JP7188201B2 - 画像処理装置、画像処理方法、及び画像処理プログラム - Google Patents

画像処理装置、画像処理方法、及び画像処理プログラム Download PDF

Info

Publication number
JP7188201B2
JP7188201B2 JP2019046356A JP2019046356A JP7188201B2 JP 7188201 B2 JP7188201 B2 JP 7188201B2 JP 2019046356 A JP2019046356 A JP 2019046356A JP 2019046356 A JP2019046356 A JP 2019046356A JP 7188201 B2 JP7188201 B2 JP 7188201B2
Authority
JP
Japan
Prior art keywords
line
image
lines
characteristic
feature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019046356A
Other languages
English (en)
Other versions
JP2020148625A (ja
Inventor
優 石川
厚憲 茂木
敏幸 吉武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2019046356A priority Critical patent/JP7188201B2/ja
Priority to US16/805,964 priority patent/US11132806B2/en
Publication of JP2020148625A publication Critical patent/JP2020148625A/ja
Application granted granted Critical
Publication of JP7188201B2 publication Critical patent/JP7188201B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/543Depth or shape recovery from line drawings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • G06V10/457Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by analysing connectivity, e.g. edge linking, connected component analysis or slices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection

Description

本発明は、画像処理装置、画像処理方法、及び画像処理プログラムに関する。
近年、拡張現実(Augmented Reality,AR)技術を用いて画像を表示するシステムが普及してきている。AR技術の一例では、パーソナルコンピュータ(Personal Computer,PC)、携帯端末装置等に搭載したカメラを用いて物体が撮影され、物体の画像から3次元空間内におけるカメラの位置及び姿勢が推定される。そして、決定されたカメラの位置及び姿勢を基準にして、画像中の任意の位置にコンテンツ情報が重畳表示される。
製品を製造する現場において、製品の検査は、熟練作業者によって、専用の治具を用いて時間をかけて実施されることが多い。しかし、熟練作業者以外の作業者でも容易に検査を実施することができるようになれば、検査コストを削減することが可能になる。
製品の検査に関連して、製品の製造不良を検出して可視化する技術が知られている(例えば、非特許文献1を参照)。ワーク画像のエッジ位置とそのエッジ位置に対応するマスター画像上の位置との変位量を示す誤差の統計情報を、エッジ位置に沿って表示する技術も知られている(例えば、特許文献1を参照)。
物体の形状情報に含まれる候補線を画像上に投影した投影線と、画像から検出した特徴線とを対応付けた、所定数の組み合わせを用いて、撮像装置の位置を推定する技術も知られている(例えば、特許文献2を参照)。物体の形状情報に含まれる候補線のうち撮像装置の位置から観察される候補線と、画像から検出した特徴線とを対応付けた、対応付け情報の誤差に基づいて、対応付け結果を決定する技術も知られている(例えば、特許文献3を参照)。
カメラキャリブレーション、線分検出、立体の機械知覚、直線対応付けによる姿勢推定、計算論的アプローチに基づくエッジ検出等の技術も知られている(例えば、非特許文献2~非特許文献6を参照)。
特開2012-32344号公報 特開2017-182302号公報 特開2018-055199号公報
A. Moteki et al.,"Manufacturing Defects Visualization via Robust Edge-Based Registration", In Adjunct Proceedings of the IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct), pp.172-173, 2018 Z. Zhang,"A Flexible New Technique for Camera Calibration", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.22, No.11, pp.1330-1334, November 2000 R. G. Gioi et al.,"LSD: a Line Segment Detector", Image Processing On Line, 2 (2012), pp.35-55, March 2012 L. G. Roberts,"Machine perception of three-dimensional solids", MIT Lincoln Lab. Rep., TR3315, pp.1-82, May 1963 C. Xu et al.,"Pose Estimation from Line Correspondences: A Complete Analysis and a Series of Solutions", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.39, No.6, pp.1209-1222, June 2017 J. Canny,"A Computational Approach to Edge Detection", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.8, No.6, pp.679-698, 1986
非特許文献1の技術によれば、製品のCAD(Computer-Aided Design)モデルに含まれる3D線分を画像上に投影することで、投影線が生成され、その製品の画像から特徴線(2次元線分)が検出される。そして、CADモデルの大きさ、カメラの位置及び姿勢、及び特徴線と投影線との間の距離に基づいて、製品とCADモデルとのずれ量(誤差)が表示される。さらに、特徴線同士の接続関係と3D線分同士の接続関係とに基づいて、製品の製造不良箇所が強調表示される。
また、特許文献1の技術によれば、ワーク画像の輝度変化に基づいて検出されたエッジ上の複数の点に対して、最小二乗法等の統計的手法に基づき、直線、円弧等の幾何学的図形をフィッティングさせることで、物体と背景との境界線が求められる。
しかしながら、画像に写っている物体の面と面の境界線、又は物体と背景との境界線に対して、その境界線を表す特徴線が正しく検出されないことがある。境界線を表す特徴線が正しく検出されない場合、画像上で境界線と類似する位置及び傾きを有する、最適な特徴線を選択することが困難になる。最適な特徴線以外の特徴線を用いて、物体の形状とCADモデルとのずれ量を計算した場合、正しいずれ量が表示されない。
なお、かかる問題は、CADモデルを用いて製品の製造不良箇所を表示する場合に限らず、他の形状情報を用いて物体の形状の誤差を特定する場合においても生ずるものである。
1つの側面において、本発明は、物体の形状情報と、その物体の画像から検出された特徴線とを用いて、物体の形状の誤差を特定することを目的とする。
1つの案では、画像処理装置は、記憶部、検出部、投影部、選択部、及び計算部を含む。記憶部は、物体の形状を表す複数の線分を含む形状情報を記憶する。検出部は、物体の画像から複数の特徴線を検出する。投影部は、形状情報に含まれる複数の線分のうち、いずれかの線分を物体の画像上に投影することで、対象投影線を生成する。
選択部は、物体の画像上で対象投影線に基づく所定領域と重なる特徴線を、複数の特徴線の中から抽出して、特徴線の集合を生成し、物体の画像上における画素値の勾配を示す勾配情報に基づいて、特徴線の集合から対象特徴線を選択する。計算部は、対象投影線に対応する線分と対象特徴線との間のずれ量を計算する。
1つの側面によれば、物体の形状情報と、その物体の画像から検出された特徴線とを用いて、物体の形状の誤差を特定することができる。
不十分な特徴線を示す図である。 画像処理装置の機能的構成図である。 画像処理のフローチャートである。 画像処理装置の具体例を示す機能的構成図である。 画像処理を示す図である。 投影線情報を示す図である。 調整領域を示す図である。 特徴線延長処理を示す図である。 投影線を幅方向に拡張した場合の効果を示す図である。 投影線を長さ方向に短縮した場合の効果を示す図である。 対象特徴線選択処理を示す図である。 特徴線集合を示す図である。 重畳スコア計算処理を示す図である。 重畳スコアの計算結果を示す図である。 画面上に表示されたずれ量を示す図である。 画像処理の具体例を示すフローチャートである。 対応ペアの増分を示す図である。 エッジ検出フィルタを示す図である。 フィルタ係数の計算方法を示す図である。 再配分後のエッジ検出フィルタを示す図である。 フィルタ係数の具体例を示す図である。 複数回のエッジ検出処理を用いた重畳スコア計算処理を示す図である。 画素値の勾配方向を用いた重畳スコア計算処理を示す図である。 情報処理装置の構成図である。
以下、図面を参照しながら、実施形態を詳細に説明する。
図1は、物体の画像から検出された不十分な特徴線の例を示している。図1(a)は、物体の画像の例を示しており、図1(b)は、図1(a)の画像から検出された特徴線の例を示している。例えば、図1(a)に示された境界線101に対して、図1(b)では、境界線101と同じ長さの1本の特徴線ではなく、境界線101よりも短い、細切れになった複数の特徴線が検出されている。細切れになった複数の特徴線の代わりに、境界線よりも短い1本の特徴線のみが検出されることもある。
非特許文献1の検出方法では、1本の境界線から複数の特徴線が検出されても、それらの特徴線が区別されていない。また、特許文献1の検出方法では、エッジ検出結果又は選択方法によって、利用するエッジ点が異なれば、幾何学的図形によるフィッティング結果が変化するが、フィッティングにより得られた線分の評価は行われていない。
このように、物体の画像から境界線を表す特徴線が正しく検出されない場合、画像上で境界線と類似する位置及び傾きを有する、最適な特徴線を選択することが困難になる。最適な特徴線以外の特徴線を用いて、物体の形状とCADモデルとのずれ量を計算した場合、正しいずれ量が表示されない。
そこで、特徴線の長さに対して閾値を設定し、閾値以上の長さを有する特徴線のみを抽出する方法が考えられるが、適切な閾値を設定することは困難である。閾値が大きすぎる場合、短い最適な特徴線が除外されてしまい、閾値が小さすぎる場合、抽出結果に多くのノイズが含まれ、最適な特徴線の選択が困難になる。
また、特徴線同士の距離及び傾きの類似度に対して閾値を設定し、閾値以上の類似度を有する特徴線同士を統合する方法も考えられるが、この場合も適切な閾値を設定することは困難である。閾値が大きすぎる場合、複数の特徴線のいずれも統合されず、閾値が小さすぎる場合、多くのノイズ同士が統合されて、画像に写っている境界線の傾きとは異なる傾きを有する特徴線が生成される。
図2は、実施形態の画像処理装置の機能的構成例を示している。図2の画像処理装置201は、記憶部211、検出部212、投影部213、選択部214、及び計算部215を含む。記憶部211は、物体の形状を表す複数の線分を含む形状情報221を記憶する。
図3は、図2の画像処理装置201が行う画像処理の例を示すフローチャートである。まず、検出部212は、物体の画像から複数の特徴線を検出する(ステップ301)。そして、投影部213は、形状情報221に含まれる複数の線分のうち、いずれかの線分を物体の画像上に投影することで、対象投影線を生成する(ステップ302)。
次に、選択部214は、物体の画像上で対象投影線に基づく所定領域と重なる特徴線を、複数の特徴線の中から抽出して、特徴線の集合を生成する(ステップ303)。次に、選択部214は、物体の画像上における画素値の勾配を示す勾配情報に基づいて、特徴線の集合から対象特徴線を選択する(ステップ304)。そして、計算部215は、対象投影線に対応する線分と対象特徴線との間のずれ量を計算する(ステップ305)。
図2の画像処理装置201によれば、物体の形状情報と、その物体の画像から検出された特徴線とを用いて、物体の形状の誤差を特定することができる。
図4は、図2の画像処理装置201の具体例を示している。図4の画像処理装置401は、記憶部411、画像取得部412、特徴線検出部413、線分検出部414、投影部415、パラメータ設定部416、生成部417、選択部418、パラメータ計算部419、計算部420、及び表示部421を含む。
記憶部411、特徴線検出部413、投影部415、選択部418、及び計算部420は、図2の記憶部211、検出部212、投影部213、選択部214、及び計算部215にそれぞれ対応する。
画像処理装置401は、物体の形状情報を用いてその物体の形状を検査する形状検査において使用される。画像処理装置401は、タブレット、ノート型PC(Personal Computer)、スマートデバイス等の携帯端末装置であってもよく、デスクトップ型PC等の情報処理装置であってもよい。
記憶部411は、CADデータ431を記憶している。CADデータ431は、図2の形状情報221に対応し、物体の3次元形状を表す複数の頂点の頂点情報と、複数の線分の線分情報とを含む。頂点情報は、物体の各頂点の3次元座標を含み、線分情報は、各線分の両端の頂点を示す識別情報、又は各線分の両端の頂点の3次元座標を含む。CADデータ431は、OBJ形式のデータであってもよい。
撮像装置402は、例えば、CCD(Charged-Coupled Device)、CMOS(Complementary Metal-Oxide-Semiconductor)等の撮像素子を有するカメラであり、CADデータ431が表す物体の画像432を撮影する。画像取得部412は、撮像装置402から画像432を取得して、記憶部411に格納する。
特徴線検出部413は、エッジ検出処理を行って、画像432から複数のエッジ線を検出し、検出したエッジ線を特徴線433として記憶部411に格納する。特徴線検出部413は、例えば、非特許文献3の技術を用いて、画像432からエッジ線を検出することができる。
線分検出部414は、CADデータ431に含まれる複数の線分を検出し、検出した複数の線分を複数の3D線分434として記憶部411に格納する。投影部415は、CADデータ431が表す物体を画像432上に投影して投影線を生成し、表示部421は、画像432を画面上に表示するとともに、投影線を用いて物体の形状を画面上に表示する。
パラメータ設定部416は、3次元空間内における撮像装置402の初期位置及び初期姿勢を表す初期パラメータ435を設定する。まず、ユーザは、表示された物体の形状の位置及び姿勢が、画像432に写っている物体と近似するように、画面上で物体の形状の位置及び姿勢を変更する操作を行う。画面上で物体の形状の位置及び姿勢を変更することで、画面に対する視点の位置及び姿勢が変化する。
そこで、パラメータ設定部416は、ユーザが決定した物体の形状の位置及び姿勢に対応する視点の位置及び姿勢を、撮像装置402の初期位置及び初期姿勢として用いる。そして、パラメータ設定部416は、その初期位置及び初期姿勢を表すパラメータを、初期パラメータ435として記憶部411に格納する。
生成部417は、物体の形状に含まれる3D線分のうち、視点から観察されない3D線分(隠線)を除去する。生成部417は、例えば、非特許文献4の技術を用いて、隠線を除去することができる。
パラメータ設定部416は、先願である特願2017-195787号に記載された技術を用いて、初期パラメータ435を自動的に決定することも可能である。この技術によれば、3次元空間内における複数の視点それぞれから観察される物体の位置及び姿勢を表す姿勢情報と、観察される物体の視点画像と、その視点画像から抽出された特徴量とが、関連付けて記憶部に格納される。そして、撮像装置によって撮影された画像の特徴量と各視点画像の特徴量との間の類似度が計算され、最大の類似度を有する視点画像の姿勢情報が、物体の初期位置及び初期姿勢を表す姿勢情報に決定される。
初期パラメータ435が表す初期位置及び初期姿勢は、仮の位置及び姿勢であり、画像432を撮影したときの撮像装置402の位置及び姿勢と必ずしも一致しているとは限らない。
次に、ユーザは、画面上に表示されている、3D線分434の投影線及び特徴線433の中から、投影線と特徴線の組み合わせをk個(kは4以上の所定の整数)指定する。生成部417は、指定された投影線が表す3D線分と指定された特徴線との組み合わせ(対応ペア)を、初期対応ペアとして用いる。この場合、k個の初期対応ペアが生成される。
生成部417は、特許文献3に記載された技術を用いて、初期対応ペアを自動的に決定することも可能である。この技術によれば、画像から検出された複数の特徴線の中から、所定の条件を満たす複数の特徴線が抽出される。次に、抽出された特徴線と隠線を除去した残りの3D線分とから、k個の対応ペアが生成され、各対応ペアに含まれる3D線分の投影線の位置と特徴線の位置との間の誤差の総和が計算される。そして、k個の対応ペアに含まれる3D線分と特徴線の組み合わせを変更しながら、誤差の総和が繰り返し計算され、誤差の総和が最小となるk個の対応ペアが、k個の初期対応ペアに決定される。
パラメータ計算部419は、k個の初期対応ペアを用いて、画像432を撮影したときの撮像装置402の位置及び姿勢を計算する。パラメータ計算部419は、例えば、非特許文献5の技術を用いて、k個の初期対応ペアから、位置及び姿勢を表す3行3列の回転行列Rと並進ベクトルTとを計算することができる。
投影部415は、パラメータ計算部419が計算した撮像装置402の位置及び姿勢を用いて、3D線分434を画像432上に投影することで、投影線を生成し、3D線分434と投影線との対応関係を示す投影線情報438を、記憶部411に格納する。例えば、投影部415は、次式により、3D線分434を画像432上に投影することができる。
Figure 0007188201000001
式(1)の(X,Y,Z)、A、R、T、及び(u,v)の定義は、以下の通りである。
(X,Y,Z):3D線分の端点の3次元座標
A:撮像装置402の内部パラメータ
R:3行3列の回転行列
T:並進ベクトル
(u,v):画像432上における投影線の端点の2次元座標
撮像装置402の内部パラメータAは、例えば、非特許文献2の技術を用いて、事前に計測しておくことができる。
次に、生成部417は、投影線情報438に含まれる投影線の中から、初期対応ペアに対して追加する追加3D線分の投影線を選択し、特徴線433の中から、追加3D線分に対応付ける追加特徴線を選択し、追加3D線分と追加特徴線とを対応付けた追加対応ペアを生成する。そして、生成部417は、初期対応ペア及び追加対応ペアの集合を、対応ペア集合436として記憶部411に格納する。したがって、対応ペア集合436に含まれる対応ペアの個数Nは、k+1以上になる。
例えば、生成部417は、特許文献2の技術を用いて、投影線の長さが長い順に追加3D線分の投影線を選択し、選択した投影線に対して以下の条件を満たす特徴線を、追加特徴線として選択することができる。
(C1)投影線の中点と特徴線の中点との距離<閾値
(C2)投影線と特徴線との成す角度<閾値
追加特徴線の本数には上限を設けてもよい。また、物体の1つの辺(境界線)から2本以上の特徴線が細切れで検出される可能性があるため、生成部417は、同一直線上に2本以上の特徴線が存在する場合、いずれか1本のみを追加特徴線として選択してもよい。さらに、生成部417は、所定値よりも短い特徴線を、追加特徴線の候補から除外してもよい。例えば、所定値としては、最も長い特徴線の長さの5%~20%の値を用いることができる。
次に、選択部418は、追加特徴線の候補から除外された短い特徴線を用いて、対応ペアをさらに生成し、生成した対応ペアを対応ペア集合436に追加することで、対応ペア集合436を更新する。
まず、選択部418は、投影線情報438に含まれる各投影線を対象投影線として用いて、画像432上で特徴線を調整するための調整領域を生成する。調整領域は、対象投影線に基づく所定領域の一例である。例えば、選択部418は、対象投影線を幅方向に拡張するか、又は対象投影線を長さ方向に短縮することで、調整領域を生成することができる。
次に、選択部418は、調整領域と重なる1本以上の特徴線を、複数の特徴線433の中から抽出して、抽出された特徴線の集合を生成し、特徴線集合439として記憶部411に格納する。例えば、選択部418は、複数の特徴線433のうち、調整領域に一部分又は全体が含まれている特徴線を、調整領域と重なる特徴線として抽出する。
調整領域に全体が含まれている特徴線とともに、調整領域に一部分が含まれている特徴線も抽出することで、対象投影線と対応付けられる特徴線の候補を増加させることができる。
そして、選択部418は、画像432上における画素値の勾配を示す勾配情報に基づいて、特徴線集合439から対象特徴線を選択し、対象投影線に対応する3D線分と対象特徴線とを対応付けた対応ペアを生成して、対応ペア集合436に追加する。
例えば、選択部418は、非特許文献6の技術を用いて、画像432上における画素値の勾配強度を各画素の画素値として含む勾配画像を生成し、特徴線集合439に含まれる特徴線を長さ方向に延長することで延長特徴線を生成する。画素値の勾配は、画素値の変化を表し、勾配強度は、画素値の変化の大きさを表す。
次に、選択部418は、特徴線集合439から生成された複数の延長特徴線それぞれが勾配画像上で通過する画素の画素値に基づいて、複数の延長特徴線それぞれの評価値を計算する。そして、選択部418は、複数の延長特徴線それぞれの評価値に基づいて、特定の延長特徴線を選択し、その延長特徴線に対応する延長前の特徴線を、対象特徴線として選択する。
次に、パラメータ計算部419は、対応ペア集合436に含まれるN個の対応ペアの中から、k個の対応ペアを選択し、選択したk個の対応ペアを用いて、撮像装置402の位置及び姿勢を計算する。そして、パラメータ計算部419は、計算した位置及び姿勢を表すパラメータを、パラメータ437として記憶部411に格納する。例えば、パラメータ437としては、式(1)のR及びTを用いることができる。
パラメータ計算部419は、k個の対応ペアの選択を変更しながら、パラメータ437を計算する処理を複数回繰り返す。投影部415は、パラメータ437が計算される度に、そのパラメータ437が表すR及びTを用いて、対応ペア集合436内の残りのN-k個の対応ペアに含まれる3D線分を、画像432上に投影することで、N-k本の投影線を生成する。
次に、パラメータ計算部419は、生成した投影線の位置とその対応ペアに含まれる特徴線の位置との間の誤差を計算し、N-k個の対応ペアそれぞれの誤差の統計値を計算する。誤差の統計値としては、中央値、平均値、最小値等を用いることができる。そして、パラメータ計算部419は、それぞれのパラメータ437を用いて計算した統計値の最小値を求め、求めた最小値を計算する際に用いられたパラメータ437を選択する。
次に、投影部415は、選択されたパラメータ437が表すR及びTを用いて、対応ペア集合436に含まれる3D線分を、画像432上に再度投影することで、投影線を生成する。これにより、CADデータ431が表す物体の形状が、画像432に重畳される。そして、計算部420は、生成された投影線の位置とその対応ペアに含まれる特徴線の位置との間の誤差を計算し、計算した誤差に基づいて、その投影線に対応する3D線分と特徴線との間のずれ量を計算する。
表示部421は、対応ペア集合436の一部又は全部を画面上に表示することで、物体の形状と画像432とを重畳表示する。さらに、表示部421は、表示された各対応ペアに対して計算されたずれ量を表示する。
図5は、図2の画像処理装置201が行う画像処理の例を示している。まず、特徴線検出部413は、立方体の形状を有する物体の画像から特徴線501を検出する(手順P1)。この例では、物体の12本の稜線(境界線)のうち、9本の稜線が画像に写っており、それらの稜線を表す9本の特徴線501が検出されている。そのうち6本の特徴線501の長さが所定値以上であり、残りの3本の特徴線501の長さは所定値よりも短い。
次に、投影部415は、その物体のCADデータに含まれる3D線分の投影線502を生成し、表示部421は、画面上に投影線502と特徴線501とを重畳表示する(手順P2)。生成部417は、所定値よりも短い特徴線501を除外して対応ペア集合436を生成する。
手順P2において、選択部418により対応ペアが追加される前の対応ペア集合436を用いて、3D線分と特徴線との間のずれ量を表示する場合、所定値以上の長さを有する6本の特徴線501が、ずれ量の表示対象となる。
次に、選択部418は、所定値よりも短い3本の特徴線に対応する稜線が存在する可能性がある領域503内で、各投影線に基づく調整領域を生成する(手順P3)。領域503内には、9本の特徴線501以外にも、所定値よりも短い特徴線504が含まれていることがある。
そこで、選択部418は、各調整領域と重なる複数の短い特徴線を延長することで、複数の延長特徴線を生成し(手順P4)、各延長特徴線の評価値に基づいて、特定の延長特徴線を選択する(手順P5)。
手順P5において、選択部418が特定の延長特徴線に対応する延長前の特徴線を用いて、3個の対応ペアを対応ペア集合436に追加することで、9本の特徴線がずれ量の表示対象となる。したがって、手順P2においてずれ量を表示する場合よりも、ずれ量の表示対象が3本だけ増加する。
図4の画像処理装置401によれば、物体の境界線よりも短い、細切れになった複数の特徴線が画像から検出された場合であっても、最適な特徴線を選択して、物体の形状の誤差を特定することが可能になる。また、細切れになった複数の特徴線の中から最適な特徴線を選択することで、ずれ量の表示対象が増加するため、物体の形状をより詳細に検査することができる。例えば、製品の形状検査において製造不良を発見する機会が増加し、不良品の出荷を防止することができる。
図6は、投影線情報438の例を示している。図6の投影線情報438は、直線番号と、3D線分の端点1及び端点2と、投影線の端点1及び端点2とを含む。直線番号は、3D線分の識別情報であり、3D線分の端点1は、3D線分の一方の端点の3次元座標を表し、3D線分の端点2は、同じ3D線分の他方の端点の3次元座標を表す。投影線の端点1は、3D線分に対応する投影線の一方の端点の2次元座標を表し、投影線の端点2は、同じ投影線の他方の端点の2次元座標を表す。3次元座標の単位はmmであり、2次元座標の単位は画素数である。
図7は、選択部418によって生成される調整領域の例を示している。図7(a)は、図1(a)に示した物体の投影線の例を示しており、図7(b)は、図7(a)の各投影線から生成された調整領域の例を示している。図7(b)の各太線が、1つの調整領域を表す。
図7(a)の各投影線を幅方向に拡張し、かつ、長さ方向に短縮することで、図7(b)の各調整領域が生成される。例えば、投影線の太さが1画素である場合、調整領域の太さは5画素~15画素であってもよい。また、調整領域の長さは、投影線の90%~95%の長さであってもよい。
図8は、選択部418が行う特徴線延長処理の例を示している。選択部418は、図1(a)に示した物体の画像から検出された、延長前の領域801内の短い特徴線のうち、各調整領域802と重なる複数の特徴線を選択する。例えば、選択部418は、調整領域802に特徴線の中点が含まれる場合、その特徴線が調整領域802と重なっていると判定する。
次に、選択部418は、各調整領域802と選択された複数の特徴線に対して、同じグループを示すグループ識別情報を付与する。これにより、それらの特徴線と調整領域802とが関連付けられる。例えば、各調整領域802に対応する投影線の識別情報が、グループ識別情報として用いられる。
そして、選択部418は、延長後の領域801に示されるように、特徴線のグループ毎に、各特徴線を延長して延長特徴線を生成する。このとき、以下のような条件の下で延長特徴線が生成される。
(C11)延長特徴線の長さは、投影線の長さに基づいて決められる最大長を超えない。
(C12)特徴線の長さ方向に、その特徴線の2つの端点の両方又は片方から延長する。
(C13)延長特徴線の端点は、調整領域に含まれる。
例えば、各グループの延長特徴線の最大長としては、そのグループのグループ識別情報を有する投影線の長さの40%~60%の値を用いることができる。選択部418は、(C11)~(C13)の条件に基づき、例えば、次式を用いて、グループ識別情報として識別子nが付与されたm番目(m=1,2,...)の特徴線の終点側を延長する。
Figure 0007188201000002
式(2)のPs(m)、Pe(m)、Pe´(m,t)、Ese(m)、t、L、及びXnの定義は、以下の通りである。
Ps(m):m番目の特徴線の始点の2次元座標を示すベクトル
Pe(m):m番目の特徴線の終点の2次元座標を示すベクトル
Pe´(m,t):延長されたm番目の特徴線の終点の2次元座標を示すベクトル
Ese(m):m番目の特徴線の始点から終点へ向かう方向の単位ベクトル
t:2次元座標の変更量を示すパラメータ
L:識別子nを有する調整領域に対応する投影線の長さ
Xn:識別子nを有する調整領域に含まれる画素の2次元座標を示すベクトルの集合
また、選択部418は、次式を用いて、m番目の特徴線の始点側を延長する。
Figure 0007188201000003
式(3)のPs´(m,t)及びEes(m)の定義は、以下の通りである。
Ps´(m,t):延長されたm番目の特徴線の始点の2次元座標を示すベクトル
Ees(m):m番目の特徴線の終点から始点へ向かう方向の単位ベクトル
このような特徴線延長処理を疑似コードを用いて記述すると、以下のようになる。
for すべての特徴線
if 特徴線に識別子nが付与されている
if 特徴線の長さがLの50%以上
end
else
while true
Ps(m)及びtから式(3)によりPs´(m,t)を計算
if Ps´(m,t)がXnに含まれる
かつ Ps´(m,t)に更新した場合の特徴線の長さがLの50%未満
Ps(m)をPs´(m,t)に更新
end
Pe(m)及びtから式(2)によりPe´(m,t)を計算
if Pe´(m,t)がXnに含まれる
かつ Pe´(m,t)に更新した場合の特徴線の長さがLの50%未満
Pe(m)をPe´(m,t)に更新
end
if Ps(m)又はPe(m)のいずれも更新されていない
whileを抜ける
end
tを1だけインクリメント
end
end
end
end
投影線を幅方向に拡張することで、k個の初期対応ペアを用いて計算された撮像装置402の位置及び姿勢に誤差が含まれている場合であっても、投影線の周辺に存在する特徴線をその投影線のグループに含めることが可能になる。また、投影線を長さ方向に短縮することで、計算された撮像装置402の位置及び姿勢に誤差が含まれている場合であっても、物体の境界線が存在しない領域まで特徴線が延長されることを抑制できる。
図9は、投影線を幅方向に拡張した場合の効果の例を示している。図9(a)は、図1(a)に示した物体の画像から、投影線と同じ太さの調整領域を用いて生成された延長特徴線の例を示している。この場合、投影線と画像432との重畳結果が少しずれただけで、投影線の周辺に存在する短い特徴線が調整領域と重ならなくなり、その特徴線が選択対象から除外される。したがって、短い最適な特徴線が選択されない可能性が高くなる。図9(a)の5本の矢印は、選択対象から除外されて、ずれ量が表示されない特徴線の位置を示している。
一方、図9(b)は、投影線を幅方向に拡張した調整領域を用いて生成された延長特徴線の例を示している。この場合、5本の矢印が示す位置に延長特徴線が生成され、ずれ量の表示対象が増加している。
図10は、投影線を長さ方向に短縮した場合の効果の例を示している。図10(a)は、図1(a)に示した物体の画像の一部の領域において、投影線と同じ長さの調整領域を用いて生成された延長特徴線の例を示している。この場合、重畳結果が少しずれただけで、物体の境界線が存在しない領域まで特徴線が延長される可能性が高くなる。
本来、物体の境界線が存在しない領域からは特徴線が検出されないため、そのような領域から検出された特徴線は、物体の境界線ではなく、影、傷等を表している。したがって、投影線の端点に対してその長さ方向にずれている端点を有する特徴線は、誤った特徴線である可能性が高い。生成された延長特徴線の端点が物体の境界線の端点を超えてしまうと、特定の延長特徴線を選択する際に、誤った特徴線と同様の効果を与えてしまうため、誤った延長特徴線が選択される可能性が高くなる。
図10(a)の矢印1001及び矢印1002は、物体の境界線の端点を示しており、矢印1011及び矢印1012は、生成された延長特徴線の端点を示している。これらの延長特徴線の端点は、物体の境界線の端点を超えている。
一方、図10(b)は、投影線を長さ方向に短縮した調整領域を用いて生成された延長特徴線の例を示している。矢印1021及び矢印1022は、物体の境界線の端点を示しており、矢印1031及び矢印1032は、生成された延長特徴線の端点を示している。これらの延長特徴線の端点は、物体の境界線の端点を超えていない。したがって、最適な特徴線に対応する延長特徴線が、特定の延長特徴線として選択される可能性が高くなる。
図11は、選択部418が行う対象特徴線選択処理の例を示している。選択部418は、画像432に対するエッジ検出処理を行って各画素の勾配強度を求め、勾配画像1101を生成する。この場合、勾配画像1101上で画素値が大きい画素ほど、エッジ線に該当する可能性が高くなる。
そして、選択部418は、選択前の領域801内において、延長特徴線のグループ毎に、複数の延長特徴線それぞれが勾配画像1101上で通過する画素の画素値(勾配強度)に基づいて、各延長特徴線の評価値を表す重畳スコアを計算する。例えば、重畳スコアとしては、延長特徴線が通過する画素の画素値の統計値を用いることができる。
画素値の統計値は、総和、平均値、中央値、最頻値等であってもよい。また、画素値の統計値は、所定値以上の画素値が出現する出現回数であってもよい。このような重畳スコアを用いた場合、重畳スコアが大きいほど、その延長特徴線がエッジ線と重なっている度合いが大きいと解釈できる。
そこで、選択部418は、延長特徴線のグループ毎に、最大の重畳スコアを有する延長特徴線を選択する。選択後の領域801内において、矢印1111が示す延長特徴線と、矢印1112が示す延長特徴線とが選択されている。そして、選択部418は、選択された延長特徴線に対応する延長前の特徴線を、対象特徴線として選択する。
図12は、識別子0が付与されたグループの特徴線集合439の例を示している。図12の特徴線集合439は、Index、識別子、特徴線(延長前)の端点1及び端点2と、特徴線(延長後)の端点1及び端点2と、投影線の端点1及び端点2と、重畳スコアと、選択結果とを含む。
Indexは、特徴線の識別情報である。識別子0は、グループ識別情報を表し、投影線の識別情報と同一である。特徴線(延長前)の端点1は、特徴線の始点の2次元座標を表し、特徴線(延長前)の端点2は、同じ特徴線の終点の2次元座標を表す。特徴線(延長後)の端点1は、延長特徴線の始点の2次元座標を表し、特徴線(延長後)の端点2は、同じ延長特徴線の終点の2次元座標を表す。投影線の端点1は、投影線の一方の端点の2次元座標を表し、投影線の端点2は、同じ投影線の他方の端点の2次元座標を表す。2次元座標の単位は画素数である。
重畳スコアは、延長特徴線の評価値を表し、選択結果は、評価値に基づいて選択された特徴線及び延長特徴線を示す。図12では、まだ重畳スコアが計算されていないため、すべての延長特徴線の重畳スコアが、初期値-1に設定されており、選択結果は記録されていない。このような特徴線集合439によって、同じ識別子が付与された特徴線と投影線とが関連付けられる。
図13は、重畳スコア計算処理の例を示している。勾配画像1301の各矩形は画素を表し、矩形内の数値は画素値を表す。この例では、各画素の画素値は0又は250である。画素値が250である画素は、画素値が0である画素よりも、エッジ線に該当する可能性が高い。
選択部418は、延長特徴線1302の始点1311から終点1316へ向かって、延長特徴線1302と同じ傾きを有する単位ベクトル(矢印)を整数倍することで、その単位ベクトルを始点1311から延長していく。そして、選択部418は、始点1311、点1312~点1315、及び終点1316それぞれの位置を含む画素の画素値を取得し、取得した画素値の総和を重畳スコアとして求める。この場合、0、0、0、0、250、及び250の6個の画素値が取得され、重畳スコアは500となる。
選択部418は、例えば、次式を用いて、グループ識別情報として識別子nが付与されたm番目の延長特徴線の重畳スコアS(m)を計算する。
Figure 0007188201000004
S(m)=ΣV(Qe´(m,t)) (5)
式(4)のQs(m)、Qe(m)、Qe´(m,t)、Ese(m)、t、及びXnの定義は、以下の通りである。
Qs(m):m番目の延長特徴線の始点の2次元座標を示すベクトル
Qe(m):m番目の延長特徴線の終点の2次元座標を示すベクトル
Qe´(m,t):m番目の延長特徴線上における点の2次元座標を示すベクトル
Ese(m):m番目の特徴線の始点から終点へ向かう方向の単位ベクトル
t:2次元座標の変更量を示すパラメータ
Xn:識別子nを有する調整領域に含まれる画素の2次元座標を示すベクトルの集合
式(5)のV(Qe´(m,t))は、勾配画像上でQe´(m,t)が示す点を含む画素の画素値を表し、Σは、パラメータtに関する総和を表す。
選択部418は、式(5)の代わりに、別の計算式を用いて重畳スコアを計算することもできる。例えば、延長特徴線が通過する画素の画素値の統計値に対して、所定の係数を乗算した値を、重畳スコアとして用いてもよい。所定の係数は、延長特徴線の長さであってもよく、同じ識別子を有する複数の延長特徴線に対する統計値の分布から、平均値及び分散を考慮した係数であってもよい。
図14は、図12の特徴線集合439に対する重畳スコアの計算結果の例を示している。選定結果の“〇”は、選択された特徴線及び延長特徴線を示し、“×”は、選択されなかった特徴線及び延長特徴線を示している。この例では、識別子0が付与された特徴線のうち、Index“222”の特徴線に対応する延長特徴線の重畳スコアが最大であるため、これらの特徴線及び延長特徴線が選択される。
特徴線集合439に含まれる特徴線を調整領域内で延長することで、最適な特徴線が短い場合であっても、その特徴線を延長した延長特徴線の重畳スコアは大きな値になる。一方、ノイズを表す特徴線を延長しても、延長特徴線の重畳スコアはあまり増加しない。したがって、延長特徴線の重畳スコアを用いることで、特徴線集合439に含まれる各特徴線を正しく評価して、最適な特徴線を選択することが可能になる。
図15は、画面上に表示されたずれ量の例を示している。図15(a)は、選択部418により対応ペアが追加される前の対応ペア集合436を用いて表示されたずれ量の例を示している。この例では、対応ペア集合436に含まれる各対応ペアが、図1(a)に示した物体の画像上に重畳表示されている。
投影線及び特徴線の近くに表示された数値は、投影線の位置と特徴線の位置との間の誤差を、単位をmmとする3次元空間内の距離に変換したずれ量を表す。5本の矢印は、ずれ量が表示されていない投影線を示している。
一方、図15(b)は、選択部418により対応ペアが追加された後の対応ペア集合436を用いて表示されたずれ量の例を示している。図15(b)では、5本の矢印が示す投影線のずれ量が表示されており、ずれ量の表示対象が増加している。
計算部420は、3次元空間内におけるずれ量Err[mm]を、次式により計算することができる。
Err=(LA/LB)*h (6)
式(6)のLAは、対応ペアに含まれる3D線分の3次元空間内における長さ(mm)を表し、LBは、その3D線分の投影線の長さ(画素数)を表す。hは、画像432上で、対応ペアに含まれる特徴線の両端から投影線に対して下した垂線の長さ(画素数)の平均値を表す。
図16は、図4の画像処理装置401が行う画像処理の具体例を示すフローチャートである。まず、特徴線検出部413は、画像432から複数の特徴線433を検出し(ステップ1601)、線分検出部414は、CADデータ431から複数の3D線分434を検出する(ステップ1602)。
次に、生成部417は、特徴線433及び3D線分434から、k個の初期対応ペアを生成し(ステップ1603)、パラメータ計算部419は、k個の初期対応ペアを用いて、撮像装置402の位置及び姿勢を計算する(ステップ1604)。
投影部415は、撮像装置402の位置及び姿勢を用いて、3D線分434を画像432上に投影することで、投影線を生成し、表示部420は、投影線及び特徴線433を画像432上に重畳表示する(ステップ1605)。そして、生成部417は、k個の初期対応ペアを対応ペア集合436に追加する。
次に、選択部418は、画像432から勾配画像を生成し(ステップ1606)、各投影線に識別子を付与する(ステップ1607)。次に、選択部418は、各投影線と同じ識別子を有する調整領域を生成し、各調整領域と重なる特徴線433を抽出して、特徴線集合439を生成する(ステップ1608)。そして、選択部418は、特徴線集合439に含まれる各特徴線に対して、特徴線延長処理を行う(ステップ1609)。
次に、選択部418は、各調整領域について、延長された特徴線が存在するか否かをチェックする(ステップ1610)。延長された特徴線が存在する場合(ステップ1610,YES)、選択部418は、生成された延長特徴線の重畳スコアに基づいて、特徴線集合439に含まれるいずれかの特徴線を選択する(ステップ1611)。そして、選択部418は、投影線が表す3D線分434と選択された特徴線とを含む対応ペアを、対応ペア集合436に追加する(ステップ1612)。
一方、延長された特徴線が存在しない場合(ステップ1610,NO)、生成部417は、投影線が表す3D線分434と所定の条件を満たす特徴線とを含む対応ペアを、対応ペア集合436に追加する(ステップ1612)。
次に、投影部415は、対応ペア集合436に含まれる対応ペアの3D線分を、画像432上に再度投影することで、投影線を生成し、計算部420は、生成された投影線を用いて、3D線分と特徴線との間のずれ量を計算する。そして、表示部421は、投影線と対応ペアの特徴線とを画像432上に重畳表示し、投影線と特徴線との組み合わせ毎にずれ量を表示する(ステップ1613)。
図17は、特徴線延長処理によって対応ペア集合436に対応ペアが追加された場合の対応ペアの増分の例を示している。図17(a)は、物体A1に対する実験結果を示しており、図17(b)は、物体A2に対する実験結果を示している。この実験では、4個の対応ペアを用いて、撮像装置402の位置及び姿勢が計算されている。
画像番号は、各物体を撮影した複数の画像を識別する識別情報である。図17(a)では、画像番号“3”~画像番号“7”の5枚の画像が用いられており、図17(b)では、画像番号“1”~画像番号“6”の6枚の画像が用いられている。
patternは、撮像装置402の位置及び姿勢の計算に用いられた4個の対応ペアの集合を識別する識別情報である。4個の対応ペアの組み合わせが変化すると、生成される投影線も変化するため、pattern毎に異なる実験結果が得られる。図17(a)及び図17(b)では、pattern“1”~pattern“3”の3通りの集合が用いられている。
各patternが示す行と各画像番号が示す列とに対応するセル内の数値は、対応ペア集合436に含まれる投影線の本数に対する、特徴線延長処理によって選択された特徴線の本数の割合(%)を表す。この割合は、特徴線延長処理による対応ペアの増分に対応する。
aveは、pattern“1”~pattern“3”に対して得られた増分の平均値を表す。図17(a)では、5枚の画像に対するaveの平均値は約6%であり、図17(b)では、6枚の画像に対するaveの平均値は約11%である。対応ペアの増分に応じて、ずれ量の表示対象も増加する。
図16のステップ1606において、選択部418は、各投影線の位置及び傾きに応じたフィルタ係数を有するエッジ検出フィルタを用いて、画像432に対するエッジ検出処理を行うことで、勾配画像を生成することもできる。例えば、選択部418は、投影線の傾きに合わせてエッジ検出フィルタを回転させ、フィルタ係数を再配分することで、その投影線に適したエッジ検出フィルタを生成する。
図18は、エッジ検出フィルタの例を示している。図18(a)は、3×3のエッジ検出フィルタの例を示している。図18(a)のエッジ検出フィルタは、フィルタ係数I~フィルタ係数Iを含む。
図18(b)は、図18(a)のエッジ検出フィルタを回転させることで得られる、回転後のエッジ検出フィルタの例を示している。回転後のエッジ検出フィルタは、フィルタ係数I´~フィルタ係数I´を含む。
投影線が角度θだけ傾いている場合、選択部418は、エッジ検出フィルタを角度θだけ回転させる。例えば、エッジ検出フィルタを3×3の小さな画像とみなして、回転後の位置の画素と回転前の位置の画素とをバイリニア補間で対応付けることにより、回転後のエッジ検出フィルタのフィルタ係数を求めることができる。この場合、回転前のエッジ検出フィルタ上の位置は、座標(x,y)により表される。
まず、選択部418は、回転後のエッジ検出フィルタにおけるj番目(j=1~9)のフィルタ係数の座標(x´,y´)から、回転前のエッジ検出フィルタにおける座標(x,y)を、次式により計算する。
Figure 0007188201000005
図18(a)の点1801は、回転によって図18(b)の点1802に移動する。この場合、回転後のフィルタ係数I´の座標は(x´,y´)であり、フィルタ係数I´の回転前の座標は(x,y)である。
図19は、図18(b)の回転後のエッジ検出フィルタにおけるフィルタ係数の計算方法の例を示している。図19(a)は、回転前の点1801に対する最近傍の4点の例を示している。この例では、点1901~点1904が、点1801に対する最近傍の4点に相当する。
図19(b)は、バイリニア補間による回転後のフィルタ係数の計算方法の例を示している。点1901の座標は(x,y)であり、点1902の座標は(x+1,y)であり、点1903の座標は(x,y+1)であり、点1904の座標は(x+1,y+1)である。
パラメータaは、x方向における点1901と点1902との距離に対する、点1901と点1801との距離の比率を表す。また、パラメータbは、y方向における点1901と点1903との距離に対する、点1901と点1801との距離の比率を表す。
I(x,y)は、点1901のフィルタ係数であり、I(x+1,y)は、点1902のフィルタ係数であり、I(x,y+1)は、点1903のフィルタ係数であり、I(x+1,y+1)は、点1904のフィルタ係数である。
選択部418は、点1901~点1904のフィルタ係数、パラメータa、及びパラメータbを用いて、次式のバイリニア補間により、回転後の座標(x´,y´)におけるフィルタ係数I´(x´,y´)を計算する。
I´(x´,y´)
=(1-a)(1-b)I(x,y)+a(1-b)I(x+1,y)
+(1-a)bI(x,y+1)+abI(x+1,y+1) (12)
図20は、再配分後のエッジ検出フィルタの例を示している。選択部418は、式(12)により、図18(b)のフィルタ係数I´~フィルタ係数I´を求めた後、次式により、フィルタ係数I´~フィルタ係数I´の絶対値の総和Sを計算する。
S=Σ|I´| (13)
式(13)のΣは、j=1~9に関する総和を表す。次に、選択部418は、各フィルタ係数I´を総和Sで除算することで、フィルタ係数I´を正規化する。そして、選択部418は、正規化されたエッジ検出フィルタを、投影線と同じ識別子を有する調整領域及びその周辺領域に対して適用することで、エッジ検出処理を行う。例えば、調整領域の周辺領域としては、調整領域を数画素~10画素だけ膨張させた領域を用いることができる。
図21は、フィルタ係数の具体例を示している。図21(a)は、回転前のエッジ検出フィルタに相当するソーベルフィルタの例を示している。図21(b)は、45°だけ傾いた投影線2101に合わせて、45°だけ回転させたソーベルフィルタの例を示しており、図21(c)は、再配分後のエッジ検出フィルタの例を示している。
このようなエッジ検出フィルタを用いてエッジ検出処理を行うことで、画像432内の画素値の乱れ(ノイズ)を抑制しつつ、投影線と類似する傾きを有することが期待される、本来のエッジ線を高感度で検出できる。これにより、画像432に写っている物体の境界線に忠実な重畳スコアを求めることが可能になる。したがって、エッジ検出精度を重視する場合に有効な処理である。
選択部418は、複数のパラメータそれぞれを用いて画像432に対するエッジ検出処理を行うことで、複数のエッジ画像を生成し、それらのエッジ画像を用いて勾配画像を生成することもできる。この場合、エッジ検出処理のパラメータとしては、処理対象画像のサイズ(縦横の長さ)、勾配強度に対する閾値等が用いられる。
画像432のサイズに対する処理対象画像のサイズの比率として、複数の比率を用いることで、複数の処理対象画像が生成され、それらの処理対象画像に対するエッジ検出処理を行うことで、複数のエッジ画像が生成される。処理対象画像のサイズの比率は、50%~100%の範囲の比率であってもよい。また、勾配強度に対する複数の閾値を用いることで、それらの閾値に基づく複数のエッジ画像を生成することもできる。
選択部418は、例えば、次式により複数のエッジ画像を平均化することで、勾配画像を生成する。
Figure 0007188201000006
式(14)のV(i,j)は、勾配画像の2次元座標(i,j)における画素値を表し、V(i,j)は、g番目(g=1~G)のエッジ画像の2次元座標(i,j)における画素値を表し、Σは、g=1~Gに関する総和を表す。G枚のエッジ画像のサイズが異なる場合、選択部418は、バイキュービック補間、バイリニア補間等を用いて、画素値を補間する。
単一のサイズ又は単一の閾値に基づいて、画像432に対するエッジ検出処理を1回だけ行う場合、画像432内の多くのノイズが検出されたり、少量のエッジ線しか検出されなかったりすることがある。これに対して、パラメータを変更しながらエッジ検出処理を複数回繰り返すことで、様々な画像に対して勾配強度を考慮したエッジ画像を生成することができ、ノイズを抑制しつつ、より多くのエッジ線を検出することが可能になる。
図22は、複数回のエッジ検出処理を用いた重畳スコア計算処理の例を示している。図22(a)は、図13の勾配画像1301を用いた重畳スコア計算処理を示している。上述したように、勾配画像1301は1回のエッジ検出処理によって生成され、延長特徴線1302の重畳スコアは500である。
図22(b)は、複数回のエッジ検出処理を用いた重畳スコア計算処理の例を示している。勾配画像2201は複数回のエッジ検出処理によって生成され、各画素の画素値は0、100、150、又は250である。このように、1回のエッジ検出処理では検出されなかったエッジ線が検出され、そのエッジ線が弱いエッジ線であることが画素値に反映されている。この場合、矢印が示す単位ベクトルを延長していくことで、0、100、150、150、250、及び250の6個の画素値が取得され、延長特徴線1302の重畳スコアは900となる。
図22(c)は、勾配画像2201を用いた2本の延長特徴線に対する重畳スコア計算処理の例を示している。延長特徴線1302と部分的に重なる延長特徴線2202が存在する場合、延長特徴線2202と同じ傾きを有する単位ベクトル(矢印)を延長していくことで、0、0、0、0、250、及び250の6個の画素値が取得される。したがって、延長特徴線2202の重畳スコアは500となる。
この場合、延長特徴線2202よりも大きな重畳スコアを有する延長特徴線1302が、特定の延長特徴線として選択される。このように、勾配画像1301の代わりに、弱いエッジ線を示す画素を含む勾配画像2201を用いることで、より正確に延長特徴線を選択することが可能になる。
図16のステップ1611において、選択部418は、複数の投影線それぞれから生成された特徴線集合439に基づいて、重畳スコアに対する閾値を設定し、その閾値を用いて各調整領域から、特定の延長特徴線を選択することもできる。
この場合、選択部418は、複数の特徴線集合439それぞれから生成された延長特徴線の重畳スコアを計算し、それらの延長特徴線の重畳スコアを用いて閾値を設定する。そして、選択部418は、その閾値を用いて、各特徴線集合439から生成された複数の延長特徴線の中から、複数の候補特徴線を抽出し、それらの候補特徴線の中から特定の延長特徴線を選択する。
例えば、選択部418は、すべての調整領域におけるすべての延長特徴線の重畳スコアの統計値を計算し、各調整領域において、その統計値から標準偏差の定数倍以上離れた重畳スコアを有する延長特徴線を除外する。そして、選択部418は、残りの延長特徴線、すなわち、標準偏差の定数倍未満の範囲の重畳スコアを有する延長特徴線を、候補特徴線として抽出する。重畳スコアの統計値は、平均値、中央値等であってもよい。標準偏差の定数倍としては、2倍又は3倍を用いることができる。
延長特徴線を絞り込んだ場合、ずれ量の表示対象が減少する可能性があるが、画像432全体から検出されたすべての特徴線に基づいて、延長特徴線の重畳スコアを比較することで、より厳しい基準で延長特徴線を評価することができる。したがって、より高精度に延長特徴線を選択したい場合に有効な処理である。
図16のステップ1611において、選択部418は、画像432上における画素値の勾配の方向(勾配方向)に基づいて、重畳スコアを計算することもできる。
この場合、選択部418は、画像432の各画素について勾配方向を求め、各画素の勾配方向と垂直な法線方向を求め、投影線の方向と各画素の法線方向との間の類似度を求める。そして、選択部418は、求めた類似度に基づいて、勾配画像から重畳スコアの計算に用いる画素を選択し、選択された画素の画素値を用いて、各延長特徴線の重畳スコアを計算する。
例えば、選択部418は、画像432の各画素の勾配方向と垂直な法線方向を示す単位ベクトルEoriを、次式により計算する。
Figure 0007188201000007
Eori
=(sin(θ(V(x,y)),-cos(θ(V(x,y)))) (16)
式(15)のV(x,y)は、画像432上の座標(x,y)における画素の画素値を表し、θ(V(x,y))は、その画素の勾配方向の角度を表し、Eoriは、その画素におけるエッジ線の方向を表す。
次に、選択部418は、投影線の長さ方向を示す方向ベクトルと単位ベクトルEoriとの間の類似度αを計算する。例えば、投影線の方向ベクトルとEoriとの間のコサイン類似度の絶対値を、類似度αとして用いることができる。そして、選択部418は、所定値よりも大きな類似度αを有する画素を、重畳スコアの計算に用いる画素として選択する。
図23は、画素値の勾配方向を用いた重畳スコア計算処理の例を示している。図23(a)は、勾配画像の例を示している。この例では、各画素の画素値は0又は250である。しかし、画素2311~画素2314の画素値は、物体の境界線とは無関係なノイズを表しているため、重畳スコアを計算する際に処理対象から除外することが望ましい。
図23(b)は、各画素の勾配方向を用いない重畳スコア計算処理の例を示している。延長特徴線2302と同じ傾きを有する単位ベクトル(矢印)を延長していくことで、0、250、250、250、250、及び250の6個の画素値が取得される。したがって、延長特徴線2302の重畳スコアは1250となる。
一方、別の延長特徴線2303と同じ傾きを有する単位ベクトル(矢印)を延長していくことで、250、250、250、250、250、及び250の6個の画素値が取得される。したがって、延長特徴線2303の重畳スコアは1500となる。
この場合、延長特徴線2303は物体の境界線を表していないにもかかわらず、延長特徴線2302よりも大きな重畳スコアを有するため、延長特徴線2303が選択されてしまう。
図23(c)は、各画素の法線方向を示す単位ベクトルEoriの例を示している。画素2321~画素2326の法線方向は、投影線の長さ方向と近似しており、これらの画素の類似度αは所定値よりも大きくなる。一方、画素2311~画素2314の法線方向は、投影線の長さ方向と近似しておらず、これらの画素の類似度αは所定値よりも小さくなる。
したがって、各画素の勾配方向を用いた重畳スコア計算処理では、画素2311~画素2314が処理対象から除外されて、延長特徴線2303の重畳スコアは500となる。この場合、延長特徴線2302の重畳スコアが延長特徴線2303の重畳スコアよりも大きくなるため、延長特徴線2302が選択される。
このように、各画素の勾配方向を用いることで、勾配画像からノイズの影響を除去して、正確な重畳スコアを計算することができる。これにより、より厳しい基準で延長特徴線を評価することができるため、より高精度に延長特徴線を選択したい場合に有効な処理である。
図2及び図4の画像処理装置の構成は一例に過ぎず、画像処理装置の用途又は条件に応じて一部の構成要素を省略又は変更してもよい。例えば、図4の画像処理装置401において、事前に画像432が記憶部411に格納されている場合は、画像取得部412を省略することができる。外部の装置が対応ペア集合436を表示する場合は、表示部421を省略することができる。CADデータ431の代わりに、物体の形状を表す他の形状情報を用いてもよい。
図3及び図16のフローチャートは一例に過ぎず、画像処理装置の構成又は条件に応じて一部の処理を省略又は変更してもよい。例えば、外部の装置が対応ペア集合436を表示する場合は、図16のステップ1613の処理を省略することができる。
図1の画像及び特徴線、図5の投影線及び特徴線、図6の3D線分及び投影線、図12の投影線及び特徴線は一例に過ぎず、物体の画像、3D線分、投影線、及び特徴線は、撮影対象の物体と画像処理装置の構成又は条件に応じて変化する。
図7の調整領域、図8~図10の延長特徴線、図11、図13、図22、及び図23の勾配画像は一例に過ぎず、調整領域、延長特徴線、及び勾配画像は、撮影対象の物体と画像処理装置の構成又は条件に応じて変化する。図14の重畳スコアは一例に過ぎず、重畳スコアは、延長特徴線及び勾配画像に応じて変化する。
図15の対応ペア及びずれ量と図17の対応ペアの増分は一例に過ぎず、対応ペア、ずれ量、及び対応ペアの増分は、撮影対象の物体と画像処理装置の構成又は条件に応じて変化する。
図18~図21のエッジ検出フィルタは一例に過ぎず、画像処理装置の構成又は条件に応じて別のエッジ検出フィルタを用いてもよい。
式(1)~式(16)の計算式は一例に過ぎず、画像処理装置の構成又は条件に応じて別の計算式を用いてもよい。
図24は、図2及び図4の画像処理装置として用いられる情報処理装置(コンピュータ)の構成例を示している。図24の情報処理装置は、CPU(Central Processing Unit)2401、メモリ2402、入力装置2403、出力装置2404、補助記憶装置2405、媒体駆動装置2406、及びネットワーク接続装置2407を含む。これらの構成要素はバス2408により互いに接続されている。図4の撮像装置402は、バス2408に接続されていてもよい。
メモリ2402は、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)、フラッシュメモリ等の半導体メモリであり、処理に用いられるプログラム及びデータを格納する。メモリ2402は、図2の記憶部211又は図4の記憶部411として用いることができる。
CPU2401(プロセッサ)は、例えば、メモリ2402を利用してプログラムを実行することにより、図2の検出部212、投影部213、選択部214、及び計算部215として動作する。
CPU2401は、メモリ2402を利用してプログラムを実行することにより、図4の画像取得部412、特徴線検出部413、線分検出部414、投影部415、及びパラメータ設定部416としても動作する。CPU2401は、メモリ2402を利用してプログラムを実行することにより、生成部417、選択部418、パラメータ計算部419、及び計算部420としても動作する。
入力装置2403は、例えば、キーボード、ポインティングデバイス等であり、オペレータ又はユーザからの指示又は情報の入力に用いられる。出力装置2404は、例えば、表示装置、プリンタ、スピーカ等であり、オペレータ又はユーザへの問い合わせ又は指示、及び処理結果の出力に用いられる。処理結果は、対応ペアを表す投影線及び特徴線とずれ量であってもよい。出力装置2404は、図4の表示部421として用いることができる。
補助記憶装置2405は、例えば、磁気ディスク装置、光ディスク装置、光磁気ディスク装置、テープ装置等である。補助記憶装置2405は、ハードディスクドライブ又はフラッシュメモリであってもよい。情報処理装置は、補助記憶装置2405にプログラム及びデータを格納しておき、それらをメモリ2402にロードして使用することができる。補助記憶装置2405は、図2の記憶部211又は図4の記憶部411として用いることができる。
媒体駆動装置2406は、可搬型記録媒体2409を駆動し、その記録内容にアクセスする。可搬型記録媒体2409は、メモリデバイス、フレキシブルディスク、光ディスク、光磁気ディスク等である。可搬型記録媒体2409は、CD-ROM(Compact Disk Read Only Memory)、DVD(Digital Versatile Disk)、USB(Universal Serial Bus)メモリ等であってもよい。オペレータ又はユーザは、この可搬型記録媒体2409にプログラム及びデータを格納しておき、それらをメモリ2402にロードして使用することができる。
このように、画像処理に用いられるプログラム及びデータを格納するコンピュータ読み取り可能な記録媒体は、メモリ2402、補助記憶装置2405、又は可搬型記録媒体2409のような、物理的な(非一時的な)記録媒体である。
ネットワーク接続装置2407は、LAN(Local Area Network)、WAN(Wide Area Network)等の通信ネットワークに接続され、通信に伴うデータ変換を行う通信インタフェース回路である。情報処理装置は、プログラム及びデータを外部の装置からネットワーク接続装置2407を介して受信し、それらをメモリ2402にロードして使用することができる。
なお、情報処理装置が図24のすべての構成要素を含む必要はなく、用途又は条件に応じて一部の構成要素を省略することも可能である。例えば、可搬型記録媒体2409又は通信ネットワークを使用しない場合は、媒体駆動装置2406又はネットワーク接続装置2407を省略してもよい。
開示の実施形態とその利点について詳しく説明したが、当業者は、特許請求の範囲に明確に記載した本発明の範囲から逸脱することなく、様々な変更、追加、省略をすることができるであろう。
図1乃至図24を参照しながら説明した実施形態に関し、さらに以下の付記を開示する。
(付記1)
物体の形状を表す複数の線分を含む形状情報を記憶する記憶部と、
前記物体の画像から複数の特徴線を検出する検出部と、
前記複数の線分のうちいずれかの線分を前記物体の画像上に投影することで、対象投影線を生成する投影部と、
前記物体の画像上で前記対象投影線に基づく所定領域と重なる特徴線を、前記複数の特徴線の中から抽出して、特徴線の集合を生成し、前記物体の画像上における画素値の勾配を示す勾配情報に基づいて、前記特徴線の集合から対象特徴線を選択する選択部と、
前記対象投影線に対応する線分と前記対象特徴線との間のずれ量を計算する計算部と、
を備えることを特徴とする画像処理装置。
(付記2)
前記選択部は、前記対象投影線を幅方向に拡張することで、前記所定領域を生成することを特徴とする付記1記載の画像処理装置。
(付記3)
前記選択部は、前記対象投影線を長さ方向に短縮することで、前記所定領域を生成することを特徴とする付記2記載の画像処理装置。
(付記4)
前記選択部は、前記複数の特徴線のうち、前記所定領域に一部分又は全体が含まれている特徴線を、前記所定領域と重なる特徴線として抽出することを特徴とする付記1乃至3のいずれか1項に記載の画像処理装置。
(付記5)
前記選択部は、前記物体の画像上における画素値の勾配の大きさを各画素の画素値として含む勾配画像を生成し、前記特徴線の集合に含まれる特徴線を長さ方向に延長することで延長特徴線を生成し、前記特徴線の集合から生成された複数の延長特徴線それぞれが前記勾配画像上で通過する画素の画素値に基づいて、前記複数の延長特徴線それぞれの評価値を計算し、前記複数の延長特徴線それぞれの評価値に基づいて、特定の延長特徴線を選択し、前記特定の延長特徴線に対応する特徴線を、前記対象特徴線として選択することを特徴とする付記1乃至4のいずれか1項に記載の画像処理装置。
(付記6)
前記選択部は、前記対象投影線の位置及び傾きに応じたフィルタ係数を有するフィルタを用いて、前記物体の画像に対するエッジ検出処理を行うことで、前記勾配画像を生成することを特徴とする付記5記載の画像処理装置。
(付記7)
前記選択部は、複数のパラメータそれぞれを用いて前記物体の画像に対するエッジ検出処理を行うことで、複数のエッジ画像を生成し、前記複数のエッジ画像を用いて前記勾配画像を生成することを特徴とする付記5記載の画像処理装置。
(付記8)
前記投影部は、前記複数の線分それぞれを前記物体の画像上に投影することで、複数の対象投影線を生成し、
前記選択部は、前記物体の画像上で前記複数の対象投影線それぞれに基づく所定領域と重なる特徴線を、前記複数の特徴線の中から抽出することで、特徴線の集合を複数個生成し、複数個の集合それぞれから延長特徴線を生成し、前記複数個の集合から生成された延長特徴線の評価値を計算し、前記複数個の集合から生成された延長特徴線の評価値を用いて、評価値に対する閾値を設定し、前記閾値を用いて前記複数の延長特徴線の中から複数の候補特徴線を抽出し、前記複数の候補特徴線の中から前記特定の延長特徴線を選択することを特徴とする付記5記載の画像処理装置。
(付記9)
前記選択部は、前記物体の画像の各画素について、前記物体の画像上における画素値の勾配の方向を求め、各画素の勾配の方向と垂直な法線方向を求め、前記対象投影線の方向と各画素の法線方向との間の類似度を求め、前記類似度に基づいて、前記勾配画像から評価値の計算に用いる画素を選択し、選択された画素の画素値を用いて、前記複数の延長特徴線それぞれの評価値を計算することを特徴とする付記5記載の画像処理装置。
(付記10)
前記物体の画像、前記対象投影線に対応する線分、前記対象特徴線、及び前記ずれ量を画面上に表示する表示部をさらに備えることを特徴とする付記1乃至9のいずれか1項に記載の画像処理装置。
(付記11)
コンピュータによって実行される画像処理方法であって、
前記コンピュータが、
物体の画像から複数の特徴線を検出し、
前記物体の形状を表す形状情報に含まれる複数の線分のうち、いずれかの線分を前記物体の画像上に投影することで、対象投影線を生成し、
前記物体の画像上で前記対象投影線に基づく所定領域と重なる特徴線を、前記複数の特徴線の中から抽出して、特徴線の集合を生成し、
前記物体の画像上における画素値の勾配を示す勾配情報に基づいて、前記特徴線の集合から対象特徴線を選択し、
前記対象投影線に対応する線分と前記対象特徴線との間のずれ量を計算する、
ことを特徴とする画像処理方法。
(付記12)
前記コンピュータは、前記対象投影線を幅方向に拡張することで、前記所定領域を生成することを特徴とする付記11記載の画像処理方法。
(付記13)
前記コンピュータは、前記対象投影線を長さ方向に短縮することで、前記所定領域を生成することを特徴とする付記12記載の画像処理方法。
(付記14)
前記コンピュータは、前記複数の特徴線のうち、前記所定領域に一部分又は全体が含まれている特徴線を、前記所定領域と重なる特徴線として抽出することを特徴とする付記11乃至13のいずれか1項に記載の画像処理方法。
(付記15)
前記コンピュータは、前記物体の画像上における画素値の勾配の大きさを各画素の画素値として含む勾配画像を生成し、前記特徴線の集合に含まれる特徴線を長さ方向に延長することで延長特徴線を生成し、前記特徴線の集合から生成された複数の延長特徴線それぞれが前記勾配画像上で通過する画素の画素値に基づいて、前記複数の延長特徴線それぞれの評価値を計算し、前記複数の延長特徴線それぞれの評価値に基づいて、特定の延長特徴線を選択し、前記特定の延長特徴線に対応する特徴線を、前記対象特徴線として選択することを特徴とする付記11乃至14のいずれか1項に記載の画像処理方法。
(付記16)
物体の画像から複数の特徴線を検出し、
前記物体の形状を表す形状情報に含まれる複数の線分のうち、いずれかの線分を前記物体の画像上に投影することで、対象投影線を生成し、
前記物体の画像上で前記対象投影線に基づく所定領域と重なる特徴線を、前記複数の特徴線の中から抽出して、特徴線の集合を生成し、
前記物体の画像上における画素値の勾配を示す勾配情報に基づいて、前記特徴線の集合から対象特徴線を選択し、
前記対象投影線に対応する線分と前記対象特徴線との間のずれ量を計算する、
処理をコンピュータに実行させるための画像処理プログラム。
(付記17)
前記コンピュータは、前記対象投影線を幅方向に拡張することで、前記所定領域を生成することを特徴とする付記16記載の画像処理プログラム。
(付記18)
前記コンピュータは、前記対象投影線を長さ方向に短縮することで、前記所定領域を生成することを特徴とする付記17記載の画像処理プログラム。
(付記19)
前記コンピュータは、前記複数の特徴線のうち、前記所定領域に一部分又は全体が含まれている特徴線を、前記所定領域と重なる特徴線として抽出することを特徴とする付記16乃至18のいずれか1項に記載の画像処理プログラム。
(付記20)
前記コンピュータは、前記物体の画像上における画素値の勾配の大きさを各画素の画素値として含む勾配画像を生成し、前記特徴線の集合に含まれる特徴線を長さ方向に延長することで延長特徴線を生成し、前記特徴線の集合から生成された複数の延長特徴線それぞれが前記勾配画像上で通過する画素の画素値に基づいて、前記複数の延長特徴線それぞれの評価値を計算し、前記複数の延長特徴線それぞれの評価値に基づいて、特定の延長特徴線を選択し、前記特定の延長特徴線に対応する特徴線を、前記対象特徴線として選択することを特徴とする付記16乃至19のいずれか1項に記載の画像処理プログラム。
201、401 画像処理装置
211、411 記憶部
212 検出部
213、415 投影部
214、418 選択部
215、420 計算部
221 形状情報
402 撮像装置
412 画像取得部
413 特徴線検出部
414 線分検出部
416 パラメータ設定部
417 生成部
419 パラメータ計算部
421 表示部
431 CADデータ
432 画像
433、501、504 特徴線
434 3D線分
435 初期パラメータ
436 対応ペア集合
437 パラメータ
438 投影線情報
439 特徴線集合
502、2101 投影線
503、801 領域
802 調整領域
1001、1002、1011、1012、1021、1022、1031、1032、1111、1112 矢印
1101、1301、2201、2301 勾配画像
1302、2202、2302、2303 延長特徴線
1311 始点
1316 終点
1312~1315、1801、1802、1901~1904 点
2311~2314、2321~2326 画素
2401 CPU
2402 メモリ
2403 入力装置
2404 出力装置
2405 補助記憶装置
2406 媒体駆動装置
2407 ネットワーク接続装置
2408 バス
2409 可搬型記録媒体

Claims (12)

  1. 物体の形状を表す複数の線分を含む形状情報を記憶する記憶部と、
    前記物体の画像から複数の特徴線を検出する検出部と、
    前記複数の線分のうちいずれかの線分を前記物体の画像上に投影することで、対象投影線を生成する投影部と、
    前記物体の画像上で前記対象投影線に基づく所定領域と重なる特徴線を、前記複数の特徴線の中から抽出して、特徴線の集合を生成し、前記物体の画像上における画素値の勾配を示す勾配情報に基づいて、前記特徴線の集合から対象特徴線を選択する選択部と、
    前記対象投影線に対応する線分と前記対象特徴線との間のずれ量を計算する計算部と、
    を備えることを特徴とする画像処理装置。
  2. 前記選択部は、前記対象投影線を幅方向に拡張することで、前記所定領域を生成することを特徴とする請求項1記載の画像処理装置。
  3. 前記選択部は、前記対象投影線を長さ方向に短縮することで、前記所定領域を生成することを特徴とする請求項2記載の画像処理装置。
  4. 前記選択部は、前記複数の特徴線のうち、前記所定領域に一部分又は全体が含まれている特徴線を、前記所定領域と重なる特徴線として抽出することを特徴とする請求項1乃至3のいずれか1項に記載の画像処理装置。
  5. 前記選択部は、前記物体の画像上における画素値の勾配の大きさを各画素の画素値として含む勾配画像を生成し、前記特徴線の集合に含まれる特徴線を長さ方向に延長することで延長特徴線を生成し、前記特徴線の集合から生成された複数の延長特徴線それぞれが前記勾配画像上で通過する画素の画素値に基づいて、前記複数の延長特徴線それぞれの評価値を計算し、前記複数の延長特徴線それぞれの評価値に基づいて、特定の延長特徴線を選択し、前記特定の延長特徴線に対応する特徴線を、前記対象特徴線として選択することを特徴とする請求項1乃至4のいずれか1項に記載の画像処理装置。
  6. 前記選択部は、前記対象投影線の位置及び傾きに応じたフィルタ係数を有するフィルタを用いて、前記物体の画像に対するエッジ検出処理を行うことで、前記勾配画像を生成することを特徴とする請求項5記載の画像処理装置。
  7. 前記選択部は、複数のパラメータそれぞれを用いて前記物体の画像に対するエッジ検出処理を行うことで、複数のエッジ画像を生成し、前記複数のエッジ画像を用いて前記勾配画像を生成することを特徴とする請求項5記載の画像処理装置。
  8. 前記投影部は、前記複数の線分それぞれを前記物体の画像上に投影することで、複数の対象投影線を生成し、
    前記選択部は、前記物体の画像上で前記複数の対象投影線それぞれに基づく所定領域と重なる特徴線を、前記複数の特徴線の中から抽出することで、特徴線の集合を複数個生成し、複数個の集合それぞれから延長特徴線を生成し、前記複数個の集合から生成された延長特徴線の評価値を計算し、前記複数個の集合から生成された延長特徴線の評価値を用いて、評価値に対する閾値を設定し、前記閾値を用いて前記複数の延長特徴線の中から複数の候補特徴線を抽出し、前記複数の候補特徴線の中から前記特定の延長特徴線を選択することを特徴とする請求項5記載の画像処理装置。
  9. 前記選択部は、前記物体の画像の各画素について、前記物体の画像上における画素値の勾配の方向を求め、各画素の勾配の方向と垂直な法線方向を求め、前記対象投影線の方向と各画素の法線方向との間の類似度を求め、前記類似度に基づいて、前記勾配画像から評価値の計算に用いる画素を選択し、選択された画素の画素値を用いて、前記複数の延長特徴線それぞれの評価値を計算することを特徴とする請求項5記載の画像処理装置。
  10. 前記物体の画像、前記対象投影線に対応する線分、前記対象特徴線、及び前記ずれ量を画面上に表示する表示部をさらに備えることを特徴とする請求項1乃至9のいずれか1項に記載の画像処理装置。
  11. コンピュータによって実行される画像処理方法であって、
    前記コンピュータが、
    物体の画像から複数の特徴線を検出し、
    前記物体の形状を表す形状情報に含まれる複数の線分のうち、いずれかの線分を前記物体の画像上に投影することで、対象投影線を生成し、
    前記物体の画像上で前記対象投影線に基づく所定領域と重なる特徴線を、前記複数の特徴線の中から抽出して、特徴線の集合を生成し、
    前記物体の画像上における画素値の勾配を示す勾配情報に基づいて、前記特徴線の集合から対象特徴線を選択し、
    前記対象投影線に対応する線分と前記対象特徴線との間のずれ量を計算する、
    ことを特徴とする画像処理方法。
  12. 物体の画像から複数の特徴線を検出し、
    前記物体の形状を表す形状情報に含まれる複数の線分のうち、いずれかの線分を前記物体の画像上に投影することで、対象投影線を生成し、
    前記物体の画像上で前記対象投影線に基づく所定領域と重なる特徴線を、前記複数の特徴線の中から抽出して、特徴線の集合を生成し、
    前記物体の画像上における画素値の勾配を示す勾配情報に基づいて、前記特徴線の集合から対象特徴線を選択し、
    前記対象投影線に対応する線分と前記対象特徴線との間のずれ量を計算する、
    処理をコンピュータに実行させるための画像処理プログラム。
JP2019046356A 2019-03-13 2019-03-13 画像処理装置、画像処理方法、及び画像処理プログラム Active JP7188201B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019046356A JP7188201B2 (ja) 2019-03-13 2019-03-13 画像処理装置、画像処理方法、及び画像処理プログラム
US16/805,964 US11132806B2 (en) 2019-03-13 2020-03-02 Image processing apparatus and image processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019046356A JP7188201B2 (ja) 2019-03-13 2019-03-13 画像処理装置、画像処理方法、及び画像処理プログラム

Publications (2)

Publication Number Publication Date
JP2020148625A JP2020148625A (ja) 2020-09-17
JP7188201B2 true JP7188201B2 (ja) 2022-12-13

Family

ID=72423892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019046356A Active JP7188201B2 (ja) 2019-03-13 2019-03-13 画像処理装置、画像処理方法、及び画像処理プログラム

Country Status (2)

Country Link
US (1) US11132806B2 (ja)
JP (1) JP7188201B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113763419B (zh) * 2021-04-29 2023-06-20 腾讯科技(深圳)有限公司 一种目标跟踪方法、设备及计算机可读存储介质
CN113269732B (zh) * 2021-05-14 2024-03-29 成都真实维度科技有限公司 一种基于特征扫描图像的线性物体检测方法
CN116485702A (zh) 2022-01-17 2023-07-25 株式会社理光 图像处理方法、装置以及存储介质
CN115272217B (zh) * 2022-07-22 2023-04-18 湖北工业大学 一种基于声呐图像的水下机器人定位方法
CN115063431B (zh) * 2022-08-19 2022-11-11 山东远盾网络技术股份有限公司 一种基于图像处理的汽车零部件质量溯源方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286756A (ja) 2007-05-21 2008-11-27 Canon Inc 位置姿勢計測装置及びその制御方法
JP2015132523A (ja) 2014-01-10 2015-07-23 キヤノン株式会社 位置姿勢計測装置、位置姿勢計測方法及びプログラム
JP2016148649A (ja) 2015-02-05 2016-08-18 キヤノン株式会社 情報処理装置、情報処理装置の制御方法、およびプログラム
JP2017182302A (ja) 2016-03-29 2017-10-05 富士通株式会社 画像処理プログラム、画像処理装置、及び画像処理方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4825109B2 (ja) 2006-05-10 2011-11-30 シャープ株式会社 設計支援装置
JP5612916B2 (ja) * 2010-06-18 2014-10-22 キヤノン株式会社 位置姿勢計測装置、その処理方法、プログラム、ロボットシステム
JP5597056B2 (ja) 2010-08-02 2014-10-01 株式会社キーエンス 画像測定装置、画像測定方法及び画像測定装置用のプログラム
JP5636966B2 (ja) 2011-01-05 2014-12-10 富士ゼロックス株式会社 誤差検出装置及び誤差検出プログラム
GB201303540D0 (en) 2013-02-27 2013-04-10 Arithmetica Ltd Image processing
TWI584228B (zh) * 2016-05-20 2017-05-21 銘傳大學 場線之擷取重建方法
JP6880618B2 (ja) 2016-09-26 2021-06-02 富士通株式会社 画像処理プログラム、画像処理装置、及び画像処理方法
JP7027978B2 (ja) * 2018-03-14 2022-03-02 富士通株式会社 検査装置、検査方法、及び検査プログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286756A (ja) 2007-05-21 2008-11-27 Canon Inc 位置姿勢計測装置及びその制御方法
JP2015132523A (ja) 2014-01-10 2015-07-23 キヤノン株式会社 位置姿勢計測装置、位置姿勢計測方法及びプログラム
JP2016148649A (ja) 2015-02-05 2016-08-18 キヤノン株式会社 情報処理装置、情報処理装置の制御方法、およびプログラム
JP2017182302A (ja) 2016-03-29 2017-10-05 富士通株式会社 画像処理プログラム、画像処理装置、及び画像処理方法

Also Published As

Publication number Publication date
JP2020148625A (ja) 2020-09-17
US20200294258A1 (en) 2020-09-17
US11132806B2 (en) 2021-09-28

Similar Documents

Publication Publication Date Title
JP7188201B2 (ja) 画像処理装置、画像処理方法、及び画像処理プログラム
US10354402B2 (en) Image processing apparatus and image processing method
US20150262346A1 (en) Image processing apparatus, image processing method, and image processing program
US10636165B2 (en) Information processing apparatus, method and non-transitory computer-readable storage medium
JP7027978B2 (ja) 検査装置、検査方法、及び検査プログラム
US20150310617A1 (en) Display control device and display control method
EP3300025B1 (en) Image processing device and image processing method
US20160012600A1 (en) Image processing method, image processing apparatus, program, storage medium, production apparatus, and method of producing assembly
TW201616451A (zh) 點雲套索選取系統及方法
JP6332951B2 (ja) 画像処理装置および画像処理方法、およびプログラム
JP2022169723A (ja) ビジョンシステムで画像内のプローブを効率的に採点するためのシステム及び方法
US11176661B2 (en) Image processing apparatus and image processing method
JP7003617B2 (ja) 推定装置、推定方法、及び推定プログラム
US8238619B2 (en) Method of extracting ridge line and valley line from three-dimensional point data
US11145048B2 (en) Image processing apparatus, image processing method, and non-transitory computer-readable storage medium for storing program
JP2006113832A (ja) ステレオ画像処理装置およびプログラム
JP7059701B2 (ja) 推定装置、推定方法、及び推定プログラム
JP2008116207A (ja) 画像計測装置、画像計測方法及びプログラム
JP7232663B2 (ja) 画像処理装置及び画像処理方法
JP6946912B2 (ja) 推定プログラム、推定装置、及び推定方法
JP2013254332A (ja) 画像処理方法および画像処理装置
JP2010186485A (ja) カラー画像の処理方法および画像処理装置
Läbe et al. On the quality of automatic relative orientation procedures
BOLEČEK et al. SELECTED PROBLEMS IN PHOTOGRAMMETRIC SYSTEMS ANALYSIS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221114

R150 Certificate of patent or registration of utility model

Ref document number: 7188201

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150