JP7177598B2 - flame detector - Google Patents

flame detector Download PDF

Info

Publication number
JP7177598B2
JP7177598B2 JP2018064315A JP2018064315A JP7177598B2 JP 7177598 B2 JP7177598 B2 JP 7177598B2 JP 2018064315 A JP2018064315 A JP 2018064315A JP 2018064315 A JP2018064315 A JP 2018064315A JP 7177598 B2 JP7177598 B2 JP 7177598B2
Authority
JP
Japan
Prior art keywords
light receiving
flame
light
signal
judgment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018064315A
Other languages
Japanese (ja)
Other versions
JP2019174337A (en
Inventor
秀成 松熊
功 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP2018064315A priority Critical patent/JP7177598B2/en
Publication of JP2019174337A publication Critical patent/JP2019174337A/en
Priority to JP2022117695A priority patent/JP7400034B2/en
Application granted granted Critical
Publication of JP7177598B2 publication Critical patent/JP7177598B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、有炎燃焼時のCO2共鳴により発生する赤外線放射を検出して、炎の有無を判定する炎検出装置に関する。 The present invention relates to a flame detector that detects the presence or absence of flame by detecting infrared radiation generated by CO2 resonance during flame combustion.

従来、有炎燃焼により発生する放射線エネルギーを検出して、炎の有無を検出する炎検出装置にあっては、炎と炎以外の赤外線放射体との識別を行うため、有炎燃焼時に発生するCO2の共鳴放射による波長帯域を含む複数の波長帯域における放射線強度を検出して、それら複数の波長帯域における検出値の相対比により炎の有無を検出する2波長式、3波長式等の炎検出装置や炎検出方法がよく知られている。 Conventionally, in a flame detection device that detects the presence or absence of flame by detecting the radiation energy generated by flaming combustion, in order to distinguish between a flame and an infrared radiator other than a flame, 2-wavelength type, 3-wavelength type flame detection that detects the presence or absence of a flame by detecting the radiation intensity in a plurality of wavelength bands including the wavelength band due to the resonance radiation of CO2 and detecting the presence or absence of a flame based on the relative ratio of the detected values in the plurality of wavelength bands. Devices and flame detection methods are well known.

ここで、従来技術における2波長式、及び、3波長式の炎検出装置について、簡単に説明する。 Here, two-wavelength and three-wavelength flame detectors in the prior art will be briefly described.

図10は、燃焼炎と、その他の代表的な放射体の赤外波長域における放射線スペクトルを示す概念図であり、横軸は放射線の波長、縦軸は放射線の相対強度を示す。 FIG. 10 is a conceptual diagram showing radiation spectra in the infrared wavelength region of combustion flames and other typical radiators, where the horizontal axis indicates the wavelength of the radiation and the vertical axis indicates the relative intensity of the radiation.

図10に示すように、燃焼炎のスペクトル特性100においては、CO2の共鳴放射により4.5μm付近の波長帯域に放射線相対強度のピークがあり、また、このピーク波長の近傍に存在する特徴的な波長としては、例えば、長波長側の5.0μm付近に、放射線相対強度が低い波長帯域が存在する。 As shown in FIG. 10, in the spectral characteristic 100 of the combustion flame, there is a peak of radiation relative intensity in a wavelength band around 4.5 μm due to CO2 resonance radiation, and a characteristic As for the wavelength, for example, there is a wavelength band in which the radiation relative intensity is low near 5.0 μm on the long wavelength side.

2波長式の炎検出装置にあっては例えば、4.5μm付近の波長帯域と、5.0μm付近の波長帯域における各々の放射線エネルギーを狭帯域の光学波長バンドパスフィルタにより選択透過(通過)させて、受光センサにより該放射線エネルギーを検出し、これを光電変換したうえで増幅等所定の加工を施してエネルギー量に対応する電気信号(以下、「受光信号」という)とし、上記各々の波長帯域の受光信号レベルの相対比をとり、所定の閾値と比較することにより炎の有無を判定する。 In a two-wavelength type flame detector, for example, radiant energies in a wavelength band near 4.5 μm and a wavelength band near 5.0 μm are selectively transmitted (passed) by narrow-band optical wavelength bandpass filters. Then, the radiation energy is detected by a light receiving sensor, photoelectrically converted, and subjected to predetermined processing such as amplification to obtain an electric signal corresponding to the amount of energy (hereinafter referred to as "light receiving signal"), and each wavelength band The presence or absence of flame is determined by taking the relative ratio of the received light signal levels and comparing it with a predetermined threshold value.

これにより、炎以外の赤外線放射体、例えば、スペクトル特性102に示す太陽光(6000°C)等の高温放射体や、スペクトル特性104に示す比較的低温の放射体(300℃程度)、またスペクトル特性106に示す人体などの低温放射体等と炎との識別が可能となる。 As a result, infrared radiators other than flames, for example, high-temperature radiators such as sunlight (6000° C.) shown in spectral characteristics 102, relatively low-temperature radiators (about 300° C.) shown in spectral characteristics 104, and spectral It is possible to distinguish between low-temperature radiators such as the human body shown in characteristic 106 and flames.

また、例えば、上述した2波長に加え、CO2の共鳴放射帯である4.5μm帯に対し短波長側の、例えば、2.3μm付近の波長帯域における放射線エネルギーを2波長式と同様の手法で検出し、これらの3波長帯域における各受光信号の相対比によって炎の有無を判定する3波長式の炎検出装置も知られており炎と炎以外の赤外線放射体との識別性能をさらに向上させている。 Further, for example, in addition to the two wavelengths described above, radiation energy in a wavelength band near 2.3 μm, which is on the short wavelength side with respect to the 4.5 μm band, which is the resonant radiation band of CO2, is obtained by the same method as in the two-wavelength method. A three-wavelength type flame detector is also known, which detects flames and determines the presence or absence of flames based on the relative ratios of the received light signals in these three wavelength bands. ing.

また、近年にあっては、炎の検出エリアを拡大するため、炎から放射される4.5μm付近の放射線エネルギーを受光する受光ユニットを例えば従来の倍数に増設し、各受光センサで光電変換しこれらを必要に応じ適宜それぞれ増幅等して加工した各受光信号を加算することで、検出エリアを拡大してもS/N(信号対ノイズ比)を損なうことなく、十分な検出感度が得られるようにしている。 In recent years, in order to expand the flame detection area, the number of light receiving units for receiving radiation energy of around 4.5 μm emitted from the flame has been increased, for example, by a multiple of the conventional number, and photoelectric conversion is performed by each light receiving sensor. By adding each received light signal that has been appropriately amplified and processed as necessary, sufficient detection sensitivity can be obtained without impairing the S/N (signal-to-noise ratio) even if the detection area is expanded. I'm trying

特開2016-128796号公報JP 2016-128796 A 特許第3357330号公報Japanese Patent No. 3357330

しかしながら、炎から放射される4.5μm付近の放射線エネルギーを受光する受光ユニットを複数設け、各受光信号を加算して検出感度を高めるようにした炎検出装置にあっては従来、複数の受光ユニットに設けられた受光センサは、配置位置の相違から視野が異なるため、単一の受光センサのみが見えている単一視野範囲が存在し、単一視野範囲に存在する炎からの放射線エネルギーに対してはS/Nを高めることができない問題がある。 However, in a flame detection device in which a plurality of light-receiving units for receiving radiation energy of around 4.5 μm emitted from a flame are provided and the respective light-receiving signals are added to increase the detection sensitivity, a plurality of light-receiving units are conventionally used. Since the field of view of the light receiving sensor provided in is different due to the difference in the arrangement position, there is a single field of view where only a single light receiving sensor is visible, and the radiation energy from the flame existing in the single field of view exists. However, there is a problem that the S/N cannot be improved.

このような単一視野範囲ではたとえば、遠方の炎は検出できないにも関わらず比較的近くの外乱光源の影響を受けて誤動作する危険性がある。 With such a single field of view, for example, there is a risk of malfunction under the influence of relatively nearby disturbing light sources, while distant flames cannot be detected.

本発明は、受光ユニットの障害を確実に判断するため、炎から放射される放射線エネルギーを受光する受光ユニットを複数設け、各受光信号を加算して検出感度を高めるようにした炎検出装置について、単一の受光ユニットのみが見えている範囲を実質的に視野範囲外とするようにして、S/Nの低い視野領域を排除した炎検出装置を提供することを目的とする。 The present invention relates to a flame detection device in which a plurality of light receiving units for receiving radiation energy emitted from a flame are provided in order to reliably determine failure of the light receiving unit, and the respective light receiving signals are added to increase the detection sensitivity. To provide a flame detection device that excludes a low S/N visual field area by making a range in which only a single light receiving unit is visible substantially out of the visual field range.

本発明は、燃焼炎から放射される放射線エネルギーを観測して燃焼炎の有無を判断し検出する炎検出装置であって、
放射線エネルギーのうち、同一の波長帯を観測した受光信号を出力する複数の受光ユニットと、
複数の受光ユニットから出力された複数の受光信号に基づいて炎有無を判断する判断部と、
複数の受光ユニットから出力された各受光信号の間の差分を検出し、差分が所定値以下又は所定値を下回った場合は、判断部による炎有無の判断又は判断結果の採用を許容し、差分が所定値以上又は所定値を上回った場合、又は複数の受光ユニットから出力された加算受光信号と各受光信号の何れかが略一致する場合は、判断部による炎有無の判断又は判断結果の採用を禁止する判断制御部と、
を備えたことを特徴とする。
The present invention is a flame detection device that observes radiation energy radiated from a combustion flame to determine and detect the presence or absence of a combustion flame,
a plurality of light-receiving units that output light-receiving signals obtained by observing the same wavelength band of radiation energy;
a judgment unit that judges the presence or absence of flame based on a plurality of light receiving signals output from a plurality of light receiving units;
detecting the difference between the light receiving signals output from the plurality of light receiving units, and if the difference is equal to or less than a predetermined value or less than the predetermined value, permitting the determination of the presence or absence of flame by the determination unit or adoption of the determination result; is a predetermined value or more or exceeds a predetermined value, or if any of the added light receiving signals output from the plurality of light receiving units and each of the light receiving signals substantially match, the judgment unit judges the presence or absence of flames or adopts the judgment result. a judgment control unit that prohibits
characterized by comprising

また、判断制御部は、所定期間分の複数の受光信号の振幅積分値の差分を検出し、振幅積分値の差分が所定値以下又は所定値を下回った場合に判断部による炎有無の判断又は判断結果の採用を許容し、振幅積分値の差分が所定値以上又は所定値を上回った場合に判断部による炎有無の判断又は判断結果の採用を禁止する。 Further, the determination control unit detects a difference between amplitude integrated values of a plurality of received light signals for a predetermined period, and if the difference of the amplitude integrated values is equal to or less than a predetermined value or falls below a predetermined value, the determination unit determines whether or not there is a flame. Adoption of the determination result is allowed, and determination of the presence or absence of flame by the determination unit or adoption of the determination result is prohibited when the difference between the amplitude integral values is equal to or greater than a predetermined value.

(基本的な効果)
本発明は燃焼炎から放射される放射線エネルギーを観測して燃焼炎の有無を判断し検出する炎検出装置であって、放射線エネルギーのうち、同一の波長帯を観測した受光信号を出力する複数の受光ユニットと、複数の受光ユニットから出力された複数の受光信号に基づいて炎有無を判断する判断部と、複数の受光ユニットから出力された各受光信号の間の差分を検出し、差分が所定値以下又は所定値を下回った場合は、判断部による炎有無の判断又は判断結果の採用を許容し、差分が所定値以上又は所定値を上回った場合、又は複数の受光ユニットから出力された加算受光信号と各受光信号の何れかが略一致する場合は、判断部による炎有無の判断又は判断結果の採用を禁止する判断制御部と備えたため、
複数の受光ユニットを設けた場合に受光位置の相違により単一の受光ユニットのみが見えている単一視野範囲を実質的に排除することで、低S/Nの不要な視野拡がりを抑制するので、たとえばこのような不要視野範囲に存在する外乱光源などによる誤動作を回避できる。すなわち、有効視野を高S/Nの範囲に絞り込むことができる。
(basic effect)
The present invention is a flame detection device that observes radiation energy radiated from combustion flames to determine the presence or absence of combustion flames and detects the presence of the flames. a light receiving unit, a judging unit that determines the presence or absence of a flame based on a plurality of light receiving signals output from the plurality of light receiving units, and a difference between each light receiving signal output from the plurality of light receiving units. If the difference is equal to or less than the predetermined value or is less than the predetermined value, the judging unit is permitted to judge whether there is flame or adopt the judgment result. and a judgment control section for prohibiting judgment of presence or absence of flame by the judging section or adoption of the judgment result when any of the added light receiving signal and each of the light receiving signals substantially matches,
When a plurality of light-receiving units are provided, by substantially eliminating a single visual field range in which only a single light-receiving unit is visible due to differences in light-receiving positions, unnecessary widening of the field of view with a low S/N ratio is suppressed. For example, it is possible to avoid malfunction due to a disturbance light source existing in such an unnecessary visual field range. That is, the effective field of view can be narrowed down to a high S/N range.

また複数の受光ユニットは、各々の視野範囲が重なる有効視野範囲と、各々の視野範囲が重ならない単一視野範囲を有して配置され、判断制御部は、判断部による炎の有無の判断又は判断結果の採用を、有効視野範囲においては許容し、単一視野範囲においては禁止することで、S/N改善により検出感度を高めることのできない単一視野範囲からの放射線エネルギーに対し、判断制御部により判断部による炎有無の判断を禁止することで、実質的に単一視野範囲を有効視野範囲外とした炎検出を可能とする。
Further , the plurality of light receiving units are arranged so as to have an effective visual field range in which the respective visual field ranges overlap and a single visual field range in which the respective visual field ranges do not overlap. Or, by allowing the adoption of the judgment result in the effective visual field range and prohibiting it in the single visual field range, it is possible to judge the radiation energy from the single visual field range where the detection sensitivity cannot be improved by improving the S/N. By prohibiting the judgment of the presence or absence of flame by the judging section by the control section, it is possible to substantially detect the flame with the single visual field range outside the effective visual field range.

(複数の受光信号の積分値差分による判断制御の効果)
また、判断制御部は、所定期間分の複数の受光信号の振幅積分値の差分を検出し、振幅積分値の差分が所定値以下又は所定値を下回った場合に判断部による炎有無の判断を許容し、振幅積分値の差分が所定値以上又は所定値を上回った場合に判断部による炎有無の判断又は判断結果の採用を禁止するようにしたため、複数の受光信号の差分を確実に検出して炎有無の判断又は判断結果の採用を許容するか禁止するかを制御できる。
(Effect of judgment control based on difference in integrated value of multiple received light signals)
Further, the determination control section detects a difference in the amplitude integrated values of a plurality of received light signals for a predetermined period, and if the difference in the amplitude integrated values is equal to or less than a predetermined value or falls below a predetermined value, the determination section determines whether or not there is a flame. However, if the difference in the integrated amplitude value is equal to or greater than a predetermined value, the judgment unit is prohibited from judging the presence or absence of flame or adopting the judgment result. It is possible to control whether to permit or prohibit the determination of the presence or absence of flame or the adoption of the determination result.

炎検出装置の実施形態を示したブロック図1 is a block diagram illustrating an embodiment of a flame detection device; FIG. 炎検出装置の外観を示した説明図Explanatory diagram showing the external appearance of the flame detection device 受光センサの構造を示した説明図Explanatory drawing showing the structure of the light receiving sensor 図3の受光センサの等価回路を示した回路図A circuit diagram showing an equivalent circuit of the light receiving sensor in FIG. 受光センサの配置と視野範囲を示した説明図Explanatory diagram showing the arrangement of light receiving sensors and the visual field range 燃焼炎から放射される放射線エネルギーを観測した場合に図1の受光ユニットから出力される受光信号を示した信号波形図A signal waveform diagram showing a received light signal output from the light receiving unit of FIG. 1 when radiation energy radiated from a combustion flame is observed. 燃焼炎から放射される放射線エネルギーを観測した場合に図1の受光ユニットから得られる加算受光信号の周波数分布を示した説明図Explanatory diagram showing the frequency distribution of the added received light signal obtained from the light receiving unit of FIG. 1 when the radiation energy radiated from the combustion flame is observed. 2波長方式の炎検出装置の実施形態を示したブロック図1 is a block diagram showing an embodiment of a two-wavelength flame detection device; FIG. 図8の実施形態に適用される光学波長フィルタ及び透光性窓の各波長における透過率を示した特性図FIG. 9 is a characteristic diagram showing the transmittance at each wavelength of the optical wavelength filter and translucent window applied to the embodiment of FIG. 燃焼炎と、その他の代表的な放射体の放射線スペクトルを示した特性図Characteristic diagram showing the radiation spectrum of a combustion flame and other typical radiators

[炎検出装置]
(装置概要)
図1は炎検出装置の実施形態を示したブロック図である。図1に示すように、本実施形態の炎検出装置10は、2組の受光ユニット12a,12b、MPU(マイクロコンピュータユニット)15に設けられた判断制御部36と判断部38で構成される。
[Flame detector]
(Equipment overview)
FIG. 1 is a block diagram showing an embodiment of a flame detection device. As shown in FIG. 1, the flame detection device 10 of this embodiment comprises two sets of light receiving units 12a and 12b, and a determination control section 36 and a determination section 38 provided in an MPU (microcomputer unit) 15. As shown in FIG.

受光ユニット12a,12bは、監視領域に存在する燃焼炎から放射される放射線エネルギーを観測するものであり、大別して、燃焼炎からCO2共鳴に伴って放射される、概ね4.5μmを中心波長とする波長帯の放射線エネルギーを観測して光電変換し、受光信号E1,E2を出力する。 The light-receiving units 12a and 12b are for observing the radiation energy emitted from the combustion flame existing in the monitoring area. It observes and photoelectrically converts the radiation energy in the wavelength band to output received light signals E1 and E2.

受光ユニット12a,12bには、受光センサ22a,22b、前置フィルタ24a,24b、プリアンプ26a,26b、メインアンプ28a,28bが設けられ、メインアンプ28a,28bから出力された受光信号E1,E2は終段アンプ30a,30bでさらに増幅され、MPU15のA/D変換ポート35a,35bでデジタル受光信号に変換して取り込まれる。 The light receiving units 12a and 12b are provided with light receiving sensors 22a and 22b, front filters 24a and 24b, preamplifiers 26a and 26b, and main amplifiers 28a and 28b. The signal is further amplified by the final stage amplifiers 30a and 30b, converted into a digital received light signal by the A/D conversion ports 35a and 35b of the MPU 15, and taken in.

また、受光ユニット12a,12bからの受光信号E1,E2は加算器32で加算増幅されて加算受光信号E3としてMPU15に出力され、MPU15のA/D変換ポート35cでデジタル受光信号に変換して取り込まれる。判断制御部36は、受光ユニット12a,12bから出力された受光信号E1,E2の間の差分ΔEを検出し、差分ΔEが所定値以下又は所定値を下回った場合に判断部38による炎有無の判断を許容し、差分ΔEが所定値を上回った場合に判断部38による炎有無の判断を禁止する、或いは判断結果を採用しない(たとえば炎有りの判断結果であっても外部へ出力しない)ようにしてもよい。 The light receiving signals E1 and E2 from the light receiving units 12a and 12b are added and amplified by the adder 32 and output to the MPU 15 as an added light receiving signal E3. be The determination control unit 36 detects the difference ΔE between the light receiving signals E1 and E2 output from the light receiving units 12a and 12b, and when the difference ΔE is less than or equal to a predetermined value, the determination unit 38 determines the presence or absence of flame. Judgment is permitted, and the judging unit 38 is prohibited from judging the presence or absence of flame when the difference ΔE exceeds a predetermined value, or the judgment result is not adopted (for example, the judgment result indicating the presence of flame is not output to the outside). can be

差分ΔEはたとえば、受光信号E1に基づくデジタル受光信号と、受光信号E2に基づくデジタル受光信号E1’,E2’について、各々所定期間の積分値を求め、その差として算出する。 The difference .DELTA.E is calculated, for example, as the difference between the digital light receiving signal based on the light receiving signal E1 and the digital light receiving signals E1' and E2' based on the light receiving signal E2, each of which is integrated over a predetermined period.

判断部38は、加算器32から出力された加算受光信号E3に基づき燃焼炎の有無を判断して検出する。 The judging section 38 judges and detects the presence or absence of the combustion flame based on the added received light signal E3 output from the adder 32 .

(装置外観とセンサユニット)
図2は炎検出装置の外観を示した説明図である。図2に示すように、炎検出装置10は、天井面の検知器ベースに取り付けられる本体50の下部に設けられたカバー52の下面に透光性窓18を設け、透光性窓18の内部に配置された基板54に、図1に示した光学ユニット12a,12bの受光センサ16a,16bを配置している。また、透光性窓18の近傍の内部の受光素子を見渡せる位置に、個別の試験ランプを外部試験光源として収納した試験光源用透光窓25を設けている。
(Appearance and sensor unit)
FIG. 2 is an explanatory diagram showing the appearance of the flame detection device. As shown in FIG. 2, the flame detection device 10 is provided with a translucent window 18 on the lower surface of a cover 52 provided at the bottom of a main body 50 attached to a detector base on the ceiling surface. The light receiving sensors 16a and 16b of the optical units 12a and 12b shown in FIG. Also, a test light source transmissive window 25 containing an individual test lamp as an external test light source is provided at a position where the light receiving element inside can be seen in the vicinity of the translucent window 18 .

(受光ユニット12a,12bの構成)
図1に示した受光ユニット12a,12bにおいて、受光センサ16a,16bは燃焼炎からCO2共鳴に伴って放射される、概ね4.5μmを中心波長とする赤外線波長帯域を有する放射線エネルギーを電気信号に変換して受光信号として出力し、前置フィルタ24a,24bは受光センサ16a,16bから出力される受光信号から、炎の揺らぎ周波数に対応した所定の周波数帯域の信号成分を選択通過させ、プリアンプ26a,26bは前置フィルタ24a,24bを通過した信号成分を初段増幅し、メインアンプ28a,28b、終段アンプ30a,30bは炎判断処理に適した信号レベルに増幅して受光信号E1,E2を出力する。
(Configuration of Light Receiving Units 12a and 12b)
In the light-receiving units 12a and 12b shown in FIG. 1, the light-receiving sensors 16a and 16b convert radiation energy having an infrared wavelength band with a center wavelength of approximately 4.5 μm, which is emitted from the combustion flame accompanying CO2 resonance, into electrical signals. The pre-filters 24a and 24b selectively pass signal components in a predetermined frequency band corresponding to the fluctuation frequency of the flame from the received light signals output from the light receiving sensors 16a and 16b, and the preamplifier 26a. , 26b amplifies the signal components passed through the pre-filters 24a, 24b in the first stage, and the main amplifiers 28a, 28b and the final stage amplifiers 30a, 30b amplify them to a signal level suitable for flame determination processing, and output the received light signals E1, E2. Output.

ここで、受光センサ16a,16bは、サファイアガラス等の赤外線透光性の部材を用いて共用する透光性窓18、光学波長フィルタ20a,20b、及び受光素子22a,22bを備えている。 Here, the light-receiving sensors 16a and 16b are provided with a light-transmitting window 18, optical wavelength filters 20a and 20b, and light-receiving elements 22a and 22b, which are shared by infrared light-transmitting members such as sapphire glass.

終段アンプ30a,30bを介して出力された受光信号E1,E2は、MPU15に設けたA/D変換ポート35a,35bによりデジタル受光信号に変換して読み込まれ、判断制御部36による炎有無の判断の許容又は禁止判定され、許容される場合は判断部38に対し許容が指示され、火災有無が判断される。 The received light signals E1 and E2 output through the final stage amplifiers 30a and 30b are converted into digital received light signals by A/D conversion ports 35a and 35b provided in the MPU 15 and read. Judgment permission or prohibition is determined, and if permitted, permission is instructed to the determination unit 38, and the presence or absence of a fire is determined.

また、受光ユニット12a,12bから出力された受光信号E1およびE2は加算器32で加算され、加算器32からの加算受光信号E3はMPU15に設けたA/D変換ポート35cによりデジタル受光信号に変換して読み込まれ、判断制御部36から炎有無の判断の許容指示を受けた判断部38による炎有無の判断が実行される。以下、各構成について具体的に説明する。 The light receiving signals E1 and E2 output from the light receiving units 12a and 12b are added by the adder 32, and the added light receiving signal E3 from the adder 32 is converted into a digital light receiving signal by the A/D conversion port 35c provided in the MPU 15. , and the judging unit 38, which has received an instruction to allow the judgment of the presence or absence of flame from the judgment control unit 36, executes the judgment of the presence or absence of flame. Each configuration will be specifically described below.

(受光センサ16a,16b)
図3は受光センサの概略構成を示した説明図、図4は図3の受光センサの等価回路を示した回路図である。
(Light receiving sensors 16a, 16b)
FIG. 3 is an explanatory diagram showing a schematic configuration of the light receiving sensor, and FIG. 4 is a circuit diagram showing an equivalent circuit of the light receiving sensor of FIG.

図3に示すように、受光センサ16a,16bは、基板40a,40bの表面に支持配置された焦電体45a,45bを備え、これに受光電極25a、25bを設け、基板40a,40bの裏面側に配置されたFET27を備えてなる受光素子部22a,22bと、基板40a,40bを基部38a,38b上に支持するため、基部38a,38bを貫通して設けられた端子42a,42bと、受光素子部22a,22bの前方に4.5μmを中心とした赤外線を選択透過する光学波長フィルタ20a,20bを備えたカバー部材44a,44bとからなるパッケージ化された構成を有している。 As shown in FIG. 3, the light receiving sensors 16a and 16b are provided with pyroelectric bodies 45a and 45b supported and arranged on the surfaces of the substrates 40a and 40b, and provided with light receiving electrodes 25a and 25b. light receiving element portions 22a and 22b provided with FETs 27 disposed on the sides; terminals 42a and 42b provided through the base portions 38a and 38b for supporting the substrates 40a and 40b on the base portions 38a and 38b; It has a packaged structure comprising cover members 44a and 44b provided with optical wavelength filters 20a and 20b for selectively transmitting infrared rays centered at 4.5 μm in front of the light receiving element portions 22a and 22b.

また、受光素子部22a,22bの等価回路は、図4に示すように、FET27のゲートから例えば焦電体45aと、図4では図示省略した高抵抗29の並列回路を介してゲート端子Gに接続し、またFET27のドレインとソースをそれぞれドレイン端子Dとソース端子Sに接続している。各端子は図4の端子42aとして(図4には2本しか図示していないが、それぞれに対応する端子がある)パッケージ外部に引き出される。 The equivalent circuit of the light receiving element portions 22a and 22b is, as shown in FIG. , and the drain and source of FET 27 are connected to drain terminal D and source terminal S, respectively. Each terminal is led out to the outside of the package as a terminal 42a in FIG. 4 (although only two terminals are shown in FIG. 4, there are corresponding terminals).

ここで、光学波長フィルタ20aは、例えば、シリコン、ゲルマニウム、サファイア等の基板上に、公知の方法でそれぞれ形成することができる。 Here, the optical wavelength filter 20a can be formed, for example, on a substrate of silicon, germanium, sapphire, or the like by a known method.

(透光性窓18)
透光性窓18は、図2及び図3に示したように、受光センサ16a,16bが収納された図4のセンサユニットの監視エリア側に相当する上面側であって、受光センサ16a,16bの前面側に設けた所定の開口部に配置され、上述のように、例えば、サファイアガラス等の赤外線透光性の部材により形成している。このため受光素子部22a,22bは、受光限界視野が透光性窓18の縁辺部で規制されることにより、所定の拡がり角度を有する検知エリアが設定される。本実施形態にあっては、透光性窓18は共用部材として、受光センサ16a,16bに含まれるものとして説明する。
(translucent window 18)
As shown in FIGS. 2 and 3, the translucent window 18 is located on the upper side corresponding to the monitoring area side of the sensor unit of FIG. 4 housing the light receiving sensors 16a and 16b. It is arranged in a predetermined opening provided on the front side of the device, and is made of, for example, an infrared transmissive member such as sapphire glass, as described above. For this reason, in the light receiving element portions 22a and 22b, a detection area having a predetermined spread angle is set by restricting the light receiving limit visual field by the edge portion of the translucent window 18. FIG. In this embodiment, the translucent window 18 will be described as being included in the light-receiving sensors 16a and 16b as a shared member.

(受光センサ16a,16bの視野範囲)
図5は受光センサの配置と視野範囲を示した説明図である。図5に示すように、回路基板48上に隣接して配置された受光センサ16a,16bは、透光性窓18の内側に配置されており、軸心線間距離で示す所定の間隔dだけ離れた異なる位置に配置されている。
(Field of view range of light receiving sensors 16a and 16b)
FIG. 5 is an explanatory diagram showing the arrangement of the light receiving sensors and the visual field range. As shown in FIG. 5, the light-receiving sensors 16a and 16b, which are adjacently arranged on the circuit board 48, are arranged inside the translucent window 18, and are spaced apart by a predetermined distance d indicated by the distance between the axes. placed in different locations.

このため受光センサ 16a,16bは所定の拡がり角度θをもつ視野範囲を検知エリアとしているが、位置の相違により、受光センサ16aの上側の視野範囲の限界線60と受光センサ16bの上側の視野範囲の限界線62との間の領域64は、受光センサ16aのみから見える単一視野範囲となる。 For this reason, the detection area of the light receiving sensors 16a and 16b is a visual field range having a predetermined spread angle θ. The area 64 between the limit line 62 of the is a single field of view visible only from the light receiving sensor 16a.

また、受光センサ16aの下側の視野範囲の限界線60と受光センサ16bの下側の視野範囲の限界線62との間の領域66は、受光センサ16bのみから見える単一視野範囲となる。 A region 66 between the lower visual field limit line 60 of the light receiving sensor 16a and the lower visual field limit line 62 of the light receiving sensor 16b is a single visual field view visible only from the light receiving sensor 16b.

このため単一視野範囲64に存在する炎からの放射線エネルギーは受光センサ16aのみで受光され、図1の受光ユニット12aからの受光信号E1は所定レベルとなるが、受光ユニット12bからの受光信号E2はゼロレベルとなり、加算器32からの加算受光信号E3は受光信号E1と同じであり、S/Nの改善により検出感度を高めることはできない。 Therefore, the radiation energy from the flame existing in the single visual field range 64 is received only by the light receiving sensor 16a, and the light receiving signal E1 from the light receiving unit 12a in FIG. becomes zero level, the added light receiving signal E3 from the adder 32 is the same as the light receiving signal E1, and the detection sensitivity cannot be increased by improving the S/N.

また、単一視野範囲66に存在する炎からの放射線エネルギーは受光センサ16bのみで受光され、図1の受光ユニット12bからの受光信号E2は所定レベルとなるが、受光ユニット12aからの受光信号E1はゼロレベルとなり、加算器32からの加算受光信号E3は受光信号E2と同じであり、S/Nの改善により検出感度を高めることはできない。 Radiation energy from flames present in the single visual field range 66 is received only by the light receiving sensor 16b, and the light receiving signal E2 from the light receiving unit 12b in FIG. becomes zero level, the added light receiving signal E3 from the adder 32 is the same as the light receiving signal E2, and the detection sensitivity cannot be increased by improving the S/N.

このようにS/N改善により検出感度を高めることのできない単一視野範囲64,66からの放射線エネルギーに対し、本実施形態にあっては、判断制御部36により判断部38による炎有無の判断を禁止することで、実質的に単一視野範囲64,66を有効視野範囲外とした炎検出を可能とする。 For the radiation energy from the single visual field ranges 64 and 66 for which the detection sensitivity cannot be improved by improving the S/N, in the present embodiment, the determination control unit 36 determines whether or not the flame exists by the determination unit 38. By prohibiting , it is possible to detect flames in a substantially single field of view 64, 66 outside the effective field of view.

(前置フィルタ24a)
前置フィルタ24aは、周波数選択部として機能し、受光センサ16aの受光素子部22aから出力される受光信号から、炎判断処理に用いられる特定の周波数帯域の信号成分のみを通過させる例えばアクティブフィルタであり、後段のプリアンプ26aに特定の周波数帯域の信号成分を含む受光信号を出力する。このような周波数選択フィルタは、前置フィルタとしてだけでなくプリアンプから終段アンプまで適宜に配置され、周波数選択(抽出)しつつ信号増幅されるようになっている。
(Pre-filter 24a)
The pre-filter 24a functions as a frequency selection section, and is, for example, an active filter that passes only signal components in a specific frequency band used for flame determination processing from the light receiving signal output from the light receiving element section 22a of the light receiving sensor 16a. It outputs a received light signal containing a signal component of a specific frequency band to the subsequent preamplifier 26a. Such a frequency selection filter is not only used as a pre-filter, but is also appropriately arranged from the preamplifier to the final stage amplifier so that the signal is amplified while selecting (extracting) the frequency.

(プリアンプ26a,26bとメインアンプ28a,28b)
プリアンプ26a,26bは、前置フィルタ24a,24bを介して入力される受光信号を所定の増幅率で初段増幅し、メインアンプ28a,28bは、プリアンプ26a,26bからの各受光信号を、受光信号E1,E2として出力する。終段アンプ30a,30bは、受光信号E1,E2を最終的に炎判断処理に適した信号レベルに調整増幅し、E1’,E2’としてMPU15のA/D変換ポート35a,35bへ出力する。
(Preamplifiers 26a, 26b and main amplifiers 28a, 28b)
The preamplifiers 26a and 26b amplify the received light signals input via the pre-filters 24a and 24b at a predetermined amplification factor in the first stage, and the main amplifiers 28a and 28b convert the received light signals from the preamplifiers 26a and 26b into the received light signals. Output as E1 and E2. Final-stage amplifiers 30a and 30b adjust and amplify the received light signals E1 and E2 to signal levels suitable for flame determination processing, and output them to A/D conversion ports 35a and 35b of MPU 15 as E1' and E2'.

(加算アンプ32)
加算アンプ32は、受光ユニット12a,12bのメインアンプ28a,28bからの受光信号E1,E2を入力して加算した後に、後段のMPU15に設けたAD変換ポート35cの入力に適した電圧レベルの加算信号E3に変換して出力する。
(summing amplifier 32)
The summing amplifier 32 inputs and adds the received light signals E1 and E2 from the main amplifiers 28a and 28b of the light receiving units 12a and 12b, and then adds a voltage level suitable for the input of the AD conversion port 35c provided in the subsequent MPU 15. It is converted into a signal E3 and output.

(A/D変換ポート35a,35b,35c)
A/D変換ポート35a、35b,35cはMPU15の入力ポートとして設けたA/D変換器であり、受光信号(アナログ受光信号)E1,E2を終段アンプ30a,30bで処理した後の各信号及び加算信号E3をデジタル信号に変換して読み込む。
(A/D conversion ports 35a, 35b, 35c)
A/D conversion ports 35a, 35b, and 35c are A/D converters provided as input ports of the MPU 15, and light reception signals (analog light reception signals) E1 and E2 are processed by the final stage amplifiers 30a and 30b. and the addition signal E3 are converted into digital signals and read.

(判断制御部36)
図6は燃焼炎から放射される放射線エネルギーを観測した場合に図1の受光ユニットから出力される受光信号を示した信号波形図であり、図6(A)はA/D変換ポート35aからの、E1’由来のデジタル信号波形を示し、図6(B)はA/D変換ポート35bからの、E2’由来のデジタル信号波形を示す。
(Determination control unit 36)
FIG. 6 is a signal waveform diagram showing the received light signal output from the light receiving unit of FIG. 1 when the radiation energy radiated from the combustion flame is observed. FIG. , E1′-derived digital signal waveforms, and FIG. 6B shows a digital signal waveform derived from E2′ from the A/D conversion port 35b.

なお、本実施形態にあっては、A/D変換は64Hzで受光信号をサンプリングして行うものとし、すなわち各信号につき1秒間に64点のデジタルデータが得られるものとする。また、簡単のため、以降はA/D変換後の信号も変換前と同じく受光信号E1’,E2’,E3という。 In this embodiment, the A/D conversion is performed by sampling the received light signal at 64 Hz, that is, 64 points of digital data are obtained per second for each signal. For the sake of simplicity, the signals after A/D conversion are hereinafter referred to as light reception signals E1', E2', and E3 as before conversion.

判断制御部36は、図1の受光ユニット12a,12bから出力される図6に示す受光信号E1’,E2’の間の差分を検出する。判断制御部36による差分の検出は、図6に示す受光信号E1’、E2’をT=2秒(128データ)単位で、受光信号E1,E2の中点となる基準電位からのプラス及びマイナス側の振幅との差分の絶対値となる積分値ΣE1’,ΣE2’を求め、積分値の差分ΔEを、
ΔE=ΣE1’-ΣE2’
として算出する。
The judgment control section 36 detects the difference between the light receiving signals E1' and E2' shown in FIG. 6 output from the light receiving units 12a and 12b of FIG. Detection of the difference by the judgment control unit 36 is performed by taking the light reception signals E1′ and E2′ shown in FIG. Integral values ΣE1′ and ΣE2′, which are the absolute values of the difference from the amplitude of the
ΔE=ΣE1′−ΣE2′
Calculate as

続いて、判断制御部36は、積分値の差分ΔEの絶対値が所定値以下又は所定値を下回った場合に判断部38による炎有無の判断を許容し、一方、積分値の差分のΔEの絶対値が所定値以上又は所定値を上回った場合には、判断部38による炎有無の判断を禁止する制御を行う。 Subsequently, the judgment control unit 36 allows the judging unit 38 to judge the presence or absence of flame when the absolute value of the difference ΔE of the integral values is less than or equal to a predetermined value. If the absolute value is greater than or equal to the predetermined value, control is performed to prohibit the judgment unit 38 from judging the presence or absence of flame.

このため受光ユニット12a,12bが正常に動作している場合に、受光信号E1’,E2’の積分値の差分ΔEの絶対値が所定値以下又は所定値を下回ることから、判断制御部36は判断部38による炎有無の判断を許容する。
Therefore, when the light-receiving units 12a and 12b are operating normally, the absolute value of the difference ΔE between the integrated values of the light-receiving signals E1′ and E2′ is equal to or less than a predetermined value or less than a predetermined value. Judgment of the presence or absence of flame by the judging section 38 is permitted.

これに対し受光ユニット12a,12bの何れか一方が障害を起した場合には、受光信号E1’,E2’の相違が大きくなり、受光信号E1’,E2’の積分値の差分ΔEの絶対値が所定値以上又は所定値を上回ることから、判断制御部36は判断部38による炎有無の判断を禁止する。或いは、積分値の差分のΔEの絶対値が所定値以上又は所定値を上回った場合には、判断部38で判断結果を採用しない(たとえば炎有りの判断結果であっても外部へ出力しない)ようにしても良い。 On the other hand, if one of the light receiving units 12a and 12b fails, the difference between the light receiving signals E1' and E2' increases, and the absolute value of the difference ΔE between the integrated values of the light receiving signals E1' and E2' is is greater than or equal to the predetermined value, the judgment control section 36 prohibits the judgment section 38 from judging the presence or absence of flame. Alternatively, if the absolute value of ΔE, which is the difference between the integral values, is equal to or greater than a predetermined value, the judgment unit 38 does not adopt the judgment result (for example, even if the judgment result indicates that there is flame, it is not output to the outside). You can do it.

また、判断制御部36が受光信号E1’,E2’の積分値の差分ΔEの絶対値が所定値以上又は所定値を上回ることで判断部38による炎有無の判断を禁止する制御は、受光ユニット12a,12bの何れかの障害に起因している可能性が高いことから、判断制御部36は装置内に設けている内部試験光源の駆動により試験光を受光センサ16a,16bに照射する試験を行い、このとき受光ユニット12a,12bから出力される受光信号E1,E2から障害を検出して確定する制御を行う。 Further, the judgment control unit 36 inhibits judgment of the presence or absence of flame by the judging unit 38 when the absolute value of the difference ΔE between the integrated values of the light reception signals E1′ and E2′ is equal to or greater than a predetermined value or exceeds a prescribed value. 12a and 12b is highly likely to be caused by the failure, the judgment control unit 36 drives the internal test light source provided in the device to perform a test in which the light receiving sensors 16a and 16b are irradiated with the test light. At this time, the fault is detected from the light receiving signals E1 and E2 output from the light receiving units 12a and 12b, and control is performed to determine the failure.

更に、図5に示した単一視野範囲64,66の何れかから放射線エネルギーを受けた場合にも、受光信号E1’,E2’の相違が大きくなり、受光信号E1’,E2’の積分値の差分ΔEの絶対値が所定値以上又は所定値を上回ることから、判断制御部36は判断部38による炎有無の判断を禁止し、これにより単一視野範囲64,66を実質的に炎検出器10の視野範囲外とすることができる。
Furthermore, when radiation energy is received from either of the single visual field ranges 64 and 66 shown in FIG. Since the absolute value of the difference ΔE is greater than or equal to the predetermined value, the judgment control section 36 prohibits the judgment section 38 from judging the presence or absence of flame, thereby substantially detecting flame detection in the single visual field ranges 64 and 66. outside the field of view of the device 10.

(判断部38)
判断部38は、加算器32で加算された図6に示す受光信号E1’,E2’を2秒ごとに加算した加算受光信号E3を加算受光信号E3の中点となる基準電位からのプラス及びマイナス側の振幅との差分の絶対値となる積分値ΣE3を求める。
(Determination unit 38)
The determination unit 38 generates an added light receiving signal E3 obtained by adding the light receiving signals E1' and E2' shown in FIG. An integral value ΣE3, which is the absolute value of the difference from the amplitude on the negative side, is obtained.

次いで、判断部38は、積分値ΣE3が、予め設定された基準レベル以下の場合には、炎に相当する受光出力が検出されなかったものと判断し、一方、積分値ΣE3が基準レベルを超えた場合には、炎有り判断の第1要素とする。 Next, when the integral value ΣE3 is equal to or lower than the preset reference level, the judgment section 38 judges that the received light output corresponding to flame is not detected, while the integral value ΣE3 exceeds the reference level. If it is, it is regarded as the first element of flame presence determination.

また、判断部38は加算受光信号E3を2秒間(128データ)ごとに高速フーリエ変換して結果を分析し、たとえば8Hz以下の周波数帯域に主成分がある場合に炎有り判断の第2要素とし、第1要素と第2要素とに基づく複合的な炎有無判断を行う。 Further, the judging section 38 fast-Fourier-transforms the added received light signal E3 every two seconds (128 data) and analyzes the result. , a composite flame presence/absence determination based on the first element and the second element.

図7は、燃焼炎から放射される放射線エネルギーを観測した場合に図1の受光ユニットから得られる加算受光信号E3の周波数分布を示した説明図である。判断部38は、図6に示す受光信号E1’,E2’を加算した加算受光信号E3をT=2秒間(128データ)ごとに高速フーリエ変換して、図7に示す周波数分布を得る。 FIG. 7 is an explanatory diagram showing the frequency distribution of the added received light signal E3 obtained from the light receiving unit of FIG. 1 when the radiation energy radiated from the combustion flame is observed. The determination unit 38 performs a fast Fourier transform on the added received light signal E3 obtained by adding the received light signals E1' and E2' shown in FIG. 6 every T=2 seconds (128 data) to obtain the frequency distribution shown in FIG.

図7に示すように、燃焼炎から放射される放射線エネルギーを周波数軸で観測すると、概ね8Hzよりも低周波側に高い出力レベルを示す周波数特性FLが得られることから、受光信号E3の周波数の主要な成分が8Hzまでの周波数帯域FLに存在し、8Hzを超える例えば16Hzまでの高周波側の周波数帯域FHは低いレベルを示す。このような分布特性は、炎を観測した場合の信号の特徴である。 As shown in FIG. 7, when the radiation energy radiated from the combustion flame is observed on the frequency axis, a frequency characteristic FL showing a higher output level on the lower frequency side than about 8 Hz is obtained. A main component exists in the frequency band FL up to 8 Hz, and a high frequency band FH exceeding 8 Hz, for example up to 16 Hz, exhibits a low level. Such distribution characteristics are characteristic of the signal when observing a flame.

このため、加算受光信号E3の周波数分布に基づく炎判断は、例えば8Hzまでの範囲となる低周波側の周波数分布FLの積分値ΣFLおよび8Hzを超え16Hzまでの範囲
となる高周波側の積分値ΣFHを求め、両積分値の比ΣFL/ΣFHが、予め設定された閾値以下の場合には、炎に相当する受光出力が検出されなかったものと判断し、一方、ΣFL/ΣFHが閾値を超えた場合には、炎有り判断の第2要素とする。
For this reason, flame determination based on the frequency distribution of the added light receiving signal E3 can be performed by, for example, the integrated value ΣFL of the frequency distribution FL on the low frequency side in the range up to 8 Hz and the integrated value ΣFH on the high frequency side in the range of over 8 Hz to 16 Hz. is obtained, and when the ratio ΣFL/ΣFH of both integrated values is equal to or less than a preset threshold value, it is determined that the received light output corresponding to flame has not been detected, while ΣFL/ΣFH exceeds the threshold value. In case of fire, it is the second factor for determination of presence of flame.

そして、判断部38は、炎有り判断の第1要素と2要素の両方が成立し、且つ、たとえばこれが所定回数連続した場合に炎有りとの判断を確定して火災検出信号を外部に出力する。 Then, when both the first element and the second element of the flame presence determination are established and, for example, this is repeated a predetermined number of times, the determination unit 38 determines that the flame presence is present and outputs a fire detection signal to the outside. .

[2波長式の炎検出装置]
(受光ユニット12a,12b)
図8は2波長方式としての炎検出装置の実施形態を示したブロック図である。図8に示すように、本実施形態による2波長方式の炎検出装置10は、燃焼炎からCO2共鳴により放射される、概ね4.5μmを中心波長とする狭帯域波長帯の放射線エネルギーを観測して光電変換による受光信号E1,E2を出力する2組の受光ユニット12a,12bに加え、新たに概ね5.0μm~7.0μmの波長帯域の放射線エネルギーを電気信号に変換した受光信号E4を出力する受光ユニット12cが設けられる。
[Dual Wavelength Flame Detector]
(Light receiving units 12a and 12b)
FIG. 8 is a block diagram showing an embodiment of a flame detection device as a two-wavelength system. As shown in FIG. 8, the two-wavelength flame detector 10 according to the present embodiment observes radiation energy in a narrow wavelength band with a central wavelength of approximately 4.5 μm, which is emitted from a combustion flame by CO2 resonance. In addition to two sets of light receiving units 12a and 12b that output light receiving signals E1 and E2 by photoelectric conversion, a light receiving signal E4 newly converted from radiation energy in a wavelength band of approximately 5.0 μm to 7.0 μm into an electric signal is output. A light receiving unit 12c is provided.

受光ユニット12a,12bは、図1の実施形態と同じであり、燃焼炎からCO2共鳴により放射される、概ね4.5μmを中心波長とする狭帯域波長帯の放射線エネルギーを観測した受光信号E1,E2出力する。 The light receiving units 12a and 12b are the same as those in the embodiment of FIG. E2 is output.

受光ユニット12a,12b,12cからの受光信号に基づくE1’,E2’,E4’及び加算器32からの加算受光信号E3は、それぞれMPU15に設けたA/D変換ポート35a,35b,35d,35cの各々でデジタル受光信号に変換して取り込こまれている。 E1′, E2′, E4′ based on the light receiving signals from the light receiving units 12a, 12b, 12c and the added light receiving signal E3 from the adder 32 are supplied to the A/D conversion ports 35a, 35b, 35d, 35c provided in the MPU 15, respectively. are converted into digital received light signals and taken in.

MPU15に設けられた判断制御部36は図1の実施形態と同じであり、受光ユニット12a,12bから出力された受光信号E1’,E2’の間の差分ΔEを検出し、差分ΔEの絶対値が所定値以下又は所定値を下回った場合に判断部38による炎有無の判断を許容し、差分ΔEの絶対値が所定値以上又は所定値を上回った場合に判断部38による炎有無の判断を禁止する。ここでも、図1の1波長式の実施形態同様に、積分値の差分のΔEの絶対値が所定値以上又は所定値を上回った場合には、判断部38で判断結果を採用しないようにしても良い。 A judgment control unit 36 provided in the MPU 15 is the same as that in the embodiment of FIG. is below a predetermined value or below a predetermined value, the determination unit 38 is allowed to determine whether there is a flame, and when the absolute value of the difference ΔE is a predetermined value or more or exceeds a predetermined value, the determination unit 38 is allowed to determine whether there is a flame. restrict. Here, as in the single-wavelength embodiment of FIG. 1, if the absolute value of the difference ΔE of the integrated values is equal to or greater than a predetermined value, the determination result is not adopted by the determination unit 38. Also good.

(受光ユニット12c)
受光ユニット12cは、受光センサ16a,16bとは異なる所定の波長帯域を有する放射線エネルギーを電気信号に変換して出力する受光センサ16cを備える。即ち、受光ユニット12a,12bは、燃焼炎からCO2共鳴により放射される、概ね4.5μmを中心波長とする狭帯域波長帯の放射線エネルギーを電気信号に変換した受光信号E1,E2を出力するのに対し、受光ユニット12cは、本実施形態においては概ね5.0μm~7.0μmの赤外線波長帯域の放射線エネルギーを電気信号に変換した受光信号E4を出力する。
(Light receiving unit 12c)
The light-receiving unit 12c includes a light-receiving sensor 16c that converts radiation energy having a predetermined wavelength band different from that of the light-receiving sensors 16a and 16b into an electric signal and outputs the electric signal. That is, the light receiving units 12a and 12b output light receiving signals E1 and E2 obtained by converting radiation energy in a narrow band of wavelengths with a center wavelength of about 4.5 μm, which is radiated from the combustion flame by CO2 resonance, into electrical signals. On the other hand, the light-receiving unit 12c in this embodiment outputs a light-receiving signal E4 obtained by converting radiation energy in an infrared wavelength band of approximately 5.0 μm to 7.0 μm into an electric signal.

また、受光ユニット12cは、受光センサ16cに続いて、受光センサ16cから出力される受光信号から、所定の周波数帯域の信号成分のみを通過させる前置フィルタ24cと、前置フィルタ24cを通過した信号成分を初段増幅するプリアンプ26cと、プリアンプ26cからの出力を増幅するメインアンプ28cとで構成される。受光ユニット12cのメインアンプ28cから出力された受光信号E4は、終段アンプ30cを介して、MPU15のA/D変換ポート35dへ入力され、デジタル受光信号に変換して読み込まれ、炎の判断処理に用いられる。 Further, the light-receiving unit 12c is connected to the light-receiving sensor 16c, and from the light-receiving signal output from the light-receiving sensor 16c, the pre-filter 24c that passes only the signal component of a predetermined frequency band, and the signal that has passed through the pre-filter 24c. It is composed of a preamplifier 26c that amplifies the component in the first stage and a main amplifier 28c that amplifies the output from the preamplifier 26c. A light receiving signal E4 output from the main amplifier 28c of the light receiving unit 12c is input to the A/D conversion port 35d of the MPU 15 via the final stage amplifier 30c, converted into a digital light receiving signal, read, and subjected to flame determination processing. used for

(受光センサ16cの構成)
受光センサ16cは、概ね5.0μmを超える所定の波長帯域の放射線を良好に透過するカットオンフィルタで構成されるロングパスフィルタである光学波長フィルタ20cと、光学波長フィルタ20cを透過した光を受光して電気信号に変換して出力する図4の受光素子部22aと同様の等価回路でなる受光素子部22cを備え、図3に示した受光センサ16aと同様な構造により、パッケージ化された構成とする。
(Configuration of light receiving sensor 16c)
The light receiving sensor 16c receives light transmitted through the optical wavelength filter 20c, which is a long-pass filter composed of a cut-on filter that satisfactorily transmits radiation in a predetermined wavelength band exceeding approximately 5.0 μm, and the optical wavelength filter 20c. A light receiving element portion 22c having an equivalent circuit similar to that of the light receiving element portion 22a shown in FIG. do.

(受光センサ16a~16cの波長透過特性)
図9は、図8の実施形態に適用される光学波長フィルタ及び透光性窓の各波長における透過率を示した特性図である。
(Wavelength transmission characteristics of light receiving sensors 16a to 16c)
FIG. 9 is a characteristic diagram showing the transmittance at each wavelength of the optical wavelength filter and translucent window applied to the embodiment of FIG.

図9に示すように、図8の透光性窓18であるサファイアガラスにより、概ね7.0μm付近以下の放射線が良好に透過するショートウェーブパス特性(又は、ロングウェーブカット特性)を有する透過率特性70が得られる。そして、光学波長フィルタ20a,20bを構成する、概ね4.5μm付近を中心波長とするバンドパスフィルタにより、当該中心波長近傍の波長帯域の放射線エネルギーを透過する透過率特性72が得られる。これらの組合せにより、合成特性74をもつ狭帯域バンドパスフィルタが構成される。 As shown in FIG. 9, the sapphire glass, which is the translucent window 18 in FIG. A characteristic 70 is obtained. A band-pass filter having a center wavelength around 4.5 μm, which constitutes the optical wavelength filters 20a and 20b, provides a transmittance characteristic 72 that transmits radiation energy in a wavelength band around the center wavelength. These combinations form a narrowband bandpass filter with composite characteristic 74 .

一方、透光性窓18であるサファイアガラスの透過率特性70と、光学波長フィルタ20cを構成するロングパスフィルタの透過率特性76の組合せにより、概ね5.0μm~7.0μmの波長帯域の放射線エネルギーを透過する合成特性78をもつ広帯域バンドパスフィルタが構成される。 On the other hand, the combination of the transmittance characteristic 70 of the sapphire glass that is the translucent window 18 and the transmittance characteristic 76 of the long-pass filter that constitutes the optical wavelength filter 20c allows the radiation energy in the wavelength band of approximately 5.0 μm to 7.0 μm. A wideband bandpass filter is constructed with a synthesis characteristic 78 that transmits the .

ここで、5.0~7.0μmの帯域を検出する受光センサ16cの視野は、有効視野を概ね包含するようにする。 Here, the field of view of the light-receiving sensor 16c, which detects a band of 5.0 to 7.0 μm, is designed to substantially include the effective field of view.

(2波長方式による炎判断)
MPU15に設けられた判断部38は、判断制御部36による炎有無の判断を許容する制御指示を受けた場合、当該許容判断の元となった受光信号E1’,E2’に対応する期間の受光信号E3,E4’の各々について信号振幅(基準電位からの差分の絶対値)の時間積分処理を行い、積分値ΣE3,ΣE4’を算出する。ここで、積分値ΣE3,ΣE4’は、便宜上、炎積分値ΣE3,非炎積分値ΣE4’として区別する。
(Flame judgment by two-wavelength method)
When receiving a control instruction to allow the determination of the presence or absence of flame by the determination control unit 36, the determination unit 38 provided in the MPU 15 receives light during the period corresponding to the received light signals E1′ and E2′ that are the basis of the determination of permission. The signal amplitude (the absolute value of the difference from the reference potential) is time-integrated for each of the signals E3 and E4' to calculate integral values ΣE3 and ΣE4'. Here, the integral values ΣE3 and ΣE4′ are distinguished as a flame integral value ΣE3 and a non-flame integral value ΣE4′ for convenience.

次いで、判断部15は、炎積分値ΣE3が、予め設定された基準レベル以下の場合には、炎に相当する受光出力が検出されなかったものと判断し、一方、炎積分値ΣE3が基準レベルを超えた場合には、非炎積分値ΣE4’との相対比ΣE3/ΣE4’を算出し、相対比(ΣE3/ΣE4’)が、予め設定された閾値を超えた場合は、炎と判定して炎有り判断の第1要素とし、閾値以下の場合には、例えば、人体等の炎以外の比較的低温の放射線源による受光出力があったものとして、炎判断は抑止して行わない。 Next, when the integrated flame value ΣE3 is equal to or lower than the preset reference level, the determination unit 15 determines that the received light output corresponding to the flame is not detected. is calculated, the relative ratio ΣE3/ΣE4' to the non-flame integrated value ΣE4' is calculated, and if the relative ratio (ΣE3/ΣE4') exceeds a preset threshold, it is determined as a flame. If it is less than the threshold value, it is assumed that there is a received light output from a relatively low-temperature radiation source other than a flame, such as a human body, and flame judgment is suppressed and not performed.

炎判断の第1要素は、図1の実施形態においてはΣE3が基準レベル(閾値)を超えることで成立するのに対し、本実施形態における炎判断の第1要素は、ΣE3が基準レベル(閾値)を超え、且つ相対比ΣE3/ΣE4’が別の閾値を超えることで成立する。 In the embodiment of FIG. 1, the first factor for flame determination is established when ΣE3 exceeds the reference level (threshold value). ) and the relative ratio ΣE3/ΣE4′ exceeds another threshold.

また、判断部38は、判断制御部36による炎有無の判断を許容する制御指示を受けた場合、図1の実施形態に示したように、加算器32から出力された積分値の比ΣFL/ΣFHが基準レベルを超えた場合には、炎判断の第2要素とする。 Further, when the determination unit 38 receives a control instruction to allow the determination of the presence or absence of flame by the determination control unit 36, as shown in the embodiment of FIG. When ΣFH exceeds the reference level, it is taken as the second factor for flame judgment.

そして、判断部38は、炎有り判断の第1要素と第2要素の両方が成立し、且つ、たとえば所定の回数連続した場合に炎有りと判断を確定して火災検出信号を外部に出力する。 Then, when both the first element and the second element for judging the existence of flame are satisfied and, for example, the judgment continues a predetermined number of times, the judging section 38 confirms the judgment that there is flame and outputs a fire detection signal to the outside. .

[本発明の変形例]
上記の実施形態は、受光ユニット12a,12bからの受光信号E1,E2を加算器32で加算して加算受光信号E3として判断部38により炎有無の判断を行っているが、これに限定されず、例えば、受光ユニット12a,12bからの受光信号E1’,E2’の平均を求め、平均受光信号に基づいて判断部38により炎有無の判断するようにしても良い。
[Modification of the present invention]
In the above embodiment, the light receiving signals E1 and E2 from the light receiving units 12a and 12b are added by the adder 32, and the added light receiving signal E3 is obtained by the judging section 38 as to whether or not there is a flame. However, the present invention is not limited to this. For example, the light receiving signals E1' and E2' from the light receiving units 12a and 12b may be averaged, and the judging section 38 may judge the presence or absence of flame based on the average light receiving signal.

上記の実施形態は、2波長方式の炎検出装置として、燃焼炎のCO2の共鳴放射帯である4.5μm付近の波長帯域と、5.0μm付近の波長帯域における各々の放射線エネルギーを観測して炎を判定しているが、4.5μm付近の波長帯域と、2.3μm付近の波長帯域における各々の放射線エネルギーを観測して炎を判定するようにしても良い。 In the above-described embodiment, as a two-wavelength flame detector, radiation energies are observed in a wavelength band near 4.5 μm and a wavelength band near 5.0 μm, which are resonance radiation bands of CO2 of a combustion flame. A flame is determined, but the flame may be determined by observing each radiation energy in a wavelength band near 4.5 μm and a wavelength band near 2.3 μm.

また、燃焼炎のCO2の共鳴放射帯である4.5μm帯の短波長側の、例えば、2.3μm付近の波長帯域における放射線エネルギーを、5.0μm付近の波長帯域における放射線エネルギーを検出し、これらの3波長帯域における受光信号の相対比が炎からの放射の特徴に従うことを炎有りの判断要素とする3波長式の炎検出装置としても良い。 Detecting radiation energy in a wavelength band near 2.3 μm, for example, in a wavelength band near 5.0 μm on the short wavelength side of the 4.5 μm band, which is the resonance radiation band of CO2 of the combustion flame, A three-wavelength type flame detection device may be used in which the presence of flame is judged based on the fact that the relative ratios of the received light signals in these three wavelength bands follow the characteristics of the radiation from the flame.

また、本発明は、その目的と利点を損なうことのない適宜の変形を含み、更に、上記の実施形態に示した数値による限定は受けない。 Moreover, the present invention includes appropriate modifications that do not impair its purpose and advantages, and is not limited by the numerical values shown in the above embodiments.

10:炎検出装置
12a,12b,12c:受光ユニット
15:MPU
16a,16b,16c:受光センサ
18:透光性窓
20a,20b,20d:光学波長フィルタ
22a,22b,22c:受光素子部
24a,24b,24c:前置フィルタ
26a,26b,26c:プリアンプ
27:FET
28a,28b,28c:メインアンプ
30a,30b,30c:終段アンプ
32:加算器
35a,35b,35c,35d:A/D変換ポート
36:判断制御部
38:判断部
45a,45b:焦電体

10: Flame detectors 12a, 12b, 12c: Light receiving unit 15: MPU
16a, 16b, 16c: light receiving sensor 18: translucent windows 20a, 20b, 20d: optical wavelength filters 22a, 22b, 22c: light receiving element portions 24a, 24b, 24c: front filters 26a, 26b, 26c: preamplifier 27: FETs
28a, 28b, 28c: Main amplifiers 30a, 30b, 30c: Final amplifier 32: Adders 35a, 35b, 35c, 35d: A/D conversion port 36: Judgment control section 38: Judgment section
45a, 45b: pyroelectric bodies

Claims (1)

燃焼炎から放射される放射線エネルギーを観測して燃焼炎の有無を判断し検出する炎検出装置であって、
放射線エネルギーのうち、同一の波長帯を観測した受光信号を出力する複数の受光ユニットと、
前記複数の受光ユニットから出力された複数の受光信号に基づいて炎有無を判断する判断部と、
前記複数の受光ユニットから出力された各受光信号の間の差分を検出し、前記差分が所定値以下又は前記所定値を下回った場合は、前記判断部による炎有無の判断又は判断結果の採用を許容し、前記差分が前記所定値以上又は前記所定値を上回った場合、又は前記複数の受光ユニットから出力された加算受光信号と前記各受光信号の何れかが略一致する場合は、前記判断部による炎有無の判断又は判断結果の採用を禁止する判断制御部と、
を備えたことを特徴とする炎検出装置。
A flame detection device that detects the presence or absence of a combustion flame by observing radiation energy emitted from the combustion flame,
a plurality of light-receiving units that output light-receiving signals obtained by observing the same wavelength band of radiation energy;
a determination unit that determines the presence or absence of flame based on the plurality of light receiving signals output from the plurality of light receiving units;
detecting the difference between the light receiving signals output from the plurality of light receiving units, and if the difference is equal to or less than a predetermined value or less than the predetermined value, the determination unit determines whether or not the flame exists or adopts the determination result; If the difference is greater than or equal to the predetermined value or exceeds the predetermined value, or if any of the added light receiving signals output from the plurality of light receiving units substantially matches the respective light receiving signals, the determination unit A judgment control unit that prohibits the judgment of the presence or absence of flames or the adoption of judgment results by
A flame detection device comprising:
JP2018064315A 2018-03-29 2018-03-29 flame detector Active JP7177598B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018064315A JP7177598B2 (en) 2018-03-29 2018-03-29 flame detector
JP2022117695A JP7400034B2 (en) 2018-03-29 2022-07-25 flame detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018064315A JP7177598B2 (en) 2018-03-29 2018-03-29 flame detector

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022117695A Division JP7400034B2 (en) 2018-03-29 2022-07-25 flame detection device

Publications (2)

Publication Number Publication Date
JP2019174337A JP2019174337A (en) 2019-10-10
JP7177598B2 true JP7177598B2 (en) 2022-11-24

Family

ID=68168641

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018064315A Active JP7177598B2 (en) 2018-03-29 2018-03-29 flame detector
JP2022117695A Active JP7400034B2 (en) 2018-03-29 2022-07-25 flame detection device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022117695A Active JP7400034B2 (en) 2018-03-29 2022-07-25 flame detection device

Country Status (1)

Country Link
JP (2) JP7177598B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000321132A (en) 1999-05-14 2000-11-24 Kokusai Gijutsu Kaihatsu Kk Flame sensor
JP2016102651A (en) 2014-11-27 2016-06-02 ホーチキ株式会社 Flame detector

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03218422A (en) * 1989-11-20 1991-09-26 Tokico Ltd Sensor
JPH03248084A (en) * 1990-02-27 1991-11-06 Nec Corp Laser alarm apparatus
US5995008A (en) * 1997-05-07 1999-11-30 Detector Electronics Corporation Fire detection method and apparatus using overlapping spectral bands
JP3781247B2 (en) 1999-01-26 2006-05-31 ホーチキ株式会社 Flame detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000321132A (en) 1999-05-14 2000-11-24 Kokusai Gijutsu Kaihatsu Kk Flame sensor
JP2016102651A (en) 2014-11-27 2016-06-02 ホーチキ株式会社 Flame detector

Also Published As

Publication number Publication date
JP7400034B2 (en) 2023-12-18
JP2022160504A (en) 2022-10-19
JP2019174337A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
JP5109079B2 (en) Flame detector
US8227756B2 (en) Apparatus for flame discrimination utilizing long wavelength pass filters and related method
US8496375B2 (en) Pyrometer adapted for detecting UV-radiation and use thereof
JPWO2018198504A1 (en) Abnormality detector
US6756593B2 (en) Flame Sensor
JP3313663B2 (en) Flame detector
CN106605130B (en) Stray light suppressed FCM ultraviolet light transducer and ultraviolet light detection method
JP7177598B2 (en) flame detector
JP6430795B2 (en) Flame detection device
JP3781247B2 (en) Flame detector
JP6526971B2 (en) Flame detector
JP6894551B2 (en) Flame detector
JP6748696B2 (en) Flame detector
JP4740022B2 (en) Optical sensor and object detection method
JP7170791B2 (en) flame detector
JP7184269B2 (en) Flame detector
JP7114306B2 (en) Flame detector
JP7061517B2 (en) Flame detector
JP7322205B2 (en) Flame detector
JP7011969B2 (en) Flame detector
JP7032982B2 (en) Flame detector
JP6826719B2 (en) Flame detector
JP7277643B2 (en) flame detector
JP6682147B2 (en) Flame detector
JP2003227751A (en) Flame detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221111

R150 Certificate of patent or registration of utility model

Ref document number: 7177598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150