JP7176539B2 - How to select a rolling bearing - Google Patents

How to select a rolling bearing Download PDF

Info

Publication number
JP7176539B2
JP7176539B2 JP2020004224A JP2020004224A JP7176539B2 JP 7176539 B2 JP7176539 B2 JP 7176539B2 JP 2020004224 A JP2020004224 A JP 2020004224A JP 2020004224 A JP2020004224 A JP 2020004224A JP 7176539 B2 JP7176539 B2 JP 7176539B2
Authority
JP
Japan
Prior art keywords
temperature
rolling bearing
temperature difference
bearing
inner ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020004224A
Other languages
Japanese (ja)
Other versions
JP2021110425A (en
Inventor
聡信 大村
幸彦 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2020004224A priority Critical patent/JP7176539B2/en
Publication of JP2021110425A publication Critical patent/JP2021110425A/en
Application granted granted Critical
Publication of JP7176539B2 publication Critical patent/JP7176539B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Support Of The Bearing (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)

Description

本発明は、鉄鋼製造設備で使用する転がり軸受の選定方法であって、特に、転がり軸受のラジアルすきまがより適切なすきま量となる転がり軸受の選定方法に関する。 TECHNICAL FIELD The present invention relates to a method of selecting a rolling bearing for use in steel manufacturing equipment, and more particularly to a method of selecting a rolling bearing that provides a more appropriate radial clearance for the rolling bearing.

転がり軸受は、機械を構成する多くの部品の中で最も重要な部品の1つである。また近年、鉄鋼製造設備においては、高荷重、高速、長寿命等に対する要求が高度化している。このため、最適な転がり軸受を選定することは、軸受の長寿命化だけでなく摩擦を低減させることに繋がるため、省エネルギー等の環境的な面からも重要である。
軸受選定の1要素として、軸受のすきま(ラジアルすきま)が挙げられる。転がり軸受の運転中のすきまが小さいと、荷重を支持するころの本数が増え、疲労寿命は増加することが知られている。しかしながら、負のすきま量が大きくなると、疲労寿命の低下が著しいことから、一般には、軸受すきま(初期の軸受内部すきま)を、運転中のすきま(運動すきま)が零よりわずかに大きなすきまになるように、軸受の選定を行う(非特許文献1参照)。
A rolling bearing is one of the most important parts among the many parts that make up a machine. In addition, in recent years, in steel manufacturing facilities, demands for high load, high speed, long life, etc. have been increasing. Therefore, selection of the optimum rolling bearing is important from an environmental point of view, such as energy saving, because it leads not only to longer bearing life but also to reduced friction.
One factor in bearing selection is the bearing clearance (radial clearance). It is known that if the rolling bearing has a small clearance during operation, the number of rollers supporting the load increases and the fatigue life increases. However, as the amount of negative clearance increases, the fatigue life decreases significantly. Therefore, in general, the bearing clearance (initial bearing internal clearance) is set to a clearance that is slightly larger than zero during operation (dynamic clearance). Bearings are selected as follows (see Non-Patent Document 1).

ここで、すきまの減少には、軸受の、軸やハウジングとのはめあい(しめしろ)による減少と、運転時の内外輪温度差による減少の2つの要素が挙げられる。軸やハウジングとのはめあいによるすきまの減少量は、はめあい量と材料のヤング率から導出可能なため、定量的に算出可能である。
一方、運転時の内外輪温度差については、従来、通常の使用状態での軸受の内輪温度と外輪温度の温度差が5~10℃程度であると仮定し、その仮定した条件に基づき、初期の軸受すきまの選定を行っている。また、この内輪温度と外輪温度は、円周方向に温度一定であるとして実行されていた。
また、軸受のすきまは、軸受の寿命に大きな影響を及ぼすことから、従来にあっては、軸受内輪に熱膨張率の小さい材質を用いることにより、内外輪温度差による内外輪の軌道径の変化を小さくするようなことも提案されている(特許文献1参照)。
Here, there are two factors in reducing the clearance: the reduction due to the fitting (interference) between the bearing and the shaft or the housing, and the reduction due to the temperature difference between the inner and outer rings during operation. The amount of clearance reduction due to fitting with the shaft or housing can be derived from the amount of fitting and the Young's modulus of the material, so it can be calculated quantitatively.
On the other hand, regarding the temperature difference between the inner and outer rings during operation, conventionally, it was assumed that the temperature difference between the inner ring temperature and the outer ring temperature of the bearing under normal operating conditions was about 5 to 10°C. selection of bearing clearance. Further, the inner ring temperature and the outer ring temperature are assumed to be constant in the circumferential direction.
In addition, since the clearance of the bearing has a great influence on the service life of the bearing, conventionally, by using a material with a small coefficient of thermal expansion for the inner ring of the bearing, the change in the raceway diameter of the inner and outer rings due to the temperature difference between the inner and outer rings is minimized. is also proposed to be reduced (see Patent Document 1).

産業機械用転がり軸受・No.1103 2016 AX-3、日本精工株式会社、2016年1月、p A174-175、p A69Rolling bearings for industrial machinery・No. 1103 2016 AX-3, NSK Ltd., January 2016, p A174-175, p A69

特願2010-216816号公報Japanese Patent Application No. 2010-216816

しかし、内外輪の温度差は、軸受に対し実際に使用する潤滑油や、外気温(使用雰囲気)等に影響を受けるため、温度差の予測が非常に難しい。
特に、上記従来の方法では、高速・高荷重で運転する軸受の場合、予想される軸受内外輪温度差よりも、すきまの減少量が大きくなる傾向にあり、結果としてすきま過小となり内部予圧が発生しすきま過小で破損にいたるという課題があることを突き止めた。鉄鋼製造設備においては、転がり軸受は高速高荷重下で使用されるため、その影響は大きい。
また、円周方向に温度差が一定であるという考え方ですきまを選定すると、軸受に負荷する荷重が大きくなった場合、荷重方向に温度が高くなる傾向がある。この場合、最適な軸受のすきまを選定する為には、軸受の温度分布を正確に把握し、軸受の内輪と外輪それぞれの熱膨張量を計算する必要がある。
本発明は、上記のような点を考慮したもので、より最適なラジアルすきま量によって、より最適な転がり軸受を選定可能とすることを目的とする。
However, the temperature difference between the inner and outer rings is affected by the lubricating oil actually used for the bearing, the ambient temperature (usage atmosphere), etc., so it is very difficult to predict the temperature difference.
In particular, with the above conventional method, in the case of bearings operated at high speed and high load, the amount of clearance reduction tends to be greater than the expected temperature difference between the inner and outer rings of the bearing, resulting in an excessively small clearance and internal preload. It was found that there was a problem that the clearance was too small, leading to breakage. Rolling bearings are used at high speeds and under high loads in steel manufacturing equipment, so the impact is great.
Also, if the clearance is selected based on the idea that the temperature difference is constant in the circumferential direction, the temperature tends to rise in the direction of the load when the load applied to the bearing increases. In this case, in order to select the optimum bearing clearance, it is necessary to accurately grasp the temperature distribution of the bearing and calculate the amount of thermal expansion of each of the inner and outer rings of the bearing.
SUMMARY OF THE INVENTION It is an object of the present invention to make it possible to select a more optimal rolling bearing with a more optimal radial clearance amount.

課題解決のために、本発明の一態様は、鉄鋼製造設備で使用する転がり軸受の選定方法であって、対象とする転がり軸受が用いられる鉄鋼製造設備の稼働中に、対象とする箇所に設置されている既設の転がり軸受の内輪及び外輪の温度を測定し、上記測定した既設の転がり軸受の内輪及と外輪の温度差に基づき、選定する転がり軸受の内輪軌道径と外輪軌道径の熱膨張量の差によって生じる内部すきまの減少量である、温度差減少量を推定し、転がり軸受を選定する際に、上記推定した温度差減少量を用いて、選定する転がり軸受の軸受内部すきまを決定する、ことを要旨とする。
上記温度差減少量を推定する際に使用する温度差として、円周方向に沿った内外輪の温度差のうちの一番大きさ温度差の値を採用することが好ましい。
In order to solve the problem, one aspect of the present invention is a method for selecting a rolling bearing to be used in steel manufacturing equipment, wherein the rolling bearing is installed at a target location during operation of the steel manufacturing equipment in which the target rolling bearing is used. The temperature of the inner and outer rings of the existing rolling bearing is measured, and based on the temperature difference between the inner and outer rings of the existing rolling bearing measured above, the thermal expansion of the inner and outer ring raceway diameters of the selected rolling bearing Estimate the temperature difference reduction amount, which is the reduction amount of the internal clearance caused by the difference in the amount, and use the estimated temperature difference reduction amount to determine the bearing internal clearance of the rolling bearing to be selected when selecting the rolling bearing. The gist is to do.
As the temperature difference used when estimating the amount of decrease in temperature difference, it is preferable to employ the value of the largest temperature difference among the temperature differences between the inner and outer rings along the circumferential direction.

本発明の態様によれば、より正確に運転時の内外輪温度差によるすきまの減少を推定可能となる。この結果、本発明の態様によれば、より正確な軸受すきまを有する転がり軸受を選定することが出来、鉄鋼製造設備の運転の精度向上に資することが可能となる。 According to the aspect of the present invention, it is possible to more accurately estimate the decrease in the clearance due to the temperature difference between the inner and outer rings during operation. As a result, according to the aspect of the present invention, it is possible to select a rolling bearing having a more accurate bearing clearance, which contributes to improving the accuracy of operation of steel manufacturing equipment.

本発明に基づく実施形態に係る対象とする鉄鋼製造設備の例を示す図である。1 is a diagram illustrating an example of a target steel manufacturing facility according to an embodiment of the present invention; FIG. 本発明に基づく実施形態に係る軸受の選定方法の処理例を説明する図である。It is a figure explaining the processing example of the selection method of the bearing which concerns on embodiment based on this invention. 本発明に基づく実施形態に係る内外輪の温度測定を説明する図である。It is a figure explaining the temperature measurement of the inner-outer ring|wheel which concerns on embodiment based on this invention. 本発明に基づく実施形態に係る外輪側の温度測定位置の例を示す図である。It is a figure which shows the example of the temperature measurement position by the side of an outer ring which concerns on embodiment based on this invention. 測定した内輪と外輪の温度の例を説明する図である。It is a figure explaining the example of the temperature of the inner ring|wheel and the outer ring|wheel which were measured.

次に本発明の実施形態について図面を参照して説明する。
本実施形態では、対象とする鉄鋼製造設備として、図1に示すような焼鈍ラインを例に挙げ、そのラインにおける鋼板の搬送に関わるテンションレベラー1(形状矯正機)のブライドルの軸受を、選定の対象とする。本実施形態は、鉄鋼製造設備における、高負荷高速回転環境で用いられる転がり軸受に好適である。
また、本実施形態では、内外輪のうち、外輪が固定輪で、内輪が転動輪の場合とする。また、本実施形態の転がり軸受は、ころ軸受とする。また、本実施形態では、軸受には、上下方向に荷重が負荷されるとする。
Next, embodiments of the present invention will be described with reference to the drawings.
In this embodiment, an annealing line as shown in FIG. 1 is taken as an example of the target steel manufacturing equipment, and the bearing of the bridle of the tension leveler 1 (shape straightening machine) involved in the transportation of the steel plate in the line is selected. set to target. This embodiment is suitable for rolling bearings used in high-load, high-speed rotation environments in steel manufacturing facilities.
In this embodiment, the outer ring is a fixed ring and the inner ring is a rolling wheel. Also, the rolling bearing of the present embodiment is a roller bearing. Further, in this embodiment, it is assumed that a load is applied to the bearing in the vertical direction.

(構成)
本実施形態の転がり軸受の選定方法は、図2に示すように、既設温度測定工程2、温度差減少量推定工程3、内部すきま決定工程4を備える。
<既設温度測定工程2>
既設温度測定工程2は、対象とする転がり軸受が用いられる鉄鋼製造設備を稼働中に、選定対象とする箇所に設置されている既設の転がり軸受の内輪及び外輪の温度を測定する。
なお、温度の測定は、設備が定常運転状態の際の値を採用する。また、複数回測定し、その平均値を用いた。
本実施形態の既設温度測定工程2は、図3に示すように、転がり軸受10の内輪10Aの温度を測定する内輪側温度測定センサ13と、外輪10Bの温度を測定する外輪側温度測定センサ14とを備える。
(Constitution)
As shown in FIG. 2, the rolling bearing selection method of the present embodiment includes an existing temperature measurement step 2, a temperature difference decrease amount estimation step 3, and an internal clearance determination step 4.
<Existing temperature measurement process 2>
In the existing temperature measurement step 2, the temperature of the inner ring and outer ring of the existing rolling bearing installed at the location to be selected is measured while the steel manufacturing facility in which the target rolling bearing is used is in operation.
For the measurement of temperature, the value when the equipment is in steady operation is adopted. Moreover, it measured several times and used the average value.
As shown in FIG. 3, the existing temperature measurement process 2 of this embodiment comprises an inner ring temperature measurement sensor 13 that measures the temperature of the inner ring 10A of the rolling bearing 10, and an outer ring temperature measurement sensor 14 that measures the temperature of the outer ring 10B. and

内輪側温度測定センサ13は、例えば図3に示すように、内輪内周面と軸外周面との間に配置される。本実施形態では、内輪側温度測定センサ13は、図3のように、荷重の負荷方向に沿った上側位置と下側位置の二箇所に配置した。各センサ13の信号ケーブルは、無線送信装置15に電気的に接続している。内輪側温度測定センサ13は、内輪10Aの温度を間接的に測定する構成でもよい。例えば、内輪側温度測定センサ13は、内輪10Aが接続する軸11の内輪10A近傍位置に温度を測定し、その測定温度から内輪10Aの温度を伝熱理論に基づき算出しても良い。 The inner ring-side temperature measurement sensor 13 is arranged between the inner peripheral surface of the inner ring and the outer peripheral surface of the shaft, as shown in FIG. 3, for example. In this embodiment, as shown in FIG. 3, the inner ring side temperature measurement sensors 13 are arranged at two positions, namely, an upper position and a lower position along the direction of load application. A signal cable of each sensor 13 is electrically connected to a wireless transmitter 15 . The inner ring side temperature measurement sensor 13 may be configured to indirectly measure the temperature of the inner ring 10A. For example, the inner ring side temperature measurement sensor 13 may measure the temperature at a position near the inner ring 10A of the shaft 11 to which the inner ring 10A is connected, and calculate the temperature of the inner ring 10A from the measured temperature based on heat transfer theory.

外輪側温度測定センサ14は、例えば図3のように、外輪10Bの外周面とハウジング12との間に設けられる。外輪側温度測定センサ14は、図4に示すように、外輪10Bの円周方向に沿って複数配置され、各センサのケーブルは、無線送信装置15に電気的に接続している。
無線送信装置15は、例えば無線LANで構成され、入力した測定温度信号を送信する。
The outer ring side temperature measurement sensor 14 is provided between the outer peripheral surface of the outer ring 10B and the housing 12 as shown in FIG. 3, for example. As shown in FIG. 4 , a plurality of outer ring-side temperature measurement sensors 14 are arranged along the circumferential direction of outer ring 10B, and the cable of each sensor is electrically connected to wireless transmitter 15 .
The wireless transmitter 15 is configured by, for example, a wireless LAN, and transmits the input measured temperature signal.

図3では、2台の無線送信装置15を用いる場合を例示したが、各種機器のレイアウト等に応じて、無線送信装置15の台数は1台でも3台以上でも構わない。
また、既設温度測定工程2は、温度差演算部16を有する。
温度差演算部16は、無線送信装置15を介して、内輪側温度測定センサ13及び外輪側温度測定センサ14が測定した各温度信号を入力する。温度差演算部16は、2つの内輪側温度測定センサ13が計測した温度信号の平均値を内輪10Aの温度とする。ここで、回転輪である内輪10A側は、円周方向に沿った各温度が同一温度である。
Although FIG. 3 illustrates a case where two wireless transmitters 15 are used, the number of wireless transmitters 15 may be one or three or more depending on the layout of various devices.
In addition, the existing temperature measurement process 2 has a temperature difference calculator 16 .
The temperature difference calculation unit 16 inputs temperature signals measured by the inner ring side temperature measurement sensor 13 and the outer ring side temperature measurement sensor 14 via the wireless transmission device 15 . The temperature difference calculator 16 takes the average value of the temperature signals measured by the two inner ring side temperature measurement sensors 13 as the temperature of the inner ring 10A. Here, on the side of the inner ring 10A, which is a rotating ring, each temperature along the circumferential direction is the same temperature.

温度差演算部16は、固定輪である外輪10Bにおける、円周方向に沿った複数箇所の温度測定値に基づき、円周方向に沿った内外輪の温度差の温度分布を求め(図5参照)、内外輪の温度差の一番大きな温度差を算出する。本実施形態では、固定輪である外輪10Bにおける、円周方向に沿った複数箇所の温度測定値に基づく円周方向に沿った外輪10Bの温度分布から、外輪10Bの円周方向に沿った温度のうちの一番低い温度Xを求め、その低い温度Xを、内輪10Aの温度測定値から減算して、採用する内外輪の温度差ΔTを求める。採用する内外輪の温度差ΔTは、上記の一番低い温度Xの位置を中心に円周方向に±5度の範囲の外輪位置の温度を採用しても良い。 The temperature difference calculation unit 16 obtains the temperature distribution of the temperature difference between the inner and outer rings along the circumferential direction based on the temperature measurement values at a plurality of points along the circumferential direction of the outer ring 10B, which is the stationary ring (see FIG. 5). ), the largest temperature difference between the inner and outer rings is calculated. In this embodiment, the temperature distribution of the outer ring 10B along the circumferential direction based on the temperature measurement values at a plurality of points along the circumference of the outer ring 10B, which is the fixed ring, is calculated. The lowest temperature X is obtained, and the lowest temperature X is subtracted from the temperature measurement value of the inner ring 10A to obtain the temperature difference ΔT between the inner and outer rings to be employed. As the temperature difference ΔT between the inner and outer rings to be adopted, the temperature at the outer ring position within a range of ±5 degrees in the circumferential direction around the position of the lowest temperature X may be adopted.

なお、荷重入力位置(本実施形態では上側)とは反対側の無負荷側(本実施形態では一番最下位置)での内外輪の温度差を測定し、その測定値が一番、内外輪の温度差が大きい値とみなしても良い。但し、温度分布を求め、求めた温度分布から決定した方が、より各確実に、内外輪の温度差のうち一番大きい温度差の値を求めることが出来る。 The temperature difference between the inner and outer rings is measured on the non-loaded side (lowest position in this embodiment) opposite to the load input position (upper in this embodiment). It may be regarded as a value with a large temperature difference between the rings. However, if the temperature distribution is obtained and determined from the obtained temperature distribution, the largest temperature difference value among the temperature differences between the inner and outer rings can be obtained more reliably.

<温度差減少量推定工程3>
温度差減少量推定工程3は、温度差演算部16が求めた内外輪の温度差に基づき、選定する転がり軸受の内輪10Aの軌道径と外輪10Bの軌道径の熱膨張量の差によって生じる内部すきまの減少量である、温度差減少量δtを推定する。
温度差減少量は、例えば下記式によって演算する。
δt[mm] =α・ΔT・D0
ここで、
α:軸受材料の線膨張係数
ΔT[℃]:内輪10Aと外輪10Bの温度差
D0[mm]:外輪10Bの軌道径
である。
<Temperature difference decrease amount estimation step 3>
In the temperature difference decrease amount estimation step 3, based on the temperature difference between the inner and outer rings obtained by the temperature difference calculation unit 16, the internal A temperature difference decrease amount δt, which is a clearance decrease amount, is estimated.
The temperature difference decrease amount is calculated, for example, by the following formula.
δt [mm] = α・ΔT・D0
here,
α: Linear expansion coefficient of bearing material ΔT [°C]: Temperature difference between inner ring 10A and outer ring 10B D0 [mm]: Raceway diameter of outer ring 10B.

<内部すきま決定工程4>
内部すきま決定工程4は、転がり軸受を選定する際に、温度差減少量推定工程3が推定した温度差減少量を用いて、選定する転がり軸受のラジアル方向の初期の軸受内部すきまδ0を決定する。
ここで、軸受内部すきまは、例えば下記式によって求める。
δu =δ0 +δf +δt
ここで、
δu[mm] :運転すきま
δ0[mm] :軸受内部すきま
δf[mm] :しめしろによる内部すきまの減少量
δt[mm] :温度差減少量
である。
<Internal clearance determination step 4>
The internal clearance determination step 4 determines the initial bearing internal clearance δ0 in the radial direction of the selected rolling bearing using the temperature difference reduction amount estimated in the temperature difference reduction amount estimation step 3 when selecting the rolling bearing. .
Here, the bearing internal clearance is obtained by, for example, the following formula.
δu = δ0 + δf + δt
here,
δu [mm] : Operating clearance δ0 [mm] : Bearing internal clearance δf [mm] : Decrease in internal clearance due to interference δt [mm] : Decrease in temperature difference.

ここで、しめしろによる内部すきまの減少量δfは幾何学的に演算される。
内部すきま決定工程4では、上記式から、運転すきまδuが予め設定した所定値となる軸受内部すきまδ0を求める。
運転すきまは、通常、ゼロ若しくは若干正の値に設定される。
そして、内部すきま決定工程4が求めた軸受内部すきまを有する、転がり軸受を選定し、選定した軸受を、次の軸受交換の際に採用する。
Here, the reduction amount δf of the internal clearance due to the interference is geometrically calculated.
In the internal clearance determining step 4, the bearing internal clearance δ0 that makes the operating clearance δu a predetermined value is obtained from the above equation.
The operating clearance is normally set to zero or a slightly positive value.
Then, a rolling bearing having the bearing internal clearance obtained in the internal clearance determining step 4 is selected, and the selected bearing is adopted when the next bearing is replaced.

(効果)
本実施形態は、例えば次のような効果を奏する。
(1)本実施形態は、鉄鋼製造設備で使用する転がり軸受の選定方法であって、対象とする転がり軸受が用いられる鉄鋼製造設備の稼働中に対象とする箇所に設置されている既設の転がり軸受の内輪10A及び外輪10Bの温度を測定し、測定した既設の転がり軸受の内輪10A及と外輪10Bの温度差に基づき、選定する転がり軸受の内輪軌道径と外輪軌道径の熱膨張量の差によって生じる内部すきまの減少量である、温度差減少量を推定し、転がり軸受を選定する際に、推定した温度差減少量を用いて、選定する転がり軸受の軸受内部すきまを決定する。
この構成によれば、より正確に運転時の内外輪温度差によるすきまの減少を推定可能となる。この結果、より正確な軸受すきまを有する転がり軸受を選定することが出来、鉄鋼製造設備の運転の精度向上に資することが可能となる。
(effect)
This embodiment has the following effects, for example.
(1) This embodiment is a method for selecting a rolling bearing to be used in a steel manufacturing facility, and an existing rolling bearing installed at a target location during operation of the steel manufacturing facility in which the target rolling bearing is used. The temperature of the inner ring 10A and the outer ring 10B of the bearing is measured, and based on the measured temperature difference between the inner ring 10A and the outer ring 10B of the existing rolling bearing, the difference in the amount of thermal expansion between the inner ring raceway diameter and the outer ring raceway diameter of the rolling bearing to be selected. Estimate the amount of reduction in temperature difference, which is the amount of reduction in the internal clearance caused by the temperature difference.
According to this configuration, it is possible to more accurately estimate the decrease in the clearance due to the temperature difference between the inner and outer rings during operation. As a result, it is possible to select a rolling bearing having a more accurate bearing clearance, which contributes to improving the accuracy of operation of steel manufacturing equipment.

(2)本実施形態では、温度差減少量を推定する際に使用する温度差として、円周方向に沿った内外輪の温度差のうちの一番大きな温度差の値を採用する。
すなわち、本実施形態では、軸受の内輪10Aと外輪10Bの円周方向の温度分布を測定し、測定した温度分布の中で、最も内輪10Aと外輪10Bの温度差が大きい箇所の測定結果を元に最適な軸受のすきまの選定を行う。一般に、軸受の軸受すきまが無くなり軸受軌道面が加圧される場合、すきまが過剰の場合に比べて、寿命の低下が著しい(非特許文献1参照)。
(2) In this embodiment, as the temperature difference used when estimating the temperature difference reduction amount, the largest temperature difference value among the temperature differences between the inner and outer rings along the circumferential direction is adopted.
That is, in this embodiment, the temperature distribution in the circumferential direction of the inner ring 10A and the outer ring 10B of the bearing is measured, and the measured temperature distribution is based on the measurement result of the location where the temperature difference between the inner ring 10A and the outer ring 10B is the largest. Select the optimum bearing clearance for In general, when the bearing clearance is eliminated and the bearing raceway surface is pressurized, the service life is significantly reduced compared to when the clearance is excessive (see Non-Patent Document 1).

これに対し、本実施形態では、内外輪温度差が大きい箇所の測定結果を使用することで、設定するすきま量を大きくし、安全側に設計することが可能となる。
すなわち、本構成によれば、軸受の内輪10Aと外輪10Bの円周方向の温度分布の測定を測定することにより、円周方向の温度分布の影響を調べ内外輪軌道の変化量を導出することが可能となった。導出された内外輪の軌道径で運転時のすきまが無くなるように初期すきまを設定することで、軸受の寿命を大幅に向上させることができる。
なお、円周方向の温度差温度分布に基づき、円周方向の伸びを、円周方向に積分することで、温度差による伸び量から温度差によるすきまの減少量(温度差減少量)を求めても良い。
On the other hand, in the present embodiment, by using the measurement result of the portion where the temperature difference between the inner and outer rings is large, it is possible to increase the clearance to be set and design on the safe side.
That is, according to this configuration, by measuring the temperature distribution in the circumferential direction of the inner ring 10A and the outer ring 10B of the bearing, the effect of the temperature distribution in the circumferential direction can be investigated and the amount of change in the inner and outer ring raceways can be derived. became possible. By setting the initial clearance so that the derived raceway diameter of the inner and outer rings eliminates the clearance during operation, the service life of the bearing can be greatly improved.
By integrating the elongation in the circumferential direction based on the temperature distribution of the temperature difference in the circumferential direction, the amount of gap reduction due to the temperature difference (temperature difference reduction amount) can be obtained from the amount of elongation due to the temperature difference. can be

(3)本実施形態では、既設の転がり軸受の内輪10A及び外輪10Bの温度を測定する際に、既設の転がり軸受の内輪10A及び外輪10Bのうちの固定輪について円周方向の複数箇所の温度を測定して、その測定に基づき、円周方向に沿った内外輪の温度差の温度分布を求め、求めた温度分布から、温度差減少量を推定する際に使用する温度差を決定する。
この構成によれば、実際の設置位置の環境に基づき、採用する内外輪の温度差を決定可能となる。
(3) In the present embodiment, when measuring the temperature of the inner ring 10A and the outer ring 10B of the existing rolling bearing, the temperature of the fixed ring of the inner ring 10A and the outer ring 10B of the existing rolling bearing is measured at a plurality of points in the circumferential direction. is measured, the temperature distribution of the temperature difference between the inner and outer rings along the circumferential direction is determined based on the measurement, and the temperature difference used when estimating the temperature difference reduction amount is determined from the determined temperature distribution.
According to this configuration, it is possible to determine the temperature difference between the inner and outer rings to be adopted based on the environment of the actual installation position.

(4)本実施形態では、既設の転がり軸受の内輪10A及び外輪10Bに温度測定センサを設け、無線通信手段を介して、温度測定センサが計測した測定値信号を受信することで、既設の転がり軸受の内輪10A及び外輪10Bの温度を取得する。
この構成によれば、遠隔で温度情報を取得可能となる。
(4) In the present embodiment, temperature measurement sensors are provided on the inner ring 10A and the outer ring 10B of the existing rolling bearing, and the measurement value signals measured by the temperature measurement sensors are received via wireless communication means. Obtain the temperature of the inner ring 10A and the outer ring 10B of the bearing.
According to this configuration, the temperature information can be obtained remotely.

焼鈍ライン(図1参照)でのテンションレベラー(形状矯正機)のブライドルの軸受について検証し、軸受(呼び番号:24032CAME4S11)の最適なすきまの選定を行った。
この既設の軸受の使用条件は、外輪10Bが固定輪、内輪10Aが回転輪で、はめあいは、軸11のはめあいがm6のしまりばめ、ハウジング12のはめあいがG7のすきまばめであった。また、軸11の回転数は、840rpm、軸受荷重は10000kgfであった。
対象とした焼鈍ラインにおいて、軸受は、CNすきま(初期すきま量δ0:0.110mm)で使用した場合、使用可能期間が3ヶ月と非常に短寿命であった。
そこで、本発明に基づくC3すきまを用いて検証した。
The bearing of the bridle of the tension leveler (shape corrector) in the annealing line (see Fig. 1) was verified, and the optimum clearance of the bearing (designation number: 24032CAME4S11) was selected.
The conditions for using this existing bearing were that the outer ring 10B was a fixed ring, the inner ring 10A was a rotating ring, and the fit of the shaft 11 was an interference fit of m6, and the fit of the housing 12 was a clearance fit of G7. The rotation speed of the shaft 11 was 840 rpm, and the bearing load was 10000 kgf.
In the target annealing line, when the bearing was used with a CN clearance (initial clearance δ0: 0.110 mm), the usable period was 3 months, which was a very short life.
Therefore, verification was performed using the C3 clearance based on the present invention.

上述の通り、軸受すきまの減少には、軸11、ハウジング12のはめあいによる減少δfと、運転時の内外輪温度差による減少δtの2つの要素がある。
軸受のはめあいによるすきまの減少δfは、しまりばめである軸11と軸受10の間に発生する面圧Pmによって求めることができ、面圧Pmの大きさは、以下の式で求めることが出来る。また、今回の軸受10のはめあいによる面圧Pmの導出で用いた記号及び数値を、表1にまとめた。
As described above, the decrease in bearing clearance has two elements: decrease δf due to fitting between shaft 11 and housing 12, and decrease δt due to temperature difference between inner and outer rings during operation.
The decrease δf of the clearance due to the fitting of the bearing can be obtained from the surface pressure Pm generated between the shaft 11 and the bearing 10, which are interference-fit, and the magnitude of the surface pressure Pm can be obtained from the following formula. Table 1 summarizes the symbols and numerical values used in the derivation of the surface pressure Pm due to the fitting of the bearing 10 this time.

Figure 0007176539000001
Figure 0007176539000001

Figure 0007176539000002
Figure 0007176539000002

求めた結果、軸11と軸受10の間に生じる面圧Pmは、1.25kgf/mmとなった。この面圧Pmによる内輪軌道径の膨張量は以下の式で求めることができる。 As a result, the surface pressure Pm generated between the shaft 11 and the bearing 10 was 1.25 kgf/mm 2 . The expansion amount of the inner ring raceway diameter due to the surface pressure Pm can be obtained by the following formula.

Figure 0007176539000003
Figure 0007176539000003

式から、内輪軌道径は0.058mm膨張することが分かった。
次に、温度による軸受すきまの影響について測定を行った。
本実施形態に基づき、軸受10の円周方向に沿った温度分布への荷重と回転数の影響を測定した。その測定結果を、図5に示す。
図5の測定結果から、すきまの導出を行った。すきまSの大きさは、外輪1軌道径をDe、内輪軌道径をDi、ころ10Cの径をDwとすると、以下の式で表される。
S = De -Di -2Dw
From the formula, it was found that the inner ring raceway diameter expands by 0.058 mm.
Next, we measured the effect of temperature on the bearing clearance.
Based on this embodiment, the effect of the load and the number of rotations on the temperature distribution along the circumferential direction of the bearing 10 was measured. The measurement results are shown in FIG.
The clearance was derived from the measurement results in FIG. The size of the clearance S is expressed by the following formula, where De is the raceway diameter of the outer ring 1, Di is the raceway diameter of the inner ring, and Dw is the diameter of the roller 10C.
S = De - Di - 2Dw

この式に基づき、外輪10B、内輪10A、ころ10Cの温度が上昇した場合の、温度変化後の運転すきまS′は以下の式で表すことが出来る。ここで、線膨張係数をα、外輪10Bの温度上昇量の平均をΔte、内輪10Aの温度上昇量をΔti、ころ10Cの温度上昇量をΔtw、とする。
S′ = De・(1 +α・Δte)
-Di(1 +α・Δti) -2Dw(1 +α・Δtw)
また、温度上昇量は初期温度をt0とすると、以下の式で表される。
Δt =ti -t0
Based on this formula, when the temperature of the outer ring 10B, inner ring 10A, and rollers 10C rises, the operating clearance S' after the temperature change can be expressed by the following formula. Here, α is the linear expansion coefficient, Δte is the average temperature rise of the outer ring 10B, Δti is the temperature rise of the inner ring 10A, and Δtw is the temperature rise of the rollers 10C.
S'=De.(1+α..DELTA.te)
−Di (1 +α・Δti) −2Dw (1 +α・Δtw)
Further, the amount of temperature rise is expressed by the following formula, where t0 is the initial temperature.
Δt = ti - t0

上記の温度上昇量Δtの式および残留すきまSの式より、温度上昇後のすきまの大きさS′は、以下の式で表される。
S′ = S -{α・De (ti -te )
+2α・Dw(tw -ti) - α・S(ti -t0)}
ここで、α≒0、t0≒0 から、α・S(ti -t0) ≒0 と近似できる。
Based on the above equation for the amount of temperature rise Δt and the equation for the residual clearance S, the clearance size S′ after the temperature rise is expressed by the following equation.
S′ = S − {α·De (ti −te )
+2α・Dw(tw−ti)−α・S(ti−t0)}
Here, from α≈0 and t0≈0, it can be approximated as α·S(ti −t0) ≈0.

また、ころ10Cの径Dwは外輪軌道径Deや内輪軌道径Diに比べて小さいので、ころ10Cの膨張量を無視すると、温度上昇後のすきまの大きさS′は、下記式で表すことが出来る。
S′ = S -α・De (ti -te)と表すことができる。
すなわち、
δt =S-S′ =α・De (ti -te) =α・De・ΔTと表せる。
このように、軸受の内輪温度tiと外輪温度teの温度差から温度差減少量δtを導出することが出来る。このとき、円周方向における、温度差が一番大きな位置での値を採用した。
Further, since the diameter Dw of the roller 10C is smaller than the outer ring raceway diameter De and the inner ring raceway diameter Di, ignoring the amount of expansion of the roller 10C, the clearance size S' after the temperature rise can be expressed by the following equation. I can.
It can be expressed as S' = S - α · De (ti - te).
i.e.
δt = S−S′ = α·De (ti − te) = α·De·ΔT.
Thus, the temperature difference decrease amount δt can be derived from the temperature difference between the inner ring temperature ti and the outer ring temperature te of the bearing. At this time, the value at the position with the largest temperature difference in the circumferential direction was adopted.

そして、軸受の温度測定の結果を元に、すきまの減少量を計算すると、δt=0.075mm減少することが分かった。
したがって、はめあいによる軌道径と温度によるすきまの減少の合計であるので、δf+δt =0.133mmとなった。
運転時すきまδuの大きさは、零よりわずかに大きなすきまになるように軸受の選定を行うことが望ましい(非特許文献1参照)ので、この軸受のすきまとして、C3すきま(初期すきま量:0.170mm)を選定した。
そして、本発明に基づき選定したC3すきまの軸受を実操業で使用したところ、12ヶ月以上連続して使用することが出来るようになった。
Calculating the amount of decrease in the clearance based on the results of temperature measurement of the bearing, it was found that the decrease was δt=0.075 mm.
Therefore, δf+δt = 0.133 mm because it is the sum of the raceway diameter due to fitting and the decrease in clearance due to temperature.
It is desirable to select a bearing so that the size of the operating clearance δu is slightly larger than zero (see Non-Patent Document 1). .170 mm) was selected.
When a bearing with a clearance of C3 selected based on the present invention was used in actual operation, it became possible to use it continuously for 12 months or longer.

2 既設温度測定工程
3 温度差減少量推定工程
4 内部すきま決定工程
10 軸受
10A 内輪
10B 外輪
11 軸
12 ハウジング
13 内輪側温度測定センサ
14 外輪側温度測定センサ
15 無線送信装置
16 温度差演算部
δt 温度差減少量
2 Existing temperature measurement process 3 Temperature difference decrease amount estimation process 4 Internal clearance determination process 10 Bearing 10A Inner ring 10B Outer ring 11 Shaft 12 Housing 13 Inner ring side temperature measurement sensor 14 Outer ring side temperature measurement sensor 15 Wireless transmitter 16 Temperature difference calculator δt Temperature Decrease amount

Claims (3)

鉄鋼製造設備で使用する転がり軸受の選定方法であって、
対象とする転がり軸受が用いられる鉄鋼製造設備の稼働中に、対象とする箇所に設置されている既設の転がり軸受の内輪及び外輪の温度を測定し、
上記測定した既設の転がり軸受の内輪の温度と外輪の温度との差である温度差に基づき、選定する転がり軸受の内輪軌道径と外輪軌道径の熱膨張量の差によって生じる内部すきまの減少量である、温度差減少量を推定し、
転がり軸受を選定する際に、上記推定した温度差減少量を用いて、選定する転がり軸受の軸受内部すきまを決定し、
上記温度差減少量を推定する際に使用する温度差として、円周方向に沿った内外輪の温度差のうちの一番大きな温度差の値を採用する、
ことを特徴とする転がり軸受の選定方法。
A method for selecting a rolling bearing for use in steel manufacturing equipment, comprising:
Measuring the temperature of the inner ring and outer ring of the existing rolling bearing installed at the target location during operation of the steel manufacturing facility where the target rolling bearing is used,
Amount of reduction in internal clearance caused by the difference in thermal expansion between the inner ring raceway diameter and the outer ring raceway diameter of the selected rolling bearing based on the temperature difference between the inner ring temperature and the outer ring temperature of the existing rolling bearing measured above. , estimating the amount of temperature difference decrease,
When selecting a rolling bearing, the bearing internal clearance of the rolling bearing to be selected is determined using the temperature difference reduction estimated above ,
As the temperature difference used when estimating the temperature difference reduction amount, the largest temperature difference value among the temperature differences between the inner and outer rings along the circumferential direction is adopted.
A method for selecting a rolling bearing characterized by:
上記既設の転がり軸受の内輪及び外輪の温度を測定する際に、上記既設の転がり軸受の内輪及び外輪のうちの固定輪について、円周方向の複数箇所の温度を測定し、その測定に基づき、円周方向に沿った内外輪の温度差の温度分布を求め、
求めた温度分布から、上記温度差減少量を推定する際に使用する一番大きな温度差を決定することを特徴とする請求項1に記載した転がり軸受の選定方法。
When measuring the temperature of the inner ring and the outer ring of the existing rolling bearing, the temperature of the fixed ring of the inner ring and the outer ring of the existing rolling bearing is measured at a plurality of points in the circumferential direction, and based on the measurement, Find the temperature distribution of the temperature difference between the inner and outer rings along the circumferential direction,
2. The method of selecting a rolling bearing according to claim 1, wherein the largest temperature difference used when estimating the temperature difference decrease amount is determined from the determined temperature distribution.
上記既設の転がり軸受の内輪及び外輪の温度を計測する温度測定センサを有し、無線通信手段を介して、上記温度測定センサが計測した測定値信号を受信することで、上記既設の転がり軸受の内輪及び外輪の温度を取得することを特徴とする請求項1又は請求項2に記載した転がり軸受の選定方法。 It has a temperature measurement sensor that measures the temperature of the inner ring and the outer ring of the existing rolling bearing, and by receiving the measurement value signal measured by the temperature measurement sensor via a wireless communication means, the existing rolling bearing 3. The method of selecting a rolling bearing according to claim 1, wherein temperatures of the inner ring and the outer ring are obtained.
JP2020004224A 2020-01-15 2020-01-15 How to select a rolling bearing Active JP7176539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020004224A JP7176539B2 (en) 2020-01-15 2020-01-15 How to select a rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020004224A JP7176539B2 (en) 2020-01-15 2020-01-15 How to select a rolling bearing

Publications (2)

Publication Number Publication Date
JP2021110425A JP2021110425A (en) 2021-08-02
JP7176539B2 true JP7176539B2 (en) 2022-11-22

Family

ID=77059503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020004224A Active JP7176539B2 (en) 2020-01-15 2020-01-15 How to select a rolling bearing

Country Status (1)

Country Link
JP (1) JP7176539B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114233753B (en) * 2021-12-22 2024-01-16 武昌船舶重工集团有限公司 Manufacturing method of plastic sliding bearing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003194047A (en) 2001-12-25 2003-07-09 Koyo Seiko Co Ltd Bearing information communication system
JP2014163481A (en) 2013-02-27 2014-09-08 Nsk Ltd Double row type cylindrical roller bearing for sintering pallet truck

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003194047A (en) 2001-12-25 2003-07-09 Koyo Seiko Co Ltd Bearing information communication system
JP2014163481A (en) 2013-02-27 2014-09-08 Nsk Ltd Double row type cylindrical roller bearing for sintering pallet truck

Also Published As

Publication number Publication date
JP2021110425A (en) 2021-08-02

Similar Documents

Publication Publication Date Title
JP6650030B2 (en) Rolling bearing fatigue state prediction device and rolling bearing fatigue state prediction method
TWI665435B (en) Bearing diagnostic device for machine tool
US20060245677A1 (en) Device for determining axial force, bearing unit having a device for determining axial force, and method determining axial force
EP3020987B1 (en) Angular contact self-aligning toroidal rolling element bearing
CN110108488B (en) Rolling bearing retainer slip research experiment system
JP7176539B2 (en) How to select a rolling bearing
Zmarzły Influence of the internal clearance of ball bearings on the vibration level
JPH0961268A (en) Load measuring apparatus for bearing
KR20230150954A (en) Monitoring system for monitoring parameters indicating the operating conditions of oil film bearings
JP2017116292A (en) Method and apparatus for testing bearing part
JP5842965B2 (en) Spindle device of machine tool provided with bearing device with load sensor
US10975908B1 (en) Method and device for monitoring a bearing clearance of roller bearings
Balyakin et al. Method for calculating the fatigue life of bearings taking into account wearing of rolling elements
KR20210053908A (en) Bearing device
Scherb et al. A study on the smearing and slip behaviour of radial cylindrical roller bearings
CN108474412B (en) Method and measuring device for detecting the slip rate in a rolling bearing
JP4710172B2 (en) Bearing life test apparatus and bearing life measuring method
JPH112239A (en) Device to measure various property of rolling bearing
CN111336976B (en) Method for detecting radial working clearance in bearing
JP3017914B2 (en) Full ball bearing and angular type full ball bearing device
US20190195275A1 (en) Rolling bearing and rotating device including rolling bearing
JPWO2021124557A5 (en)
JP2009008593A (en) Torque measuring device of tapered roller bearing
Kittur et al. Numerical Investigation of Total Deformation Inroller Bearing using Ansys Analysis
CN118257835A (en) Method for adjusting speed reducer bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221024

R150 Certificate of patent or registration of utility model

Ref document number: 7176539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150