JP7185233B2 - PLANT COMMUNITY TRANSMITTED LIGHT SENSOR UNIT AND METHOD FOR DETERMINING GROWTH OF PLANT - Google Patents

PLANT COMMUNITY TRANSMITTED LIGHT SENSOR UNIT AND METHOD FOR DETERMINING GROWTH OF PLANT Download PDF

Info

Publication number
JP7185233B2
JP7185233B2 JP2019107263A JP2019107263A JP7185233B2 JP 7185233 B2 JP7185233 B2 JP 7185233B2 JP 2019107263 A JP2019107263 A JP 2019107263A JP 2019107263 A JP2019107263 A JP 2019107263A JP 7185233 B2 JP7185233 B2 JP 7185233B2
Authority
JP
Japan
Prior art keywords
pipe
light sensor
visible light
plant
infrared light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019107263A
Other languages
Japanese (ja)
Other versions
JP2020198804A (en
Inventor
直記 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka Prefecture
Original Assignee
Shizuoka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka Prefecture filed Critical Shizuoka Prefecture
Priority to JP2019107263A priority Critical patent/JP7185233B2/en
Publication of JP2020198804A publication Critical patent/JP2020198804A/en
Application granted granted Critical
Publication of JP7185233B2 publication Critical patent/JP7185233B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Description

本発明は、植物の生育状態を正確に判定するために用いられる植物群落透過光センサユニットと、当該センサユニットを用いた植物の生育状態判定方法とに関する。 The present invention relates to a plant community transmitted light sensor unit used to accurately determine the growth state of plants, and a plant growth state determination method using the sensor unit.

野菜・花き等の栽培過程において、生産者は毎日植物の生育状態を観察し、その生育状態(繁茂程度、葉色等)の主観的評価に基づく栽培管理条件の設定・変更(温・湿度、肥料成分、給液量等)を行っている。しかし、植物の生育状態の評価には高度な熟練を要し、特に栽培経験の少ない生産者は評価ミスによる栽培の不安定化が課題となっている。一方、熟練生産者であっても近年の極端な気象変動、新栽培管理技術(統合環境制御等)及び新品種の導入に即応するためには、同様な問題が生じることになる。したがって、植物の生育状態を適切に表現できる指標の構築は、栽培管理に対する意思決定の支援や制御の自動化を通じて、高品質・安定生産に大きく寄与すると考えられる。 During the cultivation process of vegetables, flowers, etc., producers observe the growth state of plants every day, and set and change cultivation management conditions (temperature, humidity, fertilizer, etc.) based on subjective evaluation of the growth state (degree of growth, leaf color, etc.). component, amount of liquid supplied, etc.). However, evaluation of the growth state of plants requires a high degree of skill, and producers with little cultivation experience in particular face the problem of destabilization of cultivation due to errors in evaluation. On the other hand, even experienced producers face similar problems in order to respond quickly to recent extreme weather changes, new cultivation management techniques (integrated environmental control, etc.), and the introduction of new varieties. Therefore, the construction of an index that can appropriately express the growth state of plants will greatly contribute to high-quality and stable production through decision-making support and control automation for cultivation management.

そこで、植物の生育状態を非破壊・非接触で自動的に数値データとして把握できる指標として、葉面積指数(LAI)を用いる試みが知られている。例えば本件出願人は、特許文献1において、植物群落内外に散乱光センサを設置し、群落内光量の減衰程度からLAIを非破壊・非接触で評価できる「植物の生育段階判定方法及びシステム」を提供している。これは、植物群落内外の直達光をカットし散乱光量のみを測定するため、受光面の前方側を除く周囲を遮光した散乱光センサを、太陽直達光の影響の小さい北側方向に向けて、植物群落内外に一個ずつ計2個設置し、群落上のセンサ出力に対する群落内のセンサ出力差が大きいほどLAIが大きいと判定することが特徴となっている。
また、特許文献2では、可視光及び近赤外光を受感するセンサを用いた植物群落の波長別透過光比によって、LAIや光合成活性度を非破壊評価できる発明が開示されている。これは、植物群落のLAIが大きいほど可視光がクロロフィルに吸収されてより減衰するため、クロロフィル吸収量が大きい可視光に対するクロロフィル吸収量が小さい近赤外光の比率が大きくなるしくみを利用したものである。
Therefore, an attempt to use the leaf area index (LAI) is known as an index for automatically grasping the growth state of plants as numerical data in a non-destructive and non-contact manner. For example, in Patent Document 1, the applicant of the present application has set up a scattered light sensor inside and outside a plant community, and has developed a "plant growth stage determination method and system" that can evaluate LAI from the degree of attenuation of light in the community in a non-destructive and non-contact manner. providing. In order to cut the direct light from inside and outside the plant community and measure only the amount of scattered light, the scattered light sensor with its surroundings except the front side of the light-receiving surface shaded is oriented toward the north where the influence of direct sunlight is small. A total of two sensors are installed, one inside and one outside the canopy, and the larger the difference in the sensor output in the canopy with respect to the sensor output in the canopy, the larger the LAI is determined.
Further, Patent Document 2 discloses an invention capable of non-destructive evaluation of LAI and photosynthetic activity based on the transmitted light ratio by wavelength of a plant community using a sensor that senses visible light and near-infrared light. This is because the greater the LAI of a plant community, the more visible light is absorbed by chlorophyll and attenuated more. is.

特許第4991990号公報Japanese Patent No. 4991990 特許第5410323号公報Japanese Patent No. 5410323

特許文献1に記載の「植物の生育段階判定方法及びシステム」では、受光面が北方向のみで、かつ受光範囲が小さいため、植物葉の形状や栽植様式(株間、密度)によっては栽培初期等に近接した葉がセンサ開口部を遮蔽しLAIが過大評価される懸念がある。また、植物群落内外に計2個の散乱光センサが必要であり取り付けが煩雑で導入コストが上昇してしまう。さらに、LAI以外の生理的機能(葉のクロロフィル含量、光合成活性等)は評価ができない課題もある。
一方、特許文献2に記載のセンサでは、群落構造が充分に形成され群落内に直達光が入射しない条件での評価は可能であるが、野菜・花き類の栽培条件のような比較的LAIが小さく植物群落内に直達光が入射する可能性のある野菜・花き等の栽培条件では近赤外光と可視光との比が大きく変動し,安定値を得ることが困難となっている。実際、上方に向け光拡散資材で被覆した近赤外・可視光センサを用いて得られたイチゴ、ガーベラの近赤外光と可視光との比は大きく変動し、生育状態(LAI)等との相関関係はほとんど認められなかった。
In the "plant growth stage determination method and system" described in Patent Document 1, the light receiving surface is only in the north direction and the light receiving range is small. There is concern that foliage close to the edge may block the sensor opening and overestimate the LAI. In addition, a total of two scattered light sensors are required inside and outside the plant colony, and installation is complicated, resulting in an increase in introduction cost. Furthermore, there is also the problem that physiological functions other than LAI (chlorophyll content in leaves, photosynthetic activity, etc.) cannot be evaluated.
On the other hand, with the sensor described in Patent Document 2, it is possible to evaluate under conditions where the community structure is sufficiently formed and direct light does not enter the community. The ratio of near-infrared light to visible light fluctuates greatly under the cultivation conditions of vegetables and flowers, where direct light may enter the small plant community, making it difficult to obtain a stable value. In fact, the ratio of near-infrared light and visible light of strawberries and gerberas obtained using a near-infrared/visible light sensor covered with a light diffusing material facing upward varies greatly, and the growth state (LAI) etc. Almost no correlation was observed.

そこで、本発明は、低コストな構成で、植物群落内に直達光が入射する可能性のある野菜・花き等の栽培条件であっても、且つLAIを含む生理的機能(葉のクロロフィル含量、光合成活性等)であっても、安定的に植物の生育状態を判定することができる植物群落透過光センサユニット及び植物の生育状態判定方法を提供することを目的としたものである。 Therefore, the present invention has a low-cost configuration, even under cultivation conditions such as vegetables and flowers where direct light may enter the plant community, and physiological functions including LAI (chlorophyll content of leaves, It is an object of the present invention to provide a plant colony transmitted light sensor unit and a method for determining the growth state of a plant, which can stably determine the growth state of the plant even if the plant growth state is low (photosynthetic activity, etc.).

上記目的を達成するために、請求項1に記載の発明は、可視光を検知する可視光センサと、近赤外光を検知する近赤外光センサとを備えて植物の生育状態を判定するために用いられる植物群落透過光センサユニットであって、
透明なパイプと、パイプの両端を閉塞する一対の黒色のカバー板と、を含み、パイプを鉛直方向に起立させた状態で上側のカバー板の下面でパイプの内側中央部に、可視光センサと近赤外光センサとが、それぞれ受光面を下向きにして取り付けられていることを特徴とする。
なお、本発明の「生育状態」とは、LAIや繁茂程度といった生育段階の他、葉のクロロフィル含量や光合成活性といった生理機能も含む。以下同じ。
請求項2に記載の発明は、請求項1の構成において、カバー板は、3cm角~7cm角の正方形であり、パイプの長さは略10cmであることを特徴とする。
なお、「略10cm」は、10cmを含んでその前後に僅少の誤差を含む趣旨である。
上記目的を達成するために、請求項3に記載の発明は、植物の生育状態判定方法であって、
請求項1又は2に記載の植物群落透過光センサユニットを、パイプが起立する縦向き姿勢で植物群落内にセットして、パイプの周囲から入射する散乱光を可視光センサと近赤外光センサとで測定し、所定の時間帯での近赤外光と可視光との比を算出して、当該比に対応した生育状態を判定することを特徴とする。
上記目的を達成するために、請求項4に記載の発明は、可視光を検知する可視光センサと、近赤外光を検知する近赤外光センサとを備えて植物の生育状態を判定するために用いられる植物群落透過光センサユニットであって、
透明なパイプと、パイプの両端を閉塞する一対の黒色のカバー板と、パイプを水平方向に倒伏させた状態でパイプの上下でカバー板の間に架設されてパイプに上下方向で重なる一対の黒色の第2のカバー板と、を含み、パイプを水平方向に倒伏させた状態で一方のカバー板におけるパイプの取付側の面でパイプの内側中央部に、可視光センサと近赤外光センサとが、それぞれ受光面を他方のカバー板に向けて取り付けられていることを特徴とする。
請求項5に記載の発明は、請求項4の構成において、第2のカバー板の幅は略7cmであり、パイプの長さは5cm~10cmであることを特徴とする。
なお、「略7cm」は、7cmを含んでその前後に僅少の誤差を含む趣旨である。
上記目的を達成するために、請求項6に記載の発明は、植物の生育状態判定方法であって、
請求項4又は5に記載の植物群落透過光センサユニットを、パイプが倒伏する横向き姿勢で植物群落内にセットして、パイプの側方から入射する散乱光を可視光センサと近赤外光センサとで測定し、所定の時間帯での近赤外光と可視光との比を算出して、当該比に対応した生育状態を判定することを特徴とする。
In order to achieve the above object, the invention according to claim 1 comprises a visible light sensor for detecting visible light and a near-infrared light sensor for detecting near-infrared light to determine the growth state of a plant. A plant community transmitted light sensor unit used for
It includes a transparent pipe and a pair of black cover plates closing both ends of the pipe, and a visible light sensor and a The near-infrared light sensor is attached with the light receiving surface facing downward.
The term "growing state" used in the present invention includes physiological functions such as leaf chlorophyll content and photosynthetic activity, in addition to growth stages such as LAI and degree of growth. same as below.
The invention according to claim 2 is the structure according to claim 1, characterized in that the cover plate is a square of 3 cm to 7 cm square, and the length of the pipe is approximately 10 cm.
In addition, "approximately 10 cm" is meant to include 10 cm and include slight errors before and after that.
In order to achieve the above object, the invention according to claim 3 is a method for determining the growth state of a plant,
The plant community transmission light sensor unit according to claim 1 or 2 is set in a plant community in a vertical position in which the pipe stands upright, and scattered light incident from around the pipe is detected by a visible light sensor and a near-infrared light sensor. , the ratio of near-infrared light and visible light in a predetermined time period is calculated, and the growth state corresponding to the ratio is determined.
In order to achieve the above object, the invention according to claim 4 comprises a visible light sensor for detecting visible light and a near-infrared light sensor for detecting near-infrared light to determine the growth state of a plant. A plant community transmitted light sensor unit used for
A transparent pipe, a pair of black cover plates that close both ends of the pipe, and a pair of black cover plates that are laid between the cover plates above and below the pipe when the pipe is laid down horizontally and overlap the pipe in the vertical direction. 2 cover plates, and a visible light sensor and a near-infrared light sensor are provided at the inner central portion of the pipe on the surface of the pipe mounting side of one of the cover plates in a state where the pipe is laid down in the horizontal direction, It is characterized in that each of them is attached with its light receiving surface facing the other cover plate.
The invention according to claim 5 is the structure according to claim 4, characterized in that the width of the second cover plate is approximately 7 cm, and the length of the pipe is 5 cm to 10 cm.
In addition, "approximately 7 cm" is intended to include 7 cm and include slight errors before and after it.
In order to achieve the above object, the invention according to claim 6 is a method for determining the growth state of a plant,
6. The plant colony transmission light sensor unit according to claim 4 or 5 is set in a plant colony in a sideways posture in which the pipe is lodged, and scattered light incident from the side of the pipe is detected by a visible light sensor and a near-infrared light sensor. , the ratio of near-infrared light and visible light in a predetermined time period is calculated, and the growth state corresponding to the ratio is determined.

本発明によれば、野菜・花き等の施設、露地栽培(人工光も含む)において植物群落透過光センサユニットを植物群落内に設置し、群落透過光の波長別光量比(近赤外光と可視光との比)を算出することによって、植物の生育状態(繁茂程度、LAI、光合成活性等)を非破壊・非接触で把握することができる。
特に、本センサユニットで測定された近赤外光と可視光との比は、LAIのような植物体のサイズや繁茂程度を表すだけではなく、葉層の光合成機能を反映した「光合成有効葉面積」を表現している。よって、本センサユニットで植物の生育状態を数値的に把握することによって、生産者は現在の生育状態に対する環境条件や養水分制御等栽培管理の適否を判断することができる。この適否判断に基づく栽培管理の調節・変更によって、生産目的に応じた野菜・花き類の収量、品質の最大化が可能となる。
また、当該発明は簡易な構造かつ小型で、しかも安価なフォトダイオードが活用できるため低コストでの実用化が期待され、野菜・花き栽培に広く受け入れられる可能性が高く、栽培安定化や規模拡大の促進に大きく寄与する。
特に、請求項2及び5に記載の発明によれば、上記効果に加えて、センサユニットのサイズの特定により、変動の小さい安定した近赤外光と可視光との比の測定が可能となる。
According to the present invention, a plant community transmitted light sensor unit is installed in a plant community in facilities such as vegetables and flowers, and outdoor cultivation (including artificial light). By calculating the ratio to visible light), the growth state of the plant (degree of growth, LAI, photosynthetic activity, etc.) can be grasped in a non-destructive and non-contact manner.
In particular, the ratio of near-infrared light to visible light measured by this sensor unit not only indicates the size and extent of growth of a plant such as LAI, but also reflects the photosynthetic function of the foliage. area” is expressed. Therefore, by numerically grasping the growth state of the plant with this sensor unit, the producer can judge the appropriateness of environmental conditions and cultivation management such as nutrient and moisture control for the current growth state. By adjusting and changing cultivation management based on this determination of suitability, it becomes possible to maximize the yield and quality of vegetables and flowers according to the purpose of production.
In addition, since the invention has a simple structure, is compact, and can utilize inexpensive photodiodes, it is expected to be put into practical use at low cost. contribute greatly to the promotion of
In particular, according to the inventions described in claims 2 and 5, in addition to the above effects, by specifying the size of the sensor unit, it is possible to measure the ratio of near-infrared light and visible light stably with small fluctuations. .

植物群落透過光センサユニットの説明図で、(A)が斜視、(B)が縦断面をそれぞれ示す。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing of a plant colony transmission light sensor unit, (A) shows a perspective view, (B) shows a vertical cross section, respectively. 図1のセンサユニットを用いた判定システムの説明図である。FIG. 2 is an explanatory diagram of a determination system using the sensor unit of FIG. 1; 植物群落透過光センサユニットの他の例の説明図で、(A)が斜視、(B)が横断面をそれぞれ示す。It is explanatory drawing of the other example of a plant colony transmission light sensor unit, (A) shows a perspective view, (B) shows a cross section, respectively. 人工光源下におけるキュウリLAIと近赤外光/可視光比との関係を示すグラフである。1 is a graph showing the relationship between cucumber LAI and near-infrared light/visible light ratio under an artificial light source. ガーベラ栽培における近赤外光/可視光比の推移を示すグラフである。It is a graph which shows transition of the near-infrared light/visible light ratio in Gerbera cultivars. ガーベラ栽培における近赤外光/可視光比とLAIとの関係を示すグラフである。It is a graph which shows the relationship between the near-infrared light/visible light ratio and LAI in gerbera cultivation. イチゴ栽培における近赤外光/可視光比の推移を示すグラフである。It is a graph which shows transition of near-infrared light/visible light ratio in strawberry cultivation. イチゴ栽培における近赤外光/可視光比の推移(3日間の移動平均)を示すグラフである。It is a graph which shows transition (moving average of 3 days) of near-infrared light/visible light ratio in strawberry cultivation. イチゴ栽培における近赤外光/可視光比(3日間の移動平均)とLAIとの関係を示すグラフである。It is a graph which shows the relationship between near-infrared light / visible light ratio (3-day moving average) and LAI in strawberry cultivation. トマト栽培におけるデータ利用時間の違いによる近赤外光/可視光比の推移を示すグラフである。It is a graph which shows transition of near-infrared light/visible light ratio by difference in data utilization time in tomato cultivation. イチゴ栽培における光強度の変化による近赤外光/可視光比の推移を示すグラフである。It is a graph which shows transition of near-infrared light/visible light ratio by change of light intensity in strawberry cultivation.

以下、本発明の実施の形態を図面に基づいて説明する。
[植物群落透過光センサユニットの説明]
図1は、植物群落透過光センサユニット(以下単に「センサユニット」という。)1の一例を示す説明図で、(A)が斜視、(B)が縦断面を示している。
このセンサユニット1は、アクリル等の透明な円筒のパイプ2の両端に、平面視正方形で黒色に着色した上下一対のカバー板3,4を取り付けてなる。パイプ2の直径は、カバー板3,4の一辺よりも小さくなっている。上側のカバー板3の下面中央でパイプ2の内部には、フォトダイオード等を用いた可視光検知用センサ(以下「可視光センサ」という。)5と、近赤外光検知用センサ(以下「近赤外光センサ」という。)6とが、それぞれ受光面を下向きにした姿勢で固定されている。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Description of Plant Community Transmitted Light Sensor Unit]
FIG. 1 is an explanatory view showing an example of a plant colony transmitted light sensor unit (hereinafter simply referred to as "sensor unit") 1, in which (A) shows a perspective view and (B) shows a longitudinal section.
This sensor unit 1 comprises a pair of upper and lower cover plates 3 and 4 which are square in plan view and are colored in black on both ends of a transparent cylindrical pipe 2 made of acrylic or the like. The diameter of the pipe 2 is smaller than one side of the cover plates 3,4. Inside the pipe 2 at the center of the lower surface of the upper cover plate 3, there are a sensor for detecting visible light (hereinafter referred to as "visible light sensor") 5 using a photodiode or the like, and a sensor for detecting near-infrared light (hereinafter " 6 are fixed with their light receiving surfaces facing downward.

このセンサユニット1は、図2に示すように、カバー板3を上にしてパイプ2が起立する縦向き姿勢で植物群落P内にセットすることで、上側がカバー板3で遮蔽されて直達光がカットされる。よって、パイプ2の周囲から入射する散乱光を効果的に測定することができる。ここでは可視光が植物のクロロフィルに吸収されて減衰し、吸収量が小さい近赤外光との比率が大きくなる。
この判定システムSにおいて、各センサ5,6の出力は、ケーブル7,7を介して外部のパーソナルコンピュータ等に設けた演算部10に入力される。演算部10では、所定の時間帯での平均値が演算されて、近赤外光と可視光との比(以下「近赤外光/可視光比」という。)が算出されて記憶部11に記憶される。但し、時間帯は任意に変更可能で、平均値の比でなく積算値の比であってもよい。
As shown in FIG. 2, the sensor unit 1 is set in the plant colony P with the cover plate 3 facing up and the pipe 2 standing upright. is cut. Therefore, scattered light incident from the periphery of the pipe 2 can be effectively measured. Here, visible light is absorbed by the chlorophyll of plants and attenuated, and the ratio of near-infrared light, which absorbs less, increases.
In this determination system S, the outputs of the sensors 5 and 6 are input to a computing section 10 provided in an external personal computer or the like via cables 7 and 7 . The calculation unit 10 calculates the average value in a predetermined time period, calculates the ratio of near-infrared light to visible light (hereinafter referred to as the “near-infrared light/visible light ratio”), and stores it in the storage unit 11 . stored in However, the time period can be arbitrarily changed, and the ratio of integrated values may be used instead of the ratio of average values.

また、図3は、センサユニットの他の例を示す説明図である。このセンサユニット1Aでは、センサユニット1よりも長いパイプ2Aが横向きに用いられ、パイプ2Aの両端部にカバー板3,4がそれぞれ縦向きに取り付けられる、パイプ2Aとカバー板3,4との大きさの関係はセンサユニット1と同じである。よって、可視光センサ5及び近赤外光センサ6は、それぞれ受光面をカバー板4に向けた横向き姿勢でカバー板3に固定される。
さらに、パイプ2Aの上下には、カバー板3,4の上辺同士と下辺同士とを繋ぐ長方形状で黒色の一対のカバー板8,8が設けられている。このカバー板8,8がパイプ2Aに上下方向で重なることで、パイプ2Aは側面のみが露出している。
このセンサユニット1Aでは、カバー板8,8のどちらかを下にしてパイプ2Aが倒伏する図3の横向き姿勢で植物群落内にセットすることで、上側がカバー板8で遮蔽されて直達光がカットされる。よって、パイプ2Aの左右の側面から入射する散乱光を効果的に測定することができる。演算部10及び記憶部11との接続は図2の判定システムSと同様である。
以下、センサユニット1,1Aを区別する場合、センサユニット1を「縦置型センサ1」と言い、センサユニット1Aを「横置型センサ1A」という。
Also, FIG. 3 is an explanatory diagram showing another example of the sensor unit. In this sensor unit 1A, a pipe 2A longer than the sensor unit 1 is used horizontally, and cover plates 3 and 4 are vertically attached to both ends of the pipe 2A. The relationship of height is the same as that of the sensor unit 1 . Therefore, the visible light sensor 5 and the near-infrared light sensor 6 are fixed to the cover plate 3 in a sideways orientation with their light receiving surfaces facing the cover plate 4 .
Further, a pair of rectangular black cover plates 8, 8 connecting the upper and lower sides of the cover plates 3, 4 are provided above and below the pipe 2A. The cover plates 8, 8 overlap the pipe 2A in the vertical direction, so that only the side surfaces of the pipe 2A are exposed.
In this sensor unit 1A, by setting one of the cover plates 8, 8 downward and setting the pipe 2A in the sideways position shown in FIG. be cut. Therefore, the scattered light incident from the left and right side surfaces of the pipe 2A can be effectively measured. The connection between the calculation unit 10 and the storage unit 11 is the same as in the determination system S of FIG.
Hereinafter, when distinguishing between the sensor units 1 and 1A, the sensor unit 1 will be referred to as the "vertical sensor 1" and the sensor unit 1A will be referred to as the "horizontal sensor 1A."

[各センサとLAIとの関係の検証]
図4は、人工光源(白色LED)下における給液栽培のキュウリのLAIと近赤外光/可視光比との関係を検証したグラフである。
左は、パイプ2の長さを5cm、カバー板(黒板)3,4を5cm角とした縦置型センサ(可視光センサとして浜松ホトニクス製の可視光用フォトダイオードS1133を、近赤外光センサとして浜松ホトニクス製の近赤外光用フォトダイオードS6775-01をそれぞれ使用)1と、パイプ2の長さを15cm、カバー板3,4を3cm角とした横置型センサ1Aとを用いた場合のグラフで、y(LAI)は、x(近赤外光/可視光比)の一次関数で表される。この関係式は、植物ごとに異なった定数を設定して記憶部11に記憶され、演算部10で演算される。Rは相関係数、Rは寄与率である。
右は、可視光センサ5と近赤外光センサ6とを受光面を上向きに設置して光散乱資材(ここではピンポン球を半割としたもの)でカバーしたセンサ(以下「対照センサ」という。)を用いた場合のグラフである。
このグラフで明らかなように、縦置型・横置型センサ1,1A何れにおいても、近赤外光/可視光比はキュウリLAIとの間に直線的な相関関係が見られた。一方、対照センサでは、葉が被さると値が急変し、LAIとの関係が変化した。このように、縦置型・横置型センサ1,1Aを用いた生育状態判定方法によれば、精度の高いLAIの非破壊評価(生育状態の判定)が可能であることが確認できた。
[Verification of the relationship between each sensor and LAI]
FIG. 4 is a graph verifying the relationship between the LAI of cucumbers cultivated with water under an artificial light source (white LED) and the near-infrared light/visible light ratio.
On the left is a vertical sensor with a pipe 2 length of 5 cm and cover plates (blackboards) 3 and 4 of 5 cm square (as a visible light sensor, a visible light photodiode S1133 manufactured by Hamamatsu Photonics is used as a near-infrared light sensor. Near-infrared light photodiode S6775-01 manufactured by Hamamatsu Photonics Co., Ltd. is used) 1 and a horizontal sensor 1A with a pipe 2 length of 15 cm and cover plates 3 and 4 of 3 cm square. , y(LAI) is represented by a linear function of x (ratio of near-infrared light/visible light). This relational expression is stored in the storage section 11 by setting different constants for each plant, and is calculated by the calculation section 10 . R is the correlation coefficient and R2 is the contribution rate.
On the right, a visible light sensor 5 and a near-infrared light sensor 6 are installed with their light receiving surfaces facing upward and covered with a light scattering material (here, a ping-pong ball divided in half) (hereinafter referred to as a "control sensor"). ) is used.
As is clear from this graph, both the vertical and horizontal sensors 1 and 1A showed a linear correlation between the near-infrared light/visible light ratio and the cucumber LAI. On the other hand, in the control sensor, when the leaf was covered, the value changed suddenly, and the relationship with LAI changed. As described above, it was confirmed that the growth state determination method using the vertical/horizontal sensors 1 and 1A enables highly accurate non-destructive evaluation of LAI (determination of growth state).

図5は、ガーベラの給液栽培において、図4と同じ横置型センサ1Aと対照センサとを用いて測定した近赤外光/可視光比の推移(2018年8月18日~12月16日)を示すもので、各日では11:55-12:05の時間帯での平均値を示している。
また、図6は、図5の近赤外光/可視光比とLAIとの関係を示すもので、左が横置型センサ1A、右が対照センサとなっている。
これらのグラフで明らかなように、横置型センサ1Aにおいても、近赤外光/可視光比とLAIとは相関関係を示しており、近赤外光/可視光比によってLAIの非破壊評価が可能であることが分かった。なお、図5において、11~12月で近赤外光/可視光比が一時的に減少しているものの、葉面積に大きな変化はない。これは、養分欠乏による葉の黄化が発生したことによる。このように近赤外光/可視光比は、LAIだけでなく、植物の生理機能に応じて変動することも確認できた。一方、対照センサにおいて、近赤外光/可視光比とLAIとの関係は、横置型センサ1Aのように密接となっていない。
FIG. 5 shows the transition of the near-infrared light/visible light ratio measured using the same horizontal sensor 1A and the control sensor as in FIG. ), showing the average value for the time period from 11:55 to 12:05 on each day.
FIG. 6 shows the relationship between the near-infrared light/visible light ratio and LAI in FIG.
As is clear from these graphs, even in the horizontal sensor 1A, the near-infrared light/visible light ratio and LAI show a correlation, and the near-infrared light/visible light ratio enables non-destructive evaluation of LAI. It turned out to be possible. In addition, in FIG. 5, although the near-infrared light/visible light ratio temporarily decreases in November and December, there is no significant change in the leaf area. This is due to yellowing of leaves due to nutrient deficiency. Thus, it was confirmed that the ratio of near-infrared light/visible light varies depending not only on LAI but also on the physiological functions of plants. On the other hand, in the control sensor, the relationship between the near-infrared light/visible light ratio and the LAI is not as close as in the horizontal sensor 1A.

図7は、イチゴ栽培において、図4と同じ縦置型センサ1と対照センサとを用いて測定した近赤外光/可視光比の推移(2018年10月2日~2019年3月11日)を示すもので、各日では11:55-12:05の時間帯での平均値を示している。上が縦置型センサ1、下が対照センサとなっている。
また、図8は、図7のデータにおいて、各日のデータを、該当日の前2日を含む計3日間の平均としたもので、上が縦置型センサ1、下が対照センサとなっている。
さらに、図9は、図8の近赤外光/可視光比とLAIとの関係を示すもので、左が縦置型センサ1、右が対照センサとなっている。
FIG. 7 shows the transition of the near-infrared light / visible light ratio measured using the same vertical sensor 1 and the control sensor as in FIG. 4 in strawberry cultivation (October 2, 2018 to March 11, 2019) , and shows the average value for the time period from 11:55 to 12:05 on each day. The vertical sensor 1 is on the top, and the control sensor is on the bottom.
In addition, FIG. 8 is the average of the data of each day for a total of three days including the two days before the relevant day in the data of FIG. there is
Further, FIG. 9 shows the relationship between the ratio of near-infrared light/visible light in FIG. 8 and LAI, with vertical sensor 1 on the left and reference sensor on the right.

これらのグラフで明らかなように、縦置型センサ1においても、近赤外光/可視光比とLAIとは相関関係を示しており、近赤外光/可視光比によってLAIの非破壊評価が可能であることが分かった。特に図8の3日平均データでは、近赤外光/可視光比の動態を明確化することができた。なお、縦置型センサ1の近赤外光/可視光比は、11月上旬、2月上旬、3月上旬に一時的な減少が見られたが、この時期にそれぞれ下葉除去作業を実施していることから、下葉除去の判別が可能と認められる。また、1月中旬以降の近赤外光/可視光比は減少傾向が見られたが、葉面積に大きな変化はない。これは、この時期に一部の肥料成分の給液トラブルに起因する葉の褐変が観察されたことから、生理障害も検知できると考えられる。
また、図9において、縦置型センサ1による近赤外光/可視光比(3日間の移動平均値)はイチゴLAIとの間に極めて密接な相関関係が見られた。一方、対照センサによる近赤外光/可視光比は、10月は増加が見られず、11月以降は増加が見られたが時折大幅な変動がみられ、LAIとの関係は縦置型センサ1に比べて密接ではなかった。
As is clear from these graphs, the vertical sensor 1 also shows a correlation between the near-infrared light/visible light ratio and LAI, and the non-destructive evaluation of LAI is performed by the near-infrared light/visible light ratio. It turned out to be possible. In particular, in the 3-day average data of FIG. 8, the dynamics of the near-infrared light/visible light ratio could be clarified. The near-infrared light/visible light ratio of the vertical sensor 1 temporarily decreased in early November, early February, and early March. Therefore, it is recognized that it is possible to determine whether the lower lobe has been removed. Also, the ratio of near-infrared light/visible light after mid-January tended to decrease, but there was no significant change in leaf area. Since browning of the leaves was observed during this period due to the supply trouble of some fertilizer components, it is considered that physiological disorders can also be detected.
In addition, in FIG. 9, a very close correlation was found between the near-infrared light/visible light ratio (three-day moving average value) obtained by the vertical sensor 1 and the strawberry LAI. On the other hand, the near-infrared light/visible light ratio by the control sensor did not increase in October, but increased from November onwards, but there were occasional large fluctuations. Not as close as 1.

[データ利用時間と近赤外光/可視光比との関係の検証]
上記検証では、データの利用時間を正午付近のみとしているが、日中の幅広い時間帯で得られる近赤外光/可視光比とどのように異なるかを検証した。
図10は、トマトの長段栽培において、植物群落内に2個の縦置型センサ(縦置1、縦置2、パイプの長さ:10cm、カバー板(黒板):5cm角)を設置して測定した近赤外光/可視光比の推移(2019年1月5日~2019年5月15日)を示すグラフである。ここでは上がテータ利用時間を正午付近(11:55~12:05(10点/日))としたもの、下がデータ利用時間を日中(8:00~16:00(480点/日))としたものとなっている。
この測定結果から、トマトのように背が高く、センサ上方に葉層がない栽培条件での測定では、光が上方から差し込む正午前後の時間帯のみのデータを利用するより、朝~夕の日中の時間帯のデータを利用して幅広く平均した方が、変動が少なく安定した測定が可能であることが分かった。
[Verification of the relationship between data usage time and near-infrared light/visible light ratio]
In the above verification, the data was used only around noon, but we verified how it differs from the near-infrared light/visible light ratio obtained over a wide range of time periods during the day.
FIG. 10 shows two vertical sensors (vertical installation 1, vertical installation 2, pipe length: 10 cm, cover plate (blackboard): 5 cm square) in the plant community in the long-stage cultivation of tomatoes. 5 is a graph showing changes in the measured near-infrared light/visible light ratio (January 5, 2019 to May 15, 2019). Here, the top shows the data usage time around noon (11:55-12:05 (10 points/day)), the bottom shows the data usage time during the day (8:00-16:00 (480 points/day) )).
From these measurement results, it is clear that when measuring under cultivation conditions such as tomatoes that are tall and do not have a leaf layer above the sensor, it is better to use data only during the hours before noon when light shines in from above. It was found that averaging over a wide range using data from the middle time period allows for stable measurement with less fluctuation.

[天候による光強度(PPFD)と近赤外光/可視光比との関係の検証]
天候(光強度(PPFD))による近赤外光/可視光比への影響を検証した。
図11は、イチゴ栽培において、植物群落内に縦置型センサ(縦置、パイプの長さ:10cm、カバー板(黒板):5cm角)と、横置型センサ(横置、パイプの長さ:15cm、カバー板(上黒板)の幅:7cm)と、光強度(PPFD)センサとを設置し、近赤外光/可視光比と温室内の光強度(PPFD)とを継続的(2019年3月16日~2019年5月5日)に測定したグラフである。上が光強度センサのデータ、中が横置型センサのデータ、下が縦置型センサのデータとなっている。
この測定結果から、縦置、横置型センサの何れにおいても、近赤外光/可視光比は、天候の変動に基づいて温室内の光強度が極端に小さい場合に増加する傾向が見られた。従って、光強度が極端に小さい曇雨天日の近赤外光/可視光比のデータをキャンセルすることにより、適切な評価が可能となると考えられる。
[Verification of the relationship between the weather-dependent light intensity (PPFD) and the ratio of near-infrared light/visible light]
The influence of the weather (light intensity (PPFD)) on the near-infrared light/visible light ratio was verified.
FIG. 11 shows a vertical sensor (vertical installation, pipe length: 10 cm, cover plate (blackboard): 5 cm square) and a horizontal sensor (horizontal installation, pipe length: 15 cm) in a plant community in strawberry cultivation. , The width of the cover plate (upper blackboard): 7 cm) and a light intensity (PPFD) sensor are installed, and the near-infrared light / visible light ratio and the light intensity (PPFD) in the greenhouse are continuously measured (March 2019 It is a graph measured from May 16 to May 5, 2019). The top is the data of the light intensity sensor, the middle is the data of the horizontal sensor, and the bottom is the data of the vertical sensor.
From this measurement result, it was found that the near-infrared light/visible light ratio tends to increase when the light intensity in the greenhouse is extremely low due to weather fluctuations for both vertical and horizontal sensors. . Therefore, by canceling the near-infrared light/visible light ratio data on a cloudy rainy day when the light intensity is extremely low, it is possible to make an appropriate evaluation.

[センサユニットのサイズとセンサ出力及び近赤外光/可視光比との関係の検証]
近赤外光/可視光比を安定的に測定できるセンサユニットの構造を明らかにするため、カバー板及びパイプのサイズを3パターンで変えて各パターンがそれぞれセンサ出力及び変動係数(c.v.)に及ぼす影響を検討した。
1.縦置型センサ
パイプの長さ(センサの高さ)を5cmとして、上下のカバー板のサイズを3段階(3cm角、5cm角、7cm角)に変えて、温室内で栽培中のイチゴ群落(草高約13cm)内に設置し、可視光センサ及び近赤外光センサの出力をそれぞれ1分間隔で測定・記録した(2019年3月20日~29日)。測定した各センサ出力における平均値(8時-16時)及び変動係数(c.v.:標準偏差/平均値×100%)を求めた。結果を以下の表1に示す。
[Verification of relationship between sensor unit size, sensor output, and near-infrared light/visible light ratio]
In order to clarify the structure of the sensor unit that can stably measure the ratio of near-infrared light/visible light, we changed the size of the cover plate and pipe in three patterns, and each pattern affects the sensor output and the coefficient of variation (cv). Considered the impact.
1. The length of the vertical sensor pipe (height of the sensor) is set to 5 cm, and the size of the upper and lower cover plates is changed to 3 stages (3 cm square, 5 cm square, 7 cm square). height of about 13 cm), and the outputs of the visible light sensor and the near-infrared light sensor were measured and recorded at intervals of 1 minute (March 20 to 29, 2019). The average value (8:00 to 16:00) and the coefficient of variation (cv: standard deviation/average value×100%) for each measured sensor output were obtained. The results are shown in Table 1 below.

Figure 0007185233000001
Figure 0007185233000001

表1より、カバー板のサイズが大きいほど可視光センサの出力は増加し、近赤外光センサの出力は減少する傾向が見られた。また、可視光センサのc.v.は5cm角のサイズが3cm角及び7cm角よりもやや小さく、近赤外光センサのc.v.はサイズが大きくなるほど大きくなる傾向が見られた。生育状態の指標である近赤外光/可視光比は、カバー板のサイズが大きくなるほど減少したが、そのc.v.に大きな相違は見られなかった。 From Table 1, it was found that the output of the visible light sensor increased and the output of the near-infrared light sensor decreased as the size of the cover plate increased. In addition, the c.v. of the visible light sensor was slightly smaller at 5 cm square than those of 3 cm square and 7 cm square, and the c.v. of the near-infrared light sensor tended to increase as the size increased. The near-infrared light/visible light ratio, which is an index of the growth state, decreased as the size of the cover plate increased, but there was no significant difference in the c.v.

次に、カバー板のサイズを5cm角として、パイプの長さを3段階(5cm、10cm、15cm)に変えて、カバー板を変えた場合と同じ条件で可視光センサ及び近赤外光センサの出力をそれぞれ1分間隔で測定・記録し、変動係数を求めた。結果を以下の表2に示す。 Next, the size of the cover plate was set to 5 cm square, and the length of the pipe was changed in three steps (5 cm, 10 cm, 15 cm). The output was measured and recorded at 1-minute intervals, and the coefficient of variation was obtained. The results are shown in Table 2 below.

Figure 0007185233000002
Figure 0007185233000002

表2より、可視光センサの出力は、パイプ長さ15cmが5cm、10cmよりも大きく、近赤外光センサの出力は、パイプ長さが大きいほど増加する傾向が見られた。また、c.v.は、可視光センサではパイプ長さ5cmが10cm、15cmより大きい傾向が見られ、近赤外光センサではパイプ長さが大きいほど小さくなる傾向が見られた。そして、近赤外光/可視光比は、パイプ長さが大きいほど減少したが、c.v.は10cmが最も小さい値となった。
以上の結果から、縦置型センサでは、カバー板のサイズは3cm角~7cm角、パイプの長さ(センサの高さ)は10cmとすれば、変動の小さい安定した近赤外光/可視光比の測定が可能と認められる。
From Table 2, it was found that the output of the visible light sensor was larger for pipe lengths of 15 cm than 5 cm and 10 cm, and the output of the near-infrared light sensor tended to increase as the pipe length increased. In addition, cv tended to be larger than 10 cm and 15 cm for a pipe length of 5 cm with a visible light sensor, and tended to decrease with a longer pipe length with a near-infrared light sensor. The near-infrared light/visible light ratio decreased as the pipe length increased, but cv was the smallest at 10 cm.
From the above results, in the vertical sensor, if the size of the cover plate is 3 cm square to 7 cm square, and the length of the pipe (height of the sensor) is 10 cm, a stable near-infrared light/visible light ratio with small fluctuations can be obtained. can be measured.

2.横置型センサ
パイプの長さを15cmとして、上下のカバー板の幅を3段階(3cm、5cm、7cm)に変えて、縦置型センサと同じ条件で可視光センサ及び近赤外光センサの出力をそれぞれ1分間隔で測定・記録し、変動係数を求めた。結果を以下の表3に示す。
2. The horizontal sensor pipe length is 15 cm, the width of the upper and lower cover plates is changed in three stages (3 cm, 5 cm, 7 cm), and the output of the visible light sensor and the near infrared light sensor is measured under the same conditions as the vertical sensor. Each was measured and recorded at intervals of 1 minute, and the coefficient of variation was obtained. The results are shown in Table 3 below.

Figure 0007185233000003
Figure 0007185233000003

表3より、上下のカバー板の幅が大きいほど可視光センサ及び近赤外光センサの出力は減少したが、近赤外光センサのc.v.は増加傾向を示した。近赤外光/可視光比は、上下のカバー板の幅が増加するほど増加する一方、c.v.は減少する傾向となり、7cmで最小の値となった。 From Table 3, the larger the width of the upper and lower cover plates, the smaller the outputs of the visible light sensor and the near-infrared light sensor, but the c.v. of the near-infrared light sensor showed an increasing tendency. The near-infrared light/visible light ratio increased as the width of the upper and lower cover plates increased, while the c.v. tended to decrease, reaching a minimum value at 7 cm.

次に、上下のカバー板の幅を5cmとして、パイプの長さを3段階(5cm、10cm、15cm)に変えて、上記と同じ条件で可視光センサ及び近赤外光センサの出力をそれぞれ1分間隔で測定・記録し、変動係数を求めた。結果を以下の表4に示す。 Next, the width of the upper and lower cover plates is set to 5 cm, the length of the pipe is changed in three stages (5 cm, 10 cm, and 15 cm), and the outputs of the visible light sensor and the near infrared light sensor are each set to 1 under the same conditions as above. It was measured and recorded every minute, and the coefficient of variation was obtained. The results are shown in Table 4 below.

Figure 0007185233000004
Figure 0007185233000004

表4より、可視光センサ及び近赤外光センサの出力はパイプ長さ5cm、10cmに比べて15cmで大きい傾向が見られたが、パイプの長さによるc.v.の大きな差は見られなかった。近赤外光/可視光比は、パイプの長さが増加するほど減少したが、パイプ長さ15cmのc.v.は、5cm、10cmのc.v.よりやや大きい傾向が見られた。
以上の結果から、横置型センサでは、カバー板の幅は7cm、パイプの長さは5~10cmとすれば、変動の小さい安定した近赤外光/可視光比の測定が可能と認められる。
From Table 4, it can be seen that the outputs of the visible light sensor and the near infrared light sensor tend to be larger at pipe lengths of 15 cm than at pipe lengths of 5 cm and 10 cm, but there was no significant difference in cv due to pipe length. The near-infrared/visible light ratio decreased as the length of the pipe increased, but the cv with a pipe length of 15 cm tended to be slightly larger than the cv with a pipe length of 5 cm and 10 cm.
From the above results, it is recognized that the horizontal sensor can measure the near-infrared light/visible light ratio stably with small fluctuations if the width of the cover plate is 7 cm and the length of the pipe is 5 to 10 cm.

このように、上記形態のセンサユニット1によれば、透明なパイプ2と、パイプ2の両端を閉塞する一対の黒色のカバー板3,4と、を含み、パイプ2を鉛直方向に起立させた状態で上側のカバー板3の下面でパイプ2の内側中央部に、可視光センサ5と近赤外光センサ6とが、それぞれ受光面を下向きにして取り付けられていることで、野菜・花き等の施設、露地栽培(人工光も含む)においてセンサユニット1を植物群落P内に設置し、群落透過光の波長別光量比(近赤外光/可視光比)を算出することによって、植物の生育状態(繁茂程度、LAI、光合成活性等)を非破壊・非接触で把握することができる。
特に、本センサユニット1で測定された近赤外光/可視光比は、LAIのような植物体のサイズや繁茂程度を表すだけではなく、葉層の光合成機能を反映した「光合成有効葉面積」を表現している。よって、本センサユニット1で植物の生育状態を数値的に把握することによって、生産者は現在の生育状態に対する環境条件や養水分制御等栽培管理の適否を判断することができる。この適否判断に基づく栽培管理の調節・変更によって、生産目的に応じた野菜・花き類の収量、品質の最大化が可能となる。
また、本センサユニット1は簡易な構造かつ小型で、しかも安価なフォトダイオードが活用できるため、低コストでの実用化が期待され、野菜・花き栽培に広く受け入れられる可能性が高く、栽培安定化や規模拡大の促進に大きく寄与する。
すなわち、上記形態のセンサユニット1及び植物の生育状態判定方法によれば、近赤外・可視光センサ5,6を用いた低コストな構成で、植物群落P内に直達光が入射する可能性のある野菜・花き等の栽培条件であっても、且つLAIを含む生理的機能(葉のクロロフィル含量、光合成活性等)であっても、安定的に植物の生育状態を判定することができる。
As described above, according to the sensor unit 1 of the above configuration, the transparent pipe 2 and the pair of black cover plates 3 and 4 that close both ends of the pipe 2 are included, and the pipe 2 is erected in the vertical direction. A visible light sensor 5 and a near-infrared light sensor 6 are attached to the inner central portion of the pipe 2 on the lower surface of the upper cover plate 3 in the state, with the light receiving surface facing downward, so that vegetables, flowers, etc. In the facility, outdoor cultivation (including artificial light), the sensor unit 1 is installed in the plant community P, and by calculating the light amount ratio by wavelength (near infrared light / visible light ratio) of the light transmitted through the community P, the plant The growth state (degree of growth, LAI, photosynthetic activity, etc.) can be grasped in a non-destructive and non-contact manner.
In particular, the near-infrared light/visible light ratio measured by the sensor unit 1 not only expresses the size and degree of growth of a plant such as LAI, but also reflects the photosynthetic function of the leaf layer. ” is expressed. Therefore, by numerically grasping the growth state of the plant with the present sensor unit 1, the producer can judge whether the environmental conditions for the current growth state and the adequacy of cultivation management such as nutrient and moisture control. By adjusting and changing cultivation management based on this determination of suitability, it becomes possible to maximize the yield and quality of vegetables and flowers according to the purpose of production.
In addition, since the sensor unit 1 has a simple structure and a small size, and can utilize an inexpensive photodiode, it is expected to be put into practical use at low cost, and it is highly likely that it will be widely accepted in the cultivation of vegetables and flowers, and the cultivation will be stabilized. and contribute greatly to the promotion of scale expansion.
That is, according to the sensor unit 1 and the plant growth state determination method of the above configuration, there is a possibility that direct light may enter the plant community P with a low-cost configuration using the near-infrared and visible light sensors 5 and 6. It is possible to stably determine the growth state of plants even under certain cultivation conditions such as vegetables and flowers, and even under physiological functions including LAI (chlorophyll content in leaves, photosynthetic activity, etc.).

同様に、上記形態のセンサユニット1A及びセンサユニット1Aを用いた植物の生育状態判定方法によっても、透明なパイプ2Aと、パイプ2Aの両端を閉塞する一対の黒色のカバー板3,4と、パイプ2Aを水平方向に倒伏させた状態でパイプ2Aの上下でカバー板3,4の間に架設されてパイプ2Aに上下方向で重なる一対の黒色のカバー板8,8(第2のカバー板)と、を含み、パイプ2Aを水平方向に倒伏させた状態で一方のカバー板3におけるパイプ2Aの取付側の面でパイプ2Aの内側中央部に、可視光センサ5と近赤外光センサ6とが、それぞれ受光面を他方のカバー板4に向けて取り付けられている。これにより、近赤外・可視光センサ5,6を用いた低コストな構成で、植物群落P内に直達光が入射する可能性のある野菜・花き等の栽培条件であっても、且つLAIを含む生理的機能(葉のクロロフィル含量、光合成活性等)であっても、安定的に植物の生育状態を判定することができる。 Similarly, according to the sensor unit 1A and the plant growth state determination method using the sensor unit 1A of the above configuration, the transparent pipe 2A, the pair of black cover plates 3 and 4 closing both ends of the pipe 2A, and the pipe A pair of black cover plates 8, 8 (second cover plates) which are laid between the cover plates 3, 4 above and below the pipe 2A with the pipe 2A laid down in the horizontal direction and overlap the pipe 2A in the vertical direction. , and a visible light sensor 5 and a near-infrared light sensor 6 are provided at the inner central portion of the pipe 2A on the surface of the one cover plate 3 on the mounting side of the pipe 2A in a state where the pipe 2A is laid down in the horizontal direction. , are attached with their light receiving surfaces facing the other cover plate 4 . As a result, with a low-cost configuration using the near-infrared and visible light sensors 5 and 6, even under cultivation conditions such as vegetables and flowers where direct light may enter the plant community P, LAI Even with physiological functions (chlorophyll content in leaves, photosynthetic activity, etc.), it is possible to stably determine the growth state of a plant.

なお、パイプ及びカバー板のサイズは上記形態の数値に限らず、適宜変更可能である。パイプの横断面形状も、円形に限らず、楕円形や長円形、六角形や八角形等の多角形であってもよい。
また、パイプ両端に取り付けるカバー板も、正方形に限らず、長方形や多角形、円形等も採用できる。
Note that the sizes of the pipe and the cover plate are not limited to the numerical values in the above embodiment, and can be changed as appropriate. The cross-sectional shape of the pipe is not limited to circular, but may be oval, oval, hexagonal, octagonal, or other polygonal shape.
Also, the cover plates attached to both ends of the pipe are not limited to being square, but may be rectangular, polygonal, circular, or the like.

1,1A・・植物群落透過光センサユニット、2,2A・・パイプ、3,4・・カバー板、5・・可視光検知用センサ、6・・近赤外光検知用センサ、7・・ケーブル、8・・カバー板(第2のカバー板)、10・・演算部、11・・記憶部、P・・植物群落。 1, 1A Plant community transmission light sensor unit 2, 2A Pipe 3, 4 Cover plate 5 Visible light detection sensor 6 Near-infrared light detection sensor 7 Cable, 8.. Cover plate (second cover plate), 10.. Operation unit, 11.. Storage unit, P.. Plant community.

Claims (6)

可視光を検知する可視光センサと、近赤外光を検知する近赤外光センサとを備えて植物の生育状態を判定するために用いられる植物群落透過光センサユニットであって、
透明なパイプと、
前記パイプの両端を閉塞する一対の黒色のカバー板と、を含み、
前記パイプを鉛直方向に起立させた状態で上側の前記カバー板の下面で前記パイプの内側中央部に、前記可視光センサと前記近赤外光センサとが、それぞれ受光面を下向きにして取り付けられていることを特徴とする植物群落透過光センサユニット。
A plant colony transmitted light sensor unit used for determining the growth state of a plant, comprising a visible light sensor that detects visible light and a near-infrared light sensor that detects near-infrared light,
transparent pipes,
A pair of black cover plates that close both ends of the pipe,
With the pipe standing vertically, the visible light sensor and the near-infrared light sensor are attached to the inner central portion of the pipe on the lower surface of the upper cover plate with their light receiving surfaces facing downward. A plant colony transmitted light sensor unit, characterized in that:
前記カバー板は、3cm角~7cm角の正方形であり、前記パイプの長さは略10cmであることを特徴とする請求項1に記載の植物群落透過光センサユニット。 2. The plant colony transmitted light sensor unit according to claim 1, wherein the cover plate is a square of 3 cm to 7 cm square, and the length of the pipe is approximately 10 cm. 請求項1又は2に記載の植物群落透過光センサユニットを、前記パイプが起立する縦向き姿勢で植物群落内にセットして、前記パイプの周囲から入射する散乱光を前記可視光センサと前記近赤外光センサとで測定し、所定の時間帯での近赤外光と可視光との比を算出して、当該比に対応した生育状態を判定することを特徴とする植物の生育状態判定方法。 3. The plant colony transmitted light sensor unit according to claim 1 is set in a plant colony in a vertical posture in which the pipe stands upright, and scattered light incident from around the pipe is detected by the visible light sensor and the near field light sensor. Measuring with an infrared light sensor, calculating the ratio of near-infrared light and visible light in a predetermined time period, and determining the growth state corresponding to the ratio Method. 可視光を検知する可視光センサと、近赤外光を検知する近赤外光センサとを備えて植物の生育状態を判定するために用いられる植物群落透過光センサユニットであって、
透明なパイプと、
前記パイプの両端を閉塞する一対の黒色のカバー板と、
前記パイプを水平方向に倒伏させた状態で前記パイプの上下で前記カバー板の間に架設されて前記パイプに上下方向で重なる一対の黒色の第2のカバー板と、を含み、
前記パイプを水平方向に倒伏させた状態で一方の前記カバー板における前記パイプの取付側の面で前記パイプの内側中央部に、前記可視光センサと前記近赤外光センサとが、それぞれ受光面を他方の前記カバー板に向けて取り付けられていることを特徴とする植物群落透過光センサユニット。
A plant colony transmitted light sensor unit used for determining the growth state of a plant, comprising a visible light sensor that detects visible light and a near-infrared light sensor that detects near-infrared light,
transparent pipes,
a pair of black cover plates closing both ends of the pipe;
a pair of black second cover plates that are installed between the cover plates above and below the pipe in a state that the pipe is laid down horizontally and overlap the pipe in the vertical direction;
The visible light sensor and the near-infrared light sensor are provided on the inner central portion of the pipe on the surface of one of the cover plates on the mounting side of the pipe while the pipe is laid down in the horizontal direction, respectively. facing the other cover plate.
前記第2のカバー板の幅は略7cmであり、前記パイプの長さは5cm~10cmであることを特徴とする請求項4に記載の植物群落透過光センサユニット。 The plant community transmitted light sensor unit according to claim 4, wherein the width of the second cover plate is about 7 cm, and the length of the pipe is 5 cm to 10 cm. 請求項4又は5に記載の植物群落透過光センサユニットを、前記パイプが倒伏する横向き姿勢で植物群落内にセットして、前記パイプの側方から入射する散乱光を前記可視光センサと前記近赤外光センサとで測定し、所定の時間帯での近赤外光と可視光との比を算出して、当該比に対応した生育状態を判定することを特徴とする植物の生育状態判定方法。 6. The plant colony transmitted light sensor unit according to claim 4 or 5 is set in a plant colony in a sideways posture in which the pipe is lodged, and scattered light incident from the side of the pipe is detected by the visible light sensor and the near field light sensor. Measuring with an infrared light sensor, calculating the ratio of near-infrared light and visible light in a predetermined time period, and determining the growth state corresponding to the ratio Method.
JP2019107263A 2019-06-07 2019-06-07 PLANT COMMUNITY TRANSMITTED LIGHT SENSOR UNIT AND METHOD FOR DETERMINING GROWTH OF PLANT Active JP7185233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019107263A JP7185233B2 (en) 2019-06-07 2019-06-07 PLANT COMMUNITY TRANSMITTED LIGHT SENSOR UNIT AND METHOD FOR DETERMINING GROWTH OF PLANT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019107263A JP7185233B2 (en) 2019-06-07 2019-06-07 PLANT COMMUNITY TRANSMITTED LIGHT SENSOR UNIT AND METHOD FOR DETERMINING GROWTH OF PLANT

Publications (2)

Publication Number Publication Date
JP2020198804A JP2020198804A (en) 2020-12-17
JP7185233B2 true JP7185233B2 (en) 2022-12-07

Family

ID=73741545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019107263A Active JP7185233B2 (en) 2019-06-07 2019-06-07 PLANT COMMUNITY TRANSMITTED LIGHT SENSOR UNIT AND METHOD FOR DETERMINING GROWTH OF PLANT

Country Status (1)

Country Link
JP (1) JP7185233B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023172610A (en) * 2022-05-24 2023-12-06 国立大学法人九州大学 Plant sensor device and optical measurement method of active plant

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004301810A (en) 2003-04-01 2004-10-28 Ebara Corp Growth degree measuring instrument for plant
JP2008237161A (en) 2007-03-28 2008-10-09 Shizuoka Prefecture Method and system for determining growth stage of plant
JP2011133451A (en) 2009-11-27 2011-07-07 Kyushu Univ Optical vegetation index sensor
JP2016223971A (en) 2015-06-02 2016-12-28 株式会社トプコン Wavelength sensor device for plant
JP2019035306A (en) 2017-08-22 2019-03-07 公益財団法人鉄道総合技術研究所 Reinforced concrete structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016049102A (en) * 2014-08-29 2016-04-11 株式会社リコー Farm field management system, farm field management method, and program
WO2019035306A1 (en) * 2017-08-18 2019-02-21 コニカミノルタ株式会社 Plant growth index calculation method, plant growth index calculation program and plant growth index calculation system
JP6951743B2 (en) * 2017-10-03 2021-10-20 山本電機株式会社 Sensor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004301810A (en) 2003-04-01 2004-10-28 Ebara Corp Growth degree measuring instrument for plant
JP2008237161A (en) 2007-03-28 2008-10-09 Shizuoka Prefecture Method and system for determining growth stage of plant
JP2011133451A (en) 2009-11-27 2011-07-07 Kyushu Univ Optical vegetation index sensor
JP2016223971A (en) 2015-06-02 2016-12-28 株式会社トプコン Wavelength sensor device for plant
JP2019035306A (en) 2017-08-22 2019-03-07 公益財団法人鉄道総合技術研究所 Reinforced concrete structure

Also Published As

Publication number Publication date
JP2020198804A (en) 2020-12-17

Similar Documents

Publication Publication Date Title
CN100480681C (en) Plant growth information acquisition device based on near infrared spectrum
Vargas et al. Estimation of leaf area index, light interception and biomass accumulation of Miscanthus sinensis ‘Goliath’from radiation measurements
Al-Helal et al. Responses of plastic shading nets to global and diffuse PAR transfer: Optical properties and evaluation
Campillo et al. Study of a non-destructive method for estimating the leaf area index in vegetable crops using digital images
WO2009116613A1 (en) Method and apparatus of evaluating fitness-for-plucking of tea leaf, system of evaluating fitness-for-plucking of tea leaf, and computer-usable medium
Hui et al. Canopy radiation‐and water‐use efficiencies as affected by elevated [CO2]
JP2006191816A (en) Method for cultivating melon and cultivation device used for the method
Matese et al. Spatial variability of meteorological conditions at different scales in viticulture
CN106971409B (en) Maize canopy leaf color modeling and method
JP7185233B2 (en) PLANT COMMUNITY TRANSMITTED LIGHT SENSOR UNIT AND METHOD FOR DETERMINING GROWTH OF PLANT
De Boeck et al. Ideas and perspectives: Heat stress: More than hot air
CN2864669Y (en) Plant growth information acquiring device based on near infrared spectra
Sun et al. IoT enabled smart fertilization and irrigation aid for agricultural purposes
Quiroz et al. Linking process-based potato models with light reflectance data: Does model complexity enhance yield prediction accuracy?
Keskin et al. Assessing nitrogen content of golf course turfgrass clippings using spectral reflectance
JP2012187074A (en) Growth management system for plant
Pekkeriet et al. Contribution of innovative technologies to new developments in horticulture
Mohagheghi et al. An energy-efficient PAR-based horticultural lighting system for greenhouse cultivation of lettuce
JP2006345768A (en) Calculating method of evapotranspiration, and watering control method
WO2007105946A2 (en) Sensors for controlling lightinng
KR101080278B1 (en) Apparatus for measuring a property of soil
Irmak et al. Dynamics of photosynthetic photon flux density and light extinction coefficient to assess radiant energy interactions for maize canopy
CN116627193A (en) Intelligent management and control platform and method for greenhouse
Herbert et al. Effects of leaf aggregation in a broad-leaf canopy on estimates of leaf area index by the gap-fraction method
Sudkaew et al. Foliar fertilizer robot for raised bed greenhouse using NDVI image processing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220221

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221031

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221116

R150 Certificate of patent or registration of utility model

Ref document number: 7185233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150