JP7179409B2 - Method for manufacturing all-solid-state battery and all-solid-state battery - Google Patents

Method for manufacturing all-solid-state battery and all-solid-state battery Download PDF

Info

Publication number
JP7179409B2
JP7179409B2 JP2018114174A JP2018114174A JP7179409B2 JP 7179409 B2 JP7179409 B2 JP 7179409B2 JP 2018114174 A JP2018114174 A JP 2018114174A JP 2018114174 A JP2018114174 A JP 2018114174A JP 7179409 B2 JP7179409 B2 JP 7179409B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
positive electrode
negative electrode
pellet
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018114174A
Other languages
Japanese (ja)
Other versions
JP2019220250A (en
Inventor
剛 小林
マスクリエ クリスチャン
セズネック ヴィンセント
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite de Picardie Jules Verne
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite de Picardie Jules Verne
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite de Picardie Jules Verne filed Critical Centre National de la Recherche Scientifique CNRS
Priority to JP2018114174A priority Critical patent/JP7179409B2/en
Publication of JP2019220250A publication Critical patent/JP2019220250A/en
Application granted granted Critical
Publication of JP7179409B2 publication Critical patent/JP7179409B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、正極材料と負極材料と固体電解質材料の全てが固体・粉体から構成される全固体型電池の製造方法及び全固体型電池に関する。さらに詳述すると、本発明は、焼結によりバルク型電池を構成する全固体型電池の製造方法及び全固体型電池に関するものである。 TECHNICAL FIELD The present invention relates to a method for manufacturing an all-solid-state battery in which all of a positive electrode material, a negative electrode material, and a solid electrolyte material are solid or powder, and to an all-solid-state battery. More specifically, the present invention relates to a method for manufacturing an all-solid-state battery that constitutes a bulk-type battery by sintering, and the all-solid-state battery.

従来のバルク型全固体型電池は、正極材料と負極材料及びそれらの間に介在される電解質材料の全てが固体・粉体から構成され、それらを順次積層させて焼結により一挙に固めて電池として機能させるようにしている。焼結に際しては、電極材料には、電極材料としての機能を失うことがなく、かつ緻密になり易い電極材料固有の温度並びに圧力の焼結条件が存在し、条件を満たすときには粉体粒子が溶けずにしっかりと接着されるが、その条件を超えた圧力と加熱下では粉体粒子が溶けてしまったり、電極材料として機能しなくなるし、条件に満たない圧力と加熱下には緻密に固まらず、電池として機能しないこととなる。そこで、従来の全固体形電池は、正極としても負極としても機能する電極材料例えばNVP(Na(PO)を使用することにより、正極材料と負極材料との焼結条件を両立させるようにしている。例えば、NVP(Na(PO)から成る正極と負極並びにNZSP(NaZr(SiOPO)の固体電解質とで構成され、ホットプレス焼成あるいはスパークプラズマシンタリング焼結プラズマ法(SPS:Spark Plasma Sintering)によって900℃で加熱されながら加圧成形されている(非特許文献1)。 In conventional bulk-type all-solid-state batteries, the cathode material, the anode material, and the electrolyte material interposed between them are all composed of solids and powders. I am trying to make it function as At the time of sintering, the electrode material has sintering conditions of temperature and pressure inherent to the electrode material that does not lose its function as an electrode material and tends to become dense. However, if the pressure and heat exceed these conditions, the powder particles will melt and will no longer function as an electrode material. , will not function as a battery. Therefore, conventional all-solid-state batteries use an electrode material such as NVP (Na 3 V 2 (PO 4 ) 3 ) that functions as both a positive electrode and a negative electrode, thereby adjusting the sintering conditions for the positive electrode material and the negative electrode material. I am trying to make it compatible. For example, it is composed of a positive electrode and a negative electrode made of NVP (Na 3 V 2 (PO 4 ) 3 ) and a solid electrolyte of NZSP (Na 3 Zr 2 (SiO 4 ) 2 PO 4 ), which is hot-press sintered or spark plasma sintered. Pressure molding is performed while being heated at 900° C. by a sintering plasma method (SPS: Spark Plasma Sintering) (Non-Patent Document 1).

F. Lalere, J.B. Leriche, M. Courty, S. Boulineau, V. Viallet, C. Masquelier, V. Seznec, J. Power Sources, 247, 975-980, 2014.F. Lalere, J.B. Leriche, M. Courty, S. Boulineau, V. Viallet, C. Masquelier, V. Seznec, J. Power Sources, 247, 975-980, 2014.

しかしながら、正極と負極に同じ電極材料を用いた全固体型電池では、エネルギー密度を上げることができずに低いエネルギー密度となってしまう問題がある(図8参照)。一度の充電で長時間使えるようにするには、より高いエネルギー密度とすることが望まれる。そこで、電池の性能改善のため、正極と負極とで異なる材料の組み合わせが望まれるが、一挙に焼結することにより全固体電池を製作する従来の製法では、粉体粒子が溶けてしまったり、あるいは粉体粒子が緻密に固まらず、電池として機能しなくなる虞があり、異種電極材料の組み合わせは困難である。 However, the all-solid-state battery using the same electrode material for the positive electrode and the negative electrode has a problem that the energy density cannot be increased, resulting in a low energy density (see FIG. 8). A higher energy density is desired in order to enable long-term use with a single charge. Therefore, in order to improve the performance of the battery, it is desirable to combine different materials for the positive electrode and the negative electrode. Alternatively, the powder particles may not be densely packed and the battery may fail to function, making it difficult to combine different types of electrode materials.

本発明は、かかる要望に応えるものであり、正極と負極とで異種電極材料の組み合わせを可能にする全固体型電池の製造方法及び全固体型電池を提供することを目的とする。 The present invention is intended to meet such a demand, and an object of the present invention is to provide a method for manufacturing an all-solid-state battery and an all-solid-state battery that enable the combination of different electrode materials for the positive electrode and the negative electrode.

かかる目的を達成するための全固体型電池の製造方法は、正極活物質と固体電解質及び導電助剤から成る正極側コンポジット電極材料と無機固体電解質並びに負極活物質と固体電解質及び導電助剤から成る負極コンポジット電極材料と無機固体電解質とをそれぞれに適した焼結条件で別々に焼結させて正極側ペレットと負極側ペレットとを成形する工程と、正極側ペレットの無機固体電解質と負極側ペレットの無機固体電解質との間に無機系接着剤を挟んで、加圧下に無機系接着剤の溶融温度以上でかつ溶融温度が低い方の電極活物質が印加圧力の下で融解が起こる温度未満の温度で加熱することにより正極側ペレットと負極側ペレットとを接合して一体化する工程とを備えるようにしている。 A method for manufacturing an all-solid-state battery for achieving such an object consists of a positive electrode side composite electrode material composed of a positive electrode active material, a solid electrolyte, and a conductive aid, an inorganic solid electrolyte, and a negative electrode active material, a solid electrolyte, and a conductive aid. A step of separately sintering the negative electrode side composite electrode material and the inorganic solid electrolyte under sintering conditions suitable for each to form positive electrode side pellets and negative electrode side pellets, and the inorganic solid electrolyte of the positive electrode side pellets and the negative electrode side pellets. An inorganic adhesive is sandwiched between the inorganic solid electrolyte and the electrode active material having a melting temperature higher than the melting temperature of the inorganic adhesive under pressure and a temperature lower than the temperature at which the electrode active material having a lower melting temperature melts under the applied pressure. and a step of joining and integrating the positive electrode side pellet and the negative electrode side pellet by heating at a temperature.

ここで、正極活物質と負極活物質とは異なる材料であることが好ましい。 Here, it is preferable that the positive electrode active material and the negative electrode active material are different materials.

また、無機系接着剤はホウ酸、メタホウ酸または酸化ホウ素のいずれかであることが好ましい。 Also, the inorganic adhesive is preferably boric acid, metaboric acid or boron oxide.

さらに、正極活物質としてNCPP、固体電解質としてNZSP及び導電助剤としてCを含む正極側コンポジット電極材料と無機固体電解質としてのNZSPとを500℃、255MPaで焼結して正極側ペレットを成形し、負極活物質としてNVP、固体電解質としてNZSP及び導電助剤としてCを含む負極側コンポジット電極材料と無機固体電解質としてのNZSPとを900℃、100MPaで焼結して負極側ペレットを成形し、正極側ペレットの無機固体電解質の面と負極側ペレットの無機固体電解質の面の間に無機系接着剤としてホウ酸、メタホウ酸または酸化ホウ素のいずれかを介在させ、500℃、50MPaで加圧しながら加熱することで、無機系接着剤を融解させて無機固体電解質同士を接合させることが好ましい。 Furthermore, a positive electrode side composite electrode material containing NCPP as a positive electrode active material, NZSP as a solid electrolyte, and C as a conductive aid and NZSP as an inorganic solid electrolyte are sintered at 500 ° C. and 255 MPa to form a positive electrode side pellet, A negative electrode side composite electrode material containing NVP as a negative electrode active material, NZSP as a solid electrolyte, and C as a conductive aid and NZSP as an inorganic solid electrolyte are sintered at 900 ° C. and 100 MPa to form a negative electrode pellet, and the positive electrode side. Either boric acid, metaboric acid, or boron oxide is interposed as an inorganic adhesive between the inorganic solid electrolyte surface of the pellet and the inorganic solid electrolyte surface of the negative electrode pellet, and heated at 500° C. and 50 MPa under pressure. Therefore, it is preferable to bond the inorganic solid electrolytes by melting the inorganic adhesive.

さらには、本発明の全固体型電池の製造方法において、無機系接着剤はホウ酸水溶液として正極側ペレットの無機電解質と負極側ペレットの無機固体電解質との間に注入させることが好ましい。 Furthermore, in the manufacturing method of the all-solid-state battery of the present invention, it is preferable that the inorganic adhesive is injected as an aqueous solution of boric acid between the inorganic solid electrolyte of the positive electrode pellets and the inorganic solid electrolyte of the negative electrode pellets.

また、本発明にかかる全固体型電池は、正極活物質と固体電解質及び導電助剤から成る正極側コンポジット電極材料と無機固体電解質とが正極活物質に適した焼結条件で焼結された正極側ペレットと、負極活物質と固体電解質及び導電助剤から成る負極コンポジット電極材料と無機固体電解質とが負極活物質に適した焼結条件で焼結された負極側ペレットと、ホウ酸、メタホウ酸、酸化ホウ素、10水塩ほう砂、または三フッ化ホウ素のいずれかである無機系接着剤が、前記正極側ペレットの前記無機固体電解質と前記負極側ペレットの前記無機固体電解質との間で加圧下に前記電極材料の融点未満の温度で融解されて前記無機固体電解質同士を接合た、ことを特徴とするものである。 Further, in the all-solid-state battery according to the present invention, a cathode-side composite electrode material composed of a cathode active material, a solid electrolyte, and a conductive aid, and an inorganic solid electrolyte are sintered under sintering conditions suitable for the cathode active material. side pellets, a negative electrode side composite electrode material composed of a negative electrode active material, a solid electrolyte, and a conductive aid, and an inorganic solid electrolyte are sintered under sintering conditions suitable for the negative electrode active material. A negative electrode side pellet, boric acid, metaborate An inorganic adhesive that is any of acid, boron oxide, borax decahydrate, or boron trifluoride is interposed between the inorganic solid electrolyte of the positive electrode pellet and the inorganic solid electrolyte of the negative electrode pellet. It is characterized in that the inorganic solid electrolytes are joined together by being melted under pressure at a temperature lower than the melting point of the electrode material .

本発明の全固体型電池の製造方法によれば、正極側コンポジット電極材料と無機固体電解質との焼結体(正極側ペレット・正極層)と、負極側コンポジット電極材料と無機固体電解質との焼結体(負極側ペレット・負極層)とが別々に焼結される時点で所望の緻密な形態に成形され、それらを無機系接着剤で接合して一体化しているので、緻密な焼結体が得られる焼結条件が異なる電極材料を組み合わせて全固体電池が焼結により製作することができる。 According to the method for manufacturing an all-solid-state battery of the present invention, the sintered body (positive electrode pellet/positive electrode layer) of the positive electrode side composite electrode material and the inorganic solid electrolyte, and the sintering of the negative electrode side composite electrode material and the inorganic solid electrolyte. When the aggregate (negative electrode pellet/negative electrode layer) is sintered separately, it is formed into a desired dense shape, and then joined together with an inorganic adhesive to form a dense sintered body. By combining electrode materials with different sintering conditions, an all-solid-state battery can be manufactured by sintering.

本発明の全固体電池の製造方法の実施の一形態を示すフローチャート図である。1 is a flow chart showing an embodiment of a method for manufacturing an all-solid-state battery of the present invention; FIG. 正極側コンポジット電極材料(NCPP+NZSP+C)、NCPP及びNZSPの加熱条件毎のX線回折パターンである。It is an X-ray diffraction pattern for each heating condition of the positive electrode side composite electrode material (NCPP+NZSP+C), NCPP and NZSP. 本発明の全固体電池の製造方法によって製作された全固体電池の200℃、C/10の下の充放電曲線である。2 is a charge/discharge curve at 200° C. and C/10 of an all-solid-state battery manufactured by the method for manufacturing an all-solid-state battery of the present invention; (A)は同全固体電池の様々な電圧範囲およびC-レートの下の放電容量(mAh g-1)を示す図、(B)は相対放電容量(%)を示すレート特性およびサイクル特性の図である。(A) shows the discharge capacity (mAh g -1 ) under various voltage ranges and C-rates of the same all-solid-state battery, (B) shows the relative discharge capacity (%) of the rate and cycle characteristics. It is a diagram. 充放電テスト後の全固体電池における正極側コンポジット電極材料のX線回折パターンである。4 is an X-ray diffraction pattern of a composite electrode material on the positive electrode side in an all-solid-state battery after a charge-discharge test. 放電プラズマ焼結の下の電極の熱安定性を示すグラフである。Fig. 3 is a graph showing the thermal stability of electrodes under spark plasma sintering; 正極側コンポジット電極材料(NCPP+NZSP+C)の加圧条件を変化させたときのX線回折パターンである。It is an X-ray diffraction pattern when changing the pressurization conditions of the positive electrode side composite electrode material (NCPP + NZSP + C). 従来の全固体電池の製法によって製作された、正極材と負極材とが同一電極材料で構成する全固体電池の性能を示す容量・電圧の充放電曲線およびレート特性・サイクル特性の図である。1 is a diagram of capacity/voltage charge/discharge curves, rate characteristics, and cycle characteristics showing the performance of an all-solid-state battery in which the positive electrode material and the negative electrode material are made of the same electrode material, manufactured by a conventional all-solid-state battery manufacturing method. (A)は従来の全固体電池の一製造方法によって、正極材と負極材とを異種電極材料で構成する全固体電池を製作するフローチャート図、(B)は同製法で製作された全固体電池の正極側を示す図、(C)は同製法で製作された全固体電池の負極側を示す図である。(A) is a flowchart for manufacturing an all-solid-state battery in which the positive electrode material and the negative electrode material are composed of different electrode materials by a conventional all-solid-state battery manufacturing method, and (B) is an all-solid-state battery manufactured by the same manufacturing method. (C) is a diagram showing the negative electrode side of an all-solid-state battery manufactured by the same manufacturing method. 図9の製法によって製作された、正極材と負極材とを異種電極材料で構成する全固体電池の充放電性能を示す容量・電圧の充放電曲線図である。10 is a capacity-voltage charge/discharge curve diagram showing the charge/discharge performance of an all-solid-state battery in which a positive electrode material and a negative electrode material are made of different electrode materials, manufactured by the manufacturing method of FIG. 9. FIG.

以下、本発明の構成を図面に示す実施形態に基づいて詳細に説明する。 Hereinafter, the configuration of the present invention will be described in detail based on the embodiments shown in the drawings.

図1に本発明にかかる全固体電池の製造方法の一実施形態を示す。この全固体電池の製造方法は、負極材料1と固体電解質2とから成る負極側ペレット3並びに正極材料4と固体電解質2とから成る正極側ペレット5とを別々に成形してそれぞれに適した焼結条件で別々に焼結させる工程と、負極側ペレット3の固体電解質2と正極側ペレット5の固体電解質2との間に無機系接着剤6を挟んで、加圧下に無機系接着剤6の溶融温度以上でかつ溶融温度が低い方の電極活物質が印加圧力の下で融解が起こる温度未満の温度で加熱して無機系接着剤6を融解させて固体電解質2,2同士を接合させることにより負極側ペレット3と正極側ペレット5とを接合して一体化する工程とを備えるものである。 FIG. 1 shows an embodiment of a method for manufacturing an all-solid-state battery according to the present invention. The manufacturing method of this all-solid-state battery consists of separately molding a negative electrode-side pellet 3 composed of a negative electrode material 1 and a solid electrolyte 2 and a positive electrode-side pellet 5 composed of a positive electrode material 4 and a solid electrolyte 2, and firing them appropriately. The inorganic adhesive 6 is sandwiched between the solid electrolyte 2 of the negative electrode pellet 3 and the solid electrolyte 2 of the positive electrode pellet 5, and the inorganic adhesive 6 is applied under pressure. Heating at a temperature above the melting temperature and below the temperature at which the electrode active material with the lower melting temperature melts under applied pressure to melt the inorganic adhesive 6 and join the solid electrolytes 2, 2 together. and a step of joining and integrating the negative electrode side pellet 3 and the positive electrode side pellet 5 by.

負極材料1は、例えば負極活物質と固体電解質及び導電助剤から成る負極側コンポジット電極材料として構成されている。そして、この負極材料の層(以下、負極側コンポジット電極層1と呼ぶ)と固体電解質2の層とが積層された2層の圧粉体に成形されてから焼結されて負極側ペレット3として一体化されている。また、正極材料4は、例えば正極活物質と固体電解質及び導電助剤から成る正極コンポジット電極材料として構成されている。そして、この正極材料の層(以下、正極側コンポジット電極層4と呼ぶ)と固体電解質2の層とが積層された2層の圧粉体に成形されてから焼結されて正極側ペレット5として一体化されている。 The negative electrode material 1 is configured as, for example, a negative electrode side composite electrode material composed of a negative electrode active material, a solid electrolyte, and a conductive aid. Then, the layer of the negative electrode material (hereinafter referred to as the negative electrode side composite electrode layer 1) and the layer of the solid electrolyte 2 are laminated to form a two-layer green compact, which is then sintered to form the negative electrode pellet 3. are integrated. Moreover, the positive electrode material 4 is configured as a positive electrode composite electrode material including, for example, a positive electrode active material, a solid electrolyte, and a conductive aid. Then, the layer of the positive electrode material (hereinafter referred to as the positive electrode side composite electrode layer 4) and the layer of the solid electrolyte 2 are laminated and formed into a two-layer green compact, which is then sintered to form a positive electrode side pellet 5. are integrated.

固体電解質は、固体電解質層2だけではなく電極層(コンポジッド電極層)1,4にも含まれ、電極活物質の粒子表面を覆いつつ当該電極活物質の粒子間に介在されている。そして固体電解質は、焼成によって結晶化することでイオン伝導度を発現する。本実施形態の全固体電池においては、正極側コンポジット電極材料及び負極側コンポジット電極材料のそれぞれに固体電解質及び導電助剤としての炭素が含有されている。このように、正極及び負極に固体電解質及び炭素が含有されていると、高出力であるとともに長寿命化することができる。これは、正極や負極を構成する活物質粒子間に固体電解質による三次元的なネットワークが形成されることで、正極活物質や負極活物質と固体電解質との接点となる界面の面積を飛躍的に拡大することが可能となり、その結果、界面電荷移動抵抗の大幅な低減を実現できるためであると推察される。 The solid electrolyte is contained not only in the solid electrolyte layer 2 but also in the electrode layers (composite electrode layers) 1 and 4, and is interposed between the particles of the electrode active material while covering the particle surfaces of the electrode active material. The solid electrolyte expresses ionic conductivity by being crystallized by firing. In the all-solid-state battery of the present embodiment, the positive electrode-side composite electrode material and the negative electrode-side composite electrode material each contain carbon as a solid electrolyte and a conductive aid. Thus, when the positive electrode and the negative electrode contain a solid electrolyte and carbon, high output and long life can be achieved. The formation of a three-dimensional network by the solid electrolyte between the active material particles that make up the positive and negative electrodes dramatically increases the area of the interfaces that serve as contact points between the positive and negative electrode active materials and the solid electrolyte. It is presumed that this is because it becomes possible to expand to , and as a result, a large reduction in interfacial charge transfer resistance can be realized.

負極側ペレット3並びに正極側ペレット5は、それぞれの電極材料固有の緻密化に適した温度と圧力とで別々に焼結される。正極材料と負極側材料とをそれぞれ固有の緻密になり易い温度と圧力で焼結することで緻密化することが可能となる。そして、これら負極側ペレット3並びに正極側ペレット5との間に無機系接着剤6を挟んで加圧しながら加熱することで無機系接着剤を融解させて両ペレットの固体電解質同士を接合させ、イオン伝導性を確保して電池として機能させる構造を得る。 The negative electrode-side pellet 3 and the positive electrode-side pellet 5 are separately sintered at a temperature and pressure suitable for densification specific to each electrode material. It is possible to densify the positive electrode material and the negative electrode side material by sintering them at a specific temperature and pressure at which they are easily densified. Then, an inorganic adhesive 6 is sandwiched between the negative electrode pellet 3 and the positive electrode pellet 5, and the inorganic adhesive is melted by heating while pressurizing, and the solid electrolytes of both pellets are bonded to each other. To obtain a structure that ensures conductivity and functions as a battery.

上述の製法によって製作される全固体電池は、異種電極材料から成る正極材料と負極材料とを組み合わせたものであり、かつ正極材料並びに負極材料の固有の緻密化される焼結条件で別々に焼結させた負極側ペレット3と正極側ペレット5とを、両ペレット3,5の固体電解質層2同士を無機系接着剤6によって接合することで電池として機能させるようにしたものである。したがって、電極材料(コンポジット電極材料)同士が無機系接着剤によって直接に接合されるものではない。依って、本発明の製法において、電極材料の選定や組み合わせには何ら制約を受けるものでもないし、また焼結の際の圧力や温度は電極材料固有の最適条件が存在するものであって、選択する電極材料によって適宜変更されることは言うまでもない。また、本実施形態にかかる全固体電池は、異種電極材料から成る正極材料と負極材料とを組み合わせたものであるが、これに特に限定されるものではなく、同じ熱的安定性の電極活物質、即ち同じ電極材を採用する場合にも本発明の製法は適用できることはいうまでもない。 The all-solid-state battery manufactured by the above-described manufacturing method is a combination of positive electrode material and negative electrode material composed of different electrode materials, and is fired separately under sintering conditions that densify the positive electrode material and the negative electrode material inherently. The bonded negative electrode pellet 3 and the positive electrode pellet 5 are bonded to each other by an inorganic adhesive 6 so as to function as a battery. Therefore, electrode materials (composite electrode materials) are not directly bonded to each other with an inorganic adhesive. Therefore, in the production method of the present invention, the selection and combination of electrode materials are not subject to any restrictions, and the pressure and temperature during sintering have optimum conditions unique to the electrode materials, and selection is possible. Needless to say, it is changed as appropriate depending on the electrode material to be used. In addition, the all-solid-state battery according to the present embodiment is a combination of a positive electrode material and a negative electrode material made of different electrode materials, but is not particularly limited to this, and an electrode active material having the same thermal stability That is, it goes without saying that the production method of the present invention can be applied even when the same electrode material is employed.

本実施形態では、全固体ナトリウム電池の例を挙げて全固体型電池の製造方法をさらに詳細に説明する。尚、本実施形態では、例えば放電プラズマ焼結(SPS:Spark Plasma Sintering)装置を利用して負極側ペレット3及び正極側ペレット5の焼結並びに負極側ペレット3と正極側ペレット5との接合を行う例を挙げて主に説明する。放電プラズマ焼結は、ホットプレス焼結(HP)と同じ、固体圧縮焼結法の一種であり、粉体あるいは固体を充填したグラファイト(黒鉛)製焼結型を、加圧しながら加熱する。急速昇温・冷却が可能であり、加圧並びに急速昇温により、粒成長を抑制した緻密な焼結体の作成が期待できる。 In the present embodiment, a method for manufacturing an all-solid-state battery will be described in more detail by taking an example of an all-solid-state sodium battery. In the present embodiment, for example, a spark plasma sintering (SPS) apparatus is used to sinter the negative electrode-side pellets 3 and the positive electrode-side pellets 5 and to bond the negative electrode-side pellets 3 and the positive electrode-side pellets 5 together. The explanation will mainly be given with an example of performing. Spark plasma sintering, like hot press sintering (HP), is a type of solid compression sintering method, in which a powder or solid-filled graphite sintering mold is heated while being pressurized. Rapid heating and cooling are possible, and pressurization and rapid heating are expected to produce a dense sintered body that suppresses grain growth.

ここで、全固体ナトリウム電池は、例えば正極活物質としてはNaCo(PO(P)(以下、NCPPと呼ぶ)、負極活物質としてはNa(PO(以下、NVPと呼ぶ)、固体電解質としてはNaZr(SiOPO(以下、NZSPと呼ぶ)の採用が好ましい。そして、これら正極部材と負極部材とは、各々電極活物質と固体電解質と導電助剤としてのカーボン(C)との合成物・複合材即ちコンポジット電極部材として構成することが好ましい。具体的には、正極側コンポジッド電極部材としては、例えばNCPPとNZSPとCとの合成物であり、負極側コンポジッド電極部材としては、例えばNVPとNZSPとCとの合成物である。 Here, the all-solid-state sodium battery includes, for example, Na 4 Co 3 (PO 4 ) 2 (P 2 O 7 ) (hereinafter referred to as NCPP) as a positive electrode active material, and Na 3 V 2 (PO 4 ) as a negative electrode active material. ) 3 (hereinafter referred to as NVP), and Na 3 Zr 2 (SiO 4 ) 2 PO 4 (hereinafter referred to as NZSP) as a solid electrolyte. It is preferable that the positive electrode member and the negative electrode member are composed of a compound/composite material of an electrode active material, a solid electrolyte, and carbon (C) as a conductive agent, that is, a composite electrode member. Specifically, the positive electrode side composite electrode member is, for example, a compound of NCPP, NZSP, and C, and the negative electrode side composite electrode member is, for example, a compound of NVP, NZSP, and C.

また、無機固体電解質としては、特定の結晶構造や材質には限定されないものであるが、例えばリチウムイオン系無機固体電解質、ナトリウムイオン系無機固体電解質と限らずに、NASICON結晶やガーネット型結晶構造、LISICON型結晶構造が挙げられる。なかでもナトリウムイオン伝導性に優れるNASICON結晶の使用が好ましい。NASICON結晶としては、例えば、NaZr(SiOPO、Na+xZrSixP-xO12(但し、x=0~3)などが挙げられる。NASICON結晶以外のナトリウムイオン系無機固体電解質としてNa(B12120.5(B10100.5、Na11SnPS12、Na+5xP-xS(但し、x=0~3)などが挙げられるが、好ましくはNaZr(SiOPO(以下、NZSPと呼ぶ)の採用である。勿論、固体電解質はNZSPに限られない。ホウ素と反応する固体電解質としては、例えば、ガーネット型結晶構造やリシコン型結晶構造が知られているし、ホウ素酸化物の非晶質化(ガラス化)が起こることによって接着力が得られる場合には、全ての固体電解質で適用可能と考えられる。本実施形態の正極材料と負極材料並びに固体電解質は好適な一例を示すものであって、特にこれらの組み合わせに限定されるものではない。 In addition, the inorganic solid electrolyte is not limited to a specific crystal structure or material, but is not limited to, for example, a lithium ion-based inorganic solid electrolyte and a sodium ion-based inorganic solid electrolyte, NASICON crystal, garnet type crystal structure, A LISICON type crystal structure is mentioned. Among them, it is preferable to use NASICON crystal, which has excellent sodium ion conductivity. Examples of NASICON crystals include Na 3 Zr 2 (SiO 4 ) 2 PO 4 and Na 1 +xZr 2 SixP 3 -xO 12 (where x=0 to 3). Na2 ( B12H12 ) 0.5 ( B10H10 ) 0.5 , Na11Sn2PS12 , Na3 + 5xP1 - xS4 ( where x = 0 to 3), but Na 3 Zr 2 (SiO 4 ) 2 PO 4 (hereinafter referred to as NZSP) is preferably employed. Of course, the solid electrolyte is not limited to NZSP. Solid electrolytes that react with boron include, for example, garnet-type crystal structures and lysicone-type crystal structures. is considered applicable to all solid electrolytes. The positive electrode material, the negative electrode material, and the solid electrolyte of the present embodiment show a suitable example, and are not particularly limited to these combinations.

尚、負極側コンポジッド電極材料1並びに正極側コンポジッド電極材料4の電極活物質と固体電解質と導電性カーボンとの混合比率は、特定の比率に限定されるものではないが、例えば、電極活物質:固体電解質:炭素=20~70:75~20:5~15wt%であることが好ましい。この数値の範囲は、全固体電池の分野では、経験的に期待した性能が得られるものとして一般的な数値であり、例えば、電極活物質を例に挙げると、20wt%よりも小さい値になっても、また70wt%よりも大きな値となっても、期待している性能(ここでは、容量)よりも低下するものと考えられる。即ち、電極活物質の割合が20wt%よりも少なくなると、単位質量当りのエネルギー密度特性や出力密度特性の観点から、電池特性が低下する傾向にある。また、導電助剤は、コンポジット電極部材の粉体のうち、5~15 wt%、好ましくは15 wt%含有させることである。導電助剤の含有量が少なすぎると、電極合材の高容量化やハイレート化の達成が困難になる傾向がある。他方、導電助剤の含有量が多すぎると、電極合材の単位質量あたりの活物質量が減少するため、充放電容量が低下する傾向がある。また、焼結が阻害されることにより、イオン電導パスが切断され、充放電容量が低下したり放電電圧が低下する傾向がある。一方、70wt%よりも活物質の割合が大きな値となると、電極層内の固体電解質によるネットワークが途切れる場合がある。そこで、正負極の各コンポジッド電極材料は、上述の混合比率の範囲内で適宜調整される。例えば、本実施形態では、正極側コンポジッド電極材料は、NCPP:NZSP:C=25:60:15wt.%、負極側コンポジッド電極材料は、NVP:NZSP:C=25:60:15wt.%で混合されている。 The mixing ratio of the electrode active material, the solid electrolyte and the conductive carbon of the negative electrode side composite electrode material 1 and the positive electrode side composite electrode material 4 is not limited to a specific ratio, but for example, the electrode active material: Solid electrolyte: carbon=20-70:75-20:5-15 wt % is preferred. In the field of all-solid-state batteries, this numerical value range is a general numerical value in which the empirically expected performance can be obtained. Even if the content is higher than 70 wt %, it is considered that the performance (capacity in this case) is lower than expected. That is, when the ratio of the electrode active material is less than 20 wt %, the battery characteristics tend to deteriorate in terms of energy density characteristics and output density characteristics per unit mass. Also, the conductive aid should be contained in an amount of 5 to 15 wt%, preferably 15 wt%, of the powder of the composite electrode member. If the content of the conductive aid is too small, it tends to be difficult to achieve high capacity and high rate of the electrode mixture. On the other hand, if the content of the conductive aid is too high, the amount of active material per unit mass of the electrode mixture will decrease, and the charge/discharge capacity will tend to decrease. In addition, the inhibition of sintering tends to cut ion conduction paths, resulting in a decrease in charge/discharge capacity and a decrease in discharge voltage. On the other hand, if the ratio of the active material is higher than 70 wt %, the solid electrolyte network in the electrode layer may be broken. Therefore, the respective composite electrode materials for the positive and negative electrodes are appropriately adjusted within the range of the mixing ratio described above. For example, in this embodiment, the positive electrode side composite electrode material is NCPP:NZSP:C=25:60:15 wt. %, and the negative electrode side composite electrode material is NVP:NZSP:C=25:60:15 wt. % mixed.

そして、各コンポジッド電極材料と固体電解質とが、各電極材料固有の緻密な焼結体を得るに適した温度と圧力で焼結させられて、緻密な電極材料のペレット3,5が得られる。例えば、NCPPを正極活物質として用いるコンポジット電極材料の正極側ペレット3の場合は500℃、255Mpaの焼結であり、NVPを負極活物質として用いてるコンポジット電極材料の負極側ペレット5の場合は900℃、100MPaの焼結である。尚、本実施形態において、正極の焼結の際に印加する圧力(255Mpa)は、使用装置の加圧能力の最大限の圧力を加えるようにしたものであって、必ずしもこれに特に限られものではなく、より高い圧力をかけるようにしても良いし、場合にはよっては低い圧力でも良い。上述の焼結条件はあくまで一例であって、特に限定されるものでない。例えば、NCPPコンポジット電極材料(正極)と無機固体電解質との焼結条件は、255MPaにおける加熱温度の上限が500℃ということであって、500℃未満であっても焼結体を得ることができる。例えば、正極材料としてNaCo15を用いた実験では、4kN、450℃の放電プラズマ焼結でも正極は安定であった(図6参照)。他方、放電プラズマ焼結における温度を500℃で固定して加圧力を切り替えてXRDパターンの変化を確認する実験を行った結果、使用した装置限界加圧力の20kN(255MPa)まではX線回折ピークが消失せず安定だったことが確認できた(図7参照)。つまり、正極を作製するときには、圧力を上げるだけでは不十分であり、融解を起こさない範囲の温度でかつ可能な限り高温例えば500℃にしないと、緻密にはならなかった。500℃は正極をつくる上限値の好ましい値の1つとなる。しかし、これに特に限られるものではなく、500℃に達するまでの温度でも実施可能である。このことは負極においても同様である。 Then, each composite electrode material and solid electrolyte are sintered at a temperature and pressure suitable for obtaining a dense sintered body peculiar to each electrode material, and dense electrode material pellets 3 and 5 are obtained. For example, in the case of the positive electrode-side pellets 3 of the composite electrode material using NCPP as the positive electrode active material, the sintering is performed at 500° C. and 255 MPa, and in the case of the negative electrode-side pellets 5 of the composite electrode material using NVP as the negative electrode active material, the sintering is performed at 900° C. ℃, sintering at 100 MPa. In this embodiment, the pressure (255 MPa) applied when sintering the positive electrode is the maximum pressure of the pressurizing capability of the device used, and is not necessarily limited to this. Instead, a higher pressure may be applied, or a lower pressure may be applied depending on the case. The sintering conditions described above are merely examples, and are not particularly limited. For example, the conditions for sintering the NCPP composite electrode material (positive electrode) and the inorganic solid electrolyte are that the upper limit of the heating temperature at 255 MPa is 500 ° C., and a sintered body can be obtained even at less than 500 ° C. . For example, in an experiment using Na 4 Co 3 P 4 O 15 as the positive electrode material, the positive electrode was stable even after discharge plasma sintering at 4 kN and 450° C. (see FIG. 6). On the other hand, as a result of conducting an experiment to confirm the change in the XRD pattern by switching the pressure while fixing the temperature in the discharge plasma sintering at 500 ° C., the X-ray diffraction peak was not obtained until the apparatus limit pressure of 20 kN (255 MPa) used. did not disappear and was stable (see FIG. 7). In other words, when the positive electrode was produced, it was not enough to increase the pressure, and it was not possible to make the positive electrode dense unless the temperature was set to the highest possible temperature, such as 500° C., in a range that does not cause melting. 500° C. is one of the preferable upper limit values for forming a positive electrode. However, it is not particularly limited to this, and can be carried out at temperatures up to 500°C. This also applies to the negative electrode.

上述したように、電極材料固有の適した温度と圧力で焼結すると、無加圧条件下で焼成した場合に比して緻密な焼結体を得ることが可能となる。このため、固体電解質と電極活物質間の界面が良好な状態で形成されるとともに、コンポジット電極材料内の固体電解質同士あるいはコンポジット電極材料内の固電解質とコンポジット電極材料と隣接する無機固体電解質層との間の粒子間がより緻密化され、より内部抵抗の低い全固体電池を形成することが可能となる。 As described above, sintering at a suitable temperature and pressure specific to the electrode material makes it possible to obtain a denser sintered body than sintering under pressureless conditions. Therefore, the interface between the solid electrolyte and the electrode active material is formed in a good state, and the inorganic solid electrolyte layer is formed between the solid electrolytes in the composite electrode material or between the solid electrolyte in the composite electrode material and the composite electrode material. It is possible to form an all-solid-state battery with a lower internal resistance because the particles between the particles are more dense.

次いで、別々に最適条件で焼結させられた負極側ペレット3の固体電解質2と正極側ペレット5の固体電解質2との間に無機系接着剤6を挟んで、加圧下に無機系接着剤6の融点以上の温度でかつ溶融温度が低い方の電極活物質を含む電極材料例えば正極材料の融点未満の温度で加熱して接合することにより一体化される。 Next, an inorganic adhesive 6 is sandwiched between the solid electrolyte 2 of the negative electrode pellet 3 and the solid electrolyte 2 of the positive electrode pellet 5, which are separately sintered under optimum conditions, and the inorganic adhesive 6 is pressed under pressure. They are integrated by heating and joining at a temperature above the melting point of the electrode material containing the electrode active material with the lower melting temperature, for example, at a temperature below the melting point of the positive electrode material.

ここで、無機系接着剤6としては、融点が低い方の電極材料例えば正極材料よりもさらに低い温度で溶けて固体電解質同士の接合ができるもの、例えばホウ酸((HBO)またはB(OH))、メタホウ酸(HBO)、酸化ホウ素(B)、四ホウ酸ナトリウム+水和物(10水塩ほう砂とも呼ばれる。Na-10HO)、三フッ化ホウ素(BF)などが使用可能である。なかでも、無機系接着剤6としては、ホウ酸、メタホウ酸または酸化ホウ素のいずれかの形態での使用が好ましく、より好ましくはホウ酸水溶液としての使用である。尚、実験時には、無機系接着剤としてBを用いることを試みた。ところが、試薬瓶からその粉末を取り出して、X線回折測定を行った結果、Bとしてではなく、HBOのα相とβ相の混合物が主成分として存在し、ほんの少しB(OH)3が入っていた状態であった。これは、保管中に空気中の水と反応して、Bとして残っていなかったものと思われる。つまり、酸化ホウ素(B)は水に溶解して容易にメタホウ酸、ホウ酸と変化するものであり、他方、ホウ酸(融点169℃)は加熱により水分を失い、脱水素化していき、HBO(融点300℃)を経てB2O3(融点480℃)へと変化していくものである。したがって、ホウ酸、メタホウ酸または酸化ホウ素のいずれの形態で使用しても、固体電解質と反応するときのホウ素の化学形態はおそらくBであるだろうと推測される。 Here, as the inorganic adhesive 6 , an electrode material having a lower melting point, such as a positive electrode material , can be melted at a temperature lower than that of the positive electrode material to bond the solid electrolytes together. (OH 3 )), metaboric acid (HBO 2 ), boron oxide (B 2 O 3 ), sodium tetraborate + hydrate (also called decahydrate borax. Na 2 B 4 O 7 -10H 2 O) , boron trifluoride (BF 3 ) and the like can be used. Among others, the inorganic adhesive 6 is preferably used in the form of boric acid, metaboric acid or boron oxide, and more preferably as an aqueous solution of boric acid. At the time of the experiment, an attempt was made to use B 2 O 3 as the inorganic adhesive. However, as a result of taking out the powder from the reagent bottle and performing X-ray diffraction measurement, it was found that it was not B 2 O 3 but a mixture of α and β phases of HBO 2 as the main component, and a small amount of B(OH ) 3 was in it. This is presumably because it reacted with water in the air during storage and did not remain as B 2 O 3 . In other words, boron oxide (B 2 O 3 ) dissolves in water and easily changes to metaboric acid and boric acid. It changes from HBO 2 (melting point 300° C.) to B 2 O 3 (melting point 480° C.). Therefore, whether used in the form of boric acid, metaboric acid or boric oxide , it is speculated that the chemical form of boron when reacting with the solid electrolyte would probably be B2O3 .

無機系接着剤6は粉体のまま使用しても良いが、水に溶け易い材の場合には水に溶かして有機系接着剤と同じように取り扱うことが好ましい。例えば、無機系接着剤としてホウ酸、メタホウ酸または酸化ホウ素のいずれかを使用する場合には、水に溶かしてホウ酸水溶液とすることができるので、これを各固体電解質の面に塗布することにより、あるいは負極側ペレット3並びに正極側ペレット5の各固体電解質の間に注入することにより、有機溶媒のような使い勝手で均一に分散配置させることができる。その後100℃で乾燥させて水分を蒸発させることで薄く均一なホウ酸の粉体の膜を容易に形成することができる。即ち、水に溶かした無機系接着剤を流し込み、あるいは各固体電解質の面に塗布することによ、均一に分散させることができる。 Although the inorganic adhesive 6 may be used as a powder, it is preferable to dissolve it in water and handle it in the same way as an organic adhesive if it is a material that is easily soluble in water. For example, when boric acid, metaboric acid, or boric oxide is used as the inorganic adhesive, it can be dissolved in water to form an aqueous boric acid solution, which can be applied to the surface of each solid electrolyte. or by injecting it between the solid electrolytes of the negative electrode-side pellet 3 and the positive electrode-side pellet 5, it is possible to disperse and disperse it uniformly in the same manner as an organic solvent. Then, by drying at 100° C. to evaporate water, a thin and uniform boric acid powder film can be easily formed. That is, by pouring the inorganic adhesive dissolved in water or applying it to the surface of each solid electrolyte, it is possible to uniformly disperse the adhesive.

正負極の固体電解質の接合に必要な無機系接着剤の添加量は、両ペレットの接合に必要十分な適量であることが望まれる。例えば、固体電解質のほぼ全面に薄く均一に分散される程度の量であり、1.27mg/cm~12.74mg/cm(換言すれば1~10 mg/層)とすることが好ましい。 The amount of the inorganic adhesive required for bonding the solid electrolytes of the positive and negative electrodes is desired to be an appropriate amount necessary and sufficient for bonding the two pellets. For example, the amount is such that it is thinly and uniformly dispersed over substantially the entire surface of the solid electrolyte, and is preferably 1.27 mg/cm 2 to 12.74 mg/cm 2 (in other words, 1 to 10 mg/layer).

正極側ペレットの固体電解質層と負極側ペレットの固体電解質層とは、融点が低い方の電極材料例えば正極側電極材料が溶けたり、電池性能を失うことがない範囲で加熱しながら加圧するだけでは互いに接合されない。つまり、焼結後の正極側ペレットと負極側ペレットとの間では、無機系接着剤の存在なしには、接合できない。また、正極側ペレットの固体電解質層と負極側ペレットの固体電解質層との間に無機系接着剤を挟んでこの無機系接着剤が融解するように加熱するだけでも接合されなかった。融点が低い方の電極材料例えば正極側電極材料よりも低い温度で無機系接着剤を加熱して融解させると共に圧力をかけることが必要である。例えば、無機系接着剤としてホウ酸、メタホウ酸または酸化ホウ素のいずれかを用いる場合には、500℃に加熱しながら50MPaの圧力を加えることが好ましい。この場合に、融解した酸化ホウ素を介して負極側ペレットと正極側ペレットの無機固体電解質同士を接合することができた。 The solid electrolyte layer of the positive electrode-side pellet and the solid electrolyte layer of the negative electrode-side pellet can be separated by simply applying pressure while heating to the extent that the electrode material with the lower melting point, such as the positive electrode material, does not melt or lose battery performance. not joined to each other. In other words, the positive electrode pellet and the negative electrode pellet after sintering cannot be joined together without the presence of the inorganic adhesive. Even if an inorganic adhesive was sandwiched between the solid electrolyte layer of the positive electrode-side pellet and the solid electrolyte layer of the negative electrode-side pellet and the solid electrolyte layer was heated to melt the inorganic adhesive, the solid electrolyte layer could not be joined. It is necessary to heat and melt the inorganic adhesive at a temperature lower than that of the electrode material having a lower melting point, such as the positive electrode material, and apply pressure. For example, when boric acid, metaboric acid or boron oxide is used as the inorganic adhesive, it is preferable to apply a pressure of 50 MPa while heating to 500°C. In this case, the inorganic solid electrolytes of the negative electrode-side pellet and the positive electrode-side pellet could be bonded together via the molten boron oxide.

正極材料のX線回折を示す図2から明らかなように、圧力をかけない状態(大気圧下)で加熱する場合には、600℃まで加熱しても、正極材料(NCPP)と固体電解質(NZSP)との双方の組成由来の回折ピークが明確に出現しており、組成は安定していると認められる。しかしながら、圧力がかかると、譬え50MPa程度であっても、600℃の加熱で正極材料の組成由来のピークが消えて固体電解質の組成由来の回折ピークのみとなることが確認された。つまり、正極材料が溶けて消失し、電極として機能していないことが示唆されている。他方、50MPaの圧力をかけた状態でも、500℃では正極材料並びに固体電解質の双方の組成由来の回折ピークが明確に出現することが確認された。即ち、500℃、50MPaの条件下では、正極材料と固体電解質の双方において、組成は安定している。このことから、無機系接着剤による正極側ペレットと負極側ペレットとの固体電解質同士の接合は、正極材料が溶けない温度範囲で加圧させることによって実施可能であることが判明した。 As is clear from FIG. 2, which shows the X-ray diffraction of the positive electrode material, when heating is performed without applying pressure (under atmospheric pressure), the positive electrode material (NCPP) and the solid electrolyte ( NZSP) and diffraction peaks derived from both compositions appear clearly, and it is recognized that the composition is stable. However, it was confirmed that when pressure is applied, even at about 50 MPa, heating at 600° C. causes the peaks derived from the composition of the positive electrode material to disappear, leaving only the diffraction peaks derived from the composition of the solid electrolyte. In other words, it is suggested that the positive electrode material melts and disappears and does not function as an electrode. On the other hand, it was confirmed that diffraction peaks derived from the compositions of both the positive electrode material and the solid electrolyte clearly appeared at 500° C. even under a pressure of 50 MPa. That is, under conditions of 500° C. and 50 MPa, the compositions of both the positive electrode material and the solid electrolyte are stable. From this, it was found that the bonding of the solid electrolytes of the positive electrode pellet and the negative electrode pellet with the inorganic adhesive can be carried out by applying pressure within a temperature range in which the positive electrode material does not melt.

ここで、上述の実施形態における加熱の上限値は、加圧条件下で正極側コンポジット電極材料が溶融する温度未満、例えば500℃である。加圧条件下では500℃までは、正極材料が安定であるが、550℃から電極材料の構造が壊れ始め、600℃で融解した。したがって、加圧条件下では500℃までが接合させるに適した条件となる。ただし、500℃のみに限定されるものではなく、酸化ホウ素の融点は480℃であり、しかも加圧によってさらに低い温度に低下するので、本実施形態では上限値が500℃までの温度範囲で実施可能であると理解されるべきである。 Here, the upper limit of heating in the above-described embodiment is less than the temperature at which the positive electrode side composite electrode material melts under pressurized conditions, for example, 500°C. The positive electrode material was stable up to 500°C under pressurized conditions, but from 550°C the structure of the electrode material began to break down and melted at 600°C. Therefore, under pressure conditions, temperatures up to 500°C are suitable conditions for bonding. However, the temperature is not limited to 500°C, and the melting point of boron oxide is 480°C, and the temperature is further lowered by pressurization. It should be understood that it is possible.

本発明者等の実験によれば、無機系接着剤6としてホウ酸を使用し、ホウ酸の融点以上の200℃、あるいは300℃で加熱しても、良好な接合状態が得られなかった。しかも、200℃~300℃の加熱では、HBOあるいは酸化ホウ素の形のままで残り、水酸化ホウ素に戻って接合された正極側ペレットと負極側ペレットとを分離させる可能性が懸念される。他方、酸化ホウ素の融点以上で正極部材が溶けない温度でかつ可能な限り高温、例えば500℃にまで加熱しながら加圧すれば、固体電解質と反応させて不可逆的に接着剤として機能させられることを知見した。具体的には、500℃、50MPaで加熱しながら加圧することで上述の組成の正極側ペレットと負極側ペレットとの固体電解質同士を接合させ、電池として機能させ得ることを知見した。このときのXRDパターンではBの回折ピークが存在しておらず消失していることが確認された(換言すれば、酸化ホウ素は固体電解質と反応して、Bという形態では残っていないと思われる)。このことから、同条件ではBとして存在することができない状況にあるものと考えられる。Bの回折線が消失する可能性としては、固体電解質と反応する、またはBが非晶質化する、の二つが考えられる。どちらの場合にも、Bの回折線は見られない。そして、ナシコン型結晶構造のNZSP、その他ガーネット型結晶構造やリシコン型結晶構造の固体電解質の場合、酸化ホウ素(B)と反応することが知られている。固体電解質とホウ素酸化物(酸化ホウ素)が反応すると、ホウ素が固体電解質の結晶構造のなかに入り、いずれかの元素と置換する、または母構造とは異なる結晶構造に変化する、と考えられる。他方、Bが非晶質化する場合であれば、固体電解質と無関係に非晶質化するので、全ての固体電解質に適用できると考えられる。いずれにしても、無機系接着剤の化学形態の変化(溶解・凝固反応または固体電解質との化学反応)が利用されて、正極層と負極層との接合が図られ、電池として機能させられることが確認された。 According to experiments by the present inventors, even if boric acid is used as the inorganic adhesive 6 and heated at 200° C. or 300° C., which is higher than the melting point of boric acid, a good bonding state cannot be obtained. Moreover, when heated at 200° C. to 300° C., there is concern that HBO 2 or boron oxide remains in the form and returns to boron hydroxide to separate the positive electrode pellet and the negative electrode pellet. On the other hand, if pressure is applied while heating to a temperature higher than the melting point of boron oxide, at which the positive electrode member does not melt, and as high as possible, for example, up to 500° C., it reacts with the solid electrolyte and functions irreversibly as an adhesive. I found out. Specifically, the inventors have found that by applying pressure while heating at 500° C. and 50 MPa, the solid electrolytes of the positive electrode-side pellet and the negative electrode-side pellet having the composition described above can be bonded together to function as a battery. In the XRD pattern at this time, it was confirmed that the diffraction peak of B 2 O 3 did not exist and disappeared (in other words, boron oxide reacted with the solid electrolyte, and in the form of B 2 O 3 I don't think there are any left). From this, it is considered that the situation is such that B 2 O 3 cannot exist under the same conditions. There are two possibilities for the disappearance of the diffraction line of B 2 O 3 : reaction with the solid electrolyte, or B 2 O 3 becoming amorphous. In neither case is the diffraction line of B 2 O 3 visible. It is known that NZSP having a Nasicon-type crystal structure, and other solid electrolytes having a garnet-type crystal structure or a lysicone-type crystal structure react with boron oxide (B 2 O 3 ). It is believed that when the solid electrolyte and boron oxide (boron oxide) react with each other, boron enters the crystal structure of the solid electrolyte and replaces any element, or changes to a crystal structure different from the parent structure. On the other hand, when B 2 O 3 is amorphized, it is amorphized regardless of the solid electrolyte, so it is considered applicable to all solid electrolytes. In any case, the change in the chemical form of the inorganic adhesive (dissolution/solidification reaction or chemical reaction with the solid electrolyte) is used to bond the positive electrode layer and the negative electrode layer, and to function as a battery. was confirmed.

以上、正極材料と負極材料とが別々にそれぞれに適した温度と圧力で焼結されるので、緻密な焼結体を得ることが可能となる。このため、固体電解質と電極活物質間の界面が良好な状態で形成されるとともに、コンポジット電極材料内の固体電解質同士あるいはコンポジット電極材料内の固電解質とコンポジット電極材料と隣接する無機固体電解質層との間の粒子間がより緻密化され、より内部抵抗の低い全固体電池を形成することが可能となる。 As described above, since the positive electrode material and the negative electrode material are separately sintered at temperatures and pressures suitable for each, it is possible to obtain a dense sintered body. Therefore, the interface between the solid electrolyte and the electrode active material is formed in a good state, and the inorganic solid electrolyte layer is formed between the solid electrolytes in the composite electrode material or between the solid electrolyte in the composite electrode material and the composite electrode material. It is possible to form an all-solid-state battery with a lower internal resistance because the particles between the particles are more dense.

しかも、正極側ペレットと負極側ペレットとの無機系接着剤による接合は、全固体電池の比較的高温例えば200℃程度の環境下での使用を可能とする(図3参照)。比較的高温の環境下での全固体電池の使用は、全固体電池の抵抗を減らして円滑に充放電を実施可能とする。勿論、本実施形態の全固体電池は、上述の温度以下でも充放電できる。例えば、本発明者の実験によれば、70℃でも充放電の実施が可能であった。 Moreover, the bonding of the positive electrode pellet and the negative electrode pellet with the inorganic adhesive enables the use of the all-solid-state battery in a relatively high temperature environment, for example, about 200° C. (see FIG. 3). Using an all-solid-state battery in a relatively high-temperature environment reduces the resistance of the all-solid-state battery and enables smooth charging and discharging. Of course, the all-solid-state battery of the present embodiment can be charged and discharged at temperatures below the above temperature. For example, according to experiments conducted by the present inventor, it was possible to charge and discharge even at 70°C.

なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、上述の実施形態では、放電プラズマ焼結装置を利用して負極側ペレット3及び正極側ペレット5の焼結並びに負極側ペレット3と正極側ペレット5との接合を行う例を挙げて主に説明したが、これに特に限られるものではなく、場合によってはホットプレス(HP)、熱間等方圧加圧焼結(HIP)、ガス圧焼結でも作製可能である。 Although the above embodiment is an example of the preferred embodiment of the present invention, the present invention is not limited to this, and can be modified in various ways without departing from the gist of the present invention. For example, in the above-described embodiment, an example of sintering the negative electrode-side pellet 3 and the positive electrode-side pellet 5 and joining the negative electrode-side pellet 3 and the positive electrode-side pellet 5 using a discharge plasma sintering device is mainly given. Although explained, it is not particularly limited to this, and depending on the case, hot pressing (HP), hot isostatic pressure sintering (HIP), and gas pressure sintering can also be used.

また、本実施形態では、全固体ナトリウム電池について実施した例を挙げて主に説明したが、これに特に限定されるものではなく、例えば全固体リチウム電池などの他の全固体電池に対して適用可能であることはいうまでもない。即ち、本発明の製法は、粉体のコンポジット電極材料と無機固体電解質材料とから成る正極側ペレットと負極側ペレットとをを各々にとって最適な焼結条件で別々に焼結させて形成する一方、これら両ペレットの固体電解質同士を無機系接着剤によって接合することで電池として機能させるものであって、電極材料同士が無機系接着剤によって直接に接合されるものではない。依って、本発明の製法は電極材料には因らず、様々な電極材料の組み合わせに適用可能であることは言うまでもない。したがって、緻密な焼結体が得られる焼結時の圧力や温度条件については、電極材料固有のものであることから、実施形態の中で挙げられている焼結の圧力、温度には絶対的意義はない。また、両ペレットの固体電解質同士を無機系接着剤によって接合する際の圧力と温度の条件についても、無機系接着剤を固体電解質と反応させて不可逆的に接着剤として機能させることが望ましいので、可能なかぎり高温にすることが好ましいが、電極材の溶融温度未満の温度とすることが必要であることから、採用する電極活物質によって左右される。つまり、本明細書中において挙げている数値は単なる一例であって、実施形態の中で挙げられている値の接合の圧力、温度には絶対的意義はない。 In addition, in the present embodiment, an example in which an all-solid-state sodium battery was implemented was mainly described, but it is not particularly limited to this, and can be applied to other all-solid-state batteries such as all-solid-state lithium batteries. It goes without saying that this is possible. That is, in the production method of the present invention, positive electrode side pellets and negative electrode side pellets made of a powdery composite electrode material and an inorganic solid electrolyte material are separately sintered under the optimum sintering conditions for each to form them. The solid electrolytes of these two pellets are bonded together with an inorganic adhesive to function as a battery, and the electrode materials are not directly bonded together with an inorganic adhesive. Therefore, it goes without saying that the manufacturing method of the present invention is applicable to various combinations of electrode materials regardless of the electrode material. Therefore, since the sintering pressure and temperature conditions for obtaining a dense sintered body are specific to the electrode material, the sintering pressure and temperature given in the embodiments are absolute. No meaning. Also, regarding the pressure and temperature conditions when the solid electrolytes of both pellets are bonded together with the inorganic adhesive, it is desirable that the inorganic adhesive reacts with the solid electrolyte and functions irreversibly as an adhesive. It is preferable to set the temperature as high as possible, but since the temperature must be lower than the melting temperature of the electrode material, it depends on the electrode active material employed. In other words, the numerical values given in this specification are merely examples, and the bonding pressures and temperatures given in the embodiments have no absolute significance.

正極と負極とをそれぞれが緻密な焼結体を得るに必要な固有の最適条件で焼結し、それらを後に無機系接着剤で接合して成る全固体電池は、正極と負極とで異なる熱的安定性の電極活物質を採用することが可能となる。勿論、同じ熱的安定性の電極活物質、即ち同じ電極材を採用しても良いが、全固体電池としての性能をより改善できる電極材料の組み合わせを可能とすることができる。 An all-solid-state battery made by sintering a positive electrode and a negative electrode under specific optimum conditions necessary to obtain a dense sintered body, and then bonding them with an inorganic adhesive, is produced by applying different heat to the positive electrode and the negative electrode. It becomes possible to adopt a stable electrode active material. Of course, the same thermally stable electrode active material, that is, the same electrode material may be employed, but it is possible to combine electrode materials that can further improve the performance as an all-solid-state battery.

他方、上述の実施形態では、高い化学・熱的安定性を示す全固体電池の実現のため、酸化物固体電解質(NASICON型の酸化物結晶系電解質)を採用した例を挙げて主に説明しているが、これに特に限定されるものではなく、その他の酸化物固体電解質でも、硫化物ガラス系固体電解質であっても良い。 On the other hand, in the above-described embodiments, in order to realize an all-solid-state battery exhibiting high chemical and thermal stability, an example in which an oxide solid electrolyte (a NASICON-type oxide crystalline electrolyte) is used is mainly described. However, it is not particularly limited to this, and other oxide solid electrolytes or sulfide glass-based solid electrolytes may be used.

バルク型全固体ナトリウム電池を以下の方法で作製し、その電池性能を検証した結果を示す。
まず、負極材料、正極材料、固体電解質材料を合成した。例えば、負極層の負極活物質としてはNa(PO(所謂、NVP)、正極層の正極活物質としてはNa(PO)2P(所謂、NCPP)、及び固体電解質材料としてはNaZr(SiO)2PO(所謂、NZSP)を用いた。例えば、VとNaHPOを1:3(モル比)で混合し、アルゴン-水素(水素:5体積%)雰囲気中、900℃で20時間焼成した後、得られた焼成物を粉砕して、Na(POで表される電極活物質の材料粉末(以下、単に「NVP材料粉末」ともいう)を得た。また、硝酸M水和物(M=Co、Ni,Mn,Fe), NaNO3、 NH4H2PO4を 3:4:4(モル比)で混合し、空気雰囲気、700℃で24時間焼成した後、得られた焼成物を粉砕して、Na(PO)2Pで表される電極活物質の材料粉末(以下、単に「NCPP材料粉末」ともいう)を得た。
さらに、固体電解質は、Sol-Gel法で前駆体溶液を得た。得られた前駆体溶液を加水分解してゲル化させて1日放置し、ゲルを熟成させた後、120℃で24時間乾燥させた。その後、擂潰し、750℃で5時間仮焼して前駆体粉末を得た。得られた粉末を1000℃で5時間焼成して、その組成がNa3Zr2(SiO4)2(PO4)で表される固体電解質の材料粉末(以下、単に「NASICON材料粉末」ともいう)を得た。尚、本実施例で利用した固体電解質には、イオン伝導を阻害する不純物は存在しなかった。
A bulk-type all-solid-state sodium battery was produced by the following method, and the result of verifying the battery performance is shown.
First, a negative electrode material, a positive electrode material, and a solid electrolyte material were synthesized. For example, the negative electrode active material for the negative electrode layer is Na 3 V 2 (PO 4 ) 3 (so-called NVP), and the positive electrode active material for the positive electrode layer is Na 4 M 3 (PO 4 ) 2P 2 O 7 (so-called NCPP). , and Na 3 Zr 2 (SiO 4 ) 2PO 4 (so-called NZSP) was used as a solid electrolyte material. For example, V 2 O 3 and NaH 2 PO 4 are mixed at a ratio of 1:3 (molar ratio) and fired at 900° C. for 20 hours in an argon-hydrogen (hydrogen: 5% by volume) atmosphere. was pulverized to obtain a material powder of an electrode active material represented by Na 3 V 2 (PO 4 ) 3 (hereinafter also simply referred to as “NVP material powder”). In addition, nitric acid M hydrate (M = Co, Ni, Mn, Fe), NaNO3, and NH4H2PO4 were mixed at a ratio of 3 : 4 : 4 (molar ratio) and heated at 700°C for 24 hours in an air atmosphere. After sintering, the obtained sintered product is pulverized to obtain a material powder of an electrode active material represented by Na 4 M 3 (PO 4 ) 2P 2 O 7 (hereinafter also simply referred to as “NCPP material powder”). rice field.
Furthermore, the solid electrolyte obtained a precursor solution by the Sol-Gel method. The resulting precursor solution was hydrolyzed to gel and allowed to stand for one day to age the gel, followed by drying at 120° C. for 24 hours. After that, it was ground and calcined at 750° C. for 5 hours to obtain a precursor powder. The obtained powder was sintered at 1000° C. for 5 hours to obtain a solid electrolyte material powder (hereinafter simply referred to as “NASICON material powder”) whose composition is represented by Na3Zr2(SiO4)2(PO4). The solid electrolyte used in this example did not contain impurities that inhibit ion conduction.

本実施例では、負極層並びに正極層は、負極活物質並びに正極活物質と固体電解質と導電性黒鉛との複合体即ちコンポジット電極材料として構成されている。コンポジット電極材料の組成並びにセル構成の混合割合は以下の通りである。
(セル構成の混合割合)
a)負極側コンポジット電極材料(NVP : NZSP : C = 25 : 60 : 15wt.%)40mg
b)無機固体電解質材料(NZSP) 150 mg
c)無機系接着剤(HBO2) 1mg
d)無機固体電解質材料(NZSP) 150 mg
e)正極側コンポジット電極材料(NCPP : NZSP : C = 25 : 60 : 15wt.%)20mg
(焼結装置)
放電プラズマ焼結装置(ドイツのFCT Systeme GmbH社製HP D 10)
In this embodiment, the negative electrode layer and the positive electrode layer are configured as composites of negative electrode active materials, positive electrode active materials, solid electrolytes, and conductive graphite, that is, composite electrode materials. The composition of the composite electrode material and the mixing ratio of the cell structure are as follows.
(Mixing ratio of cell configuration)
a) Negative side composite electrode material (NVP: NZSP: C = 25: 60: 15 wt.%) 40 mg
b) Inorganic solid electrolyte material (NZSP) 150 mg
c) Inorganic adhesive ( HBO2 ) 1mg
d) Inorganic solid electrolyte material (NZSP) 150 mg
e) Positive side composite electrode material (NCPP: NZSP: C = 25: 60: 15 wt.%) 20 mg
(Sintering device)
Spark plasma sintering device (HP D 10 from FCT Systeme GmbH, Germany)

手順1) 電極活物質250mg、無機固体電解質600mg、炭素150mgを秤量した後、乳鉢
・乳棒を用いて3つの異種材料を30分間混合して正極及び負極のそれぞれのコ
ンポジット電極材料を得た。
手順2) 放電プラズマ焼結装置を用いて正極用無機固体電解質と負極用無機固体電解質
のグリーン・ペレットを作製する。即ち、放電プラズマ焼結装置の成形用金型(
内径10mm)に、無機固体電解質150mgを入れて、円盤状の圧粉体(グリーン
・ペレット)を成形する。ここで、成形用金型の内周面には、通電と焼結する際
に焼結冶具を傷めないためにカーボンペーパーで覆われている。因みに、手順1
)の固体電解質と手順2)の無機固体電解質とは、同じ材料であり、ともに例え
ばNZSPを用いた。
手順3) 正極側コンポジット電極材料20mg、負極側コンポジット電極材料40mgをそ
れぞれ秤量して、放電プラズマ焼結装置の成形用金型内の固体電解質のグリーン
・ペレットの上にそれぞれのせ、再度プレスしてペレット状に固める。
手順4) 正負極の各グリーン・ペレットのコンポジット電極材料の上にカーボンペーパ
ー(集電体となる炭素シート)を入れる。
手順5) 放電プラズマ焼結装置にてそれぞれの活物質固有の焼結で緻密化される条件、
温度と圧力で焼結して、正極側コンポジット電極材料と固体電解質とのペレット
(以下、正極材ペレットと呼ぶ)並びに負極側コンポジット電極材料と固体電解質
とのペレット(以下、負極材ペレットと呼ぶ)を製作した。放電プラズマ焼結の
条件は、正極材ペレットでは500℃、255MPaで5分間焼結、負極材ペレットで
は900℃、100MPaで2分間焼結である。
手順6) 正極材ペレット並びに負極材ペレットの温度を室温まで下げ、各ペレットの固
体電解質側に無機系接着剤を適量付着させる。本実施例の場合には、直径10mm
の各ペレットの固体電解質の面に対し、乾燥粉体重量で1mg(1.27mg/
cm)程度を付着させた。具体的には、ホウ酸水溶液(1wt%)を50μLず
つ固体電解質の面に付着させ、100℃で乾燥させることにより、固体電解質の表
面に1mg程度の薄く均一なホウ酸の膜を形成した。
手順7) 正極材ペレットと負極材ペレットとの固体電解質側同士を対向させるように組
み合わせた状態(両ペレットの無機固体電解質の間に無機系接着剤を介在させた
状態)で、放電プラズマ焼結装置により、50MPaの圧力をかけながら2分間500
℃に加熱した。これにより、正極材ペレットの固体電解質と負極材ペレットの固
体電解質との間の無機系接着剤を融解させて、固体電解質と反応させ、固体電解
質同士を接合させた。尚、異種材料の混合・焼結後のX線回折測定から、不純
物が生成しない温度と圧力条件で、異種材料の接合を行っている。ただし、その
条件を外れると、電極材料のガラス化がおきた。一方、固体電解質は安定であっ
た。
手順8) 放電プラズマ焼結装置の金型内から全固体電池を取り出してから、電池側面の
カーボンペーパーを除去した。
Procedure 1) After weighing 250 mg of the electrode active material, 600 mg of the inorganic solid electrolyte, and 150 mg of carbon, the three different materials were mixed for 30 minutes using a mortar and pestle to obtain composite electrode materials for the positive and negative electrodes.
Step 2) Using a discharge plasma sintering device, prepare green pellets of the inorganic solid electrolyte for the positive electrode and the inorganic solid electrolyte for the negative electrode. That is, the molding die of the discharge plasma sintering device (
150 mg of inorganic solid electrolyte is put into a container (inner diameter: 10 mm), and a disk-shaped compact (green pellet) is formed. Here, the inner peripheral surface of the molding die is covered with carbon paper so as not to damage the sintering jig during energization and sintering. By the way, step 1
The solid electrolyte in step 2) and the inorganic solid electrolyte in step 2) are the same material, and NZSP, for example, is used for both.
Step 3) Weigh 20 mg of the positive electrode composite electrode material and 40 mg of the negative electrode composite electrode material, put them on the solid electrolyte green pellets in the mold of the discharge plasma sintering equipment, and press again. Press to form pellets.
Step 4) Place carbon paper (a carbon sheet that serves as a current collector) on the composite electrode material of each green pellet of the positive and negative electrodes.
Step 5) Conditions for densification by sintering specific to each active material in the spark plasma sintering device,
By sintering at temperature and pressure, pellets of the composite electrode material on the positive electrode side and the solid electrolyte (hereinafter referred to as positive electrode material pellets) and pellets of the composite electrode material on the negative electrode side and the solid electrolyte (hereinafter referred to as negative electrode material pellets) made. The conditions for discharge plasma sintering are 500°C and 255 MPa for 5 minutes for positive electrode material pellets, and 900°C and 100 MPa for 2 minutes for negative electrode material pellets.
Step 6) Lower the temperature of the positive electrode material pellet and the negative electrode material pellet to room temperature, and attach an appropriate amount of inorganic adhesive to the solid electrolyte side of each pellet. In the case of this embodiment, a diameter of 10 mm
1 mg (1.27 mg/
cm 2 ). Specifically, 50 µL of boric acid aqueous solution (1 wt%) was applied to the surface of the solid electrolyte and dried at 100°C to form a thin and uniform boric acid film of about 1 mg on the surface of the solid electrolyte. did.
Step 7) In a state in which the positive electrode material pellet and the negative electrode material pellet are combined so that the solid electrolyte sides face each other (a state in which an inorganic adhesive is interposed between the inorganic solid electrolytes of both pellets), a discharge plasma is generated. With a sintering device, 500 for 2 minutes while applying a pressure of 50 MPa
°C. As a result, the inorganic adhesive between the solid electrolyte of the positive electrode material pellet and the solid electrolyte of the negative electrode material pellet was melted and reacted with the solid electrolyte to join the solid electrolytes together. From the X-ray diffraction measurement after mixing and sintering the dissimilar materials, the dissimilar materials are joined under temperature and pressure conditions that do not generate impurities. However, vitrification of the electrode material occurred when the conditions were not met. On the other hand, the solid electrolyte was stable.
Step 8) After removing the all-solid-state battery from the mold of the discharge plasma sintering equipment, the carbon paper on the side of the battery was removed.

上述の手順1)~8)によって、直径10 mm、長さ4.2 mmのバルク型全固体ナトリウム電池を製作した。尚、バルク型全固体ナトリウム電池の厚みの内訳は、集電材としての炭素シート 1mm 、負極側コンポジット電極材料400μm 、NZSP 800μm、NZSP 800μm、正極側コンポジット電極材料 200μm 、集電材としての炭素シート 1mmであった。 A bulk-type all-solid-state sodium battery with a diameter of 10 mm and a length of 4.2 mm was manufactured according to the above procedures 1) to 8). The breakdown of the thickness of the bulk-type all-solid-state sodium battery is as follows: 1mm carbon sheet as current collector, 400μm negative electrode composite electrode material, NZSP 800μm, NZSP 800μm, positive electrode composite electrode material 200μm, 1mm carbon sheet as current collector. there were.

以上のようにして製作された全固体ナトリウム電池の充放電サイクルを図3に示す。この図から明らかなように、様々な電圧範囲の下で充電-放電テストを行った結果、本実施例の全固体ナトリウム電池は、正常に充放電し、また充放電サイクルを繰り返しても、容量が急に落ちるようなこともなかったことが判明した。つまり、全固体ナトリウム電池として機能し、尚且つ電池性能も安定しているものと思われる。さらに、従来の製造方法によるバルク型全固体ナトリウム電池の場合の出力(図8参照)と比較しても、性能が上がった(1.5V→2V強の40~50%増)ことから、性能改善が見込まれることが示唆された。 FIG. 3 shows the charge/discharge cycle of the all-solid-state sodium battery manufactured as described above. As is clear from this figure, as a result of conducting charge-discharge tests under various voltage ranges, the all-solid-state sodium battery of this example was charged and discharged normally, and even after repeated charge-discharge cycles, the capacity remained unchanged. It turned out that there was no abrupt drop. In other words, it is considered that the battery functions as an all-solid-state sodium battery and that the battery performance is stable. Furthermore, compared to the output in the case of a bulk type all-solid-state sodium battery manufactured by the conventional manufacturing method (see FIG. 8), the performance was improved (40 to 50% increase from 1.5 V to over 2 V). It was suggested that improvement is expected.

また、実際に充放電できた結果を図4に示す。図4には、さまざまな電圧範囲およびCレートの下の全固体電池の放電容量(mAh g-1)および関連放電容量(%)の関係を示す充放電性能を示す。充放電の電圧の範囲を振ってみることで、容量が電圧に依存して増えたという結果が得られた。小さな電流で充放電したり、大きな電量で充放電したときに、どのように変化するかCレート(Capacity rate)の依存性について検討した。10時間で充放電させる場合の性能は、500℃で正負極を一体焼結した従来の全固体電池よりも良かった。また、3時間かけて充放電させる場合には20%程度と、10時間率の場合よりも落ちるが、充放電ができていることが明らかになった。 FIG. 4 shows the results of actual charging and discharging. FIG. 4 shows charge-discharge performance showing the relationship between discharge capacity (mAh g −1 ) and related discharge capacity (%) for all-solid-state batteries under various voltage ranges and C-rates. By varying the charge/discharge voltage range, we obtained the result that the capacity increased depending on the voltage. The dependence of the C rate (Capacity rate) on how it changes when charging/discharging with a small current or charging/discharging with a large amount of charge was investigated. The performance when charging and discharging for 10 hours was better than that of a conventional all-solid-state battery in which the positive and negative electrodes were integrally sintered at 500°C. In addition, it was found that charging and discharging can be performed in the case of charging and discharging over 3 hours, although the rate is about 20%, which is lower than in the case of the 10 hour rate.

図5には、充電-放電テスト後の全固体電池における正極側コンポジット電極材料のX線回折パターンを示す。この結果では、3.9Vの高い電圧に上げても安定だという結果が得られた。 FIG. 5 shows the X-ray diffraction pattern of the composite electrode material on the positive electrode side in the all-solid-state battery after the charge-discharge test. As a result, it was found to be stable even when the voltage was raised to a high voltage of 3.9V.

以上の実験から、本発明の製法によって製作されたNCPP正極ペレットとNVP負極ペレットとが酸化ホウ素で接合された全固体電池は、電池として機能することが確認された。具体的には、全固体ナトリウム電池は200℃において動作し、70 mAh/gを示した。 From the above experiments, it was confirmed that the all-solid-state battery in which the NCPP positive electrode pellet and the NVP negative electrode pellet manufactured by the manufacturing method of the present invention are bonded with boron oxide functions as a battery. Specifically, the all-solid-state sodium battery operated at 200°C and showed 70 mAh/g.

(比較例1)
図9に示す従来の製法によって、正極と負極に異なる電極材料を採用した以下のセル構成の全固体型電池を製作した場合について検討した。
a)負極側コンポジット電極材料(NVP : NZSP : C = 25 : 60 : 15wt.%)40mg
b)無機固体電解質材料(NZSP) 150 mg
c)正極側コンポジット電極材料(NCPP : NZSP : C = 25 : 60 : 15wt.%)20mg
即ち、図9に示すように、負極用の電極活物質と固体電解質を含む負極コンポジット101、及び固体電解質103並びに正極用の電極活物質と固体電解質を含む正極コンポジット102がこの順に積層されてサンドイッチ構造とし、正極活物質が融解しない500℃、255MPaで一挙に焼結されることによって全固体電池の製作が試みられた。サンドイッチ構造のうち、正極材料に適した焼結条件例えば500℃,255Mpaで焼結しても、負極は緻密に固まらなかった。このため、正極側コンポジット電極材102は固体電解質103に付着したが、負極側コンポジット電極材101の75~80%(30~32mg)が剥落した。そして、負極側コンポジット電極材101の一部(8~10mg)と固体電解質103と正極側コンポジット電極材102との焼結体から成る電池が得られた。この全固体電池は、図10に示すように、電池として安定して機能しなかった。起動時の1回だけは理論値以上の充電が行われたが、2回目からは充電できなかった。
(Comparative example 1)
A case where an all-solid-state battery having the following cell configuration, in which different electrode materials are used for the positive electrode and the negative electrode, was manufactured by the conventional manufacturing method shown in FIG. 9 was examined.
a) Negative side composite electrode material (NVP: NZSP: C = 25: 60: 15 wt.%) 40 mg
b) Inorganic solid electrolyte material (NZSP) 150 mg
c) Positive electrode side composite electrode material (NCPP: NZSP: C = 25: 60: 15 wt.%) 20 mg
That is, as shown in FIG. 9, a negative electrode composite 101 containing a negative electrode active material and a solid electrolyte, a positive electrode composite 102 containing a solid electrolyte 103 and a positive electrode active material and a solid electrolyte are laminated in this order and sandwiched. An attempt was made to fabricate an all-solid-state battery by sintering at once at 500° C. and 255 MPa at which the positive electrode active material does not melt. Even if the sandwich structure was sintered under sintering conditions suitable for positive electrode materials, such as 500° C. and 255 MPa, the negative electrode did not solidify densely. Therefore, the positive electrode side composite electrode material 102 adhered to the solid electrolyte 103, but 75 to 80% (30 to 32 mg) of the negative electrode side composite electrode material 101 was peeled off. A battery comprising a sintered body of a portion (8 to 10 mg) of the negative electrode composite electrode material 101, the solid electrolyte 103, and the positive electrode composite electrode material 102 was obtained. This all-solid-state battery did not function stably as a battery, as shown in FIG. The battery was charged more than the theoretical value only once at startup, but could not be charged from the second time.

1 負極側コンポジット電極材
2 固定電解質
3 負極側ペレット
4 正極側コンポジット電極材
5 正極側ペレット
6 無機系接着剤
REFERENCE SIGNS LIST 1 negative electrode side composite electrode material 2 fixed electrolyte 3 negative electrode side pellet 4 positive electrode side composite electrode material 5 positive electrode side pellet 6 inorganic adhesive

Claims (6)

正極活物質と固体電解質及び導電助剤から成る正極側コンポジット電極材料と無機固体電解質並びに負極活物質と固体電解質及び導電助剤から成る負極側コンポジット電極材料と無機固体電解質とをそれぞれに適した焼結条件で別々に焼結させて正極側ペレットと負極側ペレットとを成形する工程と、
前記正極側ペレットの前記無機固体電解質と前記負極側ペレットの前記無機固体電解質との間に無機系接着剤を挟んで、加圧下に前記無機系接着剤の溶融温度以上でかつ溶融温度が低い方の前記電極活物質が印加圧力の下で融解が起こる温度未満の温度で加熱することにより前記正極側ペレットと前記負極側ペレットとを接合して一体化する工程とを備える、
ことを特徴とする全固体型電池の製造方法。
A positive electrode side composite electrode material and an inorganic solid electrolyte consisting of a positive electrode active material, a solid electrolyte and a conductive aid, and a negative electrode side composite electrode material and an inorganic solid electrolyte consisting of a negative electrode active material, a solid electrolyte and a conductive aid are sintered respectively. A step of separately sintering under a binding condition to form a positive electrode side pellet and a negative electrode side pellet;
An inorganic adhesive is sandwiched between the inorganic solid electrolyte of the positive electrode-side pellet and the inorganic solid electrolyte of the negative electrode-side pellet, and the one having a melting temperature higher than the melting temperature of the inorganic adhesive under pressure and a lower melting temperature joining and integrating the positive electrode side pellet and the negative electrode side pellet by heating at a temperature below the temperature at which the electrode active material melts under the applied pressure.
A method for manufacturing an all-solid-state battery, characterized by:
前記正極活物質と前記負極活物質とは異なる材料であることを特徴とする請求項1記載の全固体型電池の製造方法。 2. The method of manufacturing an all-solid-state battery according to claim 1, wherein the positive electrode active material and the negative electrode active material are different materials. 前記無機系接着剤はホウ酸、メタホウ酸または酸化ホウ素のいずれかであることを特徴とする請求項1または2記載の全固体型電池の製造方法。 3. The method for manufacturing an all-solid-state battery according to claim 1, wherein said inorganic adhesive is boric acid, metaboric acid or boron oxide. 前記正極活物質としてNCPP、前記固体電解質としてNZSP及び前記導電助剤としてCを含む前記正極側コンポジット電極材料と前記無機固体電解質としてのNZSPとを500℃、255MPaで焼結して前記正極側ペレットを成形し、
前記負極活物質としてNVP、前記固体電解質としてNZSP及び前記導電助剤としてCを含む前記負極側コンポジット電極材料と前記無機固体電解質としてのNZSPとを900℃、100MPaで焼結して前記負極側ペレットを成形し、
前記正極側ペレットの前記無機固体電解質の面と前記負極側ペレットの前記無機固体電解質の面の間に前記無機系接着剤としてホウ酸、メタホウ酸または酸化ホウ素のいずれかを介在させ、500℃、50MPaで加圧しながら加熱することで、前記無機系接着剤を融解させて前記無機固体電解質同士を接合させることを特徴とする請求項1記載の全固体電池の製造方法。
The positive electrode side composite electrode material containing NCPP as the positive electrode active material, NZSP as the solid electrolyte, and C as the conductive aid, and NZSP as the inorganic solid electrolyte are sintered at 500 ° C. and 255 MPa to form the positive electrode pellet. molding the
The negative electrode side composite electrode material containing NVP as the negative electrode active material, NZSP as the solid electrolyte, and C as the conductive aid, and NZSP as the inorganic solid electrolyte are sintered at 900 ° C. and 100 MPa to form the negative electrode pellet. molding the
Between the inorganic solid electrolyte surface of the positive electrode pellet and the inorganic solid electrolyte surface of the negative electrode pellet, boric acid, metaboric acid, or boron oxide is interposed as the inorganic adhesive, and 2. The method for manufacturing an all-solid-state battery according to claim 1, wherein the inorganic adhesive is melted and the inorganic solid electrolytes are bonded together by heating while applying pressure of 50 MPa.
前記無機系接着剤はホウ酸水溶液として前記正極側ペレットの前記無機固体電解質と前記負極側ペレットの前記無機固体電解質との間に注入させることを特徴とする請求項4記載の全固体型電池の製造方法。 5. The all-solid-state battery according to claim 4, wherein the inorganic adhesive is injected as an aqueous solution of boric acid between the inorganic solid electrolyte of the positive electrode-side pellet and the inorganic solid electrolyte of the negative electrode-side pellet. Production method. 正極活物質と固体電解質及び導電助剤から成る正極側コンポジット電極材料と無機固体電解質とが前記正極活物質に適した焼結条件で焼結された正極側ペレットと、
負極活物質と固体電解質及び導電助剤から成る負極側コンポジット電極材料と無機固体電解質とが前記負極活物質に適した焼結条件で焼結された負極側ペレットと、
ホウ酸、メタホウ酸、酸化ホウ素、10水塩ほう砂、または三フッ化ホウ素のいずれかである無機系接着剤が、前記正極側ペレットの前記無機固体電解質と前記負極側ペレットの前記無機固体電解質との間で加圧下に前記電極材料の融点未満の温度で融解されて前記無機固体電解質同士を接合した、
ことを特徴とする全固体型電池。
a positive electrode-side pellet obtained by sintering a positive electrode-side composite electrode material composed of a positive electrode active material, a solid electrolyte, and a conductive aid, and an inorganic solid electrolyte under sintering conditions suitable for the positive electrode active material;
a negative electrode-side pellet obtained by sintering a negative electrode-side composite electrode material composed of a negative electrode active material, a solid electrolyte, and a conductive aid, and an inorganic solid electrolyte under sintering conditions suitable for the negative electrode active material;
An inorganic adhesive that is any one of boric acid, metaboric acid, boron oxide, borax decahydrate, or boron trifluoride is the inorganic solid electrolyte of the positive electrode-side pellet and the inorganic solid electrolyte of the negative electrode-side pellet. The inorganic solid electrolytes are joined together by being melted at a temperature below the melting point of the electrode material under pressure between
An all-solid-state battery characterized by:
JP2018114174A 2018-06-15 2018-06-15 Method for manufacturing all-solid-state battery and all-solid-state battery Active JP7179409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018114174A JP7179409B2 (en) 2018-06-15 2018-06-15 Method for manufacturing all-solid-state battery and all-solid-state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018114174A JP7179409B2 (en) 2018-06-15 2018-06-15 Method for manufacturing all-solid-state battery and all-solid-state battery

Publications (2)

Publication Number Publication Date
JP2019220250A JP2019220250A (en) 2019-12-26
JP7179409B2 true JP7179409B2 (en) 2022-11-29

Family

ID=69096806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018114174A Active JP7179409B2 (en) 2018-06-15 2018-06-15 Method for manufacturing all-solid-state battery and all-solid-state battery

Country Status (1)

Country Link
JP (1) JP7179409B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7392437B2 (en) 2019-12-05 2023-12-06 株式会社デンソー rotating electric machine
CN111994889B (en) * 2020-07-23 2023-06-27 天津理工大学 Positive electrode material of sodium vanadium phosphate sodium ion battery and preparation method thereof
CN111943635A (en) * 2020-08-05 2020-11-17 中山大学 Preparation method of solid electrolyte
KR20220099802A (en) * 2021-01-07 2022-07-14 에스케이온 주식회사 Cathode active material for lithium secondary battery and lithium secondary battery including the same
US20220302457A1 (en) * 2021-03-16 2022-09-22 Nissan North America, Inc. Low resistance cathode for solid-state battery
CN113135561B (en) * 2021-04-13 2022-06-21 河北农业大学 Preparation method of sodium ion battery positive electrode material and prepared material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008234843A (en) 2007-03-16 2008-10-02 Idemitsu Kosan Co Ltd Electrode and member for all-solid secondary battery
JP2014060084A (en) 2012-09-19 2014-04-03 Ohara Inc All solid-state lithium ion secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008234843A (en) 2007-03-16 2008-10-02 Idemitsu Kosan Co Ltd Electrode and member for all-solid secondary battery
JP2014060084A (en) 2012-09-19 2014-04-03 Ohara Inc All solid-state lithium ion secondary battery

Also Published As

Publication number Publication date
JP2019220250A (en) 2019-12-26

Similar Documents

Publication Publication Date Title
JP7179409B2 (en) Method for manufacturing all-solid-state battery and all-solid-state battery
US11108083B2 (en) Electrode composite body, method of manufacturing electrode composite body, and lithium battery
CN108475787B (en) Skeleton-forming agent and negative electrode using same
JP5484928B2 (en) All solid battery
US10862162B2 (en) Electrode composite body, method of manufacturing electrode composite body, and lithium battery
JP5826078B2 (en) All solid state secondary battery
JP5358825B2 (en) All solid battery
JP4940080B2 (en) Lithium ion conductive solid electrolyte and method for producing the same
KR20130034010A (en) Method for preparing a solid-state battery by sintering under pulsating current
JP2012015119A (en) Manufacturing method of lithium ion conductive solid electrolyte
JP2012099225A (en) All-solid lithium ion secondary battery and method of manufacturing the same
JP6799714B2 (en) Manufacturing method of solid electrolyte sheet, negative electrode sheet for all-solid secondary battery and all-solid secondary battery
KR101739803B1 (en) A thermal batteries using a eutectic salt coated solid-electrolyte and a manufacturing method therefor
JP2009181872A (en) Lithium ion secondary battery, and manufacturing method thereof
JP2017033689A (en) Electrode assembly, all-solid secondary battery, and method for manufacturing electrode assembly
KR20200131297A (en) Solid electrolyte sheet, negative electrode sheet for all-solid secondary battery, and method of manufacturing all-solid secondary battery
JP2013045738A (en) Solid electrolyte sintered body, method of manufacturing the same, and all-solid lithium battery
KR102143173B1 (en) Composite solid electrolyte without self-discharge, battery unit cell having the same, and Method for manufacturing the same
JP7183529B2 (en) LAMINATED GREEN SHEET, ALL-SOLID SECONDARY BATTERY AND MANUFACTURING METHOD THEREOF
JP2009181882A (en) Method of manufacturing lithium battery
JP6434125B2 (en) Molded product containing transition metal polysulfide, battery electrode, and method for producing the same
JP2016103381A (en) Method for manufacturing all-solid battery
KR102105658B1 (en) Manufacturin method of thin film electrode and electrolyte for thermal batteries using the colloidal inorganic binder, thin film electrode and electrolyte for thermal batteries manufactured by the same, and thermal batteries including thereof
CN113471517A (en) All-solid-state battery and method for manufacturing same
CN115461890A (en) Sintered body electrode, battery member, method for producing sintered body electrode and battery member, solid electrolyte precursor solution, solid electrolyte precursor, and solid electrolyte

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220430

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221115

R150 Certificate of patent or registration of utility model

Ref document number: 7179409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150