JP7173496B2 - METHOD FOR SELECTING PLIPOTENTIAL STEM CELLS THAT HAVE DIFFERENTIATION TROPENCY INTO CARDIFERIC CELLS - Google Patents

METHOD FOR SELECTING PLIPOTENTIAL STEM CELLS THAT HAVE DIFFERENTIATION TROPENCY INTO CARDIFERIC CELLS Download PDF

Info

Publication number
JP7173496B2
JP7173496B2 JP2019548816A JP2019548816A JP7173496B2 JP 7173496 B2 JP7173496 B2 JP 7173496B2 JP 2019548816 A JP2019548816 A JP 2019548816A JP 2019548816 A JP2019548816 A JP 2019548816A JP 7173496 B2 JP7173496 B2 JP 7173496B2
Authority
JP
Japan
Prior art keywords
differentiation
pluripotent stem
cells
tropism
stem cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019548816A
Other languages
Japanese (ja)
Other versions
JPWO2019078342A1 (en
Inventor
芳樹 澤
繁 宮川
文哉 大橋
正 鮫島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Osaka University NUC
Original Assignee
Terumo Corp
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp, Osaka University NUC filed Critical Terumo Corp
Publication of JPWO2019078342A1 publication Critical patent/JPWO2019078342A1/en
Application granted granted Critical
Publication of JP7173496B2 publication Critical patent/JP7173496B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/34Muscles; Smooth muscle cells; Heart; Cardiac stem cells; Myoblasts; Myocytes; Cardiomyocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Developmental Biology & Embryology (AREA)
  • Immunology (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Botany (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • Vascular Medicine (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Materials For Medical Uses (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

本発明は、特定の分化誘導細胞、特に心筋細胞への分化指向性を有する多能性幹細胞、該多能性幹細胞から誘導される胚様体、該多能性幹細胞から誘導される分化誘導細胞を含む医療用組成物、該多能性幹細胞をスクリーニングする方法、前記医療用組成物を用いて対象を処置する方法、前記医療用組成物を用いて有効な薬剤をスクリーニングする方法、前記医療用組成物の製造における品質管理方法などに関する。 The present invention provides specific differentiation-induced cells, particularly pluripotent stem cells having a differentiation tropism to cardiomyocytes, embryoid bodies induced from the pluripotent stem cells, and differentiation-induced cells induced from the pluripotent stem cells. a method for screening the pluripotent stem cells; a method for treating a subject using the medical composition; a method for screening an effective agent using the medical composition; The present invention relates to quality control methods and the like in the production of compositions.

成体の心筋細胞は自己複製能に乏しく、心筋組織が損傷を受けた場合、その修復は極めて困難である。近年、損傷した心筋組織の修復のために、細胞工学的手法により作製した心筋細胞を含む移植片を患部に移植する試みが行われている(特許文献1、非特許文献1)。かかる移植片の作製に用いる心筋細胞として最近注目されているのが、胚性幹細胞(ES細胞)や人工多能性幹細胞(iPS細胞)などの多能性幹細胞から誘導した心筋細胞であり、このような多能性幹細胞由来の心筋細胞を含むシート状細胞培養物の作製や動物での治療実験が試みられている(非特許文献2~3)。しかしながら、多能性幹細胞由来の心筋細胞を含むシート状細胞培養物の開発は始まったばかりであり、その機能的特性や、それに影響する因子などについては依然不明な部分が多い。 Adult myocardial cells have poor self-renewal ability, and when myocardial tissue is damaged, it is extremely difficult to repair it. In recent years, in order to repair damaged myocardial tissue, attempts have been made to transplant a graft containing myocardial cells produced by a cell engineering technique to an affected area (Patent Document 1, Non-Patent Document 1). Cardiomyocytes derived from pluripotent stem cells such as embryonic stem cells (ES cells) and induced pluripotent stem cells (iPS cells) have recently attracted attention as cardiomyocytes used for the preparation of such grafts. Attempts have been made to prepare sheet-like cell cultures containing cardiomyocytes derived from such pluripotent stem cells and to conduct therapeutic experiments on animals (Non-Patent Documents 2 and 3). However, the development of sheet-like cell cultures containing cardiomyocytes derived from pluripotent stem cells has just begun, and many aspects of their functional characteristics and factors affecting them are still unknown.

多能性幹細胞から分化誘導細胞を調製する場合、例えば心筋細胞を調製する場合であれば、まず多能性幹細胞から中胚葉への分化の方向性を与えつつ胚様体を形成し、かかる胚様体を心筋細胞に分化誘導し、これを単一の細胞に分散させることにより心筋細胞を回収する(例えば特許文献2など)。 When preparing differentiation-inducing cells from pluripotent stem cells, for example, when preparing cardiomyocytes, first, embryoid bodies are formed while giving the direction of differentiation from pluripotent stem cells to mesoderm. The cardiomyocytes are collected by inducing differentiation of the mimoids into cardiomyocytes and dispersing them into single cells (for example, Patent Document 2, etc.).

近年ES細胞やiPS細胞などの多能性幹細胞に関する研究が進んでおり、また多くの細胞株が樹立されていく中で、細胞株間で分化の特性に違いがあることがわかってきた。例えば特許文献2や非特許文献4には、神経系の細胞への分化指向性を有するiPS細胞について記載されている。 In recent years, research on pluripotent stem cells such as ES cells and iPS cells has progressed, and while many cell lines have been established, it has been found that there are differences in differentiation characteristics between cell lines. For example, Patent Literature 2 and Non-Patent Literature 4 describe iPS cells having a differentiation tropism into cells of the nervous system.

特表2007-528755号公報Japanese Patent Publication No. 2007-528755 国際公開第2013/187416号WO2013/187416

Shimizu et al., Circ Res. 2002 Feb 22;90(3):e40-e48Shimizu et al., Circ Res. 2002 Feb 22;90(3):e40-e48 Matsuura et al., Biomaterials. 2011 Oct;32(30):7355-62Matsuura et al., Biomaterials. 2011 Oct;32(30):7355-62 Kawamura et al., Circulation. 2012 Sep 11;126(11 Suppl 1):S29-37Kawamura et al., Circulation. 2012 Sep 11;126(11 Suppl 1):S29-37 Kojima et al., Cell Stem Cell 14, 107?120 (2014)Kojima et al., Cell Stem Cell 14, 107–120 (2014)

本発明は、心筋細胞に対する分化指向性を有する多能性幹細胞を選別するための方法などに関する。 TECHNICAL FIELD The present invention relates to a method for selecting pluripotent stem cells having differentiation tropism toward cardiomyocytes.

本発明者らは、多能性幹細胞由来の心筋細胞を用いたシート状細胞培養物の作製について研究する中で、同様の分化誘導法を用いても、最終調製物中の心筋細胞の割合が大きく異なるという課題に直面した。かかる課題を解決すべく鋭意研究を進めたところ、多能性幹細胞株によって心筋細胞に分化しやすい株と分化しにくい株が存在し、心筋細胞に分化しやすい多能性幹細胞株を用いると、最終調製物中の心筋細胞の割合が多くなることを見出した。そこで、これらの細胞株の際について研究を続けたところ、心筋細胞に分化しやすい細胞株において特徴的に発現している遺伝子の特定に成功し、さらに研究を進めた結果本発明を完成させるに至った。 The present inventors, while studying the preparation of sheet-like cell cultures using cardiomyocytes derived from pluripotent stem cells, found that even using a similar differentiation induction method, the proportion of cardiomyocytes in the final preparation was I was faced with a very different problem. As a result of intensive research to solve this problem, there are pluripotent stem cell lines that easily differentiate into cardiomyocytes and strains that do not easily differentiate into cardiomyocytes. We found that the percentage of cardiomyocytes in the final preparation was increased. Therefore, as a result of continuing research on these cell lines, we succeeded in identifying genes that are characteristically expressed in cell lines that are likely to differentiate into cardiomyocytes. Arrived.

すなわち、本発明に下記に掲げるものに関する:
[1]多能性幹細胞の特定の分化誘導細胞への分化指向性を評価するための分化指向性マーカーの決定方法であって、
(1)複数の多能性幹細胞株における遺伝子発現量を測定すること;
(2)前記複数の多能性幹細胞株におけるmiRNAの発現量を測定すること;
(3)前記特定の分化誘導細胞への分化指向性の高い多能性幹細胞株と低い多能性幹細胞株との間に有意に発現量に差異のある遺伝子を抽出すること;
(4)前記特定の分化誘導細胞への分化指向性の高い多能性幹細胞株と低い多能性幹細胞株との間に有意に発現量に差異のあるmiRNAを抽出すること;および
(5)(3)で抽出された遺伝子から(4)で抽出されたmiRNAと関与する遺伝子を選択すること;
を含む、前記方法。
That is, the present invention relates to:
[1] A method for determining a differentiation tropism marker for evaluating the differentiation tropism of pluripotent stem cells into specific differentiation-inducing cells, comprising:
(1) measuring gene expression levels in multiple pluripotent stem cell lines;
(2) measuring the expression level of miRNA in the plurality of pluripotent stem cell lines;
(3) Extracting a gene with a significantly different expression level between a pluripotent stem cell line with high differentiation tropism to the specific differentiation-inducing cell and a pluripotent stem cell line with low differentiation tropism;
(4) extracting miRNAs with significantly different expression levels between a pluripotent stem cell line with high differentiation tropism to the specific differentiation-inducing cell and a pluripotent stem cell line with low differentiation tropism; and (5) Selecting a gene associated with the miRNA extracted in (4) from the genes extracted in (3);
The above method, comprising

[2]多能性幹細胞株の分化指向性を指標化する方法であって、
(a)対象の多能性幹細胞における少なくとも1種の分化指向性マーカー遺伝子の発現量を計測すること
(b)(a)で測定した遺伝子の発現量を基準と比較すること
を含む、前記方法。
[3]分化指向性マーカー遺伝子が、WNTシグナル伝達調節因子、ミトコンドリア関連遺伝子、TGFβシグナル伝達調節因子、中胚葉関連遺伝子、心筋細胞関連遺伝子および未分化細胞関連遺伝子からなる群から選択される遺伝子である、[2]の方法。
[2] A method for indexing the differentiation propensity of a pluripotent stem cell line, comprising:
(a) measuring the expression level of at least one differentiation-oriented marker gene in the pluripotent stem cells of interest; and (b) comparing the expression level of the gene measured in (a) with a reference. .
[3] the differentiation-oriented marker gene is a gene selected from the group consisting of WNT signaling regulatory factors, mitochondria-related genes, TGFβ signaling regulatory factors, mesoderm-related genes, cardiomyocyte-related genes and undifferentiated cell-related genes; Yes, the method of [2].

[4]WNTシグナル伝達調節因子が、PF4、TMEM64、KDM6A、APC、βカテニン、Axin、CK1、Dsh、GSK-3β、Dkk、WIF、FRP、Cerberus、TCF、Krn、WNT1、WNT2、WNT3、WNT4、WNT5A、WNT7A、WNT7B、WNT8B、WNT10B、WNT11、WNT2B、WNT9A、WNT9B、LRP5およびLRP6からなる群から選択される少なくとも1種の遺伝子である、[2]または[3]の方法。
[5]ミトコンドリア関連遺伝子が、CHCHD2、SFXN3、CREB1、PPARGC1A、PPARGC1B、CAMK4、PPP3CA、MYEF2、PPRC1、PKA、NRF1、GABPA、GABPB2、ESRRA、TFB2M、TFB1M、TFAM、POLRMTおよびMTERFからなる群から選択される少なくとも1種の遺伝子である、[2]~[4]の方法。
[4] WNT signaling regulators are PF4, TMEM64, KDM6A, APC, β-catenin, Axin, CK1, Dsh, GSK-3β, Dkk, WIF, FRP, Cerberus, TCF, Krn, WNT1, WNT2, WNT3, WNT4 , WNT5A, WNT7A, WNT7B, WNT8B, WNT10B, WNT11, WNT2B, WNT9A, WNT9B, LRP5 and LRP6.
[5] mitochondria-related genes selected from the group consisting of CHCHD2, SFXN3, CREB1, PPARGC1A, PPARGC1B, CAMK4, PPP3CA, MYEF2, PPRC1, PKA, NRF1, GABPA, GABPB2, ESRRA, TFB2M, TFB1M, TFAM, POLRMT and MTERF The method of [2] to [4], wherein at least one gene is a

[6]TGFβシグナル伝達調節因子が、SKIL、THBS1、CD3、TLR2、SMAD1、SMAD2、SMAD3、SMAD4、SMAD5、SMAD6、SMAD7、SMAD9、TGFBR1、TGFBR2、MAPK1、MAPK3、ROCK1、BMP2、BMP4、BMP5、BMP6、BMP7、BMP8B、BMPR1AおよびBMPR1Bからなる群から選択される少なくとも1種の遺伝子である、[2]~[5]の方法。
[7]中胚葉遺伝子が、FLK1、BRACHYURY、GOOSECOID、PDGFR-a、IGF2、CD34、CLL1、HHEX,INHBA,LEF1、SRF、T、TWIST1、ADIPOQ、MME、KIT、ITGAL、Tbx1、Gata1、Klf1、Csf1r、CD45およびTer119からなる群から選択される少なくとも1種の遺伝子である、[2]~[6]の方法。
[6] the TGFβ signaling regulator is SKIL, THBS1, CD3, TLR2, SMAD1, SMAD2, SMAD3, SMAD4, SMAD5, SMAD6, SMAD7, SMAD9, TGFBR1, TGFBR2, MAPK1, MAPK3, ROCK1, BMP2, BMP4, BMP5, The method of [2] to [5], wherein at least one gene is selected from the group consisting of BMP6, BMP7, BMP8B, BMPR1A and BMPR1B.
[7] The mesoderm gene is FLK1, BRACHYURY, GOOSECOID, PDGFR-a, IGF2, CD34, CLL1, HHEX, INHBA, LEF1, SRF, T, TWIST1, ADIPOQ, MME, KIT, ITGAL, Tbx1, Gata1, Klf1, The method of [2]-[6], wherein at least one gene is selected from the group consisting of Csf1r, CD45 and Ter119.

[8]心筋細胞関連遺伝子が、TNT2、ML2、GATA4、MYH6、MYH7、Nkx2.5、SCN5A、RYR2、PPARGC1、MYL2、HCN4、CACNa1C、ATP2A2、Actc1、Cx43、TEF-1およびTbx-5からなる群から選択される少なくとも1種の遺伝子である、[2]~[7]の方法。
[9]未分化細胞関連遺伝子が、Oct-4、Nanog、Lin28、SOX2、c-Myc、Klf4、TRA-1-60、SSEA-4、Oct3/4、Nanog、Cripto、Dax1、ERas、Fgf4、Esg1、Rex1、Zfp296、UTF1、GDF3、Sall4、Tbx3、Tcf3、DNMT3L、DNMT3B、Tra-1-81、miR-290クラスターのmiRNAおよびmiR-302クラスターのmiRNAからなる群から選択される少なくとも1種の遺伝子である、[2]~[8]の方法。
[8] cardiomyocyte-related genes consist of TNT2, ML2, GATA4, MYH6, MYH7, Nkx2.5, SCN5A, RYR2, PPARGC1, MYL2, HCN4, CACNa1C, ATP2A2, Actc1, Cx43, TEF-1 and Tbx-5 The method of [2]-[7], wherein at least one gene is selected from the group.
[9] Undifferentiated cell-related genes are Oct-4, Nanog, Lin28, SOX2, c-Myc, Klf4, TRA-1-60, SSEA-4, Oct3/4, Nanog, Cripto, Dax1, ERAs, Fgf4, At least one selected from the group consisting of Esg1, Rex1, Zfp296, UTF1, GDF3, Sall4, Tbx3, Tcf3, DNMT3L, DNMT3B, Tra-1-81, miR-290 cluster miRNAs and miR-302 cluster miRNAs The method of [2]-[8], which is a gene.

[10]分化指向性マーカー遺伝子が、PF4、CHCHD2、AMMECR1、API5、BCOR、BRWD1、CLEC4G、GLIPR1、HELB、KDM6A、LOC388796、NKTR、POMZP3、ZP3、PRUNE2、RBMX、RC3H1、SKIL、SORBS2およびSRSF11からなる群から選択される少なくとも1種の遺伝子である、[2]の方法。
[11]測定した発現量が基準より有意に高い場合、対象の多能性幹細胞を心筋細胞への分化指向性が高い細胞株であると判断する、[10]の方法
[10] The differentiation-directed marker gene is from PF4, CHCHD2, AMMECR1, API5, BCOR, BRWD1, CLEC4G, GLIPR1, HELB, KDM6A, LOC388796, NKTR, POMZP3, ZP3, PRUNE2, RBMX, RC3H1, SKIL, SORBS2 and SRSF11 The method of [2], wherein at least one gene is selected from the group consisting of
[11] The method of [10], wherein if the measured expression level is significantly higher than the reference, the subject pluripotent stem cells are determined to be a cell line with a high differentiation tropism to cardiomyocytes.

[12]分化指向性マーカー遺伝子が、TMEM64、ACTN3、LOC284373、LOC441666、PLCB1、SYNPR、TMEM163、U2AF1L4、VWDE、ZNF229およびZNF354Cからなる群から選択される、[2]の方法。
[13]測定した発現量が基準より有意に低い場合、対象の多能性幹細胞を心筋細胞への分化指向性が高い細胞株であると判断する、[12]の方法。
[14]多能性幹細胞の培養方法であって、PF4、CHCHD2、AMMECR1、API5、BCOR、BRWD1、CLEC4G、GLIPR1、HELB、KDM6A、LOC388796、NKTR、POMZP3、ZP3、PRUNE2、RBMX、RC3H1、SKIL、SORBS2およびSRSF11からなる群から選択される少なくとも1種のタンパク質を含む培地で培養することを特徴とする、前記方法。
[12] The method of [2], wherein the differentiation-directed marker gene is selected from the group consisting of TMEM64, ACTN3, LOC284373, LOC441666, PLCB1, SYNPR, TMEM163, U2AF1L4, VWDE, ZNF229 and ZNF354C.
[13] The method of [12], wherein when the measured expression level is significantly lower than the reference, the subject pluripotent stem cell is determined to be a cell line with high cardiomyocyte differentiation tropism.
[14] A method for culturing pluripotent stem cells, comprising PF4, CHCHD2, AMMECR1, API5, BCOR, BRWD1, CLEC4G, GLIPR1, HELB, KDM6A, LOC388796, NKTR, POMZP3, ZP3, PRUNE2, RBMX, RC3H1, SKIL, The above method, wherein the culture is performed in a medium containing at least one protein selected from the group consisting of SORBS2 and SRSF11.

[15]少なくとも1種のタンパク質が、PF4である、[14]の方法。
[16]培養が、多能性幹細胞から胚様体を形成するための培養である、[14]または[15]の方法。
[17]胚様体が、中胚葉性胚様体である、[16]の方法。
[18][14]~[17]の方法により培養された多能性幹細胞由来の分化誘導細胞を含む、医療用組成物。
[19]薬剤スクリーニング用組成物である、[18]の医療用組成物。
[20]移植用組成物である、[18]の医療用組成物。
[21]シート状細胞培養物であることを特徴とする、[19]または[20]の医療用組成物。
[15] The method of [14], wherein the at least one protein is PF4.
[16] The method of [14] or [15], wherein the culture is for forming embryoid bodies from pluripotent stem cells.
[17] The method of [16], wherein the embryoid body is a mesodermal embryoid body.
[18] A medical composition comprising differentiation-inducing cells derived from pluripotent stem cells cultured by the method of [14] to [17].
[19] The medical composition of [18], which is a composition for drug screening.
[20] The medical composition of [18], which is a composition for transplantation.
[21] The medical composition of [19] or [20], which is a sheet-like cell culture.

[22]多能性幹細胞から分化誘導された心筋細胞を含む医療用組成物の品質管理方法であって、多能性幹細胞を培養して得られる胚様体における中胚葉遺伝子、内胚葉遺伝子および/または外胚葉遺伝子の発現量を計測することを含む、前記方法。
[23]中胚葉遺伝子が、FLK1、BRACHYURY、GOOSECOID、PDGFR-a、IGF2、CD34、CLL1、HHEX,INHBA,LEF1、SRF、T、TWIST1、ADIPOQ、MME、KIT、ITGAL、Tbx1、Gata1、Klf1、Csf1r、CD45およびTer119からなる群から選択される少なくとも1種の遺伝子からなる群から選択される、[22]の方法。
[24]内胚葉遺伝子が、AMN、SOX7、SOX17およびHNF3からなる群から選択され、外胚葉遺伝子が、SOX1、PAX6およびZIC1からなる群から選択される、[22]または[23]の方法。
[25]さらに、多能性幹細胞や胚様体の形態的特徴を取得することを含む、[22]~[24]の方法。
[22] A method for quality control of a medical composition containing cardiomyocytes differentiated from pluripotent stem cells, comprising mesoderm genes, endoderm genes and / Or the above method, comprising measuring the expression level of an ectodermal gene.
[23] The mesoderm gene is FLK1, BRACHYURY, GOOSECOID, PDGFR-a, IGF2, CD34, CLL1, HHEX, INHBA, LEF1, SRF, T, TWIST1, ADIPOQ, MME, KIT, ITGAL, Tbx1, Gata1, Klf1, The method of [22], wherein the method is selected from the group consisting of at least one gene selected from the group consisting of Csf1r, CD45 and Ter119.
[24] The method of [22] or [23], wherein the endoderm gene is selected from the group consisting of AMN, SOX7, SOX17 and HNF3, and the ectoderm gene is selected from the group consisting of SOX1, PAX6 and ZIC1.
[25] The method of [22] to [24], further comprising obtaining morphological characteristics of pluripotent stem cells and embryoid bodies.

本発明によれば、特定の分化誘導細胞、例えば心筋細胞に対する分化指向性を有する多能性幹細胞株を容易に選抜し、得ることができるため、かかる多能性幹細胞株を用いることで、分化誘導による心筋細胞の調製を効率よく行うことができるようになる。また多能性幹細胞や胚様体など分化誘導の初期段階で、心筋細胞の割合が高い最終調製物を得られるか否かを判断できるため、効率よく高品質な医療用組成物を提供することができる。さらには、所望の分化誘導細胞、例えば心筋細胞に分化させる新規な培養方法を提供することで、所望の分化誘導細胞をより効率的に得ることを可能とする。 According to the present invention, it is possible to easily select and obtain a pluripotent stem cell line having differentiation tropism toward specific differentiation-inducing cells, for example, cardiomyocytes. It becomes possible to efficiently prepare cardiomyocytes by induction. In addition, it is possible to determine whether or not a final preparation with a high proportion of cardiomyocytes can be obtained at the early stage of differentiation induction such as pluripotent stem cells and embryoid bodies, so it is possible to efficiently provide a high-quality medical composition. can be done. Furthermore, by providing a novel culture method for differentiating into desired differentiation-induced cells, such as cardiomyocytes, desired differentiation-induced cells can be obtained more efficiently.

図1は、例1で用いたiPS細胞の培養中および胚葉体の写真図である。Aは培養中の細胞の写真、Bは胚様体の写真図である。FIG. 1 is a photograph of iPS cell culture and embryoid bodies used in Example 1. FIG. A is a photograph of cells in culture, and B is a photograph of an embryoid body. 図2は、例1で用いたiPS細胞を心筋細胞に分化誘導した際の、トロポニンTの陽性率を表す、青いバーと赤いバーはそれぞれ、アクチビンを6ng/mL加えた場合、12ng/mL加えた場合の陽性率である。Figure 2 shows the positive rate of troponin T when the iPS cells used in Example 1 were induced to differentiate into cardiomyocytes. This is the positive rate when 図3は、例1で用いたiPS細胞を心筋細胞に分化誘導した際の、培養物の拍動率を表す。赤いバーと青いバーはそれぞれ培養8日目および17日目の結果を示す。FIG. 3 shows the beating rate of the culture when the iPS cells used in Example 1 were induced to differentiate into cardiomyocytes. Red and blue bars show results on day 8 and day 17 of culture, respectively.

図4は、各iPS細胞を心筋細胞に分化誘導した際の、未分化細胞の残存率を表す。青いバーと赤いバーはそれぞれ、アクチビンを6ng/mL加えた場合、12ng/mL加えた場合の結果である。FIG. 4 shows the survival rate of undifferentiated cells when each iPS cell was induced to differentiate into cardiomyocytes. Blue and red bars are the results when activin was added at 6 ng/mL and 12 ng/mL, respectively. 図5は、各iPS細胞株から形成された胚様体における各胚葉の関連遺伝子の発現レベルを表す。FIG. 5 shows the expression levels of genes related to each germ layer in embryoid bodies formed from each iPS cell line. 図6は、各iPS細胞から分化誘導された細胞培養物における心筋細胞関連遺伝子発現のヒートマップである。FIG. 6 is a heat map of cardiomyocyte-related gene expression in cell cultures induced to differentiate from each iPS cell.

図7は、各iPS細胞から分化誘導された細胞培養物における各心筋細胞関連遺伝子の発現量を表す。FIG. 7 shows expression levels of cardiomyocyte-related genes in cell cultures induced to differentiate from iPS cells. 図8は各iPS細胞株におけるmiRNA発現解析の結果を表す図である。Aは、分化指向性の高いiPS細胞株と分化指向性の低いiPS細胞株との間でのmiRNAの発現量の変化をプロットしたグラフである。Bは、発現量が低減したmiRNAとして特定された5種のmiRNAの、高分化指向性株と低分化指向性株との間の発現量の違いを表すグラフである。Cは、解析した全miRNAについて、高分化指向性株および低分化指向性株での発現量を縦軸および横軸としてプロットした分布図である。FIG. 8 shows the results of miRNA expression analysis in each iPS cell line. A is a graph plotting changes in miRNA expression levels between an iPS cell line with a high differentiation tropism and an iPS cell line with a low differentiation tropism. B is a graph showing the difference in the expression levels of 5 miRNAs identified as miRNAs with reduced expression levels between the high differentiation tropic strain and the low differentiation tropic strain. C is a distribution map in which the expression levels of all the analyzed miRNAs in a highly differentiation-tropic strain and a low differentiation-tropic strain are plotted on the vertical axis and the horizontal axis.

図9は、特定されたmiRNAのパスウェイ解析の結果と、特定された2遺伝子(PF4およびTMEM64)の発現についての試験結果を表す図である。Aは分化指向性の高いiPS細胞株と分化指向性の低いiPS細胞株との間で有意に発現量が高い10種のmRNAと、有意に発現量が低い10種のmRNAの発現量を表すグラフである。Bは、miRNA解析と遺伝子発現解析によって特定されたmiRNAおよびmRNAが関与するシグナル伝達経路を列挙するグラフである。Cは、高分化指向性株と低分化指向性株とをそれぞれ心筋細胞へと分化誘導した場合の、得られた細胞集団におけるcTnT発現量の違いを表すグラフである。Dは高分化指向性株および低分化指向性株における、PF4およびTMEM64の発現量をそれぞれ表すグラフである。Eは、各iPS細胞株におけるPF4およびTMEM64の発現量と、同iPS細胞株を心筋細胞へと分化誘導した際のcTnT発現量との相関関係を表すグラフである。FIG. 9 is a diagram showing the results of pathway analysis of identified miRNAs and test results of the expression of two identified genes (PF4 and TMEM64). A represents the expression levels of 10 mRNAs with significantly high expression levels and 10 mRNAs with significantly low expression levels between iPS cell lines with high differentiation tropism and iPS cell lines with low differentiation tropism. graph. B is a graph listing signaling pathways involving miRNAs and mRNAs identified by miRNA and gene expression analyses. C is a graph showing the difference in cTnT expression levels in the cell populations obtained when a high differentiation tropic strain and a low differentiation tropism strain were each induced to differentiate into cardiomyocytes. D is a graph showing the expression levels of PF4 and TMEM64 in a high differentiation tropic strain and a low differentiation tropism strain, respectively. E is a graph showing the correlation between the expression levels of PF4 and TMEM64 in each iPS cell line and the cTnT expression level when the same iPS cell line was induced to differentiate into cardiomyocytes. 図10は、培地に種々の剤を添加して分化誘導した場合における、A:cTnTの発現量、ならびにB:PF4およびTMEM64の発現量を表すグラフである。FIG. 10 is a graph showing A: the expression level of cTnT and B: the expression levels of PF4 and TMEM64 when differentiation was induced by adding various agents to the medium.

以下、本発明を詳細に説明する。
本明細書において別様に定義されない限り、本明細書で用いる全ての技術用語および科学用語は、当業者が通常理解しているものと同じ意味を有する。本明細書中で参照する全ての特許、出願および他の出版物や情報は、その全体を参照により本明細書に援用する。また本明細書において参照された出版物と本明細書の記載に矛盾が生じた場合は、本明細書の記載が優先されるものとする。
本開示において、特定の遺伝子名で表される塩基配列(mRNAおよびmiRNAなどを含む)は、例えばGenBankなどの当該技術分野において公知のデータベースに登録された配列を意味する。当業者であれば、かかる遺伝子名から、いかなる配列を表しているか直ちに知ることができる。
The present invention will be described in detail below.
Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. All patents, applications and other publications and information referenced herein are hereby incorporated by reference in their entirety. In addition, if there is any discrepancy between the publications referred to in this specification and the description in this specification, the description in this specification shall take precedence.
In the present disclosure, a nucleotide sequence (including mRNA, miRNA, etc.) represented by a specific gene name means a sequence registered in a database known in the art such as GenBank. A person skilled in the art can immediately know what sequence is represented from such a gene name.

本開示において、「多能性幹細胞」という語は、当該技術分野で周知の用語であり、三胚葉、すなわち内胚葉、中胚葉および外胚葉に属する全ての系列の細胞に分化することができる能力を有する細胞を意味する。多能性幹細胞の非限定例としては、例えば、胚性幹細胞(ES細胞)、核移植胚性幹細胞(ntES細胞)、人工多能性幹細胞(iPS細胞)などが挙げられる。通常多能性幹細胞を特定の細胞に分化誘導する際には、まず多能性幹細胞を浮遊培養して、上記三胚葉のいずれかの細胞の凝集体を形成し、その後凝集体を形成する細胞を目的とする特定の細胞に分化誘導させる。または、多能性幹細胞を高密度で接着培養して、分化誘導させる。本開示において「胚様体」とは、かかる細胞の凝集体を意味する。本開示においては特に、内胚葉系の細胞に分化指向性を有する胚様体を「内胚葉性胚様体」、中胚葉系の細胞に分化指向性を有する胚様体を「中胚葉性胚様体」、外胚葉系の細胞に分化指向性を有する胚様体を「外胚葉性胚様体」と称する場合がある。 In the present disclosure, the term "pluripotent stem cell" is a term well known in the art and is capable of differentiating into cells of all lineages belonging to the three germ layers: endoderm, mesoderm and ectoderm. means a cell having Non-limiting examples of pluripotent stem cells include embryonic stem cells (ES cells), nuclear transfer embryonic stem cells (ntES cells), induced pluripotent stem cells (iPS cells), and the like. Normally, when inducing differentiation of pluripotent stem cells into specific cells, the pluripotent stem cells are first cultured in suspension to form aggregates of cells of any of the above three germ layers, and then cells that form aggregates. to differentiate into specific cells of interest. Alternatively, pluripotent stem cells are adherently cultured at high density and induced to differentiate. In the present disclosure, "embryoid bodies" means aggregates of such cells. In the present disclosure, in particular, an embryoid body having a differentiation tropism to cells of the endodermal lineage is referred to as an "endodermal embryoid body", and an embryoid body having a differentiation tropism to a mesodermal cell is referred to as a "mesoderm embryo." Embryoid bodies having a differentiation tropism to cells of the ectodermal lineage are sometimes referred to as "ectodermal embryoid bodies".

本開示において、「分化誘導細胞」は、多能性幹細胞から特定の種類の細胞に分化するように分化誘導処理された任意の細胞を意味する。分化誘導細胞は、心筋細胞や骨格筋芽細胞などの組織を構成する接着性の細胞および、血球細胞などの非接着性の細胞が含まれる。分化誘導細胞の非限定例は、心筋細胞、骨格筋芽細胞などの筋肉系の細胞、ニューロン細胞、オリゴデンドロサイト、ドーパミン産生細胞などの神経系の細胞、網膜色素上皮細胞などの網膜細胞、血球細胞、骨髄細胞などの造血系の細胞、T細胞、NK細胞、NKT細胞、樹状細胞、B細胞などの免疫関連の細胞、肝細胞、膵β細胞、腎細胞などの臓器を構成する細胞、軟骨細胞、生殖細胞などの他、これらの細胞に分化する前駆細胞や体性幹細胞などを含む。かかる前駆細胞や体性幹細胞の典型例としては、例えば心筋細胞における間葉系幹細胞、多分化性心臓前駆細胞、単能性心臓前駆細胞、神経系の細胞における神経幹細胞、造血系の細胞や免疫関連の細胞における造血幹細胞およびリンパ系幹細胞などが挙げられる。多能性幹細胞の分化誘導は、既知の任意の手法を用いて行うことができる。例えば、多能性幹細胞から心筋細胞への分化誘導は、Miki et al., Cell Stem Cell 16, 699-711, June 4, 2015やWO2014/185358、Shugo Tohyama et al., Stem Cell Report, 9, 1?9, Nov 14, 2017に記載の手法に基づいて行うことができる。 In the present disclosure, a "differentiation-induced cell" means any cell that has been treated to induce differentiation from a pluripotent stem cell into a specific type of cell. Differentiation-induced cells include tissue-constituting adhesive cells such as cardiomyocytes and skeletal myoblasts, and non-adhesive cells such as blood cells. Non-limiting examples of differentiation-induced cells include muscle cells such as cardiomyocytes and skeletal myoblasts, nervous cells such as neuronal cells, oligodendrocytes, and dopamine-producing cells, retinal cells such as retinal pigment epithelial cells, and blood cells. cells, hematopoietic cells such as bone marrow cells, immune-related cells such as T cells, NK cells, NKT cells, dendritic cells, and B cells, organ-composing cells such as hepatocytes, pancreatic β cells, and renal cells, In addition to chondrocytes and germ cells, it includes progenitor cells and somatic stem cells that differentiate into these cells. Typical examples of such progenitor cells and somatic stem cells include mesenchymal stem cells in cardiomyocytes, multipotent cardiac progenitor cells, unipotent cardiac progenitor cells, neural stem cells in nervous system cells, hematopoietic cells and immune cells. Related cells include hematopoietic stem cells and lymphoid stem cells. Differentiation induction of pluripotent stem cells can be performed using any known technique. For example, induction of differentiation from pluripotent stem cells to cardiomyocytes is described in Miki et al., Cell Stem Cell 16, 699-711, June 4, 2015, WO2014/185358, Shugo Tohyama et al., Stem Cell Report, 9, 1-9, Nov 14, 2017.

本開示において、「分化指向性」は、多能性幹細胞が特定の分化誘導細胞に分化しやすい性質を意味し、特定の分化誘導細胞への分化指向性が高いほど、当該分化誘導細胞になりやすいことを意味する。したがって特定の細胞への分化指向性が高い多能性幹細胞株は、分化指向性が高くない多能性幹細胞株と比較して、当該特定の細胞への分化誘導方法により分化誘導を行った場合、同一の分化誘導方法であってもより多くの分化誘導細胞を得られることが期待される。 In the present disclosure, "differentiation tropism" means the property of pluripotent stem cells to easily differentiate into specific differentiation-inducing cells, and the higher the differentiation tropism to a specific differentiation-inducing cell, the more likely it becomes the differentiation-inducing cell. means easy. Therefore, a pluripotent stem cell line with a high differentiation tropism into a specific cell is compared to a pluripotent stem cell line with a low differentiation tropism when differentiation is induced by a method of inducing differentiation into the specific cell. , it is expected that a larger number of differentiation-induced cells can be obtained even with the same differentiation-inducing method.

本開示において、「心筋細胞」とは、心筋細胞の特徴を有する細胞を意味する。心筋細胞の特徴としては、限定されずに、例えば、心筋細胞マーカーの発現、自律的拍動の存在などが挙げられる。心筋細胞マーカーの非限定例としては、例えば、c-TNT(cardiac troponin T)、CD172a(別名SIRPAまたはSHPS-1)、KDR(別名CD309、FLK1またはVEGFR2)、PDGFRA、EMILIN2、VCAMなどが挙げられる。一態様において、多能性幹細胞由来の心筋細胞は、c-TNT陽性かつ/またはCD172a陽性である。 In the present disclosure, "cardiomyocyte" means a cell having cardiomyocyte characteristics. Features of cardiomyocytes include, but are not limited to, expression of cardiomyocyte markers, presence of autonomous beating, and the like. Non-limiting examples of cardiomyocyte markers include, for example, c-TNT (cardiac troponin T), CD172a (aka SIRPA or SHPS-1), KDR (aka CD309, FLK1 or VEGFR2), PDGFRA, EMILIN2, VCAM, and the like. . In one aspect, the pluripotent stem cell-derived cardiomyocytes are c-TNT positive and/or CD172a positive.

本開示の一側面は、特定の分化誘導細胞への分化指向性を評価するための分化指向性マーカーを決定する方法に関する。本開示において「分化指向性マーカー」または「分化指向性マーカー遺伝子」は、多能性幹細胞に発現しているマーカー(遺伝子)であって、発現量の多寡により該多能性幹細胞の分化指向性を評価することが可能なものを意味する。例えば本発明者らにより分化指向性マーカーであることが確認されたPF4の場合、ある多能性幹細胞においてPF4の発現量が標準的な多能性幹細胞より多い場合に、当該多能性幹細胞は心筋細胞への分化指向性が高いと評価される。本開示において「標準的な発現量」とは、これに限定するものではないが、例えば複数の多能性幹細胞株における遺伝子の発現量の平均値などが挙げられる。発現量の平均値としては、例えば無作為抽出された所定の個数(例えば5個、10個、15個など)の多能性幹細胞株における計測対象遺伝子の発現量の平均値などであってよい。 One aspect of the present disclosure relates to a method of determining a differentiation tropism marker for evaluating differentiation tropism into a specific differentiation-induced cell. In the present disclosure, "differentiation-directed marker" or "differentiation-directed marker gene" is a marker (gene) expressed in pluripotent stem cells, and the amount of expression determines the differentiation tropism of the pluripotent stem cells. means that it is possible to evaluate For example, in the case of PF4, which has been confirmed by the present inventors to be a differentiation-oriented marker, when the expression level of PF4 is higher in a certain pluripotent stem cell than in a standard pluripotent stem cell, the pluripotent stem cell is It is evaluated to have a high differentiation tropism to cardiomyocytes. In the present disclosure, the “standard expression level” includes, but is not limited to, the average expression level of genes in multiple pluripotent stem cell lines. The average expression level may be, for example, the average expression level of the gene to be measured in a predetermined number (eg, 5, 10, 15, etc.) of pluripotent stem cell lines that are randomly sampled. .

本開示の分化指向性マーカーの決定方法は、以下の工程を含む:
(1)複数の多能性幹細胞株における遺伝子発現量を測定すること;
(2)前記複数の多能性幹細胞株におけるmiRNAの発現量を測定すること;
(3)特定の分化誘導細胞への分化指向性の高い多能性幹細胞株と低い多能性幹細胞株との間に有意に発現量に差異のある遺伝子を抽出すること;
(4)前記特定の分化誘導細胞への分化指向性の高い多能性幹細胞株と低い多能性幹細胞株との間に有意に発現量に差異のあるmiRNAを抽出すること;および
(5)(3)で抽出された遺伝子から(4)で抽出されたmiRNAと関与する遺伝子を選択すること。
The method of determining a differentiation-tropic marker of the present disclosure includes the following steps:
(1) measuring gene expression levels in multiple pluripotent stem cell lines;
(2) measuring the expression level of miRNA in the plurality of pluripotent stem cell lines;
(3) Extracting genes with significantly different expression levels between a pluripotent stem cell line with high differentiation tropism to a specific differentiation-inducing cell and a pluripotent stem cell line with low differentiation tropism;
(4) extracting miRNAs with significantly different expression levels between a pluripotent stem cell line with high differentiation tropism to the specific differentiation-inducing cell and a pluripotent stem cell line with low differentiation tropism; and (5) Selecting a gene associated with the miRNA extracted in (4) from the genes extracted in (3).

工程(1)において、複数の多能性幹細胞株における遺伝子の発現量を、それぞれ定量的に測定する。かかる遺伝子発現量の測定は、網羅的に行われてよい。複数の多能性幹細胞株は、特定の分化誘導細胞への分化指向性が高いことが知られている少なくとも1種の多能性幹細胞株と前記特定の分化誘導細胞への分化指向性が低いことが知られている少なくとも1種の多能性幹細胞株とを含む。特定の分化誘導細胞への分化指向性は、当該技術分野において既知の方法や本開示に記載の方法などを用いて同定することができる。遺伝子の発現量の測定は、当該技術分野において既知の方法、例えばリアルタイムPCR法、マイクロアレイ法、ハイスループットシークエンシング法などを用いて行うことができる。 In step (1), the expression levels of genes in a plurality of pluripotent stem cell lines are quantitatively measured. Such gene expression level measurement may be performed comprehensively. The plurality of pluripotent stem cell lines includes at least one pluripotent stem cell line known to have a high differentiation tropism to specific differentiation-inducing cells and a low differentiation tropism to the specific differentiation-inducing cells. and at least one pluripotent stem cell line known to A differentiation propensity toward a particular differentiation-induced cell can be identified using methods known in the art, methods described in this disclosure, and the like. Gene expression levels can be measured using methods known in the art, such as real-time PCR, microarray, high-throughput sequencing, and the like.

工程(2)において、複数の多能性幹細胞株におけるmiRNAの発現量を、それぞれ定量的に測定する。かかる複数の多能性幹細胞株は、工程(1)において遺伝子の発現量を測定された複数の多能性幹細胞株と同一の多能性幹細胞株である。miRNAの発現量の測定は、当該技術分野において既知の方法、例えばリアルタイムPCR法、マイクロアレイ法、ハイスループットシークエンシング法などを用いて行うことができる。 In step (2), the expression levels of miRNAs in multiple pluripotent stem cell lines are quantitatively measured. Such multiple pluripotent stem cell lines are the same pluripotent stem cell lines as the multiple pluripotent stem cell lines whose gene expression levels were measured in step (1). Measurement of miRNA expression levels can be performed using methods known in the art, such as real-time PCR, microarray, high-throughput sequencing, and the like.

工程(3)において、特定の分化誘導細胞への分化指向性の高い多能性幹細胞株と低い多能性幹細胞株との間に有意に発現量に差異のある遺伝子を抽出する。例えば、分化指向性の高い多能性幹細胞株と分化指向性の低い多能性幹細胞株とを比較して、1.5倍以上、2倍以上、2.5倍以上、3倍以上、5倍以上、10倍以上などの発現量の差がある遺伝子を抽出してよい。かかる発現量は、どちらの多能性幹細胞株で高くてもよく、例えば分化指向性の高い多能性幹細胞株において高発現していてもよいし、分化指向性の低い多能性幹細胞株において高発現していてもよい。好ましい一態様において、分化指向性の高い多能性幹細胞株において有意に高発現している遺伝子が抽出される。別の好ましい一態様において、分化指向性の低い多能性幹細胞株において有意に高発現している遺伝子が抽出される。 In step (3), a gene having a significantly different expression level between a pluripotent stem cell line with high differentiation tropism into a specific differentiation-inducing cell and a pluripotent stem cell line with low differentiation tropism is extracted. For example, comparing a pluripotent stem cell line with high differentiation tropism and a pluripotent stem cell line with low differentiation tropism, 1.5 times or more, 2 times or more, 2.5 times or more, 3 times or more, 5 times or more A gene with a difference in expression level of 10-fold or more, or 1-fold or more, may be extracted. Such an expression level may be high in either pluripotent stem cell line, for example, it may be highly expressed in a pluripotent stem cell line with high differentiation tropism, or may be highly expressed in a pluripotent stem cell line with low differentiation tropism It may be highly expressed. In a preferred embodiment, genes that are significantly highly expressed in a pluripotent stem cell line with high differentiation tropism are extracted. In another preferred embodiment, genes that are significantly highly expressed in pluripotent stem cell lines with low differentiation tropism are extracted.

工程(4)において、特定の分化誘導細胞への分化指向性の高い多能性幹細胞株と低い多能性幹細胞株との間に有意に発現量に差異のあるmiRNAを抽出する。例えば、分化指向性の高い多能性幹細胞株と分化指向性の低い多能性幹細胞株とを比較して、1.5倍以上、2倍以上、2.5倍以上、3倍以上、5倍以上、10倍以上などの発現量の差があるmiRNAを抽出してよい。かかる発現量は、どちらの多能性幹細胞株で高くてもよく、例えば分化指向性の高い多能性幹細胞株において高発現していてもよいし、分化指向性の低い多能性幹細胞株において高発現していてもよい。好ましい一態様において、分化指向性の高い多能性幹細胞株において有意に高発現しているmiRNAが抽出される。別の好ましい一態様において、分化指向性の低い多能性幹細胞株において有意に高発現しているmiRNAが抽出される。 In step (4), miRNAs with significantly different expression levels are extracted between a pluripotent stem cell line with high differentiation tropism into specific differentiation-induced cells and a pluripotent stem cell line with low differentiation tropism. For example, comparing a pluripotent stem cell line with high differentiation tropism and a pluripotent stem cell line with low differentiation tropism, 1.5 times or more, 2 times or more, 2.5 times or more, 3 times or more, 5 times or more A miRNA having a difference in expression level of 10-fold or more, or 1-fold or more, may be extracted. Such an expression level may be high in either pluripotent stem cell line, for example, it may be highly expressed in a pluripotent stem cell line with high differentiation tropism, or may be highly expressed in a pluripotent stem cell line with low differentiation tropism It may be highly expressed. In a preferred embodiment, miRNAs that are significantly highly expressed in pluripotent stem cell lines with high differentiation tropism are extracted. In another preferred embodiment, miRNAs that are significantly highly expressed in pluripotent stem cell lines with low differentiation tropism are extracted.

工程(5)において、工程(3)で抽出された遺伝子の中から工程(4)で抽出されたmiRNAと関与する遺伝子が選択される。あるmiRNAと関与する遺伝子を同定する方法としては、当該技術分野において既知の方法を用いてよく、かかる方法としては、例えばパスウェイ解析法、miRNAの標的遺伝子のデーターベース(TargetScan)などが挙げられる。本工程により、miRNAの発現における有意差に起因して発現量に有意差が生じている遺伝子が選択されることになる。 In step (5), genes associated with the miRNA extracted in step (4) are selected from among the genes extracted in step (3). As a method for identifying a gene associated with a miRNA, a method known in the art may be used, and such methods include, for example, a pathway analysis method, miRNA target gene database (TargetScan), and the like. By this step, genes with significant differences in expression levels due to significant differences in miRNA expression are selected.

本開示の別の一側面は、特定の分化誘導細胞への分化指向性を指標化する方法に関する。本開示の指標化方法は以下の工程を含む:
(a)対象の多能性幹細胞における少なくとも1種の分化指向性マーカー遺伝子、例えばミトコンドリア関連遺伝子、WNTシグナル伝達調節因子、TGFβシグナル伝達調節因子、各胚葉の関連遺伝子および未分化細胞関連遺伝子など、の発現量を計測すること
(b)(a)で測定した分化指向性マーカー遺伝子の発現量を基準と比較すること。
Another aspect of the present disclosure relates to a method of indexing differentiation propensity to specific differentiation-inducing cells. The indexing method of the present disclosure includes the following steps:
(a) at least one differentiation-directed marker gene in the pluripotent stem cells of interest, such as mitochondria-associated genes, WNT signaling regulators, TGFβ signaling regulators, genes associated with each germ layer and genes associated with undifferentiated cells; (b) comparing the expression level of the differentiation-directed marker gene measured in (a) with a reference;

「各胚葉の関連遺伝子」は、分化誘導細胞が由来する胚葉の関連遺伝子を意味し、例えば分化誘導細胞が心筋細胞であれば中胚葉関連遺伝子、神経系の細胞であれば外胚葉関連遺伝子、消化管の細胞であれば内胚葉関連遺伝子を意味する。
遺伝子の発現量を計測する工程においては、さらに特定の分化誘導細胞に関連する遺伝子の発現量を計測してもよい。例えば分化誘導細胞が心筋細胞であれば心筋細胞関連遺伝子をさらに計測してよい。
"Genes related to each germ layer" means genes related to the germ layer from which differentiation-inducing cells are derived. For example, if the differentiation-inducing cells are cardiomyocytes, mesoderm-related genes; In the case of cells of the gastrointestinal tract, it means endoderm-related genes.
In the step of measuring the gene expression level, the expression level of a gene related to specific differentiation-inducing cells may be measured. For example, if the differentiation-induced cells are cardiomyocytes, cardiomyocyte-related genes may be further measured.

以下に分化誘導細胞が心筋細胞である場合を例として、本発明を詳述する。
<1>本開示の指標化方法
本開示の一側面は、特定の分化誘導細胞、特に心筋細胞への分化指向性を指標化する方法に関する。本開示の指標化方法は以下の工程(a)および(b)を含む:
(a)対象の多能性幹細胞におけるミトコンドリア関連遺伝子、WNTシグナル伝達調節因子、TGFβシグナル伝達調節因子、中胚葉関連遺伝子、心筋細胞関連遺伝子および未分化細胞関連遺伝子からなる群から選択される少なくとも1種の分化指向性マーカー遺伝子の発現量を計測すること
(b)(a)で測定した遺伝子の発現量を基準と比較すること。
The present invention will be described in detail below, taking as an example the case where the differentiation-inducing cells are myocardial cells.
<1> Indexing Method of the Present Disclosure One aspect of the present disclosure relates to a method of indexing differentiation tropism into specific differentiation-inducing cells, particularly cardiomyocytes. The indexing method of the present disclosure includes the following steps (a) and (b):
(a) at least one selected from the group consisting of mitochondria-related genes, WNT signaling regulators, TGFβ signaling regulators, mesoderm-related genes, cardiomyocyte-related genes and undifferentiated cell-related genes in the pluripotent stem cells of interest (b) comparing the expression level of the gene measured in (a) with a standard;

工程(a)において、多能性幹細胞における分化指向性マーカー遺伝子の発現量を計測する。遺伝子の発現量の計測は、当該技術分野において知られた通常の方法を用いて行うことができる。かかる方法としては、これに限定するものではないが、例えばリアルタイムPCR法、マイクロアレイ法、ハイスループットシークエンシング法などが挙げられる。 In step (a), the expression level of a differentiation-oriented marker gene in pluripotent stem cells is measured. Gene expression levels can be measured using conventional methods known in the art. Examples of such methods include, but are not limited to, real-time PCR methods, microarray methods, high-throughput sequencing methods, and the like.

発現量が計測される分化指向性マーカー遺伝子は、ミトコンドリア関連遺伝子、WNTシグナル伝達調節因子、TGFβシグナル伝達調節因子、中胚葉関連遺伝子、心筋細胞関連遺伝子および未分化細胞関連遺伝子からなる群から選択される少なくとも1種の遺伝子である。
ミトコンドリア関連遺伝子としては、これに限定するものではないが、例えばCHCHD2、SFXN3、CREB1、PPARGC1A、PPARGC1B、CAMK4、PPP3CA、MYEF2、PPRC1、PKA、NRF1、GABPA、GABPB2、ESRRA、TFB2M、TFB1M、TFAM、POLRMTまたはMTERFなどが挙げられる。したがって一態様において、工程(a)において、CHCHD2、SFXN3、CREB1、PPARGC1A、PPARGC1B、CAMK4、PPP3CA、MYEF2、PPRC1、PKA、NRF1、GABPA、GABPB2、ESRRA、TFB2M、TFB1M、TFAM、POLRMTおよびMTERFからなる群から選択される少なくとも1種のミトコンドリア関連遺伝子の発現量が計測される。好ましい一態様において、ミトコンドリア関連遺伝子として、CHCHD2および/またはSFXN3の発現量が計測される。
Differentiation-oriented marker genes whose expression levels are measured are selected from the group consisting of mitochondria-related genes, WNT signaling regulatory factors, TGFβ signaling regulatory factors, mesoderm-related genes, cardiomyocyte-related genes and undifferentiated cell-related genes. at least one gene that
Examples of mitochondria-related genes include, but are not limited to, CHCHD2, SFXN3, CREB1, PPARGC1A, PPARGC1B, CAMK4, PPP3CA, MYEF2, PPRC1, PKA, NRF1, GABPA, GABPB2, ESRRA, TFB2M, TFB1M, TFAM, POLRMT or MTERF and the like. Thus, in one aspect, in step (a), The expression level of at least one mitochondria-related gene selected from the group is measured. In a preferred embodiment, the expression levels of CHCHD2 and/or SFXN3 are measured as mitochondria-related genes.

WNTシグナル伝達調節因子としては、これに限定するものではないが、例えば下表に記載のものなどが挙げられる。

Figure 0007173496000001
特に好ましいWNTシグナル伝達調節因子としては、PF4、TMEM64、KDM6A、APC、βカテニン、Axin、CK1、Dsh、GSK-3β、Dkk、WIF、FRP、Cerberus、TCF、Krn、WNT1、WNT2、WNT3、WNT4、WNT5A、WNT7A、WNT7B、WNT8B、WNT10B、WNT11、WNT2B、WNT9A、WNT9B、LRP5またはLRP6などが挙げられる。したがって一態様において、工程(a)において、PF4、TMEM64、KDM6A、APC、βカテニン、Axin、CK1、Dsh、GSK-3β、Dkk、WIF、FRP、Cerberus、TCF、Krn、WNT1、WNT2、WNT3、WNT4、WNT5A、WNT7A、WNT7B、WNT8B、WNT10B、WNT11、WNT2B、WNT9A、WNT9B、LRP5およびLRP6からなる群から選択される少なくとも1種のWNTシグナル伝達調節因子の発現量が計測される。好ましい一態様において、WNTシグナル伝達調節因子としてPF4またはTMEM64の発現量が、より好ましい一態様においてPF4の発現量が計測される。WNT signaling modulators include, but are not limited to, those listed in the table below.
Figure 0007173496000001
Particularly preferred WNT signaling modulators include PF4, TMEM64, KDM6A, APC, β-catenin, Axin, CK1, Dsh, GSK-3β, Dkk, WIF, FRP, Cerberus, TCF, Krn, WNT1, WNT2, WNT3, WNT4 , WNT5A, WNT7A, WNT7B, WNT8B, WNT10B, WNT11, WNT2B, WNT9A, WNT9B, LRP5 or LRP6. Thus, in one aspect, in step (a), PF4, TMEM64, KDM6A, APC, β-catenin, Axin, CK1, Dsh, GSK-3β, Dkk, WIF, FRP, Cerberus, TCF, Krn, WNT1, WNT2, WNT3, The expression level of at least one WNT signaling regulator selected from the group consisting of WNT4, WNT5A, WNT7A, WNT7B, WNT8B, WNT10B, WNT11, WNT2B, WNT9A, WNT9B, LRP5 and LRP6 is measured. In a preferred embodiment, the expression level of PF4 or TMEM64 as a WNT signaling regulator is measured, and in a more preferred embodiment, the expression level of PF4 is measured.

TGFβシグナル伝達調節因子としては、これに限定するものではないが、例えば下表に記載のものなどが挙げられる。

Figure 0007173496000002
特に好ましいTGFβシグナル伝達調節因子としては、SKIL、THBS1、CD3、TLR2、SMAD1、SMAD2、SMAD3、SMAD4、SMAD5、SMAD6、SMAD7、SMAD9、TGFBR1、TGFBR2、MAPK1、MAPK3、ROCK1、BMP2、BMP4、BMP5、BMP6、BMP7、BMP8B、BMPR1AまたはBMPR1Bなどが挙げられる。したがって一態様において、工程(a)において、SKIL、THBS1、CD3、TLR2、SMAD1、SMAD2、SMAD3、SMAD4、SMAD5、SMAD6、SMAD7、SMAD9、TGFBR1、TGFBR2、MAPK1、MAPK3、ROCK1、BMP2、BMP4、BMP5、BMP6、BMP7、BMP8B、BMPR1AおよびBMPR1Bからなる群から選択される少なくとも1種のTGFβシグナル伝達調節因子の発現量が計測される。好ましい一態様において、TGFβシグナル伝達調節因子として、SKILの発現量が計測される。Examples of TGFβ signaling modulators include, but are not limited to, those listed in the table below.
Figure 0007173496000002
Particularly preferred TGFβ signaling modulators include SKIL, THBS1, CD3, TLR2, SMAD1, SMAD2, SMAD3, SMAD4, SMAD5, SMAD6, SMAD7, SMAD9, TGFBR1, TGFBR2, MAPK1, MAPK3, ROCK1, BMP2, BMP4, BMP5, BMP6, BMP7, BMP8B, BMPR1A or BMPR1B and the like. Thus, in one aspect, in step (a), SKIL, THBS1, CD3, TLR2, SMAD1, SMAD2, SMAD3, SMAD4, SMAD5, SMAD6, SMAD7, SMAD9, TGFBR1, TGFBR2, MAPK1, MAPK3, ROCK1, BMP2, BMP4, BMP5 , BMP6, BMP7, BMP8B, BMPR1A and BMPR1B. In a preferred embodiment, the expression level of SKIL is measured as a TGFβ signaling regulator.

中胚葉遺伝子としては、これに限定するものではないが、例えば、FLK1、BRACHYURY、GOOSECOID、PDGFR-a、IGF2、CD34、CLL1、HHEX,INHBA,LEF1、SRF、T、TWIST1、ADIPOQ、MME、KIT、ITGAL、Tbx1、Gata1、Klf1、Csf1r、CD45またはTer119などが挙げられる。したがって一態様において、工程(a)において、FLK1、BRACHYURY、GOOSECOID、PDGFR-a、IGF2、CD34、CLL1、HHEX,INHBA,LEF1、SRF、T、TWIST1、ADIPOQ、MME、KIT、ITGAL、Tbx1、Gata1、Klf1、Csf1r、CD45およびTer119からなる群から選択される少なくとも1種の中胚葉遺伝子の発現量が計測される。好ましい一態様において、中胚葉遺伝子として、FLK1、BRACHYURY、GOOSECOIDおよび/またはPDGFR-aの発現量が計測される。 Examples of mesoderm genes include, but are not limited to, FLK1, BRACHYURY, GOOSECOID, PDGFR-a, IGF2, CD34, CLL1, HHEX, INHBA, LEF1, SRF, T, TWIST1, ADIPOQ, MME, KIT , ITGAL, Tbx1, Gata1, Klf1, Csf1r, CD45 or Ter119. Thus, in one aspect, in step (a), FLK1, BRACHYURY, GOOSECOID, PDGFR-a, IGF2, CD34, CLL1, HHEX, INHBA, LEF1, SRF, T, TWIST1, ADIPOQ, MME, KIT, ITGAL, Tbx1, Gata1 , Klf1, Csf1r, CD45 and Ter119. In a preferred embodiment, the expression levels of FLK1, BRACHYURY, GOOSECOID and/or PDGFR-a are measured as mesoderm genes.

心筋細胞関連遺伝子としては、これに限定するものではないが、例えば、TNT2、MYL2、GATA4、MYH6、MYH7、Nkx2.5、SCN5A、RYR2、PPARGC1、MYL2、HCN4、CACNa1C、ATP2A2、Actc1、Cx43、TEF-1またはTbx-5などが挙げられる。したがって一態様において、工程(a)において、TNT2、MYL2、GATA4、MYH6、MYH7、Nkx2.5、SCN5A、RYR2、PPARGC1、MYL2、HCN4、CACNa1C、ATP2A2、Actc1、Cx43、TEF-1およびTbx-5からなる群から選択される少なくとも1種の心筋細胞関連遺伝子の発現量が計測される。好ましい一態様において、心筋細胞関連遺伝子として、TNT2、MYL2、GATA4、MYH6、MYH7、Nkx2.5、SCN5A、RYR2、PPARGC1、MYL2、HCN4、CACNa1Cおよび/またはATP2A2の発現量が計測される。 Examples of cardiomyocyte-related genes include, but are not limited to, TNT2, MYL2, GATA4, MYH6, MYH7, Nkx2.5, SCN5A, RYR2, PPARGC1, MYL2, HCN4, CACNa1C, ATP2A2, Actc1, Cx43, Examples include TEF-1 or Tbx-5. Thus, in one aspect, in step (a), TNT2, MYL2, GATA4, MYH6, MYH7, Nkx2.5, SCN5A, RYR2, PPARGC1, MYL2, HCN4, CACNalC, ATP2A2, Actc1, Cx43, TEF-1 and Tbx-5 The expression level of at least one cardiomyocyte-related gene selected from the group consisting of is measured. In a preferred embodiment, expression levels of cardiomyocyte-related genes TNT2, MYL2, GATA4, MYH6, MYH7, Nkx2.5, SCN5A, RYR2, PPARGC1, MYL2, HCN4, CACNa1C and/or ATP2A2 are measured.

未分化細胞関連遺伝子としては、これに限定するものではないが、例えば、Oct-4、Nanog、Lin28、SOX2、c-Myc、Klf4、TRA-1-60、SSEA-4、Oct3/4、Nanog、Cripto、Dax1、ERas、Fgf4、Esg1、Rex1、Zfp296、UTF1、GDF3、Sall4、Tbx3、Tcf3、DNMT3L、DNMT3B、Tra-1-81またはmiR-290クラスターのmiRNA、miR-302クラスターのmiRNAなどが挙げられる。したがって一態様において、工程(a)において、Oct-4、Nanog、Lin28、SOX2、c-Myc、Klf4、TRA-1-60、SSEA-4、Oct3/4、Nanog、Cripto、Dax1、ERas、Fgf4、Esg1、Rex1、Zfp296、UTF1、GDF3、Sall4、Tbx3、Tcf3、DNMT3L、DNMT3B、Tra-1-81、miR-290クラスターのmiRNAおよびmiR-302クラスターのmiRNAからなる群から選択される少なくとも1種の未分化細胞関連遺伝子の発現量が計測される。好ましい一態様において、未分化細胞関連遺伝子として、Oct-4、Nanogおよび/またはLin28の発現量が計測される。 Undifferentiated cell-related genes include, but are not limited to, Oct-4, Nanog, Lin28, SOX2, c-Myc, Klf4, TRA-1-60, SSEA-4, Oct3/4, Nanog , Cripto, Dax1, ERas, Fgf4, Esg1, Rex1, Zfp296, UTF1, GDF3, Sall4, Tbx3, Tcf3, DNMT3L, DNMT3B, Tra-1-81 or miR-290 cluster miRNA, miR-302 cluster miRNA, etc. mentioned. Thus, in one aspect, in step (a), Oct-4, Nanog, Lin28, SOX2, c-Myc, Klf4, TRA-1-60, SSEA-4, Oct3/4, Nanog, Cripto, Dax1, ERAs, Fgf4 , Esg1, Rex1, Zfp296, UTF1, GDF3, Sall4, Tbx3, Tcf3, DNMT3L, DNMT3B, Tra-1-81, miR-290 cluster miRNA and miR-302 cluster miRNA at least one selected from the group consisting of The expression level of the undifferentiated cell-related gene is measured. In a preferred embodiment, the expression levels of Oct-4, Nanog and/or Lin28 are measured as undifferentiated cell-related genes.

より好ましい一態様において、上述の遺伝子群から選択される少なくとも2種の遺伝子の発現量を計測する。すなわち、CHCHD2、SFXN3、KDM6A、SKIL、FLK1、BRACHYURY、GOOSECOID、PDGFR-a、TNT2、ML2、GATA4、MYH6、MYH7、Nkx2.5、SCN5A、RYR2、PPARGC1、MYL2、HCN4、CACNa1C、ATP2A2、Oct-4、NanogおよびLin28から選択される少なくとも2種の遺伝子の発現量が計測される。 In a more preferred embodiment, the expression levels of at least two genes selected from the gene group described above are measured. That is, CHCHD2, SFXN3, KDM6A, SKIL, FLK1, BRACHYURY, GOOSECOID, PDGFR-a, TNT2, ML2, GATA4, MYH6, MYH7, Nkx2.5, SCN5A, RYR2, PPARGC1, MYL2, HCN4, CACNa1C, ATP2A2, Oct- 4, the expression levels of at least two genes selected from Nanog and Lin28 are measured.

別の好ましい一態様において、分化指向性マーカー遺伝子として、PF4、CHCHD2、AMMECR1、API5、BCOR、BRWD1、CLEC4G、GLIPR1、HELB、KDM6A、LOC388796、NKTR、POMZP3、ZP3、PRUNE2、RBMX、RC3H1、SKIL、SORBS2およびSRSF11からなる群から選択される少なくとも1種の遺伝子の発現量が計測される。
さらに別の好ましい一態様において、分化指向性マーカー遺伝子として、TMEM64、ACTN3、LOC284373、LOC441666、PLCB1、SYNPR、TMEM163、U2AF1L4、VWDE、ZNF229およびZNF354Cからなる群から選択される少なくとも1種の遺伝子の発現量が計測される。
In another preferred embodiment, the differentiation-directed marker gene includes PF4, CHCHD2, AMMECR1, API5, BCOR, BRWD1, CLEC4G, GLIPR1, HELB, KDM6A, LOC388796, NKTR, POMZP3, ZP3, PRUNE2, RBMX, RC3H1, SKIL, The expression level of at least one gene selected from the group consisting of SORBS2 and SRSF11 is measured.
In yet another preferred embodiment, expression of at least one gene selected from the group consisting of TMEM64, ACTN3, LOC284373, LOC441666, PLCB1, SYNPR, TMEM163, U2AF1L4, VWDE, ZNF229 and ZNF354C as differentiation-directed marker genes quantity is measured.

工程(b)において、(a)で測定した遺伝子の発現量を基準と比較する。比較対象となる基準としては、これに限定するものではないが、例えば心筋細胞への分化指向性が低いことが既知の多能性幹細胞株における同一遺伝子の発現量、心筋細胞への分化指向性が低いことが既知の複数の多能性幹細胞株における同一遺伝子の発現量の平均値、心筋細胞への分化指向性が高いことが既知の多能性幹細胞株における同一遺伝子の発現量、心筋細胞への分化指向性が高いことが既知の複数の多能性幹細胞株における同一遺伝子の発現量の平均値、複数の多能性幹細胞株における同一遺伝子の発現量の平均値、中胚葉系列組織への分化指向性が低いことが既知の複数の多能性幹細胞株における同一遺伝子の発現量、中胚葉系列組織への分化指向性が高いことが既知の複数の多能性幹細胞株における同一遺伝子の発現量、内胚葉系列組織への分化指向性が低いことが既知の複数の多能性幹細胞株における同一遺伝子の発現量、内胚葉系列組織への分化指向性が高いことが既知の複数の多能性幹細胞株における同一遺伝子の発現量、外胚葉系列組織への分化指向性が高いことが既知の複数の多能性幹細胞株における同一遺伝子の発現量、外胚葉系列組織への分化指向性が低いことが既知の複数の多能性幹細胞株における同一遺伝子の発現量などが挙げられる。 In step (b), the gene expression level measured in (a) is compared with a reference. Standards for comparison include, but are not limited to, expression levels of the same genes in pluripotent stem cell lines known to have low cardiomyocyte differentiation tropism, cardiomyocyte differentiation tropism Mean expression level of the same gene in multiple pluripotent stem cell lines known to have low cardiomyocyte expression levels, expression level of the same gene in pluripotent stem cell lines known to have a high differentiation Mean expression level of the same gene in multiple pluripotent stem cell lines known to have a high differentiation tropism, Mean expression level of the same gene in multiple pluripotent stem cell lines, Mesodermal lineage tissue The expression level of the same gene in multiple pluripotent stem cell lines known to have low differentiation tropism, and the expression level of the same gene in multiple pluripotent stem cell lines known to have high differentiation tropism toward mesodermal lineage The expression level, the expression level of the same gene in multiple pluripotent stem cell lines known to have low differentiation tropism toward the endodermal lineage, and the expression level of the same gene in multiple pluripotent stem cell lines known to have high The expression level of the same gene in a potent stem cell line, the expression level of the same gene in multiple pluripotent stem cell lines known to have a high differentiation tropism to the ectodermal lineage, Examples include the expression level of the same gene in multiple pluripotent stem cell lines known to be low.

これらの基準は、当該技術分野において既知の数値や予め測定および記録していた値を用いてもよいし、上記(a)の工程と併せて本開示の指標化方法を実施する時に測定してもよい。これらの基準と比較することにより対象多能性幹細胞株の分化指向性マーカーを指標化し、かかる指標に基づいて対象多能性幹細胞株が心筋細胞への分化指向性が高い株であるか否かを決定することができる。
(a)で測定した発現量と基準とを比較する場合、両値は同じ方法により測定された値であることが好ましいが、これに限定されない。異なる方法で測定された値である場合、直接的な比較が可能となるように値を変換してもよい。
For these criteria, numerical values known in the art or previously measured and recorded values may be used, or when performing the indexing method of the present disclosure in conjunction with step (a) above, good too. By comparing with these criteria, the target pluripotent stem cell line differentiation tropism marker is indexed, and whether the target pluripotent stem cell line has a high cardiomyocyte differentiation tropism based on the index can be determined.
When comparing the expression level measured in (a) with a reference, both values are preferably measured by the same method, but are not limited to this. If the values are measured in different ways, the values may be transformed to allow direct comparison.

本開示の一態様において、心筋細胞への分化指向性が低いことが既知の多能性幹細胞株における同一遺伝子の発現量または心筋細胞への分化指向性が低いことが既知の複数の多能性幹細胞株における同一遺伝子の発現量の平均値を基準として比較する。この場合、(a)で測定した発現量が基準値よりも有意に高い場合、対象の多能性幹細胞株が心筋細胞への分化指向性が高いと決定し得る。 In one aspect of the present disclosure, the expression level of the same gene in a pluripotent stem cell line known to have a low differentiation tropism to cardiomyocytes or a plurality of pluripotent cells known to have a low differentiation tropism to cardiomyocytes The average value of the expression level of the same gene in stem cell lines is used as a standard for comparison. In this case, if the expression level measured in (a) is significantly higher than the reference value, it can be determined that the subject pluripotent stem cell line has a high cardiomyocyte differentiation tropism.

本開示の別の一態様において、心筋細胞への分化指向性が高いことが既知の多能性幹細胞株における同一遺伝子の発現量または心筋細胞への分化指向性が高いことが既知の複数の多能性幹細胞株における同一遺伝子の発現量の平均値を基準として比較する。この場合、(a)で測定した発現量が基準値と同等であるか、またはそれよりも有意に高い場合、対象の多能性幹細胞株が心筋細胞への分化指向性が高いと決定し得る。本開示において「有意に」とは、統計学上意味のある差異であることを意味する。例えば、ある計測値がある統計量と比較して極端に乖離した数値を示す場合に「有意」であるとする。 In another aspect of the present disclosure, the expression level of the same gene in a pluripotent stem cell line known to have a high cardiomyocyte differentiation tropism or a plurality of multipotent cells known to have a high cardiomyocyte differentiation tropism The average value of the expression level of the same gene in the potential stem cell line is used as a standard for comparison. In this case, if the expression level measured in (a) is equal to or significantly higher than the reference value, it can be determined that the subject pluripotent stem cell line has a high cardiomyocyte differentiation tropism. . In the present disclosure, "significantly" means a statistically significant difference. For example, it is assumed that a measured value is “significant” when it shows a numerical value that is extremely deviated from a certain statistic.

本開示のさらに別の一態様において、複数の多能性幹細胞株における同一遺伝子の発現量の平均値を基準として比較する。この場合、(a)で測定した発現量が基準値よりも有意に高い場合、対象の多能性幹細胞株が心筋細胞への分化指向性が高いと決定し得る。 In yet another aspect of the present disclosure, comparison is made using the average expression level of the same gene in a plurality of pluripotent stem cell lines as a reference. In this case, if the expression level measured in (a) is significantly higher than the reference value, it can be determined that the subject pluripotent stem cell line has a high cardiomyocyte differentiation tropism.

一態様において、分化指向性マーカー遺伝子として、PF4、CHCHD2、AMMECR1、API5、BCOR、BRWD1、CLEC4G、GLIPR1、HELB、KDM6A、LOC388796、NKTR、POMZP3、ZP3、PRUNE2、RBMX、RC3H1、SKIL、SORBS2およびSRSF11からなる群から選択される少なくとも1種の遺伝子の発現量を計測する。この場合、(a)で測定した発現量が基準値よりも有意に高い場合、対象の多能性幹細胞株が心筋細胞への分化指向性が高いと決定し得る。別の一態様において、分化指向性マーカー遺伝子として、TMEM64、ACTN3、LOC284373、LOC441666、PLCB1、SYNPR、TMEM163、U2AF1L4、VWDE、ZNF229およびZNF354Cからなる群から選択される少なくとも1種の遺伝子の発現量を計測する。この場合、(a)で測定した発現量が基準値よりも有意に低い場合、対象の多能性幹細胞株が心筋細胞への分化指向性が高いと決定し得る。 In one embodiment, PF4, CHCHD2, AMMECR1, API5, BCOR, BRWD1, CLEC4G, GLIPR1, HELB, KDM6A, LOC388796, NKTR, POMZP3, ZP3, PRUNE2, RBMX, RC3H1, SKIL, SORBS2 and SRSF11 as differentiation-directed marker genes The expression level of at least one gene selected from the group consisting of is measured. In this case, if the expression level measured in (a) is significantly higher than the reference value, it can be determined that the subject pluripotent stem cell line has a high cardiomyocyte differentiation tropism. In another aspect, the expression level of at least one gene selected from the group consisting of TMEM64, ACTN3, LOC284373, LOC441666, PLCB1, SYNPR, TMEM163, U2AF1L4, VWDE, ZNF229 and ZNF354C as a differentiation-oriented marker gene measure. In this case, if the expression level measured in (a) is significantly lower than the reference value, it can be determined that the subject pluripotent stem cell line has a high cardiomyocyte differentiation tropism.

<2>本開示の多能性幹細胞
本発明者らにより、多能性幹細胞、とくに誘導多能性幹細胞(iPS細胞)において心筋細胞への分化指向性が高い細胞株が存在すること、およびかかる多能性幹細胞株の遺伝的特徴が初めて見いだされた。したがって本開示の一側面は、ミトコンドリア関連遺伝子、WNTシグナル伝達調節因子、TGFβシグナル伝達調節因子、中胚葉関連遺伝子、心筋細胞関連遺伝子および未分化細胞関連遺伝子からなる群から選択される少なくとも1種の遺伝子の発現量が高いことを特徴とする、心筋細胞への分化指向性が高い多能性幹細胞を包含する。
<2> Pluripotent Stem Cells of the Present Disclosure The present inventors have found that pluripotent stem cells, particularly induced pluripotent stem cells (iPS cells), exist in cell lines that are highly oriented toward cardiomyocyte differentiation, and that such cell lines exist. The genetic signature of a pluripotent stem cell line has been found for the first time. Accordingly, one aspect of the present disclosure provides at least one selected from the group consisting of mitochondria-related genes, WNT signaling regulators, TGFβ signaling regulators, mesoderm-related genes, cardiomyocyte-related genes and undifferentiated cell-related genes. It includes pluripotent stem cells with high differentiation tropism to cardiomyocytes characterized by high gene expression levels.

上述のとおり本発明者らは、心筋細胞への分化指向性の高い多能性幹細胞株において、ミトコンドリア関連遺伝子、WNTシグナル伝達調節因子、TGFβシグナル伝達調節因子、中胚葉関連遺伝子、心筋細胞関連遺伝子および未分化細胞関連遺伝子が高発現していることを見出した。 As described above, the present inventors have found that in a pluripotent stem cell line highly oriented toward cardiomyocyte differentiation, mitochondria-related genes, WNT signaling regulatory factors, TGFβ signaling regulatory factors, mesoderm-related genes, cardiomyocyte-related genes and undifferentiated cell-related genes were found to be highly expressed.

本開示において、「発現量が高い」または「高発現している」とは、ある遺伝子の発現量が所定の値よりも高いことを言う。かかる「所定の値」としては、典型的には、当該遺伝子の発現量の平均値などが挙げられる。発現量の平均値としては、例えば無作為抽出された所定の個数(例えば5個、10個、15個など)の多能性幹細胞株における計測対象遺伝子の発現量の平均値であってよい。 In the present disclosure, "highly expressed" or "highly expressed" means that the expression level of a gene is higher than a predetermined value. Such a "predetermined value" typically includes the average expression level of the gene. The average expression level may be, for example, the average expression level of the gene to be measured in a predetermined number (for example, 5, 10, 15, etc.) of randomly-extracted pluripotent stem cell lines.

本開示の多能性幹細胞株において高発現している遺伝子としては、ミトコンドリア関連遺伝子、WNTシグナル伝達調節因子、TGFβシグナル伝達調節因子、中胚葉関連遺伝子、心筋細胞関連遺伝子および未分化細胞関連遺伝子が挙げられる。これらの遺伝子の具体的な例としては、上記<1>において記載したものなどが挙げられる。 Genes that are highly expressed in the pluripotent stem cell lines of the present disclosure include mitochondria-related genes, WNT signaling regulators, TGFβ signaling regulators, mesoderm-related genes, cardiomyocyte-related genes, and undifferentiated cell-related genes. mentioned. Specific examples of these genes include those described in <1> above.

本開示の好ましい一態様において、多能性幹細胞がiPS細胞であり、より好ましくはヒトiPS細胞である。iPS細胞は、ベースとする体細胞の由来やリプログラミング因子の種類および導入方法などにより、それぞれの細胞株の特性に違いが生じる可能性が指摘されており、したがって分化指向性も細胞株ごとに異なることが予測される。また、iPS細胞を再生医療に用いる際のメリットとして、処置対象の自家細胞を用いて細胞株を樹立することが可能であることが挙げられる。したがって本発明によれば、対象の自家細胞から作製したiPS細胞から心筋細胞への分化指向性の高いものをスクリーニングして、新たな細胞株として樹立することも可能である。 In one preferred aspect of the present disclosure, the pluripotent stem cells are iPS cells, more preferably human iPS cells. It has been pointed out that the characteristics of each iPS cell may differ depending on the origin of the somatic cell used as the base, the type of reprogramming factor, and the method of introduction. expected to be different. Another advantage of using iPS cells in regenerative medicine is that it is possible to establish cell lines using autologous cells to be treated. Therefore, according to the present invention, iPS cells prepared from autologous cells of a subject can be screened for those with a high differentiation tropism to cardiomyocytes, and can be established as new cell lines.

多能性幹細胞から分化誘導細胞を調製する場合、未分化性が高いことが必要である。このことは、本開示の多能性幹細胞において未分化細胞関連遺伝子が高発現していることからも首肯される。すなわち、多能性幹細胞において未分化性が高いことは、所望の分化誘導細胞に分化させやすいと考えられる。本発明者らの試験により、心筋細胞への分化指向性そのものには、多能性幹細胞の未分化性は直接的には関係がないと考えられる結果が得られている。 When preparing differentiation-induced cells from pluripotent stem cells, they must be highly undifferentiated. This is also supported by the high expression of undifferentiated cell-related genes in the pluripotent stem cells of the present disclosure. That is, it is thought that the high undifferentiated nature of pluripotent stem cells facilitates differentiation into desired differentiation-inducing cells. The present inventors' tests have shown that the cardiomyocyte differentiation propensity itself is not directly related to the undifferentiated nature of pluripotent stem cells.

<3>本開示の胚様体
本発明者らにより、心筋細胞への分化指向性が高い多能性幹細胞を培養して得られる胚様体もまた心筋細胞への分化指向性が高いことが見出された。したがって本開示の一側面は、少なくとも1種の中胚葉遺伝子の発現量が高く、少なくとも1種の内胚葉遺伝子および/または外胚葉遺伝子の発現量が低いことを特徴とする、心筋細胞への分化指向性が高い胚様体を包含する。
<3> Embryoid bodies of the present disclosure The present inventors have found that embryoid bodies obtained by culturing pluripotent stem cells with a high differentiation tropism to cardiomyocytes also have a high differentiation tropism to cardiomyocytes. Found. Therefore, one aspect of the present disclosure is differentiation into cardiomyocytes, characterized by high expression of at least one mesoderm gene and low expression of at least one endoderm gene and/or ectoderm gene. It contains highly oriented embryoid bodies.

本開示の胚様体は、多能性幹細胞、好ましくは上記<2>に記載の多能性幹細胞を、当該技術分野において知られた方法で培養することにより得られる。具体的には例えば、ヒトiPS細胞をY27632(和光純薬)を含有するStemFit AK03培地(味の素)中で1日培養し、その後Y27632を含有しないStemFit AK03培地で2日間培養し、さらにその後BMP4を含有する培養液中で培養することにより得られる。 Embryoid bodies of the present disclosure are obtained by culturing pluripotent stem cells, preferably the pluripotent stem cells described in <2> above, by a method known in the art. Specifically, for example, human iPS cells are cultured in StemFit AK03 medium (Ajinomoto) containing Y27632 (Wako Pure Chemical Industries) for 1 day, then cultured in StemFit AK03 medium containing no Y27632 for 2 days, and then BMP4 is added. Obtained by culturing in the containing culture medium.

本開示の胚様体は、少なくとも1種の中胚葉遺伝子を高発現している。中胚葉遺伝子の具体的な例としては、上記<1>において記載したものなどが挙げられる。本開示の胚様体はまた、少なくとも1種の内胚葉遺伝子および/または外胚葉遺伝子の発現量が低い。ここで、「発現量が低い」とは、上記「発現量が高い」と逆で、ある遺伝子の発現量が所定の値よりも低いことを言う。かかる「所定の値」としては、典型的には、当該遺伝子の発現量の平均値などが挙げられる。発現量の平均値としては、例えば無作為抽出された所定の個数(例えば5個、10個、15個など)の胚様体における計測対象遺伝子の発現量の平均値であってよい。 The embryoid bodies of the present disclosure highly express at least one mesoderm gene. Specific examples of mesoderm genes include those described in <1> above. Embryoid bodies of the present disclosure also have reduced expression of at least one endoderm gene and/or ectoderm gene. Here, "low expression level" means that the expression level of a certain gene is lower than a predetermined value, which is the opposite of "high expression level". Such a "predetermined value" typically includes the average expression level of the gene. The average expression level may be, for example, the average expression level of the gene to be measured in a predetermined number (for example, 5, 10, 15, etc.) of randomly sampled embryoid bodies.

外胚葉遺伝子としては、これに限定するものではないが、例えば、SOX1、PAX6、またはZIC1などが挙げられる。内胚葉遺伝子としては、これに限定するものではないが、例えば、AMN、SOX7、SOX17、HNF3またはZIC1などが挙げられる。 Examples of ectodermal genes include, but are not limited to, SOX1, PAX6, or ZIC1. Endoderm genes include, but are not limited to, for example, AMN, SOX7, SOX17, HNF3 or ZIC1.

本開示の胚様体は、上述のとおり、少なくとも1種の中胚葉遺伝子の発現量が高く、少なくとも1種の内胚葉遺伝子および/または外胚葉遺伝子の発現量が低いという特徴を有し、これにより中胚葉由来の体細胞、特に心筋細胞に高い分化指向性を有するものである。かかる特徴は、心筋細胞に対して高い分化指向性を有する本開示の多能性幹細胞から作製される胚様体において、特に顕著に表れる。したがって好ましい一態様において、本開示の胚様体は、上記<2>に記載の本開示の多能性幹細胞から作製される。 As described above, the embryoid bodies of the present disclosure are characterized by high expression levels of at least one mesoderm gene and low expression levels of at least one endoderm gene and/or ectoderm gene. Therefore, it has a high differentiation tropism to somatic cells derived from mesoderm, especially cardiomyocytes. Such characteristics are particularly conspicuous in embryoid bodies produced from the pluripotent stem cells of the present disclosure, which have a high differentiation tropism for cardiomyocytes. Therefore, in a preferred embodiment, the embryoid body of the present disclosure is produced from the pluripotent stem cell of the present disclosure described in <2> above.

<4>本開示の分化誘導方法
本発明者らは、心筋細胞への分化指向性が高い多能性幹細胞の遺伝的特徴を見出し、かかる特徴を有する多能性幹細胞を用いて心筋細胞を分化誘導することにより、高効率で心筋細胞を得ることができることを見出した。したがって、本開示は一側面において、多能性幹細胞から高効率で心筋細胞を分化誘導する方法を包含する。
<4> Differentiation-inducing method of the present disclosure The present inventors discovered genetic characteristics of pluripotent stem cells with a high differentiation tropism to cardiomyocytes, and differentiated cardiomyocytes using pluripotent stem cells having such characteristics. It was found that cardiomyocytes can be obtained with high efficiency by induction. Accordingly, in one aspect, the present disclosure includes a method for highly efficient differentiation induction of cardiomyocytes from pluripotent stem cells.

本開示の分化誘導方法は、好ましい一態様において、本開示の多能性幹細胞または胚様体を用いる。かかる態様においては、分化誘導手法自体は当該技術分野において知られたいかなる手法を用いてもよい。多能性幹細胞から心筋細胞を分化誘導する手法としては、様々なものが知られている(例えば、Burridge et al., Cell Stem Cell. 2012 Jan 6;10(1):16-28)が、いずれの方法においても、中胚葉誘導因子(例えば、アクチビンA、BMP4、bFGF、VEGF、SCFなど)、心臓特異化(cardiac specification)因子(例えば、VEGF、DKK1、Wntシグナルインヒビター(例えば、IWR-1、IWP-2、IWP-3、IWP-4等)、BMPシグナルインヒビター(例えば、NOGGIN等)、TGFβ/アクチビン/NODALシグナルインヒビター(例えば、SB431542等)、レチノイン酸シグナルインヒビターなど)および心臓分化因子(例えば、VEGF、bFGF、DKK1など)を、順次作用させることにより誘導効率を高めることができる。一態様において、多能性幹細胞からの心筋細胞誘導処理は、BMP4を作用させて形成した胚様体に、(1)BMP4とbFGFとアクチビンAとの組み合わせ、(2)VEGFとIWP-3、および、(3)VEGFとbFGFとの組み合わせを順次作用させることを含む。 In a preferred embodiment, the differentiation-inducing method of the present disclosure uses the pluripotent stem cells or embryoid bodies of the present disclosure. In such an embodiment, any method known in the art may be used for the method of inducing differentiation. Various methods are known for inducing the differentiation of cardiomyocytes from pluripotent stem cells (for example, Burridge et al., Cell Stem Cell. 2012 Jan 6;10(1):16-28). In either method, mesoderm-inducing factors (e.g., activin A, BMP4, bFGF, VEGF, SCF, etc.), cardiac specification factors (e.g., VEGF, DKK1, Wnt signaling inhibitors (e.g., IWR-1 , IWP-2, IWP-3, IWP-4, etc.), BMP signal inhibitors (e.g., NOGGIN, etc.), TGFβ/activin/NODAL signal inhibitors (e.g., SB431542, etc.), retinoic acid signal inhibitors, etc.) and cardiac differentiation factors ( For example, VEGF, bFGF, DKK1, etc.) can be caused to act sequentially to increase induction efficiency. In one embodiment, cardiomyocyte induction treatment from pluripotent stem cells is performed on embryoid bodies formed by the action of BMP4 (1) a combination of BMP4, bFGF and activin A, (2) VEGF and IWP-3, and (3) sequentially acting a combination of VEGF and bFGF.

ヒトiPS細胞から心筋細胞を得る公知の方法としては、例えば、以下のステップ:
(1)ヒトiPS細胞を、フィーダー細胞を含まない培養液で維持培養するステップ(フィーダーフリー法)、
(2)得られたiPS細胞から胚様体を形成するステップ、
(3)得られた胚様体をアクチビンA、骨形成タンパク質(BMP)4および塩基性線維芽細胞増殖因子(bFGF)を含有する培養液中で培養するステップ、
(4)得られた胚様体をWnt阻害剤、BMP4阻害剤およびTGFβ阻害剤を含む培養液中で培養するステップ、および
(5)得られた胚様体をVEGFおよびbFGFを含む培養液中で培養するステップ
を含む方法が挙げられる。
Known methods for obtaining cardiomyocytes from human iPS cells include, for example, the following steps:
(1) a step of maintaining and culturing human iPS cells in a culture medium that does not contain feeder cells (feeder-free method);
(2) forming embryoid bodies from the obtained iPS cells;
(3) culturing the obtained embryoid bodies in a medium containing activin A, bone morphogenetic protein (BMP) 4 and basic fibroblast growth factor (bFGF);
(4) culturing the obtained embryoid bodies in a medium containing a Wnt inhibitor, a BMP4 inhibitor and a TGFβ inhibitor; and (5) culturing the obtained embryoid bodies in a medium containing VEGF and bFGF. and culturing at.

(1)のステップにおいて、例えばWO2017038562に記載のように、StemFit AK03(味の素)を培地として用い、iMatrix511(ニッピ)上でiPS細胞を培養して適応させ、維持培養を行うことができる。また、例えばNakagawa M.,et al.A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells.Sci Rep.2014;4:3594に記載のように、iPS細胞を、7~8日毎に、TrypLE(登録商標)Select(Thermo Fisher Scientific)を使用してシングルセルとして継代を行うことができる。上記(1)~(5)のステップのあとに、任意で、(6)得られた心筋細胞を精製するステップを選択的に行ってもよい。心筋細胞の精製としては、グルコースフリー培地を用いて心筋細胞以外を減少させる方法やWO2017/038562に記載のように熱処理を用いて未分化細胞を減少させる方法などが挙げられる。 In step (1), for example, as described in WO2017038562, StemFit AK03 (Ajinomoto) is used as a medium and iPS cells are cultured on iMatrix511 (Nippi) for adaptation and maintenance culture. In addition, for example, as described in Nakagawa M., et al. A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. In addition, passages can be performed as single cells using TrypLE® Select (Thermo Fisher Scientific). After steps (1) to (5) above, a step (6) of purifying the obtained cardiomyocytes may optionally be performed. Examples of cardiomyocyte purification include a method of reducing cells other than cardiomyocytes using a glucose-free medium, a method of reducing undifferentiated cells using heat treatment as described in WO2017/038562, and the like.

本開示の一態様において、上記(1)のステップの前および/または後に、上記<1>に記載の本開示の指標化方法を実施するステップを含んでよい。また、(2)のステップの後に、得られた胚様体の遺伝子発現量を計測するステップを含んでもよい。さらに、計測した遺伝子発現量を基準値と比較するステップ、およびかかる比較の結果上記<3>に記載の胚様体であると判断された胚様体以外の胚様体を除外するステップを含んでもよい。かかる基準値としては、例えば上記<2>において「所定の値」として記載されたものなどが挙げられる。 One aspect of the present disclosure may include a step of implementing the indexing method of the present disclosure described in <1> above before and/or after step (1) above. Moreover, after the step (2), a step of measuring the gene expression level of the obtained embryoid bodies may be included. Furthermore, the step of comparing the measured gene expression level with a reference value, and the step of excluding embryoid bodies other than the embryoid bodies determined to be the embryoid bodies described in <3> above as a result of the comparison. It's okay. Examples of such a reference value include those described as "predetermined value" in <2> above.

上述のとおり、本発明者らにより、心筋細胞への分化指向性を有する多能性幹細胞においては、ミトコンドリア関連遺伝子、WNTシグナル伝達調節因子、TGFβシグナル伝達調節因子、中胚葉関連遺伝子、心筋細胞関連遺伝子および未分化細胞関連遺伝子からなる群から選択される少なくとも1種の遺伝子の発現量が、心筋細胞への分化指向性を有しない多能性幹細胞と比較して有意に差異があることが見出された。したがって上記(1)~(5)の各ステップにおいて、これらの遺伝子の発現が亢進または低減するような処置を施すことにより、心筋細胞への分化を誘導し得る。このような処置の非限定的な例としては、例えばWNTシグナル阻害剤、TGFβシグナル阻害剤の添加など、TGFβシグナルやWNTシグナルの調節、MitoBlockの添加などによるミトコンドリアの活動の調節などが挙げられる。 As described above, the present inventors found that, in pluripotent stem cells with a differentiation tropism to cardiomyocytes, mitochondria-related genes, WNT signaling regulatory factors, TGFβ signaling regulatory factors, mesoderm-related genes, cardiomyocyte-related It was found that the expression level of at least one gene selected from the group consisting of genes and undifferentiated cell-related genes is significantly different compared to pluripotent stem cells that do not have cardiomyocyte differentiation tropism. served. Therefore, in each of steps (1) to (5) above, differentiation into cardiomyocytes can be induced by performing treatment that enhances or reduces the expression of these genes. Non-limiting examples of such treatments include, for example, addition of WNT signal inhibitors, TGFβ signal inhibitors, modulation of TGFβ and WNT signals, modulation of mitochondrial activity, such as addition of MitoBlock.

したがって本開示の一側面において、分化指向性マーカーの発現量を亢進または低減するか、あるいは分化指向性マーカー遺伝子の発現産物であるタンパク質の作用を増強または低減させることを含む、多能性幹細胞の分化誘導方法にも関する。 Therefore, in one aspect of the present disclosure, the expression level of a differentiation-directed marker is enhanced or reduced, or the action of a protein that is the expression product of a differentiation-directed marker gene is enhanced or reduced. It also relates to a method of inducing differentiation.

分化指向性マーカーの発現量を亢進する方法としては、例えば分化指向性マーカー遺伝子のリプレッサーの阻害、分化指向性マーカー遺伝子のエンハンサーの添加などが挙げられる。分化指向性マーカーの発現量を低減させる方法としては、例えばリプレッサーの添加、siRNAなどのアンチセンス核酸の導入などが挙げられる。 Examples of methods for enhancing expression levels of differentiation-directed markers include inhibition of repressors of differentiation-directed marker genes, addition of enhancers of differentiation-directed marker genes, and the like. Examples of methods for reducing the expression level of differentiation-directed markers include addition of repressors, introduction of antisense nucleic acids such as siRNA, and the like.

分化指向性マーカー遺伝子の発現産物であるタンパク質の作用を増強する方法としては、例えば当該発現産物タンパク質の培地への添加などが挙げられる。分化指向性マーカー遺伝子の発現産物であるタンパク質の作用を低減する方法としては、例えば当該タンパク質に対する阻害剤や阻害性抗体などの培地への添加などが挙げられる。 Methods for enhancing the action of a protein that is an expression product of a differentiation-directed marker gene include, for example, adding the expression product protein to the medium. Methods for reducing the action of a protein that is the expression product of a differentiation-directed marker gene include, for example, adding an inhibitor or an inhibitory antibody against the protein to the medium.

例えば心筋細胞への分化誘導の場合、有意に発現が増大している分化指向性マーカー発現産物、例えばPF4、CHCHD2、AMMECR1、API5、BCOR、BRWD1、CLEC4G、GLIPR1、HELB、KDM6A、LOC388796、NKTR、POMZP3、ZP3、PRUNE2、RBMX、RC3H1、SKIL、SORBS2およびSRSF11などのタンパク質を含む培地で培養することにより、心筋細胞への分化誘導が促進されることが期待される。したがって本開示の分化誘導方法には、上述の有意に発現が増大している分化指向性マーカー発現産物、例えばPF4、CHCHD2、AMMECR1、API5、BCOR、BRWD1、CLEC4G、GLIPR1、HELB、KDM6A、LOC388796、NKTR、POMZP3、ZP3、PRUNE2、RBMX、RC3H1、SKIL、SORBS2およびSRSF11などのタンパク質を含む培地を用いることを特徴とする、多能性幹細胞の培養方法も包含される。かかる培養方法は、特に多能性幹細胞を胚様体(特に中胚葉性胚様体)に分化させる段階における培養において用いることが好ましい。 For example, in the case of induction of differentiation into cardiomyocytes, expression products of differentiation-directed markers whose expression is significantly increased, such as PF4, CHCHD2, AMMECR1, API5, BCOR, BRWD1, CLEC4G, GLIPR1, HELB, KDM6A, LOC388796, NKTR, Culturing in a medium containing proteins such as POMZP3, ZP3, PRUNE2, RBMX, RC3H1, SKIL, SORBS2 and SRSF11 is expected to promote differentiation induction into cardiomyocytes. Thus, the differentiation-inducing methods of the present disclosure include the above-described significantly upregulated differentiation-directed marker expression products, such as PF4, CHCHD2, AMMECR1, API5, BCOR, BRWD1, CLEC4G, GLIPR1, HELB, KDM6A, LOC388796, Also included is a method of culturing pluripotent stem cells, characterized by using a medium containing proteins such as NKTR, POMZP3, ZP3, PRUNE2, RBMX, RC3H1, SKIL, SORBS2 and SRSF11. Such a culture method is preferably used in culture, particularly at the stage of differentiating pluripotent stem cells into embryoid bodies (especially mesodermal embryoid bodies).

本開示の分化誘導方法によれば、効率よく心筋細胞を得ることができる。本開示の分化誘導方法により得られる心筋細胞含有組成物中の心筋細胞含有率(純度)は、約50%超、約60%超、約70%超、約75%超、約80%超、約85%超、約86%超、約87%超、約88%超、約89%超、約90%超、約91%超、約92%超、約93%超、約94%超、約95%超、約96%超、約97%超、約98%超、約99%超などであり得る。一態様において、本開示における多能性幹細胞由来の心筋細胞は、心筋細胞の純度が90%超の心筋細胞集団である。また別の一態様において、心筋細胞含有率は、例えば50~99%であり。好ましくは50%~70%であり、または75~99%である。別の一態様において、本開示の誘導方法により得られる心筋細胞含有組成物は、未分化細胞の残存率が低いことを特徴とする。未分化細胞の残存率としては、例えば0.01%~5%、0.01%~4%、0.01%~3%、0.01%~2%、0.01%~1%、0.01%~1%などであり得る。 According to the differentiation induction method of the present disclosure, cardiomyocytes can be efficiently obtained. The cardiomyocyte content (purity) in the cardiomyocyte-containing composition obtained by the method of inducing differentiation of the present disclosure is greater than about 50%, greater than about 60%, greater than about 70%, greater than about 75%, greater than about 80%, greater than about 85%, greater than about 86%, greater than about 87%, greater than about 88%, greater than about 89%, greater than about 90%, greater than about 91%, greater than about 92%, greater than about 93%, greater than about 94%, It can be greater than about 95%, greater than about 96%, greater than about 97%, greater than about 98%, greater than about 99%, and the like. In one aspect, the pluripotent stem cell-derived cardiomyocytes in the present disclosure are cardiomyocyte populations with greater than 90% cardiomyocyte purity. In yet another aspect, the cardiomyocyte content is, for example, 50-99%. Preferably it is 50% to 70%, or 75 to 99%. In another aspect, the cardiomyocyte-containing composition obtained by the induction method of the present disclosure is characterized by a low survival rate of undifferentiated cells. The residual rate of undifferentiated cells is, for example, 0.01% to 5%, 0.01% to 4%, 0.01% to 3%, 0.01% to 2%, 0.01% to 1%, It can be from 0.01% to 1%, and the like.

<5>本開示の医療用組成物
本開示の別の側面は、上記<4>に記載の方法により誘導された分化誘導細胞、例えば心筋細胞を含む医療用組成物を包含する。
本開示において「医療用組成物」とは、医療目的に用いられる組成物を意味し、これに限定するものではないが、例えば医薬用組成物、治療用組成物、移植用組成物などの、直接対象の処置に用いる組成物のほか、例えば薬剤スクリーニング用組成物など、薬剤開発などにおいて用いられる組成物も包含する。
<5> Medical composition of the present disclosure Another aspect of the present disclosure includes a medical composition containing differentiation-inducing cells, such as cardiomyocytes, induced by the method described in <4> above.
In the present disclosure, the term "medical composition" means a composition used for medical purposes, and is not limited thereto. Compositions used for direct treatment of subjects as well as compositions used in drug development and the like, eg, compositions for drug screening, are included.

本開示の分化誘導方法により誘導される心筋細胞を含む組成物は、心筋細胞含有率が高い組成物であり、医療上非常に有用であるといえる。例えば、本開示の分化誘導方法により誘導される心筋細胞を含む組成物を用いて移植用組成物を調製する場合、心筋細胞含有率が高いため、含有される心筋細胞量が多くなり、心臓への移植に好適な移植用組成物を調製することができる。したがって一態様において、本開示の医療用組成物は、移植用組成物である。かかる態様において、心筋細胞の含有率は、約50%超、約60%超、約70%超、約75%超、約80%超、約85%超、約86%超、約87%超、約88%超、約89%超、約90%超、約91%超、約92%超、約93%超、約94%超、約95%超、約96%超、約97%超、約98%超、約99%超などであってよい。一態様において、本開示における多能性幹細胞由来の心筋細胞は、心筋細胞の純度が90%超の心筋細胞集団である。また別の一態様において、心筋細胞含有率は、例えば50~99%であり、好ましくは50%~70%であり、または75~99%である。 A composition containing cardiomyocytes induced by the method of inducing differentiation of the present disclosure is a composition with a high cardiomyocyte content, and can be said to be very useful medically. For example, when a composition for transplantation is prepared using a composition containing cardiomyocytes induced by the method of inducing differentiation of the present disclosure, since the cardiomyocyte content is high, the amount of cardiomyocytes contained increases, leading to a large amount of cardiomyocytes. An implantable composition can be prepared that is suitable for the implantation of a Accordingly, in one aspect, the medical composition of the present disclosure is an implantable composition. In such embodiments, the cardiomyocyte content is greater than about 50%, greater than about 60%, greater than about 70%, greater than about 75%, greater than about 80%, greater than about 85%, greater than about 86%, greater than about 87%. , greater than about 88%, greater than about 89%, greater than about 90%, greater than about 91%, greater than about 92%, greater than about 93%, greater than about 94%, greater than about 95%, greater than about 96%, greater than about 97% , greater than about 98%, greater than about 99%, and the like. In one aspect, the pluripotent stem cell-derived cardiomyocytes in the present disclosure are cardiomyocyte populations with greater than 90% cardiomyocyte purity. In yet another aspect, the cardiomyocyte content is, for example, 50-99%, preferably 50-70%, or 75-99%.

近年重症心不全患者に対する心機能回復には細胞移植法が有用とされ、既に自己骨格筋芽細胞やiPS細胞由来心筋細胞による臨床応用・研究が開始されている。その一例として、組織工学を応用した温度応答性培養皿を用いることによって、成体の心筋以外の部分に由来する細胞を含む心臓に適用可能な三次元に構成された細胞培養物が開発されている。本開示の医療用組成物、特に移植用組成物もまた、かかる細胞培養物とすることができる。したがって好ましい一態様において、本開示の医療用組成物はシート状細胞培養物である。 In recent years, cell transplantation has been shown to be useful for recovering cardiac function in patients with severe heart failure, and clinical applications and studies using autologous skeletal myoblasts and iPS cell-derived cardiomyocytes have already begun. As an example, tissue-engineered temperature-responsive culture dishes have been used to develop three-dimensional cell cultures applicable to the heart that contain cells derived from portions other than adult myocardium. . Medical compositions of the present disclosure, particularly compositions for transplantation, can also be such cell cultures. Therefore, in one preferred aspect, the medical composition of the present disclosure is a sheet-like cell culture.

本開示において、「シート状細胞培養物」は、細胞が互いに連結してシート状になったものをいう。細胞同士は、直接(接着分子などの細胞要素を介するものを含む)および/または介在物質を介して、互いに連結していてもよい。介在物質としては、細胞同士を少なくとも物理的(機械的)に連結し得る物質であれば特に限定されないが、例えば、細胞外マトリックスなどが挙げられる。介在物質は、好ましくは細胞由来のもの、特に、細胞培養物を構成する細胞に由来するものである。細胞は少なくとも物理的(機械的)に連結されるが、さらに機能的、例えば、化学的、電気的に連結されてもよい。シート状細胞培養物は、1の細胞層から構成されるもの(単層)であっても、2以上の細胞層から構成されるもの(積層(多層)体、例えば、2層、3層、4層、5層、6層など)であってもよい。 In the present disclosure, a “sheet-like cell culture” refers to a sheet-like cell formed by connecting cells to each other. Cells may be connected to each other directly (including through cellular elements such as adhesion molecules) and/or through intermediaries. The intervening substance is not particularly limited as long as it is a substance capable of at least physically (mechanically) connecting cells to each other, and examples thereof include an extracellular matrix. The mediator is preferably of cell origin, in particular of cells that make up the cell culture. The cells are at least physically (mechanically) linked, but may also be functionally linked, eg chemically, electrically. The sheet-like cell culture may be composed of one cell layer (single layer) or composed of two or more cell layers (laminated (multilayered) body, e.g., two layers, three layers, 4 layers, 5 layers, 6 layers, etc.).

シート状細胞培養物は、好ましくはスキャフォールド(支持体)を含まない。スキャフォールドは、その表面上および/またはその内部に細胞を付着させ、シート状細胞培養物の物理的一体性を維持するために当該技術分野において用いられることがあり、例えば、ポリビニリデンジフルオリド(PVDF)製の膜等が知られているが、本開示におけるシート状細胞培養物は、かかるスキャフォールドがなくともその物理的一体性を維持することができるものであってもよい。また、シート状細胞培養物は、好ましくは、細胞培養物を構成する細胞由来の物質のみからなり、それら以外の物質を含まない。 The sheet-like cell culture preferably does not contain a scaffold (support). Scaffolds may be used in the art to attach cells onto and/or into their surfaces and maintain the physical integrity of sheet-like cell cultures, such as polyvinylidene difluoride ( PVDF) membranes and the like are known, but the sheet cell culture in the present disclosure may be able to maintain its physical integrity without such a scaffold. Moreover, the sheet-like cell culture preferably consists of only substances derived from the cells that constitute the cell culture, and does not contain other substances.

シート状細胞培養物を構成する細胞は、シート状細胞培養物による治療が可能な任意の生物に由来し得る。かかる生物には、限定されずに、例えば、ヒト、非ヒト霊長類、イヌ、ネコ、ブタ、ウマ、ヤギ、ヒツジ、げっ歯目動物(例えば、マウス、ラット、ハムスター、モルモットなど)、ウサギなどが含まれる。一態様において、シート状細胞培養物を構成する細胞はヒト細胞である。 The cells that make up the sheet-like cell culture can be derived from any organism that can be treated with the sheet-like cell culture. Such organisms include, but are not limited to, humans, non-human primates, dogs, cats, pigs, horses, goats, sheep, rodents (such as mice, rats, hamsters, guinea pigs, etc.), rabbits, and the like. is included. In one aspect, the cells that make up the sheet-like cell culture are human cells.

シート状細胞培養物を形成する細胞は、異種由来細胞であっても同種由来細胞であってもよい。ここで「異種由来細胞」は、シート状細胞培養物が移植に用いられる場合、そのレシピエントとは異なる種の生物に由来する細胞を意味する。例えば、レシピエントがヒトである場合、サルやブタに由来する細胞などが異種由来細胞に該当する。また、「同種由来細胞」は、レシピエントと同一の種の生物に由来する細胞を意味する。例えば、レシピエントがヒトである場合、ヒト細胞が同種由来細胞に該当する。同種由来細胞は、自己由来細胞(自己細胞または自家細胞ともいう)、すなわち、レシピエントに由来する細胞と、同種非自己由来細胞(他家細胞ともいう)を含む。自己由来細胞は、移植しても拒絶反応が生じないため、本開示においては好ましい。しかしながら、異種由来細胞や同種非自己由来細胞を利用することも可能である。異種由来細胞や同種非自己由来細胞を利用する場合は、拒絶反応を抑制するため、免疫抑制処置が必要となることがある。なお、本明細書中で、自己由来細胞以外の細胞、すなわち、異種由来細胞と同種非自己由来細胞を非自己由来細胞と総称することもある。本開示の一態様において、細胞は自家細胞または他家細胞である。本開示の一態様において、細胞は自家細胞である。本開示の別の態様において、細胞は他家細胞である。 Cells forming a sheet-like cell culture may be heterologous or allogeneic. As used herein, "heterologous cells" refer to cells derived from organisms of a species different from that of the recipient when sheet-like cell cultures are used for transplantation. For example, when the recipient is a human, cells derived from monkeys or pigs are examples of heterologous cells. Also, "allogeneic cells" refer to cells derived from the same species of organism as the recipient. For example, if the recipient is human, human cells are allogeneic cells. Allogeneic cells include autologous cells (also referred to as autologous or autologous cells), ie cells derived from the recipient, and allogeneic non-autologous cells (also referred to as allogeneic cells). Autologous cells are preferred in the present disclosure because they do not result in rejection upon transplantation. However, it is also possible to use xenogenic or allogeneic non-autologous cells. Immunosuppressive treatment may be required to prevent rejection when xenogeneic or allogeneic non-autologous cells are used. In this specification, cells other than autologous cells, that is, heterologous cells and allogeneic non-autologous cells may be collectively referred to as non-autologous cells. In one aspect of the disclosure, the cells are autologous or allogeneic. In one aspect of the disclosure, the cells are autologous cells. In another aspect of the disclosure, the cell is an allogeneic cell.

自家または他家多能性幹細胞は、限定されずに、例えば、採取した自家または他家体細胞(例えば、皮膚細胞(線維芽細胞、ケラチノサイト等)や血球(末梢血単核球等)など)に、OCT3/4、SOX2、KLF4、C-MYC等の遺伝子を導入するなどして自家または他家iPS細胞を誘導することにより得ることができる。体細胞からiPS細胞を誘導する方法は当該技術分野において周知である(例えば、Bayart and Cohen-Haguenauer, Curr Gene Ther. 2013 Apr;13(2):73-92など参照)。 Autologous or heterologous pluripotent stem cells include, but are not limited to, collected autologous or heterologous somatic cells (e.g., skin cells (fibroblasts, keratinocytes, etc.), blood cells (peripheral blood mononuclear cells, etc.), etc.). can be obtained by inducing autologous or allogeneic iPS cells by, for example, introducing genes such as OCT3/4, SOX2, KLF4 and C-MYC. Methods for inducing iPS cells from somatic cells are well known in the art (see, eg, Bayart and Cohen-Haguenauer, Curr Gene Ther. 2013 Apr;13(2):73-92).

本開示の医療用組成物やシート状細胞培養物は、上述のとおり心筋細胞を高度に含有しているため、かかる組成物やシート状細胞培養物を用いることにより、心筋細胞に対して作用する薬剤の効果を効果的に試験することができる。したがって本開示の別の一態様において、本開示の医療用組成物は、薬剤スクリーニング用組成物である。とくに本開示の組成物は、特定の対象由来の心筋細胞を調製することが可能であるため、かかる特定の対象に対して有効に作用する薬剤をスクリーニングすることが可能となる。 Since the medical composition and sheet-like cell culture of the present disclosure contain cardiomyocytes at a high level as described above, the use of such a composition and sheet-like cell culture acts on cardiomyocytes. The effect of drugs can be effectively tested. Accordingly, in another aspect of the present disclosure, the medical composition of the present disclosure is a drug screening composition. In particular, the composition of the present disclosure makes it possible to prepare cardiomyocytes derived from a specific subject, so it becomes possible to screen drugs that effectively act on such a specific subject.

<6>本開示の品質管理方法
本開示の医療用組成物の調製において、効率よく高純度の心筋細胞含有組成物を得ることは、医療用組成物の品質を高めることにつながるものである。しかしながら通常は、多能性幹細胞から最終的に心筋細胞まで分化誘導して見なければどの程度の心筋細胞が含有されているか予測することは困難である。
<6> Quality Control Method of the Present Disclosure In the preparation of the medical composition of the present disclosure, efficiently obtaining a high-purity cardiomyocyte-containing composition leads to improved quality of the medical composition. However, it is usually difficult to predict how many cardiomyocytes are contained unless pluripotent stem cells are finally differentiated into cardiomyocytes.

しかしながら本開示の多能性幹細胞または胚様体を用いて分化誘導することにより、心筋細胞含有率の高い組成物を容易に得ることができる。すなわち多能性幹細胞から胚様体を形成するまで培養した段階で、胚様体における中胚葉遺伝子、内胚葉遺伝子および/または外胚葉遺伝子の発現量を計測することにより、かかる胚様体が心筋細胞に対して分化指向性を有するものであるかを試験することが可能である。したがって本開示の一側面は、多能性幹細胞を培養して得られる胚様体における中胚葉遺伝子、内胚葉遺伝子および/または外胚葉遺伝子の発現量を計測することを含む、多能性幹細胞から分化誘導された心筋細胞を含む医療用組成物の品質管理方法、およびかかる品質管理方法を工程として含む医療用組成物の製造方法も包含する。 However, by inducing differentiation using the pluripotent stem cells or embryoid bodies of the present disclosure, a composition with a high cardiomyocyte content can be easily obtained. That is, by measuring the expression levels of mesoderm genes, endoderm genes and/or ectoderm genes in embryoid bodies at the stage of culturing pluripotent stem cells to form embryoid bodies, it is possible to determine whether such embryoid bodies are myocardial. It is possible to test whether the cell has differentiation tropism. Therefore, one aspect of the present disclosure includes measuring the expression levels of mesoderm genes, endoderm genes and/or ectoderm genes in embryoid bodies obtained by culturing pluripotent stem cells, from pluripotent stem cells It also includes a method for quality control of a medical composition containing myocardial cells induced to differentiate, and a method for producing a medical composition comprising such a quality control method as a step.

本方法における中胚葉遺伝子、内胚葉遺伝子および外胚葉遺伝子の具体的な例としては、上記<3>において記載したものなどが挙げられる。これらの遺伝子の発現量の測定には、当該技術分野において公知の任意の方法を用いることができる。
一態様において、本側面の方法は、さらに、計測した遺伝子発現量を基準値と比較すること、およびかかる比較の結果上記<3>に記載の胚様体であると判断された胚様体以外の胚様体を除外することを含んでもよい。基準値としては、典型的には、当該遺伝子の発現量の平均値、などが挙げられる。発現量の平均値としては、例えば無作為抽出された所定の個数(例えば5個、10個、15個など)の胚様体における計測対象遺伝子の発現量の平均値であってよい。
Specific examples of the mesoderm gene, endoderm gene and ectoderm gene in this method include those described in <3> above. Any method known in the art can be used to measure the expression levels of these genes.
In one embodiment, the method of this aspect further comprises comparing the measured gene expression level with a reference value, and embryoid bodies other than embryoid bodies determined to be embryoid bodies according to <3> above as a result of the comparison. excluding embryoid bodies of Typical reference values include the average expression level of the gene, and the like. The average expression level may be, for example, the average expression level of the gene to be measured in a predetermined number (for example, 5, 10, 15, etc.) of randomly sampled embryoid bodies.

また、胚様体形成の段階で、その後の分化効率の高い胚様体を選抜してもよい。例えば形成された胚様体の大きさ、凝集の仕方など、胚様体の形態的特徴に基づいて分化効率の高い胚様体を選抜してもよい。 In addition, at the stage of embryoid body formation, embryoid bodies with high subsequent differentiation efficiency may be selected. For example, embryoid bodies with high differentiation efficiency may be selected based on the morphological characteristics of embryoid bodies, such as the size of formed embryoid bodies and the manner of aggregation.

本開示の医療用組成物の製造方法は、以下の工程を含む:
(A)多能性幹細胞を分化誘導および培養して、胚様体を形成する工程、
(B)得られた胚様体における中胚葉遺伝子、内胚葉遺伝子および/または外胚葉遺伝子の発現量を計測し、かかる計測値と基準値とを比較することを含む、心筋細胞への分化指向性の高い胚様体を選抜する工程、
(C)選抜された胚様体を分化誘導および培養して、心筋細胞を含む細胞集団を得る工程。
A method of manufacturing a medical composition of the present disclosure includes the following steps:
(A) inducing differentiation and culturing pluripotent stem cells to form embryoid bodies;
(B) Measuring the expression levels of mesoderm genes, endoderm genes and/or ectoderm genes in the obtained embryoid bodies, and comparing the measured values with reference values, directed toward cardiomyocyte differentiation selecting embryoid bodies with high potential,
(C) Differentiation induction and culture of the selected embryoid bodies to obtain a cell population containing cardiomyocytes.

工程(A)において、多能性幹細胞から胚様体を形成する。胚様体形成には、当該技術分野において知られた手法を用いることができ、具体的には例えば上記<3>において記載された手法を用いることができる。用い得る多能性幹細胞は、特に限定されないが、医療用組成物による処置対象(例えばヒト)と同種細胞であることが好ましい。また医療用組成物を移植などに用いる場合は、自家iPS細胞など、自家細胞から調製された多能性幹細胞が好ましい。また工程(A)の前に、用いる多能性幹細胞を、本開示の方法によりスクリーニングする工程をさらに含んでもよい。 In step (A), embryoid bodies are formed from pluripotent stem cells. Techniques known in the art can be used for the formation of embryoid bodies, and specifically, for example, the technique described in <3> above can be used. Pluripotent stem cells that can be used are not particularly limited, but are preferably allogeneic cells to the subject (eg, human) to be treated with the medical composition. When the medical composition is used for transplantation, pluripotent stem cells prepared from autologous cells, such as autologous iPS cells, are preferred. Moreover, it may further include a step of screening the pluripotent stem cells to be used by the method of the present disclosure before step (A).

工程(B)において、心筋細胞への分化指向性の高い胚様体が選抜される。心筋細胞への分化指向性の高い胚様体の例は、上記<3>において記載されたとおりである。本工程においては、特に中胚葉遺伝子の発現量が高く、外胚葉遺伝子および/または内胚葉遺伝子の発現量が低い胚様体が選抜される。外胚葉遺伝子、内胚葉遺伝子、中胚葉遺伝子の具体例および基準値については、<3>において記載したものであってよい。 In step (B), embryoid bodies with a high cardiomyocyte differentiation tropism are selected. Examples of embryoid bodies highly oriented toward cardiomyocyte differentiation are as described in <3> above. In this step, embryoid bodies with particularly high expression levels of mesoderm genes and low expression levels of ectoderm genes and/or endoderm genes are selected. Specific examples and standard values of ectoderm genes, endoderm genes, and mesoderm genes may be those described in <3>.

工程(C)において、工程(B)で選抜された胚様体を分化誘導して心筋細胞を含む医療用組成物を得る。胚様体からの分化誘導には、当該技術分野において公知の方法を用いることができ、具体的には例えば上記<4>において記載した方法などを用いてよい。 In step (C), the embryoid bodies selected in step (B) are differentiated to obtain a medical composition containing cardiomyocytes. Methods known in the art can be used for induction of differentiation from embryoid bodies, and specifically, for example, the method described in <4> above may be used.

工程(C)の後に、任意に医療用組成物を改変する工程をさらに含んでよい。かかる工程としては、例えばシート状細胞培養物を形成するためのシート化工程、医療用組成物を凍結保存する工程などが挙げられる。 After step (C), the step of optionally modifying the medical composition may be further included. Such steps include, for example, a sheet forming step for forming a sheet-like cell culture, a step of cryopreserving a medical composition, and the like.

本開示を以下の例を参照してより詳細に説明するが、これらは本開示の特定の具体例を示すものであり、本開示はこれらに限定されるものではない。 The disclosure will be described in more detail with reference to the following examples, which are intended to be specific examples of the disclosure and are not intended to limit the disclosure.

例1.心筋細胞への分化指向性の高いiPS細胞株の特定
心筋細胞への分化指向性の高いiPS細胞の遺伝的特徴を調べるため、まずは心筋細胞への分化指向性の高いiPS細胞株の特定を試みた。
(1)分化誘導
iPS細胞株として表5に記載の10種の細胞を用いた。201B7、253G1、409B2、HiPS-RIKEN-1A、HiPS-RIKEN-2AおよびHiPS-RIKEN-12Aは理研バイオリソースセンターより入手した。ATCC-DYR0100およびATCC-HYR0103はATCCより入手した。mc-iPSはSystem Biosciencesより入手した。Ticは医薬基盤研究所より入手した。分化誘導直前のヒトiPS細胞株のTotal RNAはmiRNeasy Mini Kit(QIAGEN)を用いて、プロコールに従い抽出した。RT-PCRにはSuperScriptTM VILO(Invitrogen)を用い、cDNAを合成した。表4に記載したSYBR Green用PCRプライマーおよびSYBR Green PCRマスターミックス(Applied Biosystems)またはTaqman probeとTaqman Gene Expression Master Mix(Applied Biosystems)を用いて、ViiA 7 Real-Time PCR System(Applied Biosystems)でPCRを実施した。遺伝子発現の解析にはハウスキーピング遺伝子としてGAPDHを用いた。ViiA 7 Sysytemを用いて遺伝子発現解析を行った。TaqMan Gene Expression Assaysでは温度サイクリング条件としてホールド:95℃で20秒、サイクル:95℃で1秒、60℃で20秒、で行った。SYBR Greenの温度サイクリング条件はホールド:95℃で20秒、サイクル:95℃で1秒、60℃で20秒を40サイクル、および95℃で15秒、60℃で1分、95℃で15秒で行った。

Figure 0007173496000003
Figure 0007173496000004
Figure 0007173496000005
これらのiPS細胞株を、Matsuura, et al., Biochemical and Biophysical Research Communications 425 (2012) 321?327、Miki K. Cell Stem Cell (2015)、WO2014/185358A1およびWO2017/038562などに記載の方法を参考に、心筋細胞まで分化誘導した。具体的には、Primate ES培地(ReproCell)に5ng/mLのbFGFを添加したものを未分化維持培地として用い、フィーダー細胞であるマイトマイシンC処理済みのMEF(ReproCell)上で未分化ヒトiPS細胞を培養して、3-4日に1回継代を行った。分化誘導はヒトiPS細胞をDissociation solution(ReproCell)およびAccumax(イノベーションセルテクノロジーズ)で解離して、0.5ng/mLのBMP-4と10μMのY27632(Rock阻害剤)を添加したStemPro34(ライフテクノロジーズ)で懸濁し、EZSPHERE(IWAKI)で1日培養して集塊を形成させた。得られた胚様体をアクチビンA、骨形成タンパク質(BMP)4および塩基性線維芽細胞増殖因子(bFGF)を含有する培養液中で培養し、さらにWnt阻害剤(IWR1)を含む培養液中で培養し、その後VEGFおよびbFGFを含む培養液中で培養を行った。図1は培養中のiPS細胞の写真図である。 Example 1. Identification of iPS cell lines with high cardiomyocyte differentiation tropism In order to investigate the genetic characteristics of iPS cells with high cardiomyocyte differentiation tropism, we first attempted to identify iPS cell lines with high cardiomyocyte differentiation tropism. rice field.
(1) Differentiation Induction Ten types of cells listed in Table 5 were used as iPS cell lines. 201B7, 253G1, 409B2, HiPS-RIKEN-1A, HiPS-RIKEN-2A and HiPS-RIKEN-12A were obtained from RIKEN BioResource Center. ATCC-DYR0100 and ATCC-HYR0103 were obtained from ATCC. mc-iPS was obtained from System Biosciences. Tic was obtained from National Institute of Biomedical Innovation. Total RNA of human iPS cell lines immediately before induction of differentiation was extracted using miRNeasy Mini Kit (QIAGEN) according to the protocol. SuperScript VILO (Invitrogen) was used for RT-PCR to synthesize cDNA. PCR was performed with the ViiA 7 Real-Time PCR System (Applied Biosystems) using the PCR primers for SYBR Green listed in Table 4 and the SYBR Green PCR Master Mix (Applied Biosystems) or Taqman probe and Taqman Gene Expression Master Mix (Applied Biosystems). carried out. GAPDH was used as a housekeeping gene for gene expression analysis. Gene expression analysis was performed using the ViiA 7 System. In TaqMan Gene Expression Assays, temperature cycling conditions were hold: 95°C for 20 seconds, cycle: 95°C for 1 second, 60°C for 20 seconds. Temperature cycling conditions for SYBR Green are Hold: 95°C for 20 seconds, Cycle: 95°C for 1 second, 60°C for 20 seconds for 40 cycles and 95°C for 15 seconds, 60°C for 1 minute, 95°C for 15 seconds. I went with
Figure 0007173496000003
Figure 0007173496000004
Figure 0007173496000005
These iPS cell lines are referred to Matsuura, et al., Biochemical and Biophysical Research Communications 425 (2012) 321-327, Miki K. Cell Stem Cell (2015), WO2014/185358A1 and WO2017/038562. Then, the cells were induced to differentiate into cardiomyocytes. Specifically, a Primate ES medium (ReproCell) supplemented with 5 ng/mL bFGF was used as an undifferentiated maintenance medium, and undifferentiated human iPS cells were grown on mitomycin C-treated MEFs (ReproCell) as feeder cells. The cells were cultured and passaged once every 3-4 days. For induction of differentiation, human iPS cells were dissociated with Dissociation solution (ReproCell) and Accumax (Innovation Cell Technologies), and 0.5 ng/mL of BMP-4 and 10 μM of Y27632 (Rock inhibitor) were added to StemPro34 (Life Technologies). and cultured in EZSPHERE (IWAKI) for one day to form clumps. The resulting embryoid bodies were cultured in a medium containing activin A, bone morphogenetic protein (BMP) 4 and basic fibroblast growth factor (bFGF), and further cultured in a medium containing a Wnt inhibitor (IWR1). and then cultured in a medium containing VEGF and bFGF. FIG. 1 is a photograph of iPS cells in culture.

(2)分化誘導指向性の順位付け
各iPS細胞株から分化誘導された心筋細胞含有胚様体におけるトロポニン陽性率および拍動率、心筋細胞関連遺伝子発現量を計測し、各iPS細胞株の心筋細胞への分化指向性の順位付けを行った。
トロポニン陽性率は、胚様体をTrypLE Selectを用いて分散後、分散した細胞をBD Cytofix/Cytoperm(登録商標)Fixation/Permeabilization Solution Kit(BD Bioscience)を用いて固定、透過処理した後、抗ヒトトロポニン抗体(Thermo Fisher Scientific)、標識2次抗体(Thermo Fisher Scientific)を順次反応させた後、フローサイトメーターにより測定を行って算出した。
(2) Ranking of differentiation-inducing directionality Troponin-positive rate, beating rate, and cardiomyocyte-related gene expression level in cardiomyocyte-containing embryoid bodies differentiated from each iPS cell line were measured, and the myocardium of each iPS cell line A ranking of differentiation tropism into cells was performed.
The troponin-positive rate was determined by dispersing embryoid bodies using TrypLE Select, fixing and permeabilizing the dispersed cells using the BD Cytofix/Cytoperm (registered trademark) Fixation/Permeabilization Solution Kit (BD Bioscience), and then measuring the anti-human A troponin antibody (Thermo Fisher Scientific) and a labeled secondary antibody (Thermo Fisher Scientific) were allowed to react in sequence, and then measurement was performed with a flow cytometer to calculate.

拍動率は、各iPS細胞株から心筋細胞へ分化誘導後の胚葉体をセルモーションイメージング(Sony)で動画撮影して、観察されたすべての胚葉体のうち、拍動している胚葉体をカウントして算出した。 The beating rate was determined by filming the embryoid bodies after differentiation induction from each iPS cell line into cardiomyocytes by cell motion imaging (Sony). counted and calculated.

結果を図2および図3に示す。201B7、253G1および409B2の3細胞株において特に高いトロポニン陽性率および拍動率が算出された。したがって、これら3種の細胞株を、心筋細胞への分化指向性が高い細胞株であると特定した。 The results are shown in FIGS. 2 and 3. FIG. Particularly high troponin positive rate and beating rate were calculated in the three cell lines 201B7, 253G1 and 409B2. Therefore, these three cell lines were identified as cell lines with high cardiomyocyte differentiation tropism.

(3)未分化細胞の残存率
上記(2)で心筋細胞への分化指向性が高い細胞株であると特定された3細胞株から調製された心筋細胞培養物における未分化細胞の残存率を、未分化細胞マーカーであるLin28を発現する細胞数の割合として、定量PCRで測定した。
結果を図4に示す。心筋細胞への分化指向性が高いと特定された3細胞株においては、他の細胞株に比べて顕著に未分化細胞の残存率が低くなる傾向があった。
(3) Survival rate of undifferentiated cells , was measured by quantitative PCR as a percentage of the number of cells expressing Lin28, an undifferentiated cell marker.
The results are shown in FIG. In the three cell lines identified as having a high cardiomyocyte differentiation tropism, the survival rate of undifferentiated cells tended to be significantly lower than in the other cell lines.

例2.胚様体における遺伝子発現
次に上記例1における培養4日目の時点の各胚様体における、SOX2、PAX6、ZIC1、BRACHYURY、FLK1、PDGFR-a、GOOSECOID、HNF3、SOX17、SOX7、AMNの11種類の遺伝子の発現を計測した。
Example 2. Gene Expression in Embryoid Bodies SOX2, PAX6, ZIC1, BRACHYURY, FLK1, PDGFR-a, GOOSECOID, HNF3, SOX17, SOX7, and AMN 11 in each embryoid body on day 4 of culture in Example 1 above. The expression of different genes was measured.

結果を図5に示す。心筋細胞への分化指向性の高い細胞株である201B7、253G1および409B2の3細胞株ではいずれも中胚葉遺伝子が多く発現しており、内胚葉遺伝子および外胚葉遺伝子の発現量は低かった。各遺伝子に対して、発現量と各細胞株の分化誘導後のトロポニンT陽性率とのピアソンの相関係数を算出したところ、下表のとおりとなった。

Figure 0007173496000006
The results are shown in FIG. The three cell lines 201B7, 253G1 and 409B2, which are cell lines highly oriented toward cardiomyocyte differentiation, all expressed large amounts of mesoderm genes, and expressed low levels of endoderm genes and ectoderm genes. For each gene, Pearson's correlation coefficient between the expression level and the troponin T positive rate after induction of differentiation of each cell line was calculated, and the results are shown in the table below.
Figure 0007173496000006

例3.各細胞株における主成分解析
iPS細胞株をそれぞれを、RNeasy Kit(QIAGEN)を用いてtotal RNAを抽出した。各RNAの品質評価はAgilent RNA 6000 Nano Assay(Agilent Technologies)を用いて、28Sと18SのrRNA比率を算出することにより純度を確認した。抽出したRNAサンプルは-80℃で冷凍保存した。RNAサンプルのビオチンラベル化cRNA合成は、GeneChip 3’ IVT Express kit(Affymetrix)を用いて、製品プロトコールに従い行った。
Example 3. Principal Component Analysis of Each Cell Line Total RNA was extracted from each iPS cell line using RNeasy Kit (QIAGEN). The purity of each RNA was confirmed by calculating the rRNA ratio of 28S and 18S using Agilent RNA 6000 Nano Assay (Agilent Technologies). The extracted RNA samples were stored frozen at -80°C. Biotin-labeled cRNA synthesis of RNA samples was performed using the GeneChip 3' IVT Express kit (Affymetrix) according to the manufacturer's protocol.

まず、total RNAからT7プロモーター配列を含む2本鎖cDNA合成を行い、in vitro逆転写反応によりcDNAを鋳型としたビオチンラベルされたaRNAを合成した。次いでハンマーヘッド反応を利用したカルシウムランダム分解により、~100-120ntのaRNA断片を作製した。GeneChip Hybridization Oven(Affymetrix)を用いて、Genechip アレイ Human Genome U133 Plus 2.0 Array(Affymetrix)に作製したビオチンラベル化aRNAをハイブリダイズさせた。ハイブリダイズ後、GeneChip Wash and Stain Kit(Affymetrix)とGeneChip Fluidics Station 450(Affymetrix)を用いて洗浄とフィコエリスリン染色を行った。その後、GeneChip Scanner 3000 7G(Affymetrix)を用いてGenechipアレイの蛍光画像をスキャンし、イメージ画像を取得した。得られた蛍光強度のデータはExpression Console Ver.1.1(Affymetrix)を用いて解析した。シグナルのノーマライズはMAS5アルゴリズム、およびMSKファイル(Affymetrix)を用いて行った。 First, double-stranded cDNA containing a T7 promoter sequence was synthesized from total RNA, and biotin-labeled aRNA was synthesized using the cDNA as a template by an in vitro reverse transcription reaction. ˜100-120 nt aRNA fragments were then generated by calcium random digestion using the hammerhead reaction. A GeneChip Hybridization Oven (Affymetrix) was used to hybridize the biotin-labeled aRNA prepared to a Genechip array Human Genome U133 Plus 2.0 Array (Affymetrix). After hybridization, washing and phycoerythrin staining were performed using the GeneChip Wash and Stain Kit (Affymetrix) and GeneChip Fluidics Station 450 (Affymetrix). After that, the fluorescence image of the Genechip array was scanned using GeneChip Scanner 3000 7G (Affymetrix) to obtain an image. The obtained fluorescence intensity data was analyzed using Expression Console Ver.1.1 (Affymetrix). Signal normalization was performed using the MAS5 algorithm and MSK files (Affymetrix).

心筋細胞への分化指向性の高い細胞株として201B7、253G1および409B2を用い、心筋細胞への分化指向性の低い細胞株としてRIKEN-1A、RIKEN-2A、RIKEN-12Aを用いて、心筋細胞への分化指向性の高い細胞株において特徴的に発現する遺伝子を解析した。 201B7, 253G1 and 409B2 were used as cell lines with high cardiomyocyte differentiation tropism, and RIKEN-1A, RIKEN-2A and RIKEN-12A were used as cell lines with low cardiomyocyte differentiation tropism. We analyzed the genes that are characteristically expressed in cell lines with high differentiation tropism.

(1)心筋関連遺伝子発現比較
各細胞株を例1と同様に心筋細胞まで分化させ、心筋関連遺伝子の発現量を比較した。結果を図6および図7に示す。
心筋細胞への分化指向性の高い3細胞株から分化誘導された細胞培養物においては、いずれも高い心筋関連遺伝子の発現が確認された。また、トロポニン陽性率についても心筋細胞への分化指向性の高い3細胞株の方が有意に高かった。
(1) Comparison of myocardial-related gene expression Each cell line was differentiated into cardiomyocytes in the same manner as in Example 1, and the expression levels of myocardial-related genes were compared. The results are shown in FIGS. 6 and 7. FIG.
High myocardial-related gene expression was confirmed in all of the cell cultures induced to differentiate from the three cell lines with high differentiation tropism into cardiomyocytes. In addition, the troponin-positive rate was significantly higher in the three cell lines with high cardiomyocyte differentiation tropism.

(2)マイクロアレイ解析
次に心筋細胞への分化指向性の高い3細胞株と、低い3細胞株との間での遺伝子発現量の違いを、Affymetrix GeneChip(R) Arraysを用いたマイクロアレイ解析を行った。
Affymetrix GeneChip(R) Arraysで解析可能な3300遺伝子のうち、分化指向性の高い群と分化指向性の低い群とで比較して、分化指向性の高い群において2倍以上の発現量を示した84遺伝子を特定し、その遺伝子群がどのシグナル伝達経路に関連する遺伝子であるかを解析した。結果を下表に示す。

Figure 0007173496000007
(2) Microarray analysis Next, microarray analysis was performed using Affymetrix GeneChip (R) Arrays for differences in gene expression levels between 3 cell lines with high cardiomyocyte differentiation tropism and 3 cell lines with low cardiomyocyte differentiation tropism. rice field.
Among the 3,300 genes that can be analyzed with Affymetrix GeneChip(R) Arrays, the expression level was more than doubled in the group with high differentiation tropism compared to the group with low differentiation tropism. We identified 84 genes and analyzed which signal transduction pathway the gene group was associated with. The results are shown in the table below.
Figure 0007173496000007

(3)マーカー候補遺伝子の絞り込み
上記84遺伝子の中でも特に顕著な発現量の差を示した遺伝子について、バイオマーカー候補遺伝子として特定した。これによりミトコンドリア関連遺伝子CHCHD2およびSFXN3、WNTシグナル調節因子KDM6A、TGF-βシグナル関連因子SKILなどがバイオマーカー遺伝子候補として特定された。また、逆に心筋細胞への分化指向性の低い細胞株において顕著に高い発現を示した遺伝子として、miRNA-139およびmiRNA-204が特定された。
(3) Narrowing down marker candidate genes Among the 84 genes described above, genes that showed a particularly remarkable difference in expression level were identified as biomarker candidate genes. Mitochondria-associated genes CHCHD2 and SFXN3, WNT signal regulator KDM6A, TGF-β signal-associated factor SKIL, etc., were thereby identified as candidate biomarker genes. Conversely, miRNA-139 and miRNA-204 were identified as genes that showed significantly high expression in cell lines with low cardiomyocyte differentiation tropism.

例4:miRNA発現解析
(1)miRNAマイクロアレイ
各iPS細胞株それぞれから、miRNeasy mini kit(QIAGEN)を用いてtotal RNAを抽出した。低分子量RNAを含むTotal RNAからFlashTag Biotin HSR RNA labelling kit (Affymetrix)を用いて、製品プロトコールに従い、ビオチンラベル化RNAの作製を行った。GeneChip Hybridization Oven(Affymetrix)を用いて、miRNA 3.0 array(Affymetrix)に作製したビオチンラベル化RNAをハイブリダイズさせた。ハイブリダイズ後、GeneChip Fluidics Station 450(Affymetrix)を用いて洗浄とフィコエリスリン染色を行った。その後、GeneChip Scanner 3000 7G(Affymetrix)を用いてGenechipアレイの蛍光画像をスキャンし、イメージ画像を取得した。得られた蛍光強度のデータはExpression Console Ver.1.1(Affymetrix)を用いて解析した。シグナルのノーマライズはthe miRNA array RMA+DABG分析およびExpression Console software (Affymetrix)を用いて行った。
心筋細胞への分化指向性の高い細胞株として201B7、253G1および409B2を用い、心筋細胞への分化指向性の低い細胞株としてRIKEN-1A、RIKEN-2A、RIKEN-12Aを用いて、心筋細胞への分化指向性の高い細胞株において特徴的に発現する遺伝子を解析した。
上記例1で用いた各種iPS細胞株におけるmiRNAの発現を、miRNAマイクロアレイを用いて解析した。
解析可能な534種のmiRNAのうち、分化指向性の高い群と分化指向性の低い群とで比較して、分化指向性の高い群において半分以下の発現量を示した5種のmiRNA(ACA24、hsa-miR-629-star、mmi-miR-204、ACA61およびhsa-miR-139-5p)を特定した。結果を図8に示す。
特定されたmiRNAがどのシグナル伝達経路に関連するmiRNAであるかを解析し、上記例3(3)で解析された結果を参照し、関連の強い遺伝子を絞り込んだ。結果を図9に示す。心筋細胞への分化指向性の強いiPS細胞株において有意に発現量が高い遺伝子としてPF4が、有意に発現量が低い遺伝子としてTMEM64が見出された。
Example 4: miRNA expression analysis (1) miRNA microarray Total RNA was extracted from each iPS cell line using miRNeasy mini kit (QIAGEN). Biotin-labeled RNA was prepared from Total RNA containing low-molecular-weight RNA using FlashTag Biotin HSR RNA labeling kit (Affymetrix) according to the product protocol. A GeneChip Hybridization Oven (Affymetrix) was used to hybridize the biotin-labeled RNA prepared to the miRNA 3.0 array (Affymetrix). After hybridization, washing and phycoerythrin staining were performed using the GeneChip Fluidics Station 450 (Affymetrix). After that, the fluorescence image of the Genechip array was scanned using GeneChip Scanner 3000 7G (Affymetrix) to obtain an image. The obtained fluorescence intensity data was analyzed using Expression Console Ver.1.1 (Affymetrix). Signal normalization was performed using the miRNA array RMA+DABG analysis and Expression Console software (Affymetrix).
201B7, 253G1 and 409B2 were used as cell lines with high cardiomyocyte differentiation tropism, and RIKEN-1A, RIKEN-2A and RIKEN-12A were used as cell lines with low cardiomyocyte differentiation tropism. We analyzed the genes that are characteristically expressed in cell lines with high differentiation tropism.
The miRNA expression in the various iPS cell lines used in Example 1 above was analyzed using a miRNA microarray.
Of the 534 miRNAs that can be analyzed, 5 miRNAs (ACA24 , hsa-miR-629-star, mmi-miR-204, ACA61 and hsa-miR-139-5p). The results are shown in FIG.
It was analyzed which signal transduction pathway the identified miRNA was associated with, and the results analyzed in Example 3(3) above were referred to narrow down the strongly associated genes. The results are shown in FIG. PF4 was found as a gene with a significantly high expression level, and TMEM64 was found as a gene with a significantly low expression level in an iPS cell line with a strong differentiation tropism to cardiomyocytes.

(2)心筋細胞への分化指向性への関与の確認
上記遺伝子の分化指向性マーカー遺伝子としての有効性を確認するため、DMSO、IWR-1および2、CHIR99021またはMitoBlock6をそれぞれ加えた培地を用いてiPS細胞を心筋細胞に分化誘導し、得られた細胞集団におけるcTnT陽性率、PF4の発現量およびTMEM64の発現量を計測した。
結果を図10に示す。特にCHIR99021を添加した培地を用いた場合において、cTnT陽性率およびPF4の発現量において有意な低減が確認された。またMitoBlock-6を添加した培地においてもcTnTが有意に低減しており、この場合にはPF4では低減傾向が確認され、TMEM64では増加傾向が確認された。したがって、PF4は心筋細胞の分化誘導において正に相関し、TMEM64は負に相関する可能性が示唆された。
(2) Confirmation of involvement in cardiomyocyte differentiation tropism In order to confirm the effectiveness of the above genes as differentiation tropism marker genes, a medium supplemented with DMSO, IWR-1 and 2, CHIR99021 or MitoBlock6 was used. iPS cells were induced to differentiate into cardiomyocytes, and the cTnT positive rate, the expression level of PF4, and the expression level of TMEM64 in the resulting cell population were measured.
The results are shown in FIG. In particular, a significant decrease in the cTnT positive rate and the expression level of PF4 was confirmed when using the medium supplemented with CHIR99021. In addition, cTnT was significantly reduced in the medium supplemented with MitoBlock-6, and in this case, a decreasing tendency was confirmed with PF4, and an increasing tendency was confirmed with TMEM64. Therefore, it was suggested that PF4 is positively correlated with cardiomyocyte differentiation induction, and that TMEM64 is negatively correlated.

Claims (9)

ヒト人工多能性幹細胞の心筋細胞への分化指向性を評価するための分化指向性マーカーの決定方法であって、
(1)複数のヒト人工多能性幹細胞株における遺伝子発現量を測定すること;
(2)前記複数のヒト人工多能性幹細胞株におけるmiRNAの発現量を測定すること;
(3)前記心筋細胞への分化指向性の高いヒト人工多能性幹細胞株と低いヒト人工多能性幹細胞株との間に有意に発現量に差異のある遺伝子を抽出すること;
(4)前記心筋細胞への分化指向性の高いヒト人工多能性幹細胞株と低いヒト人工多能性幹細胞株との間に有意に発現量に差異のあるACA24、hsa-miR-629-star、mmi-miR-204、ACA61およびhsa-miR-139-5pを抽出すること;および
(5)(3)で抽出された遺伝子から(4)で抽出されたACA24、hsa-miR-629-star、mmi-miR-204、ACA61およびhsa-miR-139-5pと関与するPF4およびTMEM64を選択すること;
を含む、前記方法。
A method for determining a differentiation tropism marker for evaluating the differentiation tropism of human induced pluripotent stem cells into cardiomyocytes , comprising:
(1) measuring gene expression levels in multiple human induced pluripotent stem cell lines;
(2) measuring the expression level of miRNA in the plurality of human induced pluripotent stem cell lines;
(3) Extracting a gene with a significantly different expression level between a human induced pluripotent stem cell line with a high cardiomyocyte differentiation tropism and a human induced pluripotent stem cell line with a low differentiation tropism;
(4) ACA24, hsa-miR-629-star, which has a significant difference in the expression level between the human induced pluripotent stem cell line with high cardiomyocyte differentiation tropism and the human induced pluripotent stem cell line with low differentiation tropism , mmi-miR-204, ACA61 and hsa-miR-139-5p ; and (5) ACA24, hsa-miR-629-star extracted in (4) from the genes extracted in (3). PF4 and TMEM64 associated with , mmi-miR-204, ACA61 and hsa-miR-139-5p ;
The above method, comprising
工程(1)において、複数のヒト人工多能性幹細胞株が、心筋細胞への分化指向性が高いことが知られている少なくとも1種のヒト人工多能性幹細胞株と、前記心筋細胞への分化指向性が低いことが知られている少なくとも1種のヒト人工多能性幹細胞株とを含む、請求項1に記載の方法。In step (1), at least one human induced pluripotent stem cell line known to have a high differentiation tropism to cardiomyocytes, and a plurality of human induced pluripotent stem cell lines to cardiomyocytes. 2. The method of claim 1, comprising at least one human induced pluripotent stem cell line known to have a low differentiation propensity. 工程(2)において、複数のヒト人工多能性幹細胞株が、工程(1)において遺伝子の発現量を測定された複数のヒト人工多能性幹細胞株と同一のヒト人工多能性幹細胞株である、請求項1または2に記載の方法。In step (2), the plurality of human induced pluripotent stem cell lines are the same human induced pluripotent stem cell lines as the plurality of human induced pluripotent stem cell lines whose gene expression levels were measured in step (1). 3. The method of claim 1 or 2, wherein: 工程(3)において、分化指向性の高いヒト人工多能性幹細胞株において有意に高発現している遺伝子、または分化指向性の低いヒト人工多能性幹細胞株において有意に高発現している遺伝子が抽出される、請求項1~3のいずれか一項に記載の方法。In step (3), a gene that is significantly highly expressed in a human induced pluripotent stem cell line with high differentiation tropism or a gene that is significantly highly expressed in a human induced pluripotent stem cell line with low differentiation tropism A method according to any one of claims 1 to 3, wherein is extracted. 工程(4)において、分化指向性の高いヒト人工多能性幹細胞株において有意に高発現しているmiRNA、または分化指向性の低いヒト人工多能性幹細胞株において有意に高発現しているmiRNAが抽出される、請求項1~4のいずれか一項に記載の方法。In step (4), miRNAs that are significantly highly expressed in human induced pluripotent stem cell lines with high differentiation tropism, or miRNAs that are significantly highly expressed in human induced pluripotent stem cell lines with low differentiation tropism A method according to any one of claims 1 to 4, wherein is extracted. 工程(5)において、miRNAの発現における有意差に起因して発現量に有意差が生じている遺伝子が選択される、請求項1~5のいずれか一項に記載の方法。The method according to any one of claims 1 to 5, wherein in step (5), a gene having a significant difference in expression level due to a significant difference in miRNA expression is selected. ヒト人工多能性幹細胞株の心筋細胞への分化指向性を指標化する方法であって、A method for indexing the cardiomyocyte differentiation propensity of a human induced pluripotent stem cell line, comprising:
(a)対象のヒト人工多能性幹細胞におけるPF4および/またはTMEM64の発現量を計測すること(a) measuring the expression level of PF4 and/or TMEM64 in human induced pluripotent stem cells of interest
(b)(a)で測定したPF4および/またはTMEM64の発現量を基準と比較すること(b) comparing the expression level of PF4 and/or TMEM64 measured in (a) with a reference
を含む、前記方法。The above method, comprising
測定したPF4の発現量が基準より有意に高い場合、対象のヒト人工多能性幹細胞を心筋細胞への分化指向性が高い細胞株であると判断する、請求項7に記載の方法。8. The method according to claim 7, wherein when the measured expression level of PF4 is significantly higher than the reference, the subject human induced pluripotent stem cells are determined to be a cell line with a high cardiomyocyte differentiation tropism. 測定したTMEM64の発現量が基準より有意に低い場合、対象のヒト人工多能性幹細胞を心筋細胞への分化指向性が高い細胞株であると判断する、請求項7または8に記載の方法。9. The method according to claim 7 or 8, wherein when the measured expression level of TMEM64 is significantly lower than the reference, the subject human induced pluripotent stem cells are determined to be a cell line with high cardiomyocyte differentiation tropism.
JP2019548816A 2017-10-20 2018-10-19 METHOD FOR SELECTING PLIPOTENTIAL STEM CELLS THAT HAVE DIFFERENTIATION TROPENCY INTO CARDIFERIC CELLS Active JP7173496B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017203996 2017-10-20
JP2017203996 2017-10-20
PCT/JP2018/038951 WO2019078342A1 (en) 2017-10-20 2018-10-19 Method for selecting pluripotent stem cell having directivity of differentiation to cardiomyocyte

Publications (2)

Publication Number Publication Date
JPWO2019078342A1 JPWO2019078342A1 (en) 2020-09-17
JP7173496B2 true JP7173496B2 (en) 2022-11-16

Family

ID=66173311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019548816A Active JP7173496B2 (en) 2017-10-20 2018-10-19 METHOD FOR SELECTING PLIPOTENTIAL STEM CELLS THAT HAVE DIFFERENTIATION TROPENCY INTO CARDIFERIC CELLS

Country Status (2)

Country Link
JP (1) JP7173496B2 (en)
WO (1) WO2019078342A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7370602B2 (en) * 2019-01-17 2023-10-30 公立大学法人横浜市立大学 Evaluation method for differentiation resistance of undifferentiated cells
EP4092107A4 (en) * 2020-01-16 2023-12-06 FUJIFILM Corporation Method for producing pluripotent stem cells capable of differentiating into specific cells, and application thereof
CN113017650B (en) * 2021-03-12 2022-06-28 南昌航空大学 Electroencephalogram feature extraction method and system based on power spectral density image
WO2024085251A1 (en) * 2022-10-21 2024-04-25 住友ファーマ株式会社 Method for evaluating quality of retinal implant

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11085067B2 (en) * 2013-06-10 2021-08-10 President And Fellows Of Harvard College Early developmental genomic assay for characterizing pluripotent stem cell utility and safety
WO2017010544A1 (en) * 2015-07-15 2017-01-19 テルモ株式会社 Cryopreservation method for myocardial cells derived from pluripotent stem cells or from mesenchymal stem cells derived from adipose tissue or bone marrow

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Cell stem cell,2011年06月03日,Vol.8 ,pp.695-706

Also Published As

Publication number Publication date
WO2019078342A1 (en) 2019-04-25
JPWO2019078342A1 (en) 2020-09-17

Similar Documents

Publication Publication Date Title
JP7173496B2 (en) METHOD FOR SELECTING PLIPOTENTIAL STEM CELLS THAT HAVE DIFFERENTIATION TROPENCY INTO CARDIFERIC CELLS
Ishikura et al. In vitro derivation and propagation of spermatogonial stem cell activity from mouse pluripotent stem cells
KR102675213B1 (en) Method for producing retinal pigment epidermal cells
Kim et al. Oct4-induced pluripotency in adult neural stem cells
Hong et al. Cell fate potential of human pluripotent stem cells is encoded by histone modifications
Cho et al. Conversion from mouse embryonic to extra-embryonic endoderm stem cells reveals distinct differentiation capacities of pluripotent stem cell states
JP6246125B2 (en) Method for sorting pluripotent cells
US20150329821A1 (en) Methods of differentiating stem cells into one or more cell lineages
JP6493881B2 (en) Method for selecting induced pluripotent stem cells and method for inducing differentiation into blood cells
JPWO2019093340A1 (en) Method for inducing primitive endoderm from naive pluripotent stem cells
Li et al. Characterization and gene expression profiling of five new human embryonic stem cell lines derived in Taiwan
EP4114927A1 (en) Use of pluripotent markers to detect contaminating residual undifferentiated pluripotent stem cells
WO2018037091A1 (en) Methods for the identification and isolation of hematopoietic stem and progenitor cells
Bieberich et al. Molecular mechanisms underlying pluripotency
US20220017872A1 (en) Producing method for pluripotent stem cell capable of differentiating into specific cell and application thereof
JP7141043B2 (en) Evaluation method and selection method for induced pluripotent stem cells, and method for producing induced pluripotent stem cells
WO2007110343A2 (en) Combination of avian cell markers
Vossaert et al. Embryonic Stem Cells: Keeping Track of the Pluripotent Status
US20200347452A1 (en) Method for evaluating state of undifferentiated cell and utilization thereof
WO2023242398A1 (en) Process for obtaining functional lymphocytes cells
WO2023118050A1 (en) Use of novel markers to detect pluripotent stem cells
Sharma Transcriptional profiling of pluripotent and multipotent stem cells to decipher pluripotency and lineage specification
Loh et al. Supplemental Information Efficient Endoderm Induction from Human Pluripotent Stem Cells by Logically Directing Signals Controlling Lineage Bifurcations
Rahkonen Regulation of self-renewal and detection of karyotypic changes of pluripotent human embryonic stem cells
Glover New approaches to the optimized maintenance of embryonic stem cells in culture

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221026

R150 Certificate of patent or registration of utility model

Ref document number: 7173496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150