JP7171164B2 - Combustion exhaust gas treatment method, combustion exhaust gas treatment device and maintenance method thereof - Google Patents

Combustion exhaust gas treatment method, combustion exhaust gas treatment device and maintenance method thereof Download PDF

Info

Publication number
JP7171164B2
JP7171164B2 JP2017080471A JP2017080471A JP7171164B2 JP 7171164 B2 JP7171164 B2 JP 7171164B2 JP 2017080471 A JP2017080471 A JP 2017080471A JP 2017080471 A JP2017080471 A JP 2017080471A JP 7171164 B2 JP7171164 B2 JP 7171164B2
Authority
JP
Japan
Prior art keywords
catalyst
stage
exhaust gas
frontmost
combustion exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017080471A
Other languages
Japanese (ja)
Other versions
JP2018176079A (en
Inventor
晴佳 木村
晃広 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2017080471A priority Critical patent/JP7171164B2/en
Publication of JP2018176079A publication Critical patent/JP2018176079A/en
Application granted granted Critical
Publication of JP7171164B2 publication Critical patent/JP7171164B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、燃焼排ガス処理方法、燃焼排ガス処理装置およびそれのメンテナンス方法に関する。より詳細に、本発明は、再生触媒などの、新品触媒より若干低い活性または新品触媒より若干低い比表面積を有する触媒を効率的に使用しつつ、排ガス処理能力を長期間維持して、燃焼排ガスの処理に掛かるコストを低減することができる、燃焼排ガス処理方法、燃焼排ガス処理装置およびそれのメンテナンス方法に関する。 TECHNICAL FIELD The present invention relates to a combustion exhaust gas treatment method, a combustion exhaust gas treatment apparatus, and a maintenance method thereof. More specifically, the present invention efficiently uses a catalyst, such as a regenerated catalyst, having activity slightly lower than that of a new catalyst or a specific surface area slightly lower than that of a new catalyst, while maintaining the exhaust gas treatment capacity for a long period of time to reduce combustion exhaust gas. The present invention relates to a combustion exhaust gas treatment method, a combustion exhaust gas treatment apparatus, and a maintenance method thereof, which can reduce the cost required for the treatment of.

ボイラ等の火炉から排出されるガス中の有害物質、例えば、窒素酸化物、一酸化炭素、水銀、有機ハロゲン化合物(ダイオキシン類など)、アンモニア、VOCなどを触媒の存在下で分解除去することが行われている。触媒は、長期間の使用によって活性が低下する。活性が所定レベル以下に低下した触媒(使用済み触媒)は新品触媒または再生触媒に置き換えられる。再生触媒は、特許文献3、4、5などに記載の方法で使用済み触媒から製造することができる。一般に、再生触媒は、新品触媒に比べて、安価であるので、需要が増えている。しかし、再生触媒は、新品触媒に比べて、初期活性が若干低く、活性の経年的な低下も速い。このような特性のある再生触媒の使い方として、例えば、特許文献1は、排ガス中の窒素酸化物を触媒の作用により分解し、かつ、前記触媒が複数段の反応器中に設置されている脱硝装置において、2段目以後の前記反応器中の触媒が再生触媒と交換配置されることを特徴とする脱硝装置におけるメンテナンス方法を開示している。 Hazardous substances such as nitrogen oxides, carbon monoxide, mercury, organic halogen compounds (such as dioxins), ammonia, and VOCs in gases discharged from furnaces such as boilers can be decomposed and removed in the presence of a catalyst. It is done. Catalysts lose activity over long periods of use. Catalysts whose activity has fallen below a predetermined level (used catalysts) are replaced with new catalysts or regenerated catalysts. A regenerated catalyst can be produced from a used catalyst by the methods described in Patent Documents 3, 4, 5, and the like. In general, regenerated catalysts are cheaper than new catalysts, so the demand is increasing. However, the regenerated catalyst has a slightly lower initial activity than the new catalyst, and its activity declines more quickly over time. As a method of using a regenerated catalyst with such characteristics, for example, Patent Document 1 describes denitrification in which nitrogen oxides in exhaust gas are decomposed by the action of a catalyst, and the catalyst is installed in a multiple-stage reactor. Disclosed is a maintenance method for a denitrification apparatus, characterized in that the catalyst in the reactor of the second and subsequent stages of the apparatus is replaced with a regenerated catalyst.

また、部分的に劣化したハニカム触媒を有効使用するために、例えば、特許文献2は、被処理ガスを送通するガス流路を有すると共に当該ガス流路の側壁で処理を行うハニカム触媒を排ガス流路に設置した排ガス処理装置の性能回復方法であって、前記ハニカム触媒の被処理ガスの流れ方向の上流側から所定範囲を劣化部位とし、当該劣化部位を前記排ガス流路の入口側から離すように、当該ハニカム触媒を再配置することを特徴とする排ガス処理装置の性能回復方法を開示している。 In addition, in order to effectively use a partially deteriorated honeycomb catalyst, for example, Patent Document 2 discloses a honeycomb catalyst that has a gas flow passage through which a gas to be treated passes and performs treatment on the side wall of the gas flow passage. A method for recovering the performance of an exhaust gas treatment device installed in a channel, wherein a predetermined range from the upstream side of the honeycomb catalyst in the flow direction of the gas to be treated is defined as a deteriorated portion, and the deteriorated portion is separated from the inlet side of the exhaust gas channel. Thus, a method for recovering the performance of an exhaust gas treatment device is disclosed, which is characterized by rearranging the honeycomb catalyst.

さらに、特許文献6は、使用済み触媒に硫酸アルミニウム溶液を含浸させ、次いで乾燥させることによって得られる吸着剤を、排ガス流路の途中に設置して触媒毒を除去することを開示している。しかし、再生処理を行っていない吸着剤に脱硝性能は期待できない。 Furthermore, Patent Document 6 discloses that an adsorbent obtained by impregnating a used catalyst with an aluminum sulfate solution and then drying is installed in the middle of an exhaust gas flow path to remove catalyst poisons. However, the denitration performance cannot be expected from the adsorbent that has not been regenerated.

特開2002-143646号公報JP-A-2002-143646 WO2005/056165AWO2005/056165A 特開2000-475号公報JP-A-2000-475 特開2011-161373号公報JP 2011-161373 A 特開2017-18919号公報JP 2017-18919 A 特開2014-97439号公報JP 2014-97439 A 特開平1-127029号公報JP-A-1-127029 特開2002-39524号公報JP-A-2002-39524

本発明の課題は、再生触媒などの新品触媒より若干低い活性または新品触媒より若干低い比表面積を有する触媒を使用しながらも、排ガス処理能力を長期間維持して、燃焼排ガスの処理に掛かるコストを低減することができる、燃焼排ガス処理方法、燃焼排ガス処理装置およびそれのメンテナンス方法を提供することである。 The object of the present invention is to maintain the exhaust gas treatment capacity for a long period of time while using a catalyst such as a regenerated catalyst that has a slightly lower activity than a new catalyst or a slightly lower specific surface area than a new catalyst, thereby reducing the cost of treating combustion exhaust gas. To provide a combustion exhaust gas treatment method, a combustion exhaust gas treatment apparatus, and a maintenance method thereof, which can reduce the

上記課題を解決すべく検討した結果、以下のような態様を包含する本発明を完成するに至った。 As a result of studies to solve the above problems, the present invention including the following aspects was completed.

〔1〕触媒Aの設置された最前段の触媒層と触媒Aよりも高い比表面積もしくは高い活性を有する触媒Bの設置された最前段より後の段の触媒層とを近接して有する触媒固定床に、燃焼排ガスを最前段から順次それより後の段まで通過させて、燃焼排ガス中の有害物質を除去することを含む、燃焼排ガス処理方法。
〔2〕触媒Aが再生触媒である、〔1〕に記載の燃焼排ガス処理方法。
〔3〕前記の触媒固定床が、少なくとも二つ、間隔を開けて、直列に設置されている、〔1〕または〔2〕に記載の燃焼排ガス処理方法。
[1] A fixed catalyst having a frontmost catalyst layer on which catalyst A is placed and a catalyst layer on which catalyst B having a higher specific surface area or higher activity than catalyst A is placed and which is located after the frontmost catalyst layer in close proximity. A flue gas treatment method comprising passing the flue gas through a bed from the foremost stage to subsequent stages to remove harmful substances in the flue gas.
[2] The combustion exhaust gas treatment method according to [1], wherein the catalyst A is a regenerated catalyst.
[3] The method for treating flue gas according to [1] or [2], wherein at least two fixed catalyst beds are arranged in series with an interval therebetween.

〔4〕触媒Aの設置された最前段の触媒層と触媒Aよりも高い比表面積もしくは高い活性を有する触媒Bの設置された最前段より後の段の触媒層とを近接して有する触媒固定床、燃焼排ガスを触媒固定床の最前段に導入するためのダクト、および触媒固定床を通過した燃焼排ガスを排出するためのダクトを有する燃焼排ガス処理装置。
〔5〕触媒Aが再生触媒である、〔4〕に記載の燃焼排ガス処理装置。
〔6〕前記の触媒固定床が、少なくとも二つ、間隔を開けて、直列に設置されている、〔4〕または〔5〕に記載の燃焼排ガス処理装置。
[4] A fixed catalyst having a frontmost catalyst layer on which catalyst A is installed and a catalyst layer on which catalyst B having a higher specific surface area or higher activity than catalyst A is installed and which is located after the frontmost catalyst layer in close proximity. A flue gas treatment apparatus having a bed, a duct for introducing flue gas to the frontmost stage of the fixed catalyst bed, and a duct for discharging flue gas that has passed through the fixed catalyst bed.
[5] The combustion exhaust gas treatment device according to [4], wherein the catalyst A is a regenerated catalyst.
[6] The combustion exhaust gas treatment device according to [4] or [5], wherein at least two fixed catalyst beds are arranged in series with a space therebetween.

〔7〕触媒の設置された最前段の触媒層と触媒の設置された最前段より後の段の触媒層とを近接して有する触媒固定床、燃焼排ガスを触媒固定床の最前段に導入するためのダクト、および触媒固定床を通過した燃焼排ガスを排出するためのダクトを有する燃焼排ガス処理装置において、
最前段の触媒層に設置されていた触媒を、その触媒よりも活性が高く且つ最前段より後の段の触媒層に設置される触媒よりも活性が低い触媒Aに置き換えることを含む、燃焼排ガス処理装置のメンテナンス方法。
〔8〕最前段より後の少なくともひとつの段の触媒層に設置されていた触媒を、その触媒よりも活性が高く且つ触媒Aよりも活性が高い触媒Bに置き換えることをさらに含む、〔7〕に記載の燃焼排ガス処理装置のメンテナンス方法。
〔9〕触媒Bが未使用の触媒または別の段で使用していた触媒である、〔8〕に記載のメンテナンス方法。
〔10〕触媒Aが再生触媒である、〔7〕、〔8〕または〔9〕に記載のメンテナンス方法。
[7] A fixed catalyst bed having a frontmost catalyst layer on which a catalyst is placed and a subsequent catalyst layer on which a catalyst is placed in close proximity, and a combustion exhaust gas is introduced into the frontmost stage of the fixed catalyst bed. and a duct for discharging flue gas that has passed through the fixed catalyst bed,
Combustion exhaust gas, including replacing the catalyst installed in the frontmost catalyst layer with a catalyst A having higher activity than the catalyst and lower activity than the catalyst installed in the rearmost catalyst layer. A maintenance method for processing equipment.
[8] further including replacing the catalyst installed in the catalyst layer of at least one stage after the foremost stage with a catalyst B having a higher activity than the catalyst and a higher activity than the catalyst A; [7] 3. The maintenance method for the combustion exhaust gas treatment device according to 1.
[9] The maintenance method according to [8], wherein catalyst B is an unused catalyst or a catalyst that has been used in another stage.
[10] The maintenance method according to [7], [8] or [9], wherein the catalyst A is a regenerated catalyst.

〔11〕触媒の設置された最前段の触媒層と触媒の設置された最前段より後の段の触媒層とを近接して有する触媒固定床、燃焼排ガスを触媒固定床の最前段に導入するためのダクト、および触媒固定床を通過した燃焼排ガスを排出するためのダクトを有する燃焼排ガス処理装置において、
最前段の触媒層に設置されていた触媒を、その触媒よりも比表面積が高く且つ最前段より後の段の触媒層に設置される触媒よりも比表面積が低い触媒Aに置き換えることを含む、燃焼排ガス処理装置のメンテナンス方法。
〔12〕最前段より後の少なくともひとつの段の触媒層に設置されていた触媒を、その触媒よりも比表面積が高く且つ触媒Aよりも比表面積が高い触媒Bに置き換えることをさらに含む、〔11〕に記載のメンテナンス方法。
〔13〕触媒Bが未使用の触媒または別の段で使用していた触媒である、〔12〕に記載のメンテナンス方法。
〔14〕触媒Aが再生触媒である、〔11〕、〔12〕または〔13〕に記載のメンテナンス方法。
[11] A fixed catalyst bed having a frontmost catalyst layer on which a catalyst is placed and a subsequent catalyst layer on which a catalyst is placed in close proximity, and a combustion exhaust gas is introduced into the frontmost stage of the fixed catalyst bed. and a duct for discharging flue gas that has passed through the fixed catalyst bed,
replacing the catalyst installed in the foremost catalyst layer with a catalyst A having a higher specific surface area than the catalyst and a lower specific surface area than the catalyst installed in the catalyst layer after the foremost stage; A maintenance method for a combustion exhaust gas treatment device.
[12] further comprising replacing the catalyst installed in the catalyst layer of at least one stage after the foremost stage with a catalyst B having a higher specific surface area than the catalyst and a higher specific surface area than the catalyst A, [ 11] maintenance method.
[13] The maintenance method according to [12], wherein the catalyst B is an unused catalyst or a catalyst that has been used in another stage.
[14] The maintenance method according to [11], [12] or [13], wherein the catalyst A is a regenerated catalyst.

本発明によれば、再生触媒などの新品触媒より若干低い活性または新品触媒より若干低い比表面積を有する触媒を使用しながらも、排ガス処理能力を長期間維持して、燃焼排ガスの処理に掛かるコストを低減することができる。
最前段の触媒層にハニカム状の触媒または板状の触媒を用いると最前段の触媒層において排ガスが整流されるので、最前段より後の段の触媒層に設置されている触媒への触媒毒の付着が抑制される。最前段より後の段の触媒層における有害物質の除去量が高く維持されるので、燃焼排ガス処理装置全体での有害物質除去率を高く維持することができる。
本発明は燃焼排ガスの脱硝において好ましく用いることができる。
According to the present invention, while using a catalyst such as a regenerated catalyst that has a slightly lower activity than a new catalyst or a slightly lower specific surface area than a new catalyst, the exhaust gas treatment capacity is maintained for a long time, and the cost of treating the combustion exhaust gas is can be reduced.
When a honeycomb-shaped catalyst or a plate-shaped catalyst is used for the frontmost catalyst layer, the exhaust gas is rectified in the frontmost catalyst layer, so that the catalysts installed in the rearmost catalyst layers are not poisoned. adhesion is suppressed. Since the removal amount of harmful substances in the catalyst layers in the stages after the frontmost stage is maintained high, the removal rate of harmful substances in the combustion exhaust gas treatment apparatus as a whole can be maintained high.
INDUSTRIAL APPLICABILITY The present invention can be preferably used for denitrification of combustion exhaust gas.

本発明の燃焼排ガス処理装置の一例を示す概念図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a conceptual diagram which shows an example of the flue gas processing apparatus of this invention. 触媒モジュールFaを示す斜視概念図である。FIG. 2 is a conceptual perspective view showing a catalyst module Fa; 触媒モジュールBaを示す斜視概念図である。FIG. 2 is a conceptual perspective view showing a catalyst module B a ; 触媒モジュールFbを示す斜視概念図である。 FIG . 2 is a conceptual perspective view showing a catalyst module Fb; 触媒モジュールFcを示す斜視概念図である。 FIG . 2 is a conceptual perspective view showing a catalyst module Fc; 触媒ユニット7を示す斜視概念図である。3 is a conceptual perspective view showing a catalyst unit 7; FIG. 触媒ユニット3を示す斜視概念図である。3 is a conceptual perspective view showing a catalyst unit 3; FIG. 板状触媒2を示す斜視概念図である。2 is a conceptual perspective view showing a plate-like catalyst 2; FIG. 本発明の燃焼排ガス処理装置の別の一例を示す概念図である。FIG. 4 is a conceptual diagram showing another example of the combustion exhaust gas treatment apparatus of the present invention;

本発明の燃焼排ガス処理方法は、触媒Aの設置された最前段の触媒層と触媒Aよりも高い比表面積もしくは高い活性を有する触媒Bの設置された最前段より後の段の触媒層とを近接して有する触媒固定床に、燃焼排ガスを最前段から順次それより後の段まで通過させて、燃焼排ガス中の有害物質を除去することを含む。
また、本発明の燃焼排ガス処理装置は、触媒Aの設置された最前段の触媒層と触媒Aよりも高い比表面積もしくは高い活性を有する触媒Bの設置された最前段より後の段の触媒層とを近接して有する触媒固定床、燃焼排ガスを触媒固定床の最前段に導入するためのダクト、および触媒固定床を通過した燃焼排ガスを排出するためのダクトを有する。
The combustion exhaust gas treatment method of the present invention comprises a catalyst layer in the foremost stage where catalyst A is installed and a catalyst layer in the stage after the foremost stage where catalyst B having a higher specific surface area or higher activity than catalyst A is installed. It includes removing harmful substances in the flue gas by passing the flue gas through the adjacent fixed catalyst bed from the first stage to the subsequent stages in order.
In addition, in the combustion exhaust gas treatment apparatus of the present invention, the catalyst layer in the foremost stage where the catalyst A is installed and the catalyst layer in the stage after the foremost stage where the catalyst B having a higher specific surface area or higher activity than the catalyst A is installed. , a duct for introducing flue gas to the frontmost stage of the fixed catalyst bed, and a duct for discharging flue gas that has passed through the fixed catalyst bed.

本発明の実施形態を図面に基づいて具体的に説明する。なお、以下の実施形態によって本発明の範囲は制限されない。 An embodiment of the present invention will be specifically described based on the drawings. In addition, the scope of the present invention is not limited by the following embodiments.

(第一実施形態)
図1は、本発明に係る燃焼排ガス処理装置の一例を示す概念図である。
図1に示される燃焼排ガス処理装置は、水平流路を有する入口ダクト1、触媒固定床4a、4bおよび4cの設けられた垂直流路を有する反応器ダクト6、ならびに水平流路を有する出口ダクト5を具備する。
(First embodiment)
FIG. 1 is a conceptual diagram showing an example of a combustion exhaust gas treatment apparatus according to the present invention.
The flue gas treatment apparatus shown in FIG. 5.

入口ダクト1、反応器ダクト6および出口ダクト5は、ガス流れ方向から見た流路の断面形状が、矩形、台形、円形、楕円形などであることができる。これらのうち、加工し易さの観点から矩形が好ましい。反応器ダクト6の垂直流路の入口に流路断面に亘って複数の整流板(図示せず)を設けてもよい(特許文献7、8など参照)。燃焼排ガスGは、入口ダクト1、反応器ダクト6、および出口ダクト5の順に流れる。 The inlet duct 1, the reactor duct 6 and the outlet duct 5 can have a rectangular, trapezoidal, circular, elliptical, or the like cross-sectional shape of the channel viewed from the direction of gas flow. Of these, a rectangular shape is preferable from the viewpoint of ease of processing. A plurality of straightening vanes (not shown) may be provided at the inlet of the vertical channel of the reactor duct 6 over the cross section of the channel (see Patent Documents 7 and 8, etc.). Flue gas G flows through inlet duct 1 , reactor duct 6 and outlet duct 5 in that order.

図1に示される燃焼排ガス処理装置において、触媒固定床4a、4bおよび4cは、間隔を開けて、直列に設けられている。 In the flue gas treatment apparatus shown in FIG. 1, fixed catalyst beds 4a, 4b and 4c are spaced apart and arranged in series.

触媒固定床4aは、排ガス流の入口側に設けられた複数の触媒モジュールFaと排ガス流の出口側に設けられた複数の触媒モジュールBaとを近接して有する。 The fixed catalyst bed 4a has a plurality of catalyst modules Fa provided on the exhaust gas inlet side and a plurality of catalyst modules B a provided on the exhaust gas outlet side in close proximity.

触媒モジュールFaは、触媒固定床4aにおける最前段の触媒層である。図2に示すように、触媒モジュールFaは、8個の触媒ユニット7が2×4で配置されてなるものである。図6に示すように、触媒ユニット7は、複数の板状触媒8(触媒A:例えば再生触媒)を波形スペーサ10が平板部9に対向するように重畳して矩形枠に収納してなるものである。排ガスGのほぼすべてが触媒モジュールFaを通過するように、複数の触媒モジュールFaを反応器ダクトの流路断面に亘って配置することができる。 The catalyst module F a is the frontmost catalyst layer in the fixed catalyst bed 4a. As shown in FIG. 2, the catalyst module F a is formed by arranging eight catalyst units 7 in a 2×4 arrangement. As shown in FIG. 6, the catalyst unit 7 is formed by stacking a plurality of plate-shaped catalysts 8 (catalyst A: for example, a regenerated catalyst) so that the corrugated spacers 10 face the flat plate portion 9 and accommodated in a rectangular frame. is. A plurality of catalyst modules F a can be arranged over the flow cross-section of the reactor duct such that substantially all of the exhaust gas G passes through the catalyst modules F a .

触媒モジュールBaは、触媒固定床4aにおける最前段より後の段の触媒層である。図3に示すように、触媒モジュールBaは、16個の触媒ユニット3が2×2×4で配置されてなるものである。図7に示すように、触媒ユニット3は、複数の板状触媒2(触媒B)を波形スペーサが平板部に対向するように重畳して矩形枠に収納してなるものである。板状触媒2は、図8に示すような板状触媒8と同じ形状を成している。板状触媒2は、板状触媒8よりも高い活性または高い比表面積を有する。板状触媒2は、未使用の触媒または他の段で使用していた再使用可能な触媒であってもよい。触媒モジュールBaの上段の触媒ユニット3に収納されている板状触媒が触媒モジュールBaの下段の触媒ユニット3に収納されている板状触媒および触媒モジュールFaの触媒ユニット7に収納されている板状触媒に対して直交するように配置すると圧力損失を低減させることができるので好ましい。排ガスGのほぼすべてが触媒モジュールBaを通過するように、複数の触媒モジュールBaを反応器ダクトの流路断面に亘って配置することができる。 The catalyst module B a is a catalyst layer after the frontmost stage in the fixed catalyst bed 4a. As shown in FIG. 3, the catalyst module B a is formed by arranging 16 catalyst units 3 in a 2×2×4 matrix. As shown in FIG. 7, the catalyst unit 3 is formed by stacking a plurality of plate-like catalysts 2 (catalyst B) so that the corrugated spacers face the flat plate portion and housed in a rectangular frame. The plate-like catalyst 2 has the same shape as the plate-like catalyst 8 shown in FIG. The plate-like catalyst 2 has a higher activity or a higher specific surface area than the plate-like catalyst 8 . The plate-shaped catalyst 2 may be a virgin catalyst or a reusable catalyst that has been used in another stage. The plate-like catalyst housed in the upper catalyst unit 3 of the catalyst module B a is housed in the plate-like catalyst housed in the lower catalyst unit 3 of the catalyst module B a and the catalyst unit 7 of the catalyst module Fa . The pressure loss can be reduced by arranging so as to be perpendicular to the plate-like catalyst, which is preferable. A plurality of catalyst modules B a can be arranged over the flow cross-section of the reactor duct such that substantially all of the exhaust gas G passes through the catalyst modules B a .

触媒固定床4aの手前の空間では、通常、排ガスは乱流状態で流れている。乱流状態の排ガスは、その多くが、触媒モジュールFaを構成する板状触媒の主面に対して平行な方向以外の方向で、触媒モジュールFaに流入するので、排ガスに含まれる触媒毒などが板状触媒に衝突しやすい。触媒モジュールFaを構成する板状触媒に用いられる触媒Aは、触媒Bより若干低い比表面積を有するので、衝突した触媒毒の付着性が触媒Bよりも若干低い。その結果、触媒モジュールFaを構成する板状触媒は活性の経年的な低下が比較的に緩やかである。
触媒モジュールFaに流入した排ガスは板状触媒によって整流される。触媒モジュールFaから流出する整流された排ガスは、その多くが、触媒モジュールBaを構成する板状触媒の主面に対して平行な方向で、触媒モジュールBaに流入するので、排ガスに含まれる触媒毒などが板状触媒に衝突し難い。触媒モジュールBaを構成する板状触媒(触媒B)は活性の高い状態が維持される。
すなわち、本発明においては、触媒モジュールFaの活性が触媒毒の付着によって若干低下しても、触媒モジュールBaの活性は高く維持される。さらに、触媒モジュールFaに触媒Bより活性の若干低いまたは比表面積が若干低い触媒A(例えば、再生触媒、活性性能の残っている使用済触媒、比表面積の低い新品触媒など)が使用され、触媒モジュールBaに触媒Aより活性の高いまたは比表面積が高い触媒Bが使用されることを前提に、触媒モジュールBaにおける有害物質除去への寄与度が触媒モジュールFaにおける有害物質除去への寄与度より多くまたは等しくなるように排ガスの空塔速度などを設定することができる。それによって、触媒固定床4a全体での有害物質除去率はより高い値で維持することができる。
In the space in front of the fixed catalyst bed 4a, the exhaust gas normally flows in a turbulent state. Since most of the turbulent exhaust gas flows into the catalyst module Fa in a direction other than the direction parallel to the main surface of the plate-like catalyst that constitutes the catalyst module Fa , the catalyst poison contained in the exhaust gas etc. tend to collide with the plate-shaped catalyst. Catalyst A, which is used as a plate-shaped catalyst constituting catalyst module Fa, has a slightly lower specific surface area than catalyst B, and therefore adheres to catalyst poisons that collide with catalyst A slightly lower than catalyst B. As a result, the activity of the plate-shaped catalysts constituting the catalyst module F a is relatively gradual over time.
The exhaust gas that has flowed into the catalyst module Fa is rectified by the plate-like catalyst. Most of the rectified exhaust gas flowing out of the catalyst module F a flows into the catalyst module B a in a direction parallel to the main surface of the plate-like catalyst constituting the catalyst module B a , so the exhaust gas contains It is difficult for catalyst poisons and the like to collide with the plate-like catalyst. The plate-like catalyst (catalyst B) that constitutes the catalyst module B a is maintained in a highly active state.
That is, in the present invention, the activity of the catalyst module B a is maintained at a high level even if the activity of the catalyst module F a is slightly lowered due to the adhesion of the catalyst poison. Furthermore, a catalyst A having a slightly lower activity or a slightly lower specific surface area than the catalyst B (for example, a regenerated catalyst, a used catalyst with remaining activity performance, a new catalyst with a low specific surface area, etc.) is used in the catalyst module F a , On the premise that the catalyst B having a higher activity or a higher specific surface area than the catalyst A is used in the catalyst module B a , the degree of contribution to the removal of harmful substances in the catalyst module B a is equal to the contribution to the removal of harmful substances in the catalyst module F a . The superficial velocity of the exhaust gas, etc. can be set to be greater than or equal to the contribution. Thereby, the harmful substance removal rate of the entire fixed catalyst bed 4a can be maintained at a higher value.

触媒固定床4bは、排ガス流の入口側に設けられた複数の触媒モジュールFbと排ガス流の出口側に設けられた複数の触媒モジュールBaとを近接して有する。 The fixed catalyst bed 4b has a plurality of catalyst modules Fb provided on the exhaust gas inlet side and a plurality of catalyst modules Ba provided on the exhaust gas outlet side in close proximity.

触媒モジュールFbは、触媒固定床4bにおける最前段の触媒層である。図4に示すように、触媒モジュールFbは、16個の触媒ユニット7が2×2×4で配置されてなるものである。排ガスGのほぼすべてが触媒モジュールFbを通過するように、複数の触媒モジュールFbを反応器ダクトの流路断面に亘って配置することができる。触媒モジュールFbの上段の触媒ユニット7に収納されている板状触媒が触媒モジュールFbの下段の触媒ユニット7に収納されている板状触媒に対して直交するように配置すると圧力損失を低減させることができるので好ましい。
触媒モジュールBaはすでに述べたとおりのものである。触媒モジュールBaの上段の触媒ユニット3に収納されている板状触媒が触媒モジュールBaの下段の触媒ユニット3に収納されている板状触媒および触媒モジュールFbの下段の触媒ユニット7に収納されている板状触媒に対して直交するように配置すると圧力損失を低減させることができるので好ましい。
The catalyst module Fb is the frontmost catalyst layer in the fixed catalyst bed 4b. As shown in FIG . 4, the catalyst module Fb is composed of 16 catalyst units 7 arranged in a 2×2×4 arrangement. A plurality of catalyst modules Fb can be arranged over the flow cross-section of the reactor duct such that substantially all of the exhaust gas G passes through the catalyst modules Fb . Pressure loss is reduced when the plate-like catalyst housed in the upper catalyst unit 7 of the catalyst module Fb is arranged perpendicular to the plate-like catalyst housed in the lower catalyst unit 7 of the catalyst module Fb . It is preferable because it can be
Catalyst module B a is as already described. The plate-like catalyst housed in the upper catalyst unit 3 of the catalyst module B a is housed in the plate-like catalyst housed in the lower catalyst unit 3 of the catalyst module B a and the lower catalyst unit 7 of the catalyst module F b . The pressure loss can be reduced by arranging so as to be perpendicular to the plate-like catalyst, which is preferable.

触媒固定床4bにおいても、触媒固定床4aと同様に、触媒モジュールFbの活性が触媒毒の付着によって若干低下しても、触媒モジュールBaの活性は高く維持されるので、触媒固定床4b全体での有害物質除去率は高い値で維持される。 In the fixed catalyst bed 4b, as in the fixed catalyst bed 4a, even if the activity of the catalyst module Fb slightly decreases due to the adhesion of the catalyst poison, the activity of the catalyst module Ba is maintained high. The overall pollutant removal rate is maintained at a high value.

触媒固定床4cは、複数の触媒モジュールFcを有する。図5に示すように、触媒モジュールFcは、排ガス流の入口側(上段)に8個の触媒ユニット7が2×4で配置され、排ガス流の出口側(下段)に触媒ユニット7に近接して8個の触媒ユニット3が2×4で配置されてなるものである。2×4で配置された8個の触媒ユニット7は、触媒固定床4cにおける最前段の触媒層である。触媒モジュールFcの上段の触媒ユニット7に収納されている板状触媒が触媒モジュールFcの下段の触媒ユニット3に収納されている板状触媒に対して直交するように配置すると圧力損失を低減させることができるので好ましい。排ガスGのほぼすべてが触媒モジュールFcを通過するように、複数の触媒モジュールFcを反応器ダクトの流路断面に亘って配置することができる。 The catalyst fixed bed 4c has a plurality of catalyst modules Fc . As shown in FIG. 5, in the catalyst module F c , eight catalyst units 7 are arranged in a 2×4 arrangement on the exhaust gas inlet side (upper stage), and the catalyst modules 7 are arranged on the exhaust gas outlet side (lower stage) in close proximity to the catalyst units 7 . Then, eight catalyst units 3 are arranged in 2×4. The eight catalyst units 7 arranged in 2×4 form the frontmost catalyst layer in the fixed catalyst bed 4c. Pressure loss is reduced when the plate-like catalyst housed in the upper catalyst unit 7 of the catalyst module Fc is arranged perpendicular to the plate-like catalyst housed in the lower catalyst unit 3 of the catalyst module Fc . It is preferable because it can be A plurality of catalyst modules Fc can be arranged over the flow cross-section of the reactor duct such that substantially all of the exhaust gas G passes through the catalyst modules Fc.

触媒固定床4cにおいても、触媒固定床4aと同様に、触媒ユニット7の活性が触媒毒の付着によって若干低下しても、触媒ユニット3の活性は高く維持されるので、触媒固定床4c全体での有害物質除去率は高い値で維持される。 In the fixed catalyst bed 4c, as in the fixed catalyst bed 4a, even if the activity of the catalyst unit 7 slightly decreases due to the adhesion of catalyst poison, the activity of the catalyst unit 3 is maintained high. Hazardous substance removal rate of is maintained at a high value.

(第二実施形態)
図9は、本発明の燃焼排ガス処理装置の別の一例を示す概念図である。
図9に示される燃焼排ガス処理装置は、水平流路を有する入口ダクト1、触媒固定床4aおよび4dの設けられた垂直流路を有する反応器ダクト6、ならびに水平流路を有する出口ダクト5を具備する。触媒固定床4aは第一実施形態の説明においてすでに述べたとおりのものである。
触媒固定床4dは、排ガス流の上流側に設けられた複数の触媒モジュールFcと排ガス流の下流側に設けられた複数の触媒モジュールBaとを近接して有する。触媒モジュールFcおよび触媒モジュールBaは第一実施形態の説明においてすでに述べたとおりのものである。触媒固定床4dにおいても上記と同様に下段の板状触媒が上段の板状触媒に対して直交するように配置すると圧力損失を低減させることができるので好ましい。
(Second embodiment)
FIG. 9 is a conceptual diagram showing another example of the flue gas treatment apparatus of the present invention.
The flue gas treatment apparatus shown in FIG. 9 comprises an inlet duct 1 with horizontal channels, a reactor duct 6 with vertical channels provided with fixed catalyst beds 4a and 4d, and an outlet duct 5 with horizontal channels. equip. The catalyst fixed bed 4a is as already described in the description of the first embodiment.
The fixed catalyst bed 4d has a plurality of catalyst modules Fc provided on the upstream side of the exhaust gas flow and a plurality of catalyst modules B a provided on the downstream side of the exhaust gas flow in close proximity. Catalyst module Fc and catalyst module Ba are as already described in the description of the first embodiment. In the fixed catalyst bed 4d as well, it is preferable to dispose the plate-shaped catalyst in the lower stage perpendicular to the plate-shaped catalyst in the upper stage in the same manner as described above, because the pressure loss can be reduced.

触媒固定床4dにおいても、触媒固定床4aと同様に、触媒モジュールFcの活性が触媒毒の付着によって若干低下しても、触媒モジュールBaの活性は高く維持されるので、触媒固定床4d全体での有害物質除去率は高い値で維持される。 In the fixed catalyst bed 4d, as in the fixed catalyst bed 4a, even if the activity of the catalyst module Fc slightly decreases due to the adhesion of the catalyst poison, the activity of the catalyst module Ba is maintained high. The overall pollutant removal rate is maintained at a high value.

(他の実施形態)
触媒固定床は、本発明の趣旨に適合する限り、任意の数、任意の組み合わせ、任意の配列順序などにすることができ、第一実施形態および第二実施形態が採用する数、組み合わせ、配列順序に限定されない。また、触媒固定床を構成する触媒モジュールの種類や数なども、本発明の趣旨に適合する限り、第一実施形態および第二実施形態が採用するものに限定されない。さらに、本発明においては、本発明の趣旨に適合する限り、最前段の触媒層から最後段の触媒層までを触媒ユニット3だけで構成してなる触媒モジュールからなる触媒固定床を有してもよいし、最前段の触媒層から最後段の触媒層までを触媒ユニット7だけで構成してなる触媒モジュールからなる触媒固定床を有してもよい。
(Other embodiments)
The fixed catalyst bed can be any number, any combination, any arrangement order, etc. as long as it conforms to the gist of the present invention. Not limited to order. Also, the types and number of catalyst modules constituting the fixed catalyst bed are not limited to those employed in the first embodiment and the second embodiment as long as they conform to the gist of the present invention. Furthermore, in the present invention, as long as it conforms to the gist of the present invention, it is also possible to have a fixed catalyst bed consisting of a catalyst module comprising only catalyst units 3 from the frontmost catalyst layer to the last catalyst layer. Alternatively, it may have a catalyst fixed bed consisting of a catalyst module consisting of only catalyst units 7 from the frontmost catalyst layer to the last catalyst layer.

本発明のメンテナンス方法は、触媒の設置された最前段の触媒層と触媒の設置された最前段より後の段の触媒層とを近接して有する触媒固定床、燃焼排ガスを触媒固定床の最前段に導入するためのダクト、および触媒固定床を通過した燃焼排ガスを排出するためのダクトを有する燃焼排ガス処理装置において、最前段の触媒層に設置されていた触媒を、その触媒よりも活性若しくは比表面積が高く且つ最前段より後の段の触媒層に設置される触媒よりも活性若しくは比表面積が低い触媒Aに置き換えることを含む。
本発明のメンテナンス方法は、最前段より後の少なくともひとつの段の触媒層に設置されていた触媒を、その触媒よりも活性若しくは比表面積が高く且つ触媒Aよりも活性若しくは比表面積が高い触媒Bに置き換えることをさらに含むことが好ましい。置き換えられる触媒Bは、新品触媒などの未使用の触媒または別の段で使用していた触媒であってもよい。また、置き換えられる触媒Aは、比表面積若しくは活性の高さが本発明の規定する関係を満たすものであれば、再生触媒、別の段で使用していた触媒、未使用の触媒などであってもよい。なお、再生触媒は、特許文献3、4、5などに記載の方法で使用済み触媒から製造することができる。さらに、本発明のメンテナンス方法はメンテナンスの回数によって制限されるものではない。
The maintenance method of the present invention includes a fixed catalyst bed having a frontmost catalyst layer on which a catalyst is installed and a rearmost catalyst layer on which a catalyst is installed in close proximity to each other, and a combustion exhaust gas is placed at the topmost part of the fixed catalyst bed. In a flue gas treatment apparatus having a duct for introduction to the preceding stage and a duct for discharging flue gas that has passed through the catalyst fixed bed, the catalyst installed in the foremost catalyst layer is more active or active than the catalyst. This includes replacing the catalyst with a catalyst A having a higher specific surface area and a lower activity or specific surface area than the catalyst installed in the catalyst layer in the stage after the frontmost stage.
In the maintenance method of the present invention, the catalyst installed in the catalyst layer of at least one stage after the foremost stage has a higher activity or specific surface area than the catalyst and a catalyst B having a higher activity or specific surface area than the catalyst A. Preferably, it further comprises replacing with The replaced catalyst B may be unused catalyst, such as new catalyst, or catalyst that has been used in another stage. Catalyst A to be replaced may be a regenerated catalyst, a catalyst used in another stage, an unused catalyst, etc., as long as the specific surface area or high activity satisfies the relationship defined by the present invention. good too. Incidentally, the regenerated catalyst can be produced from the used catalyst by the methods described in Patent Documents 3, 4, 5 and the like. Furthermore, the maintenance method of the present invention is not limited by the number of times of maintenance.

次に、実施例を示して、本発明をより具体的に説明する。 EXAMPLES Next, the present invention will be described more specifically by showing Examples.

(実施例1)
石炭焚きボイラの脱硝装置にて長期間使用された図8に示すような150mm×550mmの板状の脱硝触媒エレメントを脱硝装置から取り出した。取り出された脱硝触媒エレメントを60℃、5質量%のシュウ酸水溶液に漬けた。シュウ酸水溶液に漬けた状態で脱硝触媒エレメントを1時間揺り動かして、洗浄した。その後、示性式(NH43Mo2315で表される化合物を5質量%含有する水溶液を含浸させ、乾燥および熱処理によって賦活させて、再生触媒エレメントを得た。
内寸が151mm×151mm×551mmの矩形筒枠に再生触媒エレメントを重畳させて収納して図6に示すような触媒ユニットAを得た。
別に、図8に示すものと同形の150mm×550mmの新品の脱硝触媒エレメントを、内寸が151mm×151mm×551mmの矩形筒枠に重畳させて収納して図7に示すような触媒ユニットBを得た。新品の脱硝触媒エレメントは、再生触媒エレメントより、活性および比表面積が高い。
(Example 1)
A plate-shaped denitration catalyst element of 150 mm×550 mm as shown in FIG. 8, which had been used for a long period of time in a denitration device for a coal-fired boiler, was removed from the denitration device. The removed denitration catalyst element was immersed in an aqueous oxalic acid solution of 5 mass % at 60°C. The denitration catalyst element was washed by shaking it for 1 hour while being immersed in an aqueous oxalic acid solution. After that, it was impregnated with an aqueous solution containing 5% by mass of a compound represented by the demonstrative formula (NH 4 ) 3 Mo 2 V 3 O 15 and activated by drying and heat treatment to obtain a regenerated catalyst element.
A regenerated catalyst element was superimposed and housed in a rectangular cylindrical frame with internal dimensions of 151 mm×151 mm×551 mm to obtain a catalyst unit A as shown in FIG.
Separately, a new denitrification catalyst element of 150 mm×550 mm having the same shape as that shown in FIG. 8 is superimposed and housed in a rectangular cylindrical frame with inner dimensions of 151 mm×151 mm×551 mm to obtain a catalyst unit B as shown in FIG. Obtained. A new denitration catalyst element has higher activity and specific surface area than a regenerated catalyst element.

石炭焚きボイラの脱硝装置に触媒ユニットAと触媒ユニットBを排ガスが触媒ユニットA(前段)に先ず流入し、次いで触媒ユニットB(後段)に流入するように積み重ねて設置した。累積運転時間が4000時間、8000時間および16000時間に達したときに、触媒ユニットAおよびBからそれぞれ触媒エレメントの一部を抜き出し、抜き出した触媒エレメントから20mm×100mmの試験片を切り出した。
切り出した試験片について表1に示す条件にて試験を行って脱硝率を測定した。また、試験片を分析して付着したAsの量を測定した。累積運転時間が4000時間、8000時間および16000時間に達したときの脱硝装置全体における脱硝率を測定した。それらの結果を表2に示す。
Catalyst unit A and catalyst unit B were stacked in a denitrification device of a coal-fired boiler so that exhaust gas first flowed into catalyst unit A (front stage) and then flowed into catalyst unit B (back stage). When the accumulated operating hours reached 4000 hours, 8000 hours and 16000 hours, part of the catalyst elements were extracted from the catalyst units A and B, respectively, and 20 mm×100 mm test pieces were cut out from the extracted catalyst elements.
The cut test piece was tested under the conditions shown in Table 1 to measure the denitrification rate. Also, the amount of attached As was measured by analyzing the test piece. The denitration rate of the entire denitration apparatus was measured when the cumulative operating hours reached 4000 hours, 8000 hours and 16000 hours. Those results are shown in Table 2.

Figure 0007171164000001
Figure 0007171164000001

Figure 0007171164000002
Figure 0007171164000002

(実施例2)
石炭焚きボイラの脱硝装置にて長期間使用された図8に示すような150mm×550mmの板状の脱硝触媒エレメントを脱硝装置から取り出した。取り出された脱硝触媒エレメントを60℃、5質量%のシュウ酸水溶液に漬けた。シュウ酸水溶液に漬けた状態で脱硝触媒エレメントの表面をブラシ(ブラシ毛:樹脂製、直径200μm/本、毛丈10mm)で20回擦った。その後、示性式(NH43Mo2315で表される化合物を5質量%含有する水溶液を含浸させ、乾燥および熱処理によって賦活させて、再生触媒エレメントを得た。なお、新品の脱硝触媒エレメントは、再生触媒エレメントより活性および比表面積が高い。
この再生触媒エレメントを用いた以外は実施例1と同じ方法で、脱硝率およびAsの量を測定した。それらの結果を表3に示す。
(Example 2)
A plate-shaped denitration catalyst element of 150 mm×550 mm as shown in FIG. 8, which had been used for a long period of time in a denitration device for a coal-fired boiler, was removed from the denitration device. The removed denitration catalyst element was immersed in an aqueous oxalic acid solution of 5 mass % at 60°C. The surface of the denitration catalyst element immersed in the aqueous oxalic acid solution was rubbed 20 times with a brush (bristles: made of resin, diameter 200 μm/bristles, bristles length 10 mm). After that, it was impregnated with an aqueous solution containing 5% by mass of a compound represented by the demonstrative formula (NH 4 ) 3 Mo 2 V 3 O 15 and activated by drying and heat treatment to obtain a regenerated catalyst element. A new denitration catalyst element has higher activity and specific surface area than a regenerated catalyst element.
The denitration rate and the amount of As were measured in the same manner as in Example 1, except that this regenerated catalyst element was used. Those results are shown in Table 3.

Figure 0007171164000003
Figure 0007171164000003

(比較例1)
実施例1と同じ方法で、触媒ユニットAおよびBを得た。新品の脱硝触媒エレメントは、再生触媒エレメントより活性および比表面積が高い。石炭焚きボイラの脱硝装置に触媒ユニットBと触媒ユニットAを排ガスが触媒ユニットB(前段)に先ず流入し、次いで触媒ユニットA(後段)に流入するように積み重ねて設置した。累積運転時間が4000時間、8000時間および16000時間に達したときに、触媒ユニットAおよびBからそれぞれ触媒エレメントの一部を抜き出し、抜き出した触媒エレメントから20mm×100mmの試験片を切り出した。
切り出した試験片について表1に示す条件にて試験を行って脱硝率を測定した。また、試験片を分析して付着したAsの量を測定した。それらの結果を表4に示す。
(Comparative example 1)
Catalyst units A and B were obtained in the same manner as in Example 1. A new denitration catalyst element has higher activity and specific surface area than a regenerated catalyst element. Catalyst unit B and catalyst unit A were stacked in a denitration apparatus of a coal-fired boiler so that exhaust gas first flowed into catalyst unit B (front stage) and then flowed into catalyst unit A (back stage). When the cumulative operating hours reached 4000 hours, 8000 hours and 16000 hours, part of the catalyst elements were extracted from each of the catalyst units A and B, and test pieces of 20 mm×100 mm were cut out from the extracted catalyst elements.
The cut test piece was tested under the conditions shown in Table 1 to measure the denitrification rate. Also, the amount of attached As was measured by analyzing the test piece. Those results are shown in Table 4.

Figure 0007171164000004
Figure 0007171164000004

これらの結果から次のようなことがわかる。前段触媒による整流によって後段触媒への触媒毒付着量を低減できる。前段触媒への触媒毒付着量は後段触媒への触媒毒付着量より多い。新品触媒は再生触媒に比べて細孔径が広範囲にわたって形成され、また、比表面積が相対的に高いため、触媒毒が付着しやすい。シンタリング等を起こしている相対的に比表面積が低い再生触媒は新品触媒に比べて活性が低く且つ触媒毒の付着性が低い。
比較例1のように、前段触媒を新品触媒に取り替え、後段触媒を再生触媒に取り替えた場合、高い活性を有していた前段の新品触媒は触媒毒の付着によって活性が急激に低下する。再生触媒は元々新品触媒よりも活性が低いので、新品触媒の活性の急激な低下を補いきれず、脱硝装置全体としての脱硝率は16000時間で70%を下回る。
これに対して、本願発明に従って、前段触媒を再生触媒に取り替え、後段触媒を新品触媒に取り替えた場合、再生触媒は新品触媒に比べて触媒毒の付着性が低いので活性の低下が緩やかである。前段触媒の再生触媒の活性が触媒毒の付着によって低下しても、後段触媒の新品触媒の活性が高く維持される。その結果、脱硝装置全体としての脱硝率は16000時間でも70%以上を維持できる。
These results show the following. The rectification by the pre-catalyst can reduce the amount of catalyst poison attached to the post-catalyst. The amount of catalyst poison attached to the front-stage catalyst is larger than the amount of catalyst poison attached to the rear-stage catalyst. A new catalyst has a wider range of pore diameters than a regenerated catalyst and has a relatively high specific surface area, so catalyst poisons tend to adhere to the new catalyst. A regenerated catalyst having a relatively low specific surface area, which causes sintering or the like, has a lower activity and a lower adhesion of catalyst poisons than a new catalyst.
As in Comparative Example 1, when the front-stage catalyst is replaced with a new catalyst and the rear-stage catalyst is replaced with a regenerated catalyst, the activity of the new front-stage catalyst, which had been highly active, rapidly decreases due to the adhesion of catalyst poisons. Since the regenerated catalyst is originally lower in activity than the new catalyst, it cannot compensate for the rapid decrease in activity of the new catalyst, and the denitration rate of the denitrification apparatus as a whole falls below 70% after 16000 hours.
On the other hand, when the front-stage catalyst is replaced with a regenerated catalyst and the rear-stage catalyst is replaced with a new catalyst according to the present invention, the regenerated catalyst has lower adhesion of catalyst poisons than the new catalyst, so the decline in activity is gradual. . Even if the activity of the regenerated catalyst of the front-stage catalyst decreases due to the adhesion of the catalyst poison, the activity of the new catalyst of the rear-stage catalyst is maintained at a high level. As a result, the denitration rate of the entire denitration apparatus can be maintained at 70% or more even after 16,000 hours.

1:入口ダクト
2:板状触媒(触媒B:例えば、新品触媒)
3:触媒Bの収納された触媒ユニット
4a、4b、4c、4d:触媒固定床
5:出口ダクト
6:反応器ダクト
7:触媒Aの収納された触媒ユニット
8:板状触媒(触媒A:例えば、再生触媒)
9:平板部
10:スペーサ部
a、Fb、Fc、Ba:触媒モジュール
1: inlet duct 2: plate catalyst (catalyst B: for example, new catalyst)
3: Catalyst unit containing catalyst B 4a, 4b, 4c, 4d: Catalyst fixed bed 5: Exit duct 6: Reactor duct 7: Catalyst unit containing catalyst A 8: Plate-like catalyst (catalyst A: for example , regenerated catalyst)
9: flat plate portion 10: spacer portion F a , F b , F c , B a : catalyst module

Claims (14)

シンタリング等によって触媒Bよりも相対的に低い比表面積もしくは低い活性を有し且つ触媒Bよりも触媒毒の付着性が相対的に低い触媒Aの設置された最前段の触媒層と
触媒Aよりも細孔径が広範囲にわたって形成され且つ触媒Aよりも相対的に高い比表面積もしくは高い活性を有し且つ触媒Aよりも触媒毒の付着性が相対的に高い触媒Bの設置された最前段より後の段の触媒層と
を近接して有する触媒固定床に、
燃焼排ガスを最前段から順次それより後の段まで通過させて、最前段の触媒層が燃焼排ガスを整流し触媒Bへの触媒毒の付着を抑制しつつ燃焼排ガス中の有害物質を除去することを含む、燃焼排ガス処理方法。
A catalyst layer at the foremost stage on which a catalyst A having a relatively lower specific surface area or lower activity than catalyst B and having relatively lower adhesion of catalyst poison than catalyst B is provided by sintering or the like ;
Catalyst B, which has a wider range of pore diameters than catalyst A, has a relatively higher specific surface area or higher activity than catalyst A, and has relatively higher adhesion of catalyst poisons than catalyst A, is installed at the maximum. In a fixed catalyst bed having a catalyst layer in a later stage in close proximity to a catalyst layer in the previous stage,
To remove harmful substances in the combustion exhaust gas while passing the combustion exhaust gas from the foremost stage to the subsequent stages in succession, so that the catalyst layer in the foremost stage rectifies the combustion exhaust gas and suppresses the adhesion of the catalyst poison to the catalyst B. Combustion exhaust gas treatment method.
最前段より後の段の触媒層における有害物質除去への寄与度が、最前段の触媒層における有害物質除去への寄与度よりも多く若しくは等しくなるように設定することを含む、請求項1に記載の燃焼排ガス処理方法。 2. The method according to claim 1, wherein the degree of contribution to removing harmful substances in the catalyst layers in the stages subsequent to the frontmost stage is set to be greater than or equal to the degree of contribution to removing harmful substances in the frontmost catalyst layer. The flue gas treatment method described. 前記の触媒固定床が、少なくとも二つ、間隔を開けて、直列に設置されている、請求項1または2に記載の燃焼排ガス処理方法。 3. A flue gas treatment method according to claim 1 or 2, wherein at least two of said fixed catalyst beds are spaced apart and installed in series. シンタリング等によって触媒Bよりも相対的に低い比表面積もしくは低い活性を有し且つ触媒Bよりも触媒毒の付着性が相対的に低い触媒Aの設置された最前段の触媒層と
触媒Aよりも細孔径が広範囲にわたって形成され且つ触媒Aよりも相対的に高い比表面積もしくは高い活性を有し且つ触媒Aよりも触媒毒の付着性が相対的に高い触媒Bの設置された最前段より後の段の触媒層と
を近接して有する触媒固定床、
燃焼排ガスを触媒固定床の最前段に導入するためのダクト、および
触媒固定床を通過した燃焼排ガスを排出するためのダクトを有し、
最前段の触媒層が燃焼排ガスを整流し触媒Bへの触媒毒の付着を抑制しつつ燃焼排ガス中の有害物質を除去する、燃焼排ガス処理装置。
A catalyst layer at the foremost stage on which a catalyst A having a relatively lower specific surface area or lower activity than catalyst B and having relatively lower adhesion of catalyst poison than catalyst B is provided by sintering or the like ;
Catalyst B, which has a wider range of pore diameters than catalyst A, has a relatively higher specific surface area or higher activity than catalyst A, and has relatively higher adhesion of catalyst poisons than catalyst A, is installed at the maximum. a catalyst fixed bed having a catalyst layer in a later stage in close proximity to that in the previous stage;
Having a duct for introducing flue gas to the front stage of the fixed catalyst bed and a duct for discharging flue gas that has passed through the fixed catalyst bed,
A combustion exhaust gas treatment device in which the catalyst layer at the foremost stage straightens the combustion exhaust gas and suppresses adhesion of catalyst poisons to the catalyst B while removing harmful substances in the combustion exhaust gas.
最前段より後の段の触媒層における有害物質除去への寄与度が、最前段の触媒層における有害物質除去への寄与度よりも多く若しくは等しくなるように設定することを含む、請求項4に記載の燃焼排ガス処理装置。 5. The method according to claim 4, comprising setting the degree of contribution to removing harmful substances in the catalyst layers in the stages after the frontmost stage to be greater than or equal to the degree of contribution to removing harmful substances in the frontmost catalyst layer. A flue gas treatment device as described. 前記の触媒固定床が、少なくとも二つ、間隔を開けて、直列に設置されている、請求項4または5に記載の燃焼排ガス処理装置。 6. A flue gas treatment apparatus according to claim 4 or 5, wherein at least two of said fixed catalyst beds are spaced apart and installed in series. 触媒の設置された最前段の触媒層と触媒の設置された最前段より後の段の触媒層とを近接して有する触媒固定床、燃焼排ガスを触媒固定床の最前段に導入するためのダクト、および触媒固定床を通過した燃焼排ガスを排出するためのダクトを有し、最前段の触媒層が燃焼排ガスを整流し、最前段より後の段の触媒層に設置された触媒への触媒毒の付着を抑制しつつ燃焼排ガス中の有害物質を除去する、燃焼排ガス処理装置において、
最前段の触媒層に設置されていた触媒を、その触媒よりも細孔径が広範囲にわたって形成され且つその触媒よりも活性が相対的に高く且つ最前段より後の段の触媒層に設置される触媒よりもシンタリング等によって活性が相対的に低く且つ最前段より後の段の触媒層に設置される触媒よりも触媒毒の付着性が相対的に低い触媒Aに置き換えることを含む、燃焼排ガス処理装置のメンテナンス方法。
A fixed catalyst bed having a frontmost catalyst layer on which a catalyst is installed and a rear catalyst layer on which a catalyst is installed in close proximity, and a duct for introducing combustion exhaust gas to the frontmost stage of the fixed catalyst bed. , and a duct for discharging flue gas that has passed through the catalyst fixed bed, the frontmost catalyst layer rectifies the flue gas, and the catalyst poison is supplied to the catalyst installed in the catalyst layer after the front. In a combustion exhaust gas treatment device that removes harmful substances in the combustion exhaust gas while suppressing the adhesion of
A catalyst that is formed in a wider range of pore diameters than the catalyst, has a relatively higher activity than the catalyst, and is placed in a catalyst layer after the foremost catalyst layer. Combustion exhaust gas treatment, including replacing with a catalyst A that has relatively lower activity due to sintering or the like than the catalyst layer and relatively lower adhesion of catalyst poison than the catalyst installed in the catalyst layer in the stage after the foremost stage Equipment maintenance method.
最前段より後の少なくともひとつの段の触媒層に設置されていた触媒を、その触媒よりも細孔径が広範囲にわたって形成され且つその触媒よりも活性が相対的に高く且つ触媒Aよりも活性が相対的に高い触媒Bに置き換えることをさらに含む、請求項7に記載の燃焼排ガス処理装置のメンテナンス方法。 The catalyst installed in the catalyst layer of at least one stage after the frontmost stage is formed to have a wider range of pore diameters than the catalyst, has a relatively higher activity than the catalyst, and has a relatively higher activity than the catalyst A. 8. The method of maintaining a flue gas treatment system according to claim 7, further comprising replacing the catalyst B with a relatively expensive catalyst. 触媒Bが未使用の触媒または別の段で使用していた触媒である、請求項8に記載のメンテナンス方法。 9. The maintenance method according to claim 8, wherein catalyst B is a virgin catalyst or a catalyst that has been used in another stage. 最前段より後の段の触媒層における有害物質除去への寄与度が、最前段の触媒層における有害物質除去への寄与度よりも多く若しくは等しくなるように設定することを含む、請求項7、8または9に記載のメンテナンス方法。 Claim 7, including setting the degree of contribution to removing harmful substances in the catalyst layers in the stages subsequent to the frontmost stage to be greater than or equal to the degree of contribution to removing harmful substances in the frontmost catalyst layer. 9. The maintenance method according to 8 or 9. 触媒の設置された最前段の触媒層と触媒の設置された最前段より後の段の触媒層とを近接して有する触媒固定床、燃焼排ガスを触媒固定床の最前段に導入するためのダクト、および触媒固定床を通過した燃焼排ガスを排出するためのダクトを有し、最前段の触媒層が燃焼排ガスを整流し、最前段より後の段の触媒層に設置された触媒への触媒毒の付着を抑制しつつ燃焼排ガス中の有害物質を除去する、燃焼排ガス処理装置において、
最前段の触媒層に設置されていた触媒を、その触媒よりも細孔径が広範囲にわたって形成され且つその触媒よりも比表面積が相対的に高く且つ最前段より後の段の触媒層に設置される触媒よりもシンタリング等によって比表面積が相対的に低く且つ最前段より後の段の触媒層に設置される触媒よりも触媒毒の付着性が相対的に低い触媒Aに置き換えることを含む、燃焼排ガス処理装置のメンテナンス方法。
A fixed catalyst bed having a frontmost catalyst layer on which a catalyst is installed and a rear catalyst layer on which a catalyst is installed in close proximity, and a duct for introducing combustion exhaust gas to the frontmost stage of the fixed catalyst bed. , and a duct for discharging flue gas that has passed through the catalyst fixed bed, the frontmost catalyst layer rectifies the flue gas, and the catalyst poison is supplied to the catalyst installed in the catalyst layer after the front. In a combustion exhaust gas treatment device that removes harmful substances in the combustion exhaust gas while suppressing the adhesion of
The catalyst that has been placed in the frontmost catalyst layer is placed in a catalyst layer that has a wider range of pore diameters than the catalyst, a relatively higher specific surface area than the catalyst, and is located after the frontmost catalyst layer. Combustion, including replacing the catalyst with a catalyst A that has a relatively lower specific surface area than the catalyst by sintering or the like and has relatively lower adhesion of catalyst poison than the catalyst installed in the catalyst layer after the front stage. A maintenance method for an exhaust gas treatment device.
最前段より後の少なくともひとつの段の触媒層に設置されていた触媒を、その触媒よりも細孔径が広範囲にわたって形成され且つその触媒よりも比表面積が相対的に高く且つ触媒Aよりも比表面積が相対的に高い触媒Bに置き換えることをさらに含む、請求項11に記載のメンテナンス方法。 The catalyst installed in the catalyst layer of at least one stage after the foremost stage is formed to have a wider range of pore diameters than the catalyst, has a relatively higher specific surface area than the catalyst, and has a specific surface area greater than that of the catalyst A. 12. The method of maintenance of claim 11, further comprising replacing catalyst B with a relatively high . 触媒Bが未使用の触媒または別の段で使用していた触媒である、請求項12に記載のメンテナンス方法。 13. The maintenance method according to claim 12, wherein catalyst B is a virgin catalyst or a catalyst that has been used in another stage. 最前段より後の段の触媒層における有害物質除去への寄与度が、最前段の触媒層における有害物質除去への寄与度よりも多く若しくは等しくなるように設定することを含む、請求項11、12または13に記載のメンテナンス方法。 Claim 11, comprising setting the degree of contribution to removing harmful substances in the catalyst layers in the stages after the frontmost stage to be greater than or equal to the degree of contribution to removing harmful substances in the frontmost catalyst layer. 14. The maintenance method according to 12 or 13.
JP2017080471A 2017-04-14 2017-04-14 Combustion exhaust gas treatment method, combustion exhaust gas treatment device and maintenance method thereof Active JP7171164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017080471A JP7171164B2 (en) 2017-04-14 2017-04-14 Combustion exhaust gas treatment method, combustion exhaust gas treatment device and maintenance method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017080471A JP7171164B2 (en) 2017-04-14 2017-04-14 Combustion exhaust gas treatment method, combustion exhaust gas treatment device and maintenance method thereof

Publications (2)

Publication Number Publication Date
JP2018176079A JP2018176079A (en) 2018-11-15
JP7171164B2 true JP7171164B2 (en) 2022-11-15

Family

ID=64281982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017080471A Active JP7171164B2 (en) 2017-04-14 2017-04-14 Combustion exhaust gas treatment method, combustion exhaust gas treatment device and maintenance method thereof

Country Status (1)

Country Link
JP (1) JP7171164B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7451195B2 (en) * 2020-01-31 2024-03-18 三菱重工業株式会社 Manufacturing method of regenerated denitrification catalyst
JP7262493B2 (en) * 2021-01-14 2023-04-21 三菱重工業株式会社 Denitration reactor

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000037634A (en) 1998-07-24 2000-02-08 Mitsubishi Heavy Ind Ltd Method for regenerating treatment of dentirating catalyst
JP2000037635A (en) 1998-07-24 2000-02-08 Mitsubishi Heavy Ind Ltd Method for regenerating denitrification catalyst
JP2001041028A (en) 1999-07-29 2001-02-13 Hino Motors Ltd Emission control device
JP2001272001A (en) 2000-03-29 2001-10-05 Babcock Hitachi Kk Boiler equipment
JP2002079111A (en) 2000-06-19 2002-03-19 Mitsui Eng & Shipbuild Co Ltd Catalyst for treating exhaust gas and method producing the same
JP2002136871A (en) 2000-11-07 2002-05-14 Mitsui Eng & Shipbuild Co Ltd Catalyst for treating exhaust gas and its manufacturing method
JP2002143646A (en) 2000-11-10 2002-05-21 Mitsubishi Heavy Ind Ltd Denitrification equipment and maintenance method in denitrification equipment
JP2004330132A (en) 2003-05-09 2004-11-25 Idemitsu Petrochem Co Ltd Method and apparatus for denitrificating exhaust gas
JP2008126148A (en) 2006-11-21 2008-06-05 Babcock Hitachi Kk Exhaust gas denitration device
WO2012004980A1 (en) 2010-07-08 2012-01-12 バブコック日立株式会社 Flue gas denitrification system
JP2015222163A (en) 2014-05-23 2015-12-10 三菱日立パワーシステムズ株式会社 Denitration equipment and catalytic exchange method
JP2017032215A (en) 2015-07-31 2017-02-09 中国電力株式会社 Coal fired power generation facility
JP2017032212A (en) 2015-07-31 2017-02-09 中国電力株式会社 Coal fired power generation facility

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499772A (en) * 1978-01-24 1979-08-06 Mitsubishi Heavy Ind Ltd Packing layer for solid-gas contact reaction apparatus
DE3731688A1 (en) * 1987-09-21 1989-03-30 Degussa METHOD FOR THE CATALYTIC IMPROVEMENT OF HYDROCARBON, HALOGEN CARBON HYDROGEN AND CARBON MONOXIDE CONTAINING EXHAUST GASES
JPH03258326A (en) * 1990-03-07 1991-11-18 Babcock Hitachi Kk Method and apparatus for denitrating exhaust gas
JPH05269350A (en) * 1992-03-24 1993-10-19 Toyota Motor Corp Exhaust gas purifying device
JP3272464B2 (en) * 1992-04-23 2002-04-08 マツダ株式会社 Exhaust gas purification catalyst structure
EP0617199B1 (en) * 1993-03-26 1996-01-31 Siemens Aktiengesellschaft Catalytic converter for reducing nitrogen oxide content in exhaust gases of an internal combustion engine
JPH0747231A (en) * 1993-08-09 1995-02-21 Babcock Hitachi Kk Denitration apparatus
JPH08141371A (en) * 1994-11-28 1996-06-04 Riken Corp Exhaust gas purification material and purifying method for exhaust gas

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000037634A (en) 1998-07-24 2000-02-08 Mitsubishi Heavy Ind Ltd Method for regenerating treatment of dentirating catalyst
JP2000037635A (en) 1998-07-24 2000-02-08 Mitsubishi Heavy Ind Ltd Method for regenerating denitrification catalyst
JP2001041028A (en) 1999-07-29 2001-02-13 Hino Motors Ltd Emission control device
JP2001272001A (en) 2000-03-29 2001-10-05 Babcock Hitachi Kk Boiler equipment
JP2002079111A (en) 2000-06-19 2002-03-19 Mitsui Eng & Shipbuild Co Ltd Catalyst for treating exhaust gas and method producing the same
JP2002136871A (en) 2000-11-07 2002-05-14 Mitsui Eng & Shipbuild Co Ltd Catalyst for treating exhaust gas and its manufacturing method
JP2002143646A (en) 2000-11-10 2002-05-21 Mitsubishi Heavy Ind Ltd Denitrification equipment and maintenance method in denitrification equipment
JP2004330132A (en) 2003-05-09 2004-11-25 Idemitsu Petrochem Co Ltd Method and apparatus for denitrificating exhaust gas
JP2008126148A (en) 2006-11-21 2008-06-05 Babcock Hitachi Kk Exhaust gas denitration device
WO2012004980A1 (en) 2010-07-08 2012-01-12 バブコック日立株式会社 Flue gas denitrification system
JP2015222163A (en) 2014-05-23 2015-12-10 三菱日立パワーシステムズ株式会社 Denitration equipment and catalytic exchange method
JP2017032215A (en) 2015-07-31 2017-02-09 中国電力株式会社 Coal fired power generation facility
JP2017032212A (en) 2015-07-31 2017-02-09 中国電力株式会社 Coal fired power generation facility

Also Published As

Publication number Publication date
JP2018176079A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
JP5450540B2 (en) Boiler heat recovery system with CO2 recovery device
EP0913185B1 (en) Exhaust gas denitration method
WO2013187294A1 (en) Discharge-gas treatment system
RU2017108240A (en) ZONED CATALYST FOR PROCESSING WASTE GAS
DK2289608T3 (en) System and method for protection of an scr catalyst to large particles of ash
JP7171164B2 (en) Combustion exhaust gas treatment method, combustion exhaust gas treatment device and maintenance method thereof
RU2018103067A (en) CATALYTIC FILTER WITH THROUGH WALLS SUPPLYED WITH A MEMBRANE
US20130287639A1 (en) Exhaust gas treatment apparatus
KR101948510B1 (en) Apparatus and methods for treating exhaust gases
JP6249689B2 (en) Exhaust gas treatment regeneration catalyst and exhaust gas treatment catalyst regeneration method
KR20040090182A (en) Baghouse for simultaneously removing fine particle and nitric oxides to preliminary reduction of dust loading
JP6929288B2 (en) Catalyst beds, and methods for reducing nitrogen oxides
JP2008126148A (en) Exhaust gas denitration device
KR101623083B1 (en) Catalyst Pre Filter
JP6084072B2 (en) Toxic substance adsorption device
EP3507544B1 (en) Scr-system for removing ash from a flue gas stream generated in a combustion system
KR101105267B1 (en) Cleaning and air conditioning system of circulating air
JP2016022425A (en) Denitration device
JP2004255342A (en) Exhaust gas treatment system and method
JP2004330132A (en) Method and apparatus for denitrificating exhaust gas
JP2008023461A (en) Catalytic structure
JP4435964B2 (en) Denitration apparatus and maintenance method in denitration apparatus
KR101076839B1 (en) Cleaning and air conditioning system of circulating air
KR102131500B1 (en) A system for sensing and preventing fire of SCR catalyst
JP2001113131A (en) Method for regenerating denitration catalyst

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20200219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210908

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220615

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220615

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220721

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220722

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221102

R150 Certificate of patent or registration of utility model

Ref document number: 7171164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150