる。 According to the optical analysis system 1, the work process for optimizing chemical reaction conditions is simplified, and the work efficiency for optimization is improved. More specifically, when monitoring the amount of predetermined structures in a compound, the optical analysis system 1 detects other peaks in the light absorption spectrum even though the light absorption spectrum peaks indicating these predetermined structures have not changed. By detecting a change in , it can be determined that an undesired side reaction other than the main reaction is proceeding. Therefore, according to the optical analysis system 1, rapid detection of reaction abnormality is possible. This allows the operator to quickly acquire information for optimizing chemical reaction conditions. Such information can be used by the operator to improve the yield of product AB or to reduce the incidence of isomerization.

光学分析システム1によれば、得られた生成物ABの光吸収スペクトルは、周囲に存在する溶媒等の他の化学物質との相互作用を反映する。例えば、生成物ABの光吸収スペクトルは、このような相互作用を反映した波長位置にピークを有する。したがって、例えば、ペプチド等の生体分子と周辺分子との水素結合等による相互作用の変化が測定可能である。これにより、光学分析システム1は、例えば水素結合状態の変化を測定する必要がある場合にも使用可能であり、このような変化をリアルタイムに測定することができる。 According to the optical analysis system 1, the optical absorption spectrum of the obtained product AB reflects the interaction with other chemical substances such as solvents present in the surroundings. For example, the optical absorption spectrum of product AB has peaks at wavelength positions reflecting such interactions. Therefore, for example, it is possible to measure changes in interactions due to hydrogen bonding between biomolecules such as peptides and peripheral molecules. Thereby, the optical analysis system 1 can be used, for example, when it is necessary to measure changes in the hydrogen bonding state, and such changes can be measured in real time.

第2実施形態において、演算部22は、混合物Cの分光スペクトルから第1原料A及び第2原料Bそれぞれの分光スペクトルを差し引くことで、生成物ABの分光スペクトルを算出してもよい。これにより、混合物Cの分光スペクトルに埋没している生成物ABの分光スペクトルが抽出される。したがって、分光スペクトルに基づく、生成物ABの光学異性に関する情報の分析精度が向上する。 In the second embodiment, the calculation unit 22 may subtract the spectral spectra of the first raw material A and the second raw material B from the spectral spectrum of the mixture C to calculate the spectral spectrum of the product AB. Thereby, the spectral spectrum of the product AB buried in the spectral spectrum of the mixture C is extracted. Therefore, the analytical accuracy of the information on the optical isomerism of the product AB based on the spectroscopic spectrum is improved.

第2実施形態において、化学反応系30は、第1原料A、第2原料B、及び混合物Cそれぞれが流路の内部を流れるフロー式の合成反応系を含んでもよい。これにより、測定用のサンプルを抽出することが困難であるフロー式の合成反応系においても、サンプルを抽出する必要なく光学的手法により非接触で光吸収スペクトルが測定される。したがって、生成物ABの光学異性に関する情報がリアルタイムに分析可能である。 In the second embodiment, the chemical reaction system 30 may include a flow-type synthetic reaction system in which the first raw material A, the second raw material B, and the mixture C each flow inside a channel. As a result, even in a flow-type synthesis reaction system in which it is difficult to extract a sample for measurement, the optical absorption spectrum can be measured in a non-contact manner by an optical technique without the need to extract a sample. Therefore, information about the optical isomerism of product AB can be analyzed in real time.

第2実施形態において、測定光L2が有する波長帯域は、1800nmから2500nmまでの近赤外領域に含まれてもよい。これにより、光学分析システム1は、当該近赤外領域に現れる、生成物ABの光学異性に起因する分光スペクトルを算出することができる。 In the second embodiment, the wavelength band of the measurement light L2 may be included in the near-infrared region from 1800 nm to 2500 nm. Thereby, the optical analysis system 1 can calculate the spectroscopic spectrum caused by the optical isomerism of the product AB appearing in the near-infrared region.

(第3実施形態)
本開示の第3実施形態について主に説明する。第3実施形態では、化学反応に関する情報は、主に化学反応に関するパラメータの経時変化である。第3実施形態では、化学反応に関するパラメータの経時変化に主に着目して説明を行う。化学反応に関するパラメータは、例えば生成物ABの収率を含む。
(Third embodiment)
A third embodiment of the present disclosure will be mainly described. In the third embodiment, the information about chemical reactions is mainly changes over time in parameters about chemical reactions. In the third embodiment, description will be given mainly focusing on changes over time in parameters relating to chemical reactions. Parameters relating to chemical reactions include, for example, the yield of product AB.

従来の手法では、ある特定の時間において化学反応に関するパラメータを測定したい場合、サンプルを抽出して、抽出されたサンプルを分析機器により別途測定するのが通常である。したがって、化学反応に関するパラメータの経時変化を把握するためには、複数の反応時間ごとにサンプルを抽出し、各種分析機器を用いて測定する必要があった。このように、従来の測定方法は、非常に煩雑であった。 In conventional techniques, if one wishes to measure a parameter related to a chemical reaction at a particular time, it is common to extract a sample and separately measure the extracted sample with an analytical instrument. Therefore, in order to understand the temporal change of parameters related to chemical reactions, it was necessary to extract samples at multiple reaction times and measure them using various analytical instruments. Thus, conventional measurement methods are very complicated.

本開示の第3実施形態に係る光学分析システム1は、このような問題点を解決し、化学反応系30における化学反応に関するパラメータの経時変化を、サンプルを抽出する必要なく、かつ非破壊的に分析できる。以下、本開示の第3実施形態に係る光学分析システム1について、添付図面を参照しながら説明する。 The optical analysis system 1 according to the third embodiment of the present disclosure solves such problems, and changes over time in parameters related to chemical reactions in the chemical reaction system 30 without the need to extract samples and nondestructively can be analyzed. An optical analysis system 1 according to a third embodiment of the present disclosure will be described below with reference to the accompanying drawings.

第3実施形態に係る光学分析システム1の構成及び機能は、図1乃至図3D、及び図5を用いて説明した第1実施形態に関する上記の内容と同一である。したがって、第1実施形態において説明した対応する内容は、第3実施形態においても同様に当てはまる。以下では、第1実施形態において説明した、生成物ABに関する化合物の所定構造の量、すなわち生成物ABの収率の経時変化についてより詳細に説明する。以下の説明は、生成物AB1と、生成物AB1を構成する化合物c1の光学異性体c2から構成される生成物AB2とを生成物ABが含む第2実施形態に対しても同様に当てはまる。 The configuration and functions of the optical analysis system 1 according to the third embodiment are the same as those described above regarding the first embodiment described with reference to FIGS. 1 to 3D and FIG. Accordingly, the corresponding content described in the first embodiment applies equally to the third embodiment. In the following, the change over time in the amount of the predetermined structure of the compound related to the product AB, that is, the yield of the product AB described in the first embodiment will be described in more detail. The following description applies equally to a second embodiment in which the product AB comprises a product AB1 and a product AB2 composed of the optical isomer c2 of the compound c1 which constitutes the product AB1.

第1実施形態において説明したように、照射部11は、混合物Cが流れる、マイクロリアクター33よりも下流側のフロー化学反応チューブ32に沿った複数の位置P1、P2、P3、P4、及びP5それぞれにおいて照射光L1cを照射する。フロー化学反応チューブ32における5つの位置P1、P2、P3、P4、及びP5は、マイクロリアクター33から順に離れている。すなわち、位置P1からP5に向かうにつれて、混合物Cにおける反応時間が増大する。照射部11は、合成開始後の混合物Cに対して、複数の反応時間ごとに照射光L1cを照射する。反応時間は、例えばマイクロリアクター33から各位置までの距離を、フロー化学反応チューブ32の内部を流れる溶液の流速で除算することで算出されてもよい。 As described in the first embodiment, the irradiation unit 11 is provided at a plurality of positions P1, P2, P3, P4, and P5 respectively along the flow chemical reaction tube 32 downstream of the microreactor 33, where the mixture C flows. , the irradiation light L1c is emitted. Five positions P 1 , P 2 , P 3 , P 4 and P 5 in the flow chemical reaction tube 32 are separated from the microreactor 33 in order. That is, the reaction time in mixture C increases from position P1 to P5. The irradiation unit 11 irradiates the mixture C after the start of synthesis with the irradiation light L1c for each of a plurality of reaction times. The reaction time may be calculated, for example, by dividing the distance from the microreactor 33 to each position by the flow velocity of the solution flowing inside the flow chemical reaction tube 32 .

図7は、第3実施形態に係る光学分析システム1の演算部22によって算出される化学反応に関するパラメータの経時変化の一例を示す図である。図7に示すグラフでは、縦軸は、例えば生成物ABの収率を示す。横軸は、例えば混合物Cにおける反応時間を示し、位置P1、P2、P3、P4、及びP5にそれぞれ対応する反応時間t1、t2、t3、t4、及びt5を目盛りとして示す。 FIG. 7 is a diagram showing an example of temporal changes in parameters relating to chemical reactions calculated by the computing unit 22 of the optical analysis system 1 according to the third embodiment. In the graph shown in FIG. 7, the vertical axis indicates, for example, the yield of product AB. The horizontal axis, for example, indicates the reaction time in mixture C, with reaction times t1, t2, t3, t4, and t5 corresponding to positions P1, P2, P3, P4, and P5, respectively, on a scale.

演算部22は、図4A乃至図4Eに示すような、複数の反応時間t1、t2、t3、t4、及びt5ごとに算出された生成物ABの分光スペクトルに基づいて、化学反応に関するパラメータの経時変化を算出する。例えば、演算部22は、図4Aに示すような位置P1における光吸収スペクトルに対して、ピークの高さに基づき生成物ABの収率を算出する。同様に、演算部22は、図4B、4C、4D、及び4Eにそれぞれ示すような位置P2、P3、P4、及びP5における光吸収スペクトルに対して、ピークの高さに基づき生成物ABの収率を算出する。演算部22は、算出された生成物ABの各収率を、各反応時間と関連付け、生成物ABの収率の経時変化を算出する。演算部22は、算出された生成物ABの収率の経時変化を記憶部25に格納してもよい。 4A to 4E, based on the spectroscopic spectrum of the product AB calculated for each of a plurality of reaction times t1, t2, t3, t4, and t5, the parameters related to the chemical reaction over time Calculate change. For example, the calculation unit 22 calculates the yield of the product AB based on the peak height for the light absorption spectrum at the position P1 as shown in FIG. 4A. Similarly, the computing unit 22 calculates the yield of the product AB based on the peak heights for the optical absorption spectra at positions P2, P3, P4, and P5 as shown in FIGS. 4B, 4C, 4D, and 4E, respectively. Calculate the rate. The calculation unit 22 associates each calculated yield of the product AB with each reaction time, and calculates the temporal change in the yield of the product AB. The calculation unit 22 may store the calculated temporal change in the yield of the product AB in the storage unit 25 .

演算部22は、例えば、化学反応が開始される前に、操作部24から取得した作業者による入力情報に基づいて、化学反応に関するパラメータの経時変化に関するシミュレーションを実行してもよい。演算部22は、シミュレーション結果を記憶部25に格納してもよい。 The computing unit 22 may, for example, perform a simulation of changes over time in parameters relating to the chemical reaction based on information input by the operator obtained from the operating unit 24 before the chemical reaction is started. The computing unit 22 may store the simulation result in the storage unit 25 .

演算部22は、シミュレーション結果が得られた後に化学反応が開始されると、記憶部25に記憶されているシミュレーション結果と、実際に算出された反応時間ごとの生成物ABの収率とをさらに関連付けてもよい。図7に示すとおり、演算部22は、シミュレーション結果と実際の生成物ABの収率の経時変化とを対応させて、例えば表示部23に表示させてもよい。図7において、例えば、実線がシミュレーション結果を示し、点が実際の生成物ABの収率の経時変化を示す。 When the chemical reaction is started after the simulation result is obtained, the calculation unit 22 further calculates the simulation result stored in the storage unit 25 and the actually calculated yield of the product AB for each reaction time. may be associated. As shown in FIG. 7, the calculation unit 22 may cause the display unit 23, for example, to display the simulation result and the actual change in the yield of the product AB over time in association with each other. In FIG. 7, for example, the solid line indicates the simulation results, and the dots indicate changes in the yield of the actual product AB over time.

図7において、シミュレーション結果は、例えば、反応時間が増大するに従って生成物ABの収率が略一定の割合で増大し、所定の反応時間においてグラフが変曲して生成物ABの収率が反応時間に対して略一定となる様子を示す。例えば、反応時間t1、t2、t3、t4、及びt5ごとに実際に算出された生成物ABの収率も同様の振る舞いを示す。より具体的には、反応時間t1、t2、及びt3では、生成物ABの収率は、反応時間が増大するに従って略一定の割合で増大する。グラフは、反応時間t3及びt4の間で変曲する。反応時間t4及びt5では、生成物ABの収率は、反応時間に対して略一定となる。 In FIG. 7, the simulation results show that, for example, as the reaction time increases, the yield of product AB increases at a substantially constant rate, and at a predetermined reaction time, the graph inverts and the yield of product AB increases. It shows how it becomes substantially constant with time. For example, the actual calculated yields of product AB for each reaction time t1, t2, t3, t4, and t5 show a similar behavior. More specifically, at reaction times t1, t2, and t3, the yield of product AB increases at a substantially constant rate with increasing reaction time. The graph bends between reaction times t3 and t4. At reaction times t4 and t5, the yield of product AB becomes approximately constant with reaction time.

作業者は、演算部22によって実行されたシミュレーション結果に基づいて、化学反応における化学反応条件を設定し、設定された化学反応条件に基づいて化学反応を開始させる。作業者は、例えば、実際の生成物ABの収率がシミュレーション結果に対して時間と共にどのように追従していくのかを表示部23により確認することができる。その上で、作業者は、グラフの変曲点に基づいて、化学反応が終了する時間を把握することが可能である。また、作業者は、実際の生成物ABの収率の経時変化とシミュレーション結果との整合性を確認し、化学反応条件を最適化したり、シミュレーション用の推測モデルを最適化したりすることも可能となる。作業者は、実際の生成物ABの収率の経時変化とシミュレーション結果との整合性を光学分析システム1による光学的手法により非接触でリアルタイムに確認することができる。したがって、光学分析システム1によれば、化学反応条件等を最適化するための作業工程が簡素化され、最適化のための作業効率が向上する。 The operator sets chemical reaction conditions for the chemical reaction based on the results of the simulation performed by the computing unit 22, and starts the chemical reaction based on the set chemical reaction conditions. The operator can confirm, for example, how the yield of the actual product AB follows the simulation result over time on the display unit 23 . In addition, the operator can grasp the time when the chemical reaction will end based on the inflection point of the graph. In addition, the operator can check the consistency of the actual product AB yield over time with the simulation results, optimize the chemical reaction conditions, and optimize the inference model for simulation. Become. The operator can confirm the consistency of the actual yield of the product AB over time with the simulation result by an optical method using the optical analysis system 1 in a non-contact manner in real time. Therefore, according to the optical analysis system 1, the work process for optimizing chemical reaction conditions and the like is simplified, and the work efficiency for optimization is improved.

以上のような作業者による作業を、例えば演算部22が、機械学習により実行してもよい。演算部22は、そのような処理を実行するために任意の学習処理の構成を有してもよい。 For example, the operation unit 22 may perform the work by the worker as described above by machine learning. The computing unit 22 may have any configuration for learning processing in order to perform such processing.

図8は、第3実施形態に係る光学分析システム1の動作の一例を示すフローチャートである。図8を参照しながら、光学分析システム1を用いた光学分析方法の主なフローについて説明する。 FIG. 8 is a flow chart showing an example of the operation of the optical analysis system 1 according to the third embodiment. A main flow of an optical analysis method using the optical analysis system 1 will be described with reference to FIG.

ステップS201では、光学分析システム1は、光学測定装置10の照射部11を用いて、合成開始前の第1原料A及び第2原料Bそれぞれに照射光L1を照射し、かつ合成開始後の混合物Cに複数の反応時間ごとに照射光L1を照射する。 In step S201, the optical analysis system 1 uses the irradiation unit 11 of the optical measurement device 10 to irradiate the first raw material A and the second raw material B before the start of synthesis with irradiation light L1, and the mixture after the start of synthesis C is irradiated with irradiation light L1 for each of a plurality of reaction times.

ステップS202では、光学分析システム1は、光学測定装置10の検出部12を用いて、第1原料A、第2原料B、及び混合物Cそれぞれの分光スペクトルに関する情報を含む測定光L2を検出する。 In step S202, the optical analysis system 1 uses the detection unit 12 of the optical measurement device 10 to detect the measurement light L2 including information on the spectral spectra of the first raw material A, the second raw material B, and the mixture C.

ステップS203では、光学分析システム1は、光学分析装置20の演算部22を用いて、第1原料A、第2原料B、及び混合物Cそれぞれの分光スペクトルを算出する。 In step S<b>203 , the optical analysis system 1 uses the calculation unit 22 of the optical analysis device 20 to calculate the spectral spectra of the first raw material A, the second raw material B, and the mixture C.

ステップS204では、光学分析システム1は、光学分析装置20の演算部22を用いて、生成物ABの分光スペクトルを算出する。このとき、演算部22は、混合物Cの分光スペクトルから第1原料A及び第2原料Bそれぞれの分光スペクトルを差し引くことで、生成物ABの分光スペクトルを算出する。 In step S204, the optical analysis system 1 uses the calculation unit 22 of the optical analysis device 20 to calculate the spectrum of the product AB. At this time, the calculation unit 22 subtracts the spectral spectra of the first raw material A and the second raw material B from the spectral spectrum of the mixture C to calculate the spectral spectrum of the product AB.

ステップS205では、光学分析システム1は、光学分析装置20の演算部22を用いて、複数の反応時間ごとに算出された生成物ABの分光スペクトルに基づいて、化学反応に関するパラメータの経時変化を算出する。 In step S205, the optical analysis system 1 uses the calculation unit 22 of the optical analysis device 20 to calculate changes over time in parameters related to chemical reactions based on the spectrum of the product AB calculated for each of a plurality of reaction times. do.

以上のような第3実施形態に係る光学分析システム1によれば、化学反応に関するパラメータの経時変化は、演算部22によって算出された生成物ABの分光スペクトルに基づいて算出可能である。したがって、第3実施形態に係る光学分析システム1によれば、化学反応系30における化学反応に関するパラメータの経時変化を、サンプルを抽出する必要なく、かつ非破壊的に分析できる。光学分析システム1によれば、光学測定装置10を用いて光学的手法により非接触で光吸収スペクトルが測定されるので、化学反応に関するパラメータの経時変化がリアルタイムに算出及びモニタリング可能である。例えば、作業者及び光学分析システム1は、化学反応が終了する時間等をリアルタイムに推定できる。光学分析システム1によれば、化学反応に関するパラメータの経時変化を算出するために混合物Cから生成物ABを分離する必要はなく、光学的に分離された光吸収スペクトルに基づいて、化学反応に関するパラメータの経時変化が迅速かつ容易に算出される。 According to the optical analysis system 1 according to the third embodiment as described above, it is possible to calculate the change over time of the parameters relating to the chemical reaction based on the spectroscopic spectrum of the product AB calculated by the calculator 22 . Therefore, according to the optical analysis system 1 according to the third embodiment, it is possible to non-destructively analyze changes over time in parameters relating to chemical reactions in the chemical reaction system 30 without the need to extract samples. According to the optical analysis system 1, the optical measurement device 10 is used to measure the light absorption spectrum by an optical technique in a non-contact manner, so changes over time in parameters relating to chemical reactions can be calculated and monitored in real time. For example, the operator and the optical analysis system 1 can estimate in real time the time at which the chemical reaction is completed. According to the optical analysis system 1, it is not necessary to separate the product AB from the mixture C in order to calculate the change in the parameters related to the chemical reaction over time, and based on the optically separated light absorption spectra, the parameters related to the chemical reaction is calculated quickly and easily.

光学分析システム1によれば、化学反応系30に影響を与えず非破壊的な分析が可能であるので、分析対象となる試料の廃棄コストが抑制される。光学分析システム1は化学反応系30に影響を与えない測定技術を基盤とするため、測定を目的として化学反応系30を停止させる必要がない。 According to the optical analysis system 1, non-destructive analysis is possible without affecting the chemical reaction system 30, so the disposal cost of the sample to be analyzed is suppressed. Since the optical analysis system 1 is based on measurement technology that does not affect the chemical reaction system 30, there is no need to stop the chemical reaction system 30 for the purpose of measurement.

光学分析システム1によれば、高額な分析装置を用いる必要がなく、またメンテナンスコストも抑制される。すなわち、光学測定装置10及び光学分析装置20を含むシンプルかつ低コストな分析システムが実現可能である。 According to the optical analysis system 1, there is no need to use an expensive analyzer, and maintenance costs are also suppressed. That is, a simple and low-cost analysis system including the optical measurement device 10 and the optical analysis device 20 can be realized.

第3実施形態では、化学反応に関するパラメータは例えば生成物ABの収率を含み、生成物ABの経時変化について主に説明した。化学反応に関するパラメータは、これに限定されず、他の任意のパラメータを含んでもよい。例えば、化学反応に関するパラメータは、化学反応系30、より具体的にはマイクロリアクター33よりも下流側のフロー化学反応チューブ32における温度を含んでもよいし、生成物ABの純度を含んでもよい。 In the third embodiment, the parameters related to the chemical reaction include, for example, the yield of product AB, and the change over time of product AB has been mainly described. Parameters related to chemical reactions are not limited to these, and may include other arbitrary parameters. For example, the parameters relating to the chemical reaction may include the temperature in the chemical reaction system 30, more specifically the flow chemical reaction tube 32 downstream of the microreactor 33, and the purity of the product AB.

化学反応に関するパラメータが化学反応系30の温度である場合、光学分析システム1は、例えば、化学反応に基づく反応熱によって反応時間ごとにどの程度の温度になっているのかを示す、化学反応系30の温度の経時変化を算出する。例えば、演算部22は、図4A乃至図4Eに示すような各位置における光吸収スペクトルに対して、ピークの高さに基づき化学反応系30の温度を算出する。加えて、例えば、演算部22は、図4A乃至図4Eに示すような各位置における光吸収スペクトルに対して、ピークの波長位置にも基づき化学反応系30の温度を算出してもよい。 When the parameter related to the chemical reaction is the temperature of the chemical reaction system 30, the optical analysis system 1 indicates, for example, the temperature of the chemical reaction system 30 for each reaction time due to reaction heat based on the chemical reaction. Calculate the change in temperature over time. For example, the calculation unit 22 calculates the temperature of the chemical reaction system 30 based on the peak height of the light absorption spectrum at each position as shown in FIGS. 4A to 4E. In addition, for example, the calculation unit 22 may calculate the temperature of the chemical reaction system 30 based on the wavelength position of the peak for the light absorption spectrum at each position as shown in FIGS. 4A to 4E.

光学分析システム1によって、化学反応系30の温度の経時変化が得られれば、作業者及び光学分析システム1は、化学反応系30における温度変化が化学反応にどう影響を与えているかを分析することができる。作業者及び光学分析システム1は、例えば、生成物ABの収率がより向上するような、温度に関する化学反応条件を最適化することも容易となる。作業者及び光学分析システム1は、例えば発熱反応に基づいて化学反応系30の温度が上昇しているか否か等の判定基準に基づいて、主反応とは別の所望しない副反応が進行していると判定することも可能となる。 If the temperature change over time of the chemical reaction system 30 is obtained by the optical analysis system 1, the operator and the optical analysis system 1 can analyze how the temperature change in the chemical reaction system 30 affects the chemical reaction. can be done. The operator and the optical analysis system 1 are also facilitated in optimizing the chemical reaction conditions, e.g. with respect to temperature, such that the yield of product AB is better. The operator and the optical analysis system 1 determine whether an undesired side reaction other than the main reaction is progressing based on a criterion such as whether the temperature of the chemical reaction system 30 is rising due to an exothermic reaction, for example. It is also possible to determine that

第3実施形態では、光学分析システム1は、化学反応に関するパラメータの経時変化を算出するために、5つの位置P1、P2、P3、P4、及びP5において化学反応に関するパラメータを算出するとして説明した。測定点の数は、これに限定されず、少なくとも2つであればよい。 In the third embodiment, the optical analysis system 1 is described as calculating parameters for chemical reactions at five positions P1, P2, P3, P4, and P5 in order to calculate changes over time in parameters for chemical reactions. The number of measurement points is not limited to this, and may be at least two.

本開示は、その精神又はその本質的な特徴から離れることなく、上述した実施形態以外の他の所定の形態で実現できることは当業者にとって明白である。したがって、先の記述は例示的であり、これに限定されない。開示の範囲は、先の記述によってではなく、付加した請求項によって定義される。あらゆる変更のうちその均等の範囲内にあるいくつかの変更は、その中に包含されるとする。 It will be apparent to those skilled in the art that the present disclosure can be embodied in certain other forms than those described above without departing from the spirit or essential characteristics thereof. Accordingly, the preceding description is exemplary, and not limiting. The scope of the disclosure is defined by the appended claims rather than by the foregoing description. Any changes that fall within the range of equivalence are intended to be included therein.

例えば、上述した各構成部の形状、配置、向き、及び個数等は、上記の説明及び図面における図示の内容に限定されない。各構成部の形状、配置、向き、及び個数等は、その機能を実現できるのであれば、任意に構成されてもよい。 For example, the shape, arrangement, orientation, number, and the like of each component described above are not limited to the contents illustrated in the above description and drawings. The shape, arrangement, orientation, number, and the like of each component may be arbitrarily configured as long as the function can be realized.

第1実施形態乃至第3実施形態では、演算部22は、混合物Cの光吸収スペクトルから第1原料A及び第2原料Bそれぞれの光吸収スペクトルを差し引くことで生成物ABの分光スペクトルを算出するとして説明したが、算出方法はこれに限定されない。演算部22は、混合物Cの光吸収スペクトルにおいても生成物ABの光吸収スペクトルが明瞭に測定可能であれば、光吸収スペクトルを差し引く処理を実行しなくてもよい。このとき、演算部22は、混合物Cの光吸収スペクトルにおいて、第1原料A及び第2原料Bの光吸収スペクトルピークと異なる所定のピークを生成物ABの光吸収スペクトルピークとして判定してもよい。 In the first to third embodiments, the calculation unit 22 subtracts the light absorption spectra of the first raw material A and the second raw material B from the light absorption spectrum of the mixture C to calculate the spectral spectrum of the product AB. However, the calculation method is not limited to this. If the light absorption spectrum of the product AB can be clearly measured even in the light absorption spectrum of the mixture C, the calculation unit 22 does not need to perform the process of subtracting the light absorption spectrum. At this time, in the light absorption spectrum of the mixture C, the calculation unit 22 may determine a predetermined peak different from the light absorption spectrum peaks of the first raw material A and the second raw material B as the light absorption spectrum peak of the product AB. .

演算部22は、光吸収スペクトルを差し引く処理に代えて、又は加えて、任意の表示方法を用いて生成物ABの光吸収スペクトルを強調表示してもよい。表示方法は、例えば、光吸収スペクトルピークに合わせてカーソル及び縦線等を表示する方法、光吸収スペクトル全体の表示色を変化させる方法、並びに光吸収スペクトル全体を点滅させる方法等の方法を含む。 Instead of or in addition to the process of subtracting the light absorption spectrum, the calculation unit 22 may highlight the light absorption spectrum of the product AB using any display method. The display method includes, for example, a method of displaying a cursor and a vertical line according to the light absorption spectrum peak, a method of changing the display color of the entire light absorption spectrum, and a method of blinking the entire light absorption spectrum.

第1実施形態乃至第3実施形態では、化学反応系30は、フロー化学反応チューブ32の内部を流れるフロー式の合成反応系を含むとして説明したが、これに限定されない。化学反応系30は、バッチ式の合成反応系を含んでもよい。例えば、化学反応系30がバッチ式の合成反応系である場合、第3実施形態において化学反応に関するパラメータの経時変化を演算部22が算出するために、照射部11は、上記のように複数の位置で照射光L1を照射する必要はなく、1か所のみに照射光L1を照射してもよい。 In the first to third embodiments, the chemical reaction system 30 has been described as including a flow-type synthesis reaction system that flows inside the flow chemical reaction tube 32, but is not limited to this. Chemical reaction system 30 may include a batch synthesis reaction system. For example, when the chemical reaction system 30 is a batch-type synthesis reaction system, the irradiating unit 11 uses a plurality of It is not necessary to irradiate the irradiation light L1 at one position, and the irradiation light L1 may be irradiated only at one position.

第1実施形態乃至第3実施形態では、測定光L2が有する波長帯域は、1800nmから2500nmまでの近赤外領域に含まれるとして説明したが、これに限定されない。測定光L2は、光学分析システム1が生成物ABの光吸収スペクトルを分析可能な任意の波長帯域を有してもよい。例えば、測定光L2が有する波長帯域は、紫外、可視、中赤外、及び遠赤外領域を含む任意の波長領域に含まれていてもよい。 In the first to third embodiments, the wavelength band of the measurement light L2 was described as being included in the near-infrared region from 1800 nm to 2500 nm, but it is not limited to this. The measurement light L2 may have any wavelength band that allows the optical analysis system 1 to analyze the light absorption spectrum of the product AB. For example, the wavelength band of the measurement light L2 may be included in any wavelength region including ultraviolet, visible, mid-infrared, and far-infrared regions.

第1実施形態乃至第3実施形態では、測定光L2は照射光L1に基づく透過光を含み、分光スペクトルは光吸収スペクトルを含むとして説明したが、これに限定されない。光学分析システム1は、このような吸収分光法以外にも任意の分光法を用いて生成物ABの分光スペクトルを算出してもよい。分光法は、例えば、蛍光分光法及びラマン分光法等を含んでもよい。例えば、蛍光分光法では、測定光L2は照射光L1に基づく蛍光を含み、分光スペクトルは蛍光スペクトルを含む。例えば、ラマン分光法では、測定光L2は照射光L1に基づくラマン光を含み、分光スペクトルはラマンスペクトルを含む。 In the first to third embodiments, the measurement light L2 includes transmitted light based on the irradiation light L1, and the spectral spectrum includes the light absorption spectrum, but the present invention is not limited to this. The optical analysis system 1 may calculate the spectroscopic spectrum of the product AB using any spectroscopic method other than such absorption spectroscopic method. Spectroscopy may include, for example, fluorescence spectroscopy and Raman spectroscopy. For example, in fluorescence spectroscopy, the measurement light L2 includes fluorescence based on the illumination light L1, and the spectral spectrum includes the fluorescence spectrum. For example, in Raman spectroscopy, the measurement light L2 includes Raman light based on the illumination light L1, and the spectral spectrum includes a Raman spectrum.

図9は、第1実施形態乃至第3実施形態に係る光学分析システム1の変形例のブロック図である。第1実施形態乃至第3実施形態では、光学分析システム1は、光学測定装置10及び光学分析装置20に基づいて、各構成部の機能が分離した異なる複数の装置によって構成されるとして説明した。光学分析システム1の構成は、これに限定されない。例えば、図9に示すとおり、変形例に係る光学分析システム1は、各構成部の機能が集約された1つの装置によって構成されてもよい。 FIG. 9 is a block diagram of a modification of the optical analysis system 1 according to the first to third embodiments. In the first to third embodiments, the optical analysis system 1 has been described as being composed of a plurality of different devices with separate functions based on the optical measurement device 10 and the optical analysis device 20 . The configuration of the optical analysis system 1 is not limited to this. For example, as shown in FIG. 9, the optical analysis system 1 according to the modification may be configured by one device in which the functions of each component are integrated.

変形例に係る光学分析システム1は、第1実施形態乃至第3実施形態における制御部13及び演算部22の機能を集約した演算部16と、第1実施形態乃至第3実施形態における記憶部15及び記憶部25の機能を集約した記憶部17と、照射部11と、検出部12と、表示部23と、操作部24とを有する。変形例に係る光学分析システム1の各構成部の機能については、第1実施形態乃至第3実施形態の対応する構成部と同様の説明が適用される。 The optical analysis system 1 according to the modification includes a calculation unit 16 that integrates the functions of the control unit 13 and the calculation unit 22 in the first to third embodiments, and the storage unit 15 in the first to third embodiments. and a storage unit 17 that integrates the functions of the storage unit 25, an irradiation unit 11, a detection unit 12, a display unit 23, and an operation unit 24. For the function of each component of the optical analysis system 1 according to the modification, the same description as that of the corresponding component of the first to third embodiments is applied.

以上のような変形例に係る光学分析システム1によれば、第1実施形態乃至第3実施形態と同様の効果を奏する。加えて、測定光L2の波長ごとの光吸収量の測定、及び分光スペクトルの算出等の処理が1つの装置で実行されるので、光学分析システム1の構成がよりシンプルになる。 According to the optical analysis system 1 according to the modification as described above, the same effects as those of the first to third embodiments can be obtained. In addition, the optical analysis system 1 has a simpler configuration because processing such as the measurement of the light absorption amount for each wavelength of the measurement light L2 and the calculation of the spectroscopic spectrum are performed by one apparatus.

例えば、上述した光学分析方法の各ステップに含まれる機能等は、論理的に矛盾しないように再配置可能であり、複数のステップを1つに組み合わせたり、又は分割したりすることが可能である。 For example, the functions included in each step of the optical analysis method described above can be rearranged so as not to be logically inconsistent, and multiple steps can be combined into one or divided. .

上記では、光学分析システム1及び光学分析方法について主に説明したが、本開示は、制御部13、演算部22、及び演算部16それぞれが有するプロセッサにより実行されるプログラム又はプログラムを記録した記憶媒体としても実現し得るものである。本開示の範囲には、これらも包含されると理解されたい。 Although the optical analysis system 1 and the optical analysis method have been mainly described above, the present disclosure is a program executed by a processor included in each of the control unit 13, the calculation unit 22, and the calculation unit 16, or a storage medium recording the program It can also be realized as It should be understood that the scope of the present disclosure includes these as well.

1 光学分析システム
10 光学測定装置
11 照射部
12 検出部
13 制御部
14 通信部
15 記憶部
16 演算部
17 記憶部
20 光学分析装置
21 通信部
22 演算部
23 表示部
24 操作部
25 記憶部
30 化学反応系
31 送液ポンプ
32 フロー化学反応チューブ(流路)
33 マイクロリアクター
40 データ通信ケーブル
A 第1原料
B 第2原料
AB、AB1、AB2 生成物
C 混合物
c1 化合物
c2 光学異性体
L1、L1a、L1b、L1c 照射光
L2、L2a、L2b、L2c 測定光
P1、P2、P3、P4、P5 位置
t1、t2、t3、t4、t5 反応時間
1 optical analysis system 10 optical measurement device 11 irradiation unit 12 detection unit 13 control unit 14 communication unit 15 storage unit 16 calculation unit 17 storage unit 20 optical analysis device 21 communication unit 22 calculation unit 23 display unit 24 operation unit 25 storage unit 30 chemistry Reaction system 31 Liquid sending pump 32 Flow chemical reaction tube (flow path)
33 Microreactor 40 Data communication cable A First raw material B Second raw material AB, AB1, AB2 Product C Mixture c1 Compound c2 Optical isomers L1, L1a, L1b, L1c Irradiation light L2, L2a, L2b, L2c Measurement light P1, P2, P3, P4, P5 Position t1, t2, t3, t4, t5 Reaction time

Claims (10)

第1原料と第2原料とを合成して生成物を得る化学反応系において、合成開始前の前記第1原料及び前記第2原料それぞれに照射光を照射し、かつ前記第1原料、前記第2原料、及び前記生成物を含む合成開始後の混合物に照射光を複数の反応時間ごとに照射する照射部と、
前記照射部によって照射された前記照射光に基づく測定光であって、前記第1原料、前記第2原料、及び前記混合物それぞれの分光スペクトルに関する情報を含む前記測定光を検出する検出部と、
前記第1原料、前記第2原料、及び前記混合物それぞれの分光スペクトルを算出し、各分光スペクトルに基づいて、前記生成物の分光スペクトルを算出する演算部と、
を備え、
前記演算部は、複数の反応時間ごとに算出された前記生成物の前記分光スペクトルに基づいて、化学反応に関するパラメータの経時変化を算出する、
光学分析システム。
In a chemical reaction system for obtaining a product by synthesizing a first raw material and a second raw material, each of the first raw material and the second raw material before the start of synthesis is irradiated with irradiation light, and the first raw material and the second raw material are irradiated with irradiation light. an irradiating unit that irradiates a mixture containing two raw materials and the product after the start of synthesis with irradiation light every a plurality of reaction times;
a detection unit that detects the measurement light based on the irradiation light emitted by the irradiation unit, the measurement light containing information on the respective spectral spectra of the first raw material, the second raw material, and the mixture;
a calculation unit that calculates the spectral spectrum of each of the first raw material, the second raw material, and the mixture, and calculates the spectral spectrum of the product based on each spectral spectrum;
with
The calculation unit calculates changes over time in parameters related to chemical reactions based on the spectroscopic spectra of the products calculated for each of a plurality of reaction times,
Optical analysis system.
前記演算部は、前記混合物の分光スペクトルから前記第1原料及び前記第2原料それぞれの分光スペクトルを差し引くことで、前記生成物の分光スペクトルを算出する、
請求項1に記載の光学分析システム。
The calculation unit calculates the spectral spectrum of the product by subtracting the spectral spectrum of each of the first raw material and the second raw material from the spectral spectrum of the mixture.
An optical analysis system according to claim 1.
前記化学反応系は、前記第1原料、前記第2原料、及び前記混合物それぞれが流路の内部を流れるフロー式の合成反応系を含む、
請求項1又は2に記載の光学分析システム。
The chemical reaction system includes a flow-type synthetic reaction system in which the first raw material, the second raw material, and the mixture each flow through a channel,
3. An optical analysis system according to claim 1 or 2.
前記照射部は、前記混合物が流れる前記流路に沿った複数の位置それぞれにおいて前記照射光を照射する、
請求項3に記載の光学分析システム。
The irradiation unit irradiates the irradiation light at each of a plurality of positions along the flow path through which the mixture flows,
An optical analysis system according to claim 3.
前記化学反応に関するパラメータは、前記生成物の収率を含む、
請求項1乃至4のいずれか1項に記載の光学分析システム。
parameters relating to the chemical reaction include the yield of the product;
5. An optical analysis system according to any one of claims 1-4.
前記第1原料及び前記第2原料それぞれは、アミノ酸を含み、
前記生成物は、ペプチド結合により形成された化合物を含む、
請求項1乃至5のいずれか1項に記載の光学分析システム。
Each of the first raw material and the second raw material contains an amino acid,
the product comprises a compound formed by a peptide bond;
6. An optical analysis system according to any one of claims 1-5.
前記測定光が有する波長帯域は、1800nmから2500nmまでの近赤外領域に含まれる、
請求項1乃至6のいずれか1項に記載の光学分析システム。
The wavelength band of the measurement light is included in the near-infrared region from 1800 nm to 2500 nm.
7. An optical analysis system according to any one of claims 1-6.
前記測定光は、前記第1原料、前記第2原料、及び前記混合物それぞれを透過した、前記照射光に基づく透過光を含み、
前記分光スペクトルは、光吸収スペクトルを含む、
請求項1乃至7のいずれか1項に記載の光学分析システム。
The measurement light includes transmitted light based on the irradiation light that has passed through each of the first raw material, the second raw material, and the mixture,
The spectroscopic spectrum includes a light absorption spectrum,
8. An optical analysis system according to any one of claims 1-7.
第1原料と第2原料とを合成して生成物を得る化学反応系において、合成開始前の前記第1原料及び前記第2原料それぞれに照射光を照射し、かつ前記第1原料、前記第2原料、及び前記生成物を含む合成開始後の混合物に照射光を複数の反応時間ごとに照射するステップと、
照射された前記照射光に基づく測定光であって、前記第1原料、前記第2原料、及び前記混合物それぞれの分光スペクトルに関する情報を含む前記測定光を検出するステップと、
前記第1原料、前記第2原料、及び前記混合物それぞれの分光スペクトルを算出し、各分光スペクトルに基づいて、前記生成物の分光スペクトルを算出するステップと、
複数の反応時間ごとに算出された前記生成物の前記分光スペクトルに基づいて、化学反応に関するパラメータの経時変化を算出するステップと、
を含む、
光学分析方法。
In a chemical reaction system for obtaining a product by synthesizing a first raw material and a second raw material, each of the first raw material and the second raw material before the start of synthesis is irradiated with irradiation light, and the first raw material and the second raw material are irradiated with irradiation light. a step of irradiating a mixture containing two raw materials and the product after the initiation of synthesis with irradiation light every a plurality of reaction times;
a step of detecting measurement light based on the irradiated irradiation light, the measurement light including information on spectral spectra of each of the first raw material, the second raw material, and the mixture;
calculating spectral spectra of each of the first raw material, the second raw material, and the mixture, and calculating the spectral spectrum of the product based on each spectral spectrum;
calculating changes over time in parameters related to chemical reactions based on the spectroscopic spectra of the products calculated for each of a plurality of reaction times;
including,
Optical analysis method.
前記生成物の分光スペクトルを算出するステップにおいて、前記混合物の分光スペクトルから前記第1原料及び前記第2原料それぞれの分光スペクトルを差し引くことで、前記生成物の分光スペクトルを算出する、
請求項9に記載の光学分析方法。
In the step of calculating the spectroscopic spectrum of the product, the spectroscopic spectrum of the product is calculated by subtracting the spectroscopic spectrum of each of the first raw material and the second raw material from the spectroscopic spectrum of the mixture.
The optical analysis method according to claim 9.
JP2018235827A 2018-06-07 2018-12-17 Optical analysis system and optical analysis method Active JP7192473B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018235827A JP7192473B2 (en) 2018-12-17 2018-12-17 Optical analysis system and optical analysis method
EP19814893.4A EP3816610B1 (en) 2018-06-07 2019-06-05 Optical analysis system and optical analysis method
AU2019283225A AU2019283225B2 (en) 2018-06-07 2019-06-05 Optical analysis system and optical analysis method
US16/972,790 US20210247302A1 (en) 2018-06-07 2019-06-05 Optical analysis system and optical analysis method
PCT/JP2019/022417 WO2019235542A1 (en) 2018-06-07 2019-06-05 Optical analysis system and optical analysis method
CN201980037896.1A CN112236667A (en) 2018-06-07 2019-06-05 Optical analysis system and optical analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018235827A JP7192473B2 (en) 2018-12-17 2018-12-17 Optical analysis system and optical analysis method

Publications (2)

Publication Number Publication Date
JP2020098122A JP2020098122A (en) 2020-06-25
JP7192473B2 true JP7192473B2 (en) 2022-12-20

Family

ID=71105869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018235827A Active JP7192473B2 (en) 2018-06-07 2018-12-17 Optical analysis system and optical analysis method

Country Status (1)

Country Link
JP (1) JP7192473B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10005130A1 (en) 2000-02-04 2001-08-16 Basf Coatings Ag Control of polymerization, comprising measuring near OH, NH, COOH, NCO and/or epoxide IR absorption bands using device connected to spectrometer by glass fiber cable
US20020197725A1 (en) 2001-05-22 2002-12-26 Monsanto Technology Llc Use of infrared spectroscopy for on-line process control and endpoint detection
JP2004163422A (en) 2002-10-21 2004-06-10 Nippon Shokubai Co Ltd Sample holding piece for spectral measurement and spectrophotometer
JP2004347598A (en) 2003-05-19 2004-12-09 Bayer Materialscience Ag Method and device for determining isomer composition in isocyanate manufacturing process
JP2007524845A (en) 2003-10-14 2007-08-30 バイオ トゥールズ インク Reaction monitoring of chiral molecules using Fourier transform infrared vibrational circular dichroism spectroscopy
JP2009128175A (en) 2007-11-22 2009-06-11 Yokogawa Electric Corp Near infrared analyzer
JP2014126383A (en) 2012-12-25 2014-07-07 Sumitomo Electric Ind Ltd Organic substance manufacturing method, organic substance manufacturing process monitoring method, and organic substance manufacturing process monitoring device
US20150247210A1 (en) 2014-02-28 2015-09-03 Asl Analytical, Inc. Methods for Continuous Monitoring and Control of Bioprocesses
WO2016063918A1 (en) 2014-10-23 2016-04-28 国立研究開発法人理化学研究所 Gas analyzer, gas analysis method, metabolomic analysis method and database

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3237692B2 (en) * 1996-04-24 2001-12-10 横河電機株式会社 Converter for near infrared spectrometer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10005130A1 (en) 2000-02-04 2001-08-16 Basf Coatings Ag Control of polymerization, comprising measuring near OH, NH, COOH, NCO and/or epoxide IR absorption bands using device connected to spectrometer by glass fiber cable
US20020197725A1 (en) 2001-05-22 2002-12-26 Monsanto Technology Llc Use of infrared spectroscopy for on-line process control and endpoint detection
JP2004163422A (en) 2002-10-21 2004-06-10 Nippon Shokubai Co Ltd Sample holding piece for spectral measurement and spectrophotometer
JP2004347598A (en) 2003-05-19 2004-12-09 Bayer Materialscience Ag Method and device for determining isomer composition in isocyanate manufacturing process
JP2007524845A (en) 2003-10-14 2007-08-30 バイオ トゥールズ インク Reaction monitoring of chiral molecules using Fourier transform infrared vibrational circular dichroism spectroscopy
JP2009128175A (en) 2007-11-22 2009-06-11 Yokogawa Electric Corp Near infrared analyzer
JP2014126383A (en) 2012-12-25 2014-07-07 Sumitomo Electric Ind Ltd Organic substance manufacturing method, organic substance manufacturing process monitoring method, and organic substance manufacturing process monitoring device
US20150247210A1 (en) 2014-02-28 2015-09-03 Asl Analytical, Inc. Methods for Continuous Monitoring and Control of Bioprocesses
WO2016063918A1 (en) 2014-10-23 2016-04-28 国立研究開発法人理化学研究所 Gas analyzer, gas analysis method, metabolomic analysis method and database

Also Published As

Publication number Publication date
JP2020098122A (en) 2020-06-25

Similar Documents

Publication Publication Date Title
JP5804070B2 (en) Chromatogram data processing apparatus and processing method
JP6196220B2 (en) Use of nuclear magnetic resonance and near infrared for biological sample analysis
US10585041B2 (en) Sample analysis system, display method, and sample analysis method
CN108593623B (en) On-line quantitative analysis method for liquid flow in urea synthesis production equipment
US20120298881A1 (en) Spectrophotofluorometer and fluorescence detector for liquid chromatograph
CN104321637A (en) Optical spectrometer
JP5962845B2 (en) Chromatogram data processing apparatus and processing method
JP7192473B2 (en) Optical analysis system and optical analysis method
García-González et al. Infrared, raman, and fluorescence spectroscopies: Methodologies and applications
JP7087696B2 (en) Optical analysis system and optical analysis method
EP3816610B1 (en) Optical analysis system and optical analysis method
JP7087697B2 (en) Optical analysis system and optical analysis method
Chung et al. Feasibility of monitoring acetic acid process using near-infrared spectroscopy
US7378283B2 (en) Reaction monitoring of chiral molecules using fourier transform infrared vibrational circular dichroism spectroscopy
Bjørsvik Online spectroscopy and multivariate data analysis as a combined tool for process monitoring and reaction optimization
Allen et al. Tracking Photocuring via ATR-FT-IR with Illumination through the ATR Element
CN113466183B (en) Spectral analysis device, and operation method and program for spectral analysis device
Singh et al. A Green Raman Spectroscopic Assay Method for The Quantification of Tranexamic Acid in Pharmaceutical Formulations
JPH0961355A (en) Optical axis moving type fluorometer and measuring method
Dumouilla et al. Raman spectroscopy-based imaging in the food industry
CN114384054A (en) Method for detecting chloroacetic acid content by using Raman spectrum
US20140248709A1 (en) Methods devices and systems for optical probing of molecular structure and interactions
CN117147524A (en) Mixed solution rapid detection method based on principal component analysis
JP2023077143A (en) Method for determining concentration of glucose from raman spectrum of cell medium
Torres Robust method for chromatogram shape analysis to improve early detection of performance drifts and adverse changes in process parameters during purification column operations

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221121

R150 Certificate of patent or registration of utility model

Ref document number: 7192473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150