JP7171044B2 - refrigeration equipment - Google Patents

refrigeration equipment Download PDF

Info

Publication number
JP7171044B2
JP7171044B2 JP2019036503A JP2019036503A JP7171044B2 JP 7171044 B2 JP7171044 B2 JP 7171044B2 JP 2019036503 A JP2019036503 A JP 2019036503A JP 2019036503 A JP2019036503 A JP 2019036503A JP 7171044 B2 JP7171044 B2 JP 7171044B2
Authority
JP
Japan
Prior art keywords
evaporator
refrigerant
temperature
expansion valve
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019036503A
Other languages
Japanese (ja)
Other versions
JP2020139703A (en
Inventor
剛 樋口
実 内田
亮 守屋
圭輔 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinwa Controls Co Ltd
Original Assignee
Shinwa Controls Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinwa Controls Co Ltd filed Critical Shinwa Controls Co Ltd
Priority to JP2019036503A priority Critical patent/JP7171044B2/en
Publication of JP2020139703A publication Critical patent/JP2020139703A/en
Application granted granted Critical
Publication of JP7171044B2 publication Critical patent/JP7171044B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、並列に設けた複数の蒸発器によって複数の温度制御対象を温度制御する冷凍装置に関する。 TECHNICAL FIELD The present invention relates to a refrigeration system that temperature-controls a plurality of temperature-controlled objects by means of a plurality of evaporators provided in parallel.

圧縮機、凝縮器、膨張弁及び一つの蒸発器を有し、蒸発器と圧縮機との間に蒸発圧力調整弁を設ける冷凍装置が従来から知られている。このような冷凍装置における蒸発圧力調整弁は、通常、蒸発器のフロスト(着霜)防止のために設けられる。カーエアコン用等の外気に晒される冷凍装置には、通常、このような蒸発圧力調整弁が設けられている。 Refrigerating systems are conventionally known that have a compressor, a condenser, an expansion valve, and one evaporator, and that have an evaporating pressure regulating valve between the evaporator and the compressor. An evaporating pressure regulating valve in such a refrigeration system is usually provided to prevent frosting of the evaporator. A refrigerating device such as a car air conditioner that is exposed to the outside air is usually provided with such an evaporating pressure regulating valve.

一方で、特許文献1には、圧縮機と、凝縮器と、並列に設けられた膨張弁及び蒸発器の複数の組とを有し、複数の蒸発器のうちの一部の蒸発器と圧縮機との間に蒸発圧力調整弁を設け、他の蒸発器と圧縮機との間には蒸発圧力調整弁を設けない冷凍装置が開示されている。 On the other hand, Patent Document 1 has a compressor, a condenser, and a plurality of sets of expansion valves and evaporators provided in parallel, and some of the evaporators and the compression A refrigeration system is disclosed in which an evaporating pressure regulating valve is provided between the compressor and another evaporator and no evaporating pressure regulating valve is provided between the other evaporator and the compressor.

特許文献1に開示された冷凍装置では、一部の蒸発器と他の蒸発器とで異なる温度の温度制御を実施するために蒸発圧力調整弁が設けられている。すなわち、このような冷凍装置では、蒸発圧力調整弁の開度調整により、一部の蒸発器内の冷媒の蒸発圧力と他の蒸発器内の冷媒の蒸発圧力とを互いに異ならせることが可能であり、これにより、一部の蒸発器による冷凍能力と他の蒸発器による冷凍能力とを異なせることができる。 The refrigeration system disclosed in Patent Document 1 is provided with an evaporating pressure regulating valve in order to control different temperatures for some evaporators and other evaporators. That is, in such a refrigeration system, the evaporating pressure of the refrigerant in some evaporators and the evaporating pressure of the refrigerant in the other evaporators can be made different from each other by adjusting the opening degree of the evaporating pressure regulating valve. Therefore, the refrigerating capacity of some evaporators can be made different from the refrigerating capacity of other evaporators.

特許文献1に開示されるような冷凍装置は、フットプリントを抑制しつつ、複数の蒸発器によって複数の温度制御対象を異なる温度で冷却できる点で有用である。特許文献1は、複数の蒸発器によって、コンビニエンスストア等における室内空間と、冷蔵庫と、冷凍庫とを互いに異なる温度で冷却する例を開示するが、特許文献1の冷凍装置は、複数の温度制御領域を有する精密部品の製造装置等に対しても好適に適用できる。 A refrigeration system as disclosed in Patent Document 1 is useful in that it can cool a plurality of temperature-controlled objects to different temperatures using a plurality of evaporators while suppressing a footprint. Patent Document 1 discloses an example in which a plurality of evaporators are used to cool an indoor space in a convenience store or the like, a refrigerator, and a freezer at different temperatures. It can also be suitably applied to a manufacturing apparatus for precision parts having

特許文献1の冷凍装置が精密部品の製造装置等に適用される場合、複数の蒸発器によって液体を冷却し、異なる温度に冷却された複数の液体によって複数の温度制御領域を温度制御してもよい。このようなタイプの温度制御装置(温調システム)の一例として、本件出願人による特許文献2を挙げることができる。 When the refrigerating apparatus of Patent Document 1 is applied to a manufacturing apparatus for precision parts, etc., liquid may be cooled by a plurality of evaporators, and the temperature of a plurality of temperature control regions may be controlled by a plurality of liquids cooled to different temperatures. good. As an example of such a type of temperature control device (temperature control system), Patent Document 2 by the present applicant can be mentioned.

特開2014-70835号公報JP 2014-70835 A 特開2018-194240号公報JP 2018-194240 A

上述のような複数の温度制御領域を有する製造装置等に適用される冷凍装置又は温度制御装置では、複数の温度制御領域のうちの一部をある目標温度で一定に温度制御した後に、大きく異なる目標温度で同じ部分を温度制御するといった制御パターンの実施を求められる場合がある。また、複数の温度制御領域のうちの一部を冷却する必要がある一方で、他の一部を加熱する必要があるような制御パターンの実施を求められる場合がある。ここで、他の一部を加熱する必要がある場合には、当該他の一部に対応する蒸発器の冷凍能力は不要となるか、又は、極めて小さくてよい。後者のような制御パターンでは、蒸発器を通過する冷媒の温度と、蒸発器によって温度制御される温度制御対象の温度との温度差が大きくなり得るため、蒸発器の耐温度差性能に関する配慮が求められる。また、上記のような特殊な制御パターン及び定常の温度制御のいずれも、通常、高精度に実施することが求められる。 In a refrigerating device or a temperature control device that is applied to a manufacturing apparatus or the like having a plurality of temperature control regions as described above, after controlling the temperature of some of the plurality of temperature control regions to a certain target temperature, the In some cases, it is required to implement a control pattern such as controlling the temperature of the same part at the target temperature. Also, it may be desired to implement a control pattern in which some of the temperature control regions need to be cooled while others need to be heated. Here, if it is necessary to heat the other portion, the refrigerating capacity of the evaporator corresponding to the other portion may be unnecessary or may be extremely small. In the latter control pattern, the temperature difference between the temperature of the refrigerant passing through the evaporator and the temperature of the object to be temperature-controlled by the evaporator can become large. Desired. Moreover, both the special control pattern and steady temperature control as described above are generally required to be performed with high accuracy.

しかしながら、特許文献1の冷凍装置は、コンビニエンスストア等における室内空間、冷蔵庫及び冷凍庫を温度制御対象とするものであって、精密部品の製造現場等への適用を想定していない。また、温度制御の精密さを強く求められるものでもない。そのため、特許文献1には、精密部品の製造装置等において生じ得る上述のような要望に対応できる知見は開示されていない。 However, the refrigeration apparatus of Patent Document 1 is intended for temperature control of indoor spaces, refrigerators, and freezers in convenience stores and the like, and is not intended to be applied to precision parts manufacturing sites and the like. Also, it does not require a strong degree of precision in temperature control. Therefore, Patent Literature 1 does not disclose knowledge that can meet the above-described demands that may occur in a precision component manufacturing apparatus or the like.

本件発明者は、上述の要望を考慮し鋭意研究した結果、並列に設けた複数の蒸発器を備える冷凍装置において蒸発圧力調整弁等の動作を工夫することで、複数の温度制御領域のうちの一部をある目標温度で一定に温度制御した後に、大きく異なる目標温度で同じ部分を温度制御するような制御パターンを高精度且つ安定的に実施でき、また、複数の温度制御領域のうちの一部を冷却する必要がある一方で、他の一部を加熱する必要があるような制御パターンの際、蒸発器に対する負担を簡易に軽減できる手法を見出した。 As a result of intensive research in consideration of the above-mentioned demands, the inventor of the present invention has found that by devising the operation of an evaporating pressure regulating valve, etc., in a refrigeration system equipped with a plurality of evaporators provided in parallel, it is possible to A control pattern in which a part is temperature-controlled at a certain target temperature and then the same part is temperature-controlled at a significantly different target temperature can be executed with high precision and stability. We have found a method that can easily reduce the load on the evaporator in the case of a control pattern in which one part needs to be cooled while another part needs to be heated.

本発明は、並列に設けられた複数の蒸発器で複数の温度制御対象を温度制御する際、一部の温度制御対象の目標温度を変化させた場合であっても、高精度な温度制御を安定的に実施できるとともに、一部の温度制御領域を冷却する必要がある一方で、他の一部の温度制御領域を加熱する必要があるような制御パターンの際に生じ得る蒸発器の負担を簡易に軽減できる冷凍装置を提供することを目的とする。 According to the present invention, when a plurality of evaporators provided in parallel are used to temperature-control a plurality of temperature-controlled targets, even if the target temperature of some of the temperature-controlled targets is changed, highly accurate temperature control can be achieved. It can be performed stably and reduces the burden on the evaporator that can occur during control patterns where some temperature control areas need to be cooled while other temperature control areas need to be heated. An object of the present invention is to provide a refrigerating device that can be easily reduced.

本発明にかかる冷凍装置は、圧縮機と、凝縮器と、第1の膨張弁と、第1の蒸発器とが、この順に冷媒を循環させるように接続された冷凍回路と、前記冷凍回路における前記凝縮器の下流側で且つ前記第1の膨張弁の上流側の部分から冷媒を分岐させ、第2の膨張弁、第2の蒸発器及び蒸発圧力調整弁の順で通過させて、前記冷凍回路における前記第1の蒸発器の下流側で且つ前記圧縮機の上流側の部分に戻す並列回路と、前記並列回路における前記第2の蒸発器と前記蒸発圧力調整弁との間を流れる冷媒の圧力を検出する並列側圧力センサと、前記第1の膨張弁、前記第2の膨張弁及び前記蒸発圧力調整弁の各開度を制御する制御装置と、を備え、前記制御装置は、前記第1の膨張弁から流出する冷媒の流量と、前記第2の膨張弁から流出する冷媒の流量とが互いに異なる値となるように前記第1の膨張弁及び/又は前記第2の膨張弁の開度を制御した際に、前記第2の蒸発器における冷媒の蒸発温度と前記第2の蒸発器において冷媒と熱交換する前の温度制御対象の温度との差が所定値よりも小さい場合には、前記並列側圧力センサで検出する冷媒の圧力が、前記第1の蒸発器における冷媒の蒸発圧力と一致するように、前記蒸発圧力調整弁の開度を制御し、前記第1の膨張弁から流出する冷媒の流量と、前記第2の膨張弁から流出する冷媒の流量とが互いに異なる値となるように前記第1の膨張弁及び/又は前記第2の膨張弁の開度を制御した際に、前記第2の蒸発器における冷媒の蒸発温度と前記第2の蒸発器において冷媒と熱交換する前の温度制御対象の温度との差が前記所定値以上の場合には、前記第2の蒸発器における冷媒の蒸発温度と前記第2の蒸発器において冷媒と熱交換する前の温度制御対象の温度との差が前記所定値よりも小さくなるように前記蒸発圧力調整弁の開度を前記第1の膨張弁及び/又は前記第2の膨張弁の開度を制御する前の状態よりも小さくする。 A refrigeration system according to the present invention comprises a refrigeration circuit in which a compressor, a condenser, a first expansion valve, and a first evaporator are connected in this order so as to circulate the refrigerant; Refrigerant is branched from a portion downstream of the condenser and upstream of the first expansion valve, and passed through the second expansion valve, the second evaporator and the evaporation pressure regulating valve in this order, and the refrigeration refrigerant flowing between a parallel circuit returning to a portion of the circuit downstream of the first evaporator and upstream of the compressor, and between the second evaporator and the evaporative pressure regulator valve in the parallel circuit; a parallel side pressure sensor that detects pressure; and a control device that controls opening degrees of the first expansion valve, the second expansion valve, and the evaporating pressure adjustment valve, wherein the control device The first expansion valve and/or the second expansion valve are opened such that the flow rate of the refrigerant flowing out of the first expansion valve and the flow rate of the refrigerant flowing out of the second expansion valve are different values. When the temperature is controlled, if the difference between the evaporation temperature of the refrigerant in the second evaporator and the temperature of the temperature controlled object before heat exchange with the refrigerant in the second evaporator is smaller than a predetermined value and controlling the opening degree of the evaporating pressure regulating valve so that the pressure of the refrigerant detected by the parallel side pressure sensor matches the evaporating pressure of the refrigerant in the first evaporator, and the first expansion valve When the opening degree of the first expansion valve and/or the second expansion valve is controlled such that the flow rate of the refrigerant flowing out and the flow rate of the refrigerant flowing out from the second expansion valve are different values. When the difference between the evaporation temperature of the refrigerant in the second evaporator and the temperature of the object to be temperature controlled before heat exchange with the refrigerant in the second evaporator is equal to or greater than the predetermined value, the second The degree of opening of the evaporating pressure regulating valve is adjusted so that the difference between the evaporation temperature of the refrigerant in the evaporator and the temperature of the temperature controlled object before heat exchange with the refrigerant in the second evaporator becomes smaller than the predetermined value. The degree of opening of the first expansion valve and/or the second expansion valve is made smaller than before the control.

本発明では、例えば、第1の蒸発器で温度制御する温度制御対象の目標温度をある時点から低温側に大きく変化させる必要があり、第2の蒸発器で温度制御する温度制御対象が大きい冷凍能力を必要としない状況下において、第1の膨張弁から流出する冷媒の流量を第2の膨張弁から流出する冷媒の流量よりも大きくすることで、第1の蒸発器の冷凍能力を増加する方向へ変更できるとともに、第2の膨張弁の冷凍能力を低下させる方向へ変更できる。しかし、この際、第2の蒸発器側から流出した冷媒の圧力が第1の蒸発器における冷媒の蒸発圧力よりも小さくなり得るため、第2の蒸発器側からの冷媒が第1の蒸発器側からの冷媒と合流した際に、冷媒の状態が乱れ得ることで、冷凍装置の運転の安定性が損なわれ得る。ここで、本発明では、第2の蒸発器における冷媒の蒸発温度と第2の蒸発器において冷媒と熱交換する前の温度制御対象の温度との差が所定値よりも小さい場合には、第2の蒸発器側から流出した冷媒の蒸発圧力が第1の蒸発器における冷媒の蒸発圧力と一致するように蒸発圧力調整弁が開度の調整を行う。これにより、第1の蒸発器側から流出した冷媒と第2の蒸発器側から流出した冷媒とが合流した際の冷媒の状態が安定する。
また、例えば、第1の蒸発器で温度制御する温度制御対象を冷却する必要があり、第2の蒸発器で温度制御していた温度制御対象を加熱する必要がある場合に、第1の膨張弁から流出する冷媒の流量を第2の膨張弁から流出する冷媒の流量よりも大きくすることで、第1の蒸発器の冷凍能力を増加する方向へ変更できるとともに、第2の膨張弁の冷凍能力を低下させる方向へ変更できる。しかし、この際、第2の蒸発器における冷媒の蒸発温度と第2の蒸発器によって熱交換される前の温度制御対象の温度との差が過剰に大きい場合には、第2の蒸発器に負担がかかり、損傷のリスクが生じ得る。ここで、本発明では、第2の蒸発器における冷媒の蒸発温度と第2の蒸発器において冷媒と熱交換する前の温度制御対象の温度との差が所定値以上の場合には、温度差警戒レベルであると判定し、第2の蒸発器における冷媒の蒸発温度と第2の蒸発器において冷媒と熱交換する前の温度制御対象の温度との差が所定値よりも小さくなるように蒸発圧力調整弁の開度を、第1の膨張弁及び/又は第2の膨張弁の開度を制御する前の状態よりも小さくする。これにより、第2の蒸発器における冷媒の蒸発温度を引き上げて、第2の蒸発器における冷媒と温度制御対象との温度差を抑制することで、第2の蒸発器に対する負担を軽減できる。
よって、並列に設けられた複数の蒸発器で複数の温度制御対象を温度制御する際、一部の温度制御対象の目標温度を変化させた場合であっても、高精度な温度制御を安定的に実施できるとともに、一部の温度制御領域を冷却する必要がある一方で、他の一部の温度制御領域を加熱する必要があるような制御パターンの際に生じ得る蒸発器(加熱側の蒸発器)の負担を簡易に軽減できる。
In the present invention, for example, it is necessary to greatly change the target temperature of the temperature controlled object temperature controlled by the first evaporator to the low temperature side from a certain point, and the temperature controlled object temperature controlled by the second evaporator is large. The refrigerating capacity of the first evaporator is increased by making the flow rate of the refrigerant flowing out of the first expansion valve greater than the flow rate of the refrigerant flowing out of the second expansion valve when the capacity is not required. The direction can be changed, and the direction can be changed to decrease the refrigerating capacity of the second expansion valve. However, at this time, since the pressure of the refrigerant flowing out from the second evaporator side can be lower than the evaporation pressure of the refrigerant in the first evaporator, the refrigerant from the second evaporator side is When it joins with the refrigerant from the side, the state of the refrigerant may be disturbed, which may impair the stability of the operation of the refrigeration system. Here, in the present invention, when the difference between the evaporation temperature of the refrigerant in the second evaporator and the temperature of the temperature controlled object before heat exchange with the refrigerant in the second evaporator is smaller than a predetermined value, the second The evaporating pressure control valve adjusts the degree of opening so that the evaporating pressure of the refrigerant flowing out from the second evaporator side matches the evaporating pressure of the refrigerant in the first evaporator. This stabilizes the state of the refrigerant when the refrigerant flowing out from the first evaporator side and the refrigerant flowing out from the second evaporator side join together.
Further, for example, when it is necessary to cool the temperature-controlled target whose temperature is controlled by the first evaporator and it is necessary to heat the temperature-controlled target whose temperature is controlled by the second evaporator, the first expansion By making the flow rate of the refrigerant flowing out of the valve larger than the flow rate of the refrigerant flowing out of the second expansion valve, the refrigerating capacity of the first evaporator can be changed to increase, and the refrigerating capacity of the second expansion valve can be increased. Can be changed in the direction of decreasing ability. However, at this time, if the difference between the evaporation temperature of the refrigerant in the second evaporator and the temperature of the object to be temperature-controlled before heat exchange by the second evaporator is excessively large, the second evaporator It is burdensome and can pose a risk of injury. Here, in the present invention, when the difference between the evaporation temperature of the refrigerant in the second evaporator and the temperature of the temperature controlled object before heat exchange with the refrigerant in the second evaporator is a predetermined value or more, the temperature difference It is determined that it is at the warning level, and the difference between the evaporation temperature of the refrigerant in the second evaporator and the temperature of the temperature controlled object before heat exchange with the refrigerant in the second evaporator evaporates so that it becomes smaller than a predetermined value. The degree of opening of the pressure regulating valve is made smaller than the state before the degree of opening of the first expansion valve and/or the second expansion valve is controlled. As a result, the evaporation temperature of the refrigerant in the second evaporator is raised to suppress the temperature difference between the refrigerant in the second evaporator and the temperature controlled target, thereby reducing the load on the second evaporator.
Therefore, when temperature-controlling multiple temperature-controlled targets with multiple evaporators installed in parallel, high-precision temperature control can be stably performed even when the target temperature of some of the temperature-controlled targets is changed. and the evaporator (heating side evaporation It is possible to easily reduce the burden on the equipment).

また、前記並列回路は、前記第2の膨張弁及び前記第2の蒸発器に対して並列に設けられた第3の膨張弁及び第3の蒸発器をさらに有し、前記冷凍回路における前記凝縮器の下流側で且つ前記第1の膨張弁の上流側の部分から分岐する冷媒を前記第3の膨張弁及び前記第3の蒸発器の順で通過させ、前記第2の蒸発器から流出した冷媒と合流させた後、前記冷凍回路に戻すようにもなっており、前記制御装置は、前記第3の膨張弁の開度も制御し、前記制御装置は、前記第1の膨張弁から流出する冷媒の流量と、前記第2の膨張弁及び/又は前記第3の膨張弁から流出する冷媒の流量とが互いに異なる値となるように前記第1の膨張弁、前記第2の膨張弁及び第3の膨張弁のうちの少なくともいずれかの開度を制御した際に、前記第2の蒸発器における冷媒の蒸発温度と前記第2の蒸発器において冷媒と熱交換する前の温度制御対象の温度との差、及び、前記第3の蒸発器における冷媒の蒸発温度と前記第3の蒸発器において冷媒と熱交換する前の温度制御対象の温度との差が前記所定値よりも小さい場合には、前記並列側圧力センサで検出する冷媒の圧力が、前記第1の蒸発器における冷媒の蒸発圧力と一致するように、前記蒸発圧力調整弁の開度を制御し、前記第1の膨張弁から流出する冷媒の流量と、前記第2の膨張弁及び/又は前記第3の膨張弁から流出する冷媒の流量とが互いに異なる値となるように前記第1の膨張弁、前記第2の膨張弁及び第3の膨張弁のうちの少なくともいずれかの開度を制御した際に、前記第2の蒸発器における冷媒の蒸発温度と前記第2の蒸発器において冷媒と熱交換する前の温度制御対象の温度との差、及び、前記第3の蒸発器における冷媒の蒸発温度と前記第3の蒸発器において冷媒と熱交換する前の温度制御対象の温度との差のうちの少なくともいずれかが前記所定値以上の場合には、前記第2の蒸発器における冷媒の蒸発温度と前記第2の蒸発器において冷媒と熱交換する前の温度制御対象の温度との差及び前記第3の蒸発器における冷媒の蒸発温度と前記第3の蒸発器において冷媒と熱交換する前の温度制御対象の温度との差が前記所定値よりも小さくなるように前記蒸発圧力調整弁の開度を前記第1の膨張弁、前記第2の膨張弁及び前記第3の膨張弁のうちの少なくともいずれかの開度を制御する前の状態よりも小さくしてもよい。 The parallel circuit further includes a third expansion valve and a third evaporator provided in parallel with the second expansion valve and the second evaporator, and the condensation in the refrigeration circuit is Refrigerant branching from a portion downstream of the vessel and upstream of the first expansion valve is passed through the third expansion valve and the third evaporator in that order, and flows out of the second evaporator. After joining with the refrigerant, it is returned to the refrigeration circuit, the control device also controls the opening of the third expansion valve, and the control device controls the flow out of the first expansion valve. The first expansion valve, the second expansion valve and the When the opening degree of at least one of the third expansion valves is controlled, the evaporation temperature of the refrigerant in the second evaporator and the temperature control target before heat exchange with the refrigerant in the second evaporator and the difference between the evaporation temperature of the refrigerant in the third evaporator and the temperature of the temperature controlled object before heat exchange with the refrigerant in the third evaporator is smaller than the predetermined value. controls the opening degree of the evaporating pressure regulating valve so that the pressure of the refrigerant detected by the parallel side pressure sensor matches the evaporating pressure of the refrigerant in the first evaporator, and the first expansion valve The first expansion valve and the second expansion valve are arranged such that the flow rate of the refrigerant flowing out from the second expansion valve and/or the flow rate of the refrigerant flowing out from the third expansion valve are different values. Evaporation temperature of the refrigerant in the second evaporator and temperature control before heat exchange with the refrigerant in the second evaporator when the opening degree of at least one of the valve and the third expansion valve is controlled At least one of the difference from the target temperature and the difference between the evaporation temperature of the refrigerant in the third evaporator and the temperature of the temperature control target before heat exchange with the refrigerant in the third evaporator If it is equal to or greater than the predetermined value, the difference between the evaporation temperature of the refrigerant in the second evaporator and the temperature of the temperature controlled object before heat exchange with the refrigerant in the second evaporator and the third evaporator The opening degree of the evaporating pressure regulating valve is set so that the difference between the evaporation temperature of the refrigerant in the third evaporator and the temperature of the temperature controlled object before heat exchange with the refrigerant in the third evaporator becomes smaller than the predetermined value. The degree of opening of at least one of the first expansion valve, the second expansion valve, and the third expansion valve may be smaller than before the control.

この場合、一つの蒸発圧力調整弁を、第2の蒸発器と第3の蒸発器とで共有することで、回路構成を簡素化しつつ、第1~第3の蒸発器による温度制御を精密に且つ安定的に行うことができる。 In this case, one evaporating pressure control valve is shared by the second evaporator and the third evaporator, thereby simplifying the circuit configuration and precisely controlling the temperature by the first to third evaporators. And it can be performed stably.

また、前記並列側圧力センサは、前記第2の蒸発器から流出した冷媒と前記第3の蒸発器から流出した冷媒との合流部分又は合流部分の下流側における冷媒の圧力を検出してもよい。 Further, the parallel side pressure sensor may detect the pressure of the refrigerant at a confluence portion of the refrigerant flowing out of the second evaporator and the refrigerant flowing out of the third evaporator or downstream of the confluence portion. .

この場合も、一つの並列側圧力センサで、第2の蒸発器と第3の蒸発器の下流側の冷媒の圧力を所望の値に制御できるため、回路構成を簡素化できる。 In this case also, the pressure of the refrigerant on the downstream side of the second evaporator and the third evaporator can be controlled to a desired value with one parallel side pressure sensor, so the circuit configuration can be simplified.

また、本発明にかかる冷凍装置は、前記冷凍回路における前記第1の蒸発器の下流側であって、前記並列回路の接続位置の上流側の部分を流れる冷媒の圧力を検出する冷凍回路側圧力センサをさらに備え、前記冷凍回路側圧力センサによって、前記第1の蒸発器における冷媒の蒸発圧力を特定してもよい。 Further, in the refrigerating apparatus according to the present invention, the refrigerating circuit side pressure detector detects the pressure of refrigerant flowing in a portion downstream of the first evaporator in the refrigerating circuit and upstream of a connection position of the parallel circuit. A sensor may be further provided, and the evaporating pressure of the refrigerant in the first evaporator may be specified by the refrigerating circuit side pressure sensor.

この場合、簡易的に、並列側圧力センサで検出する冷媒の圧力に対する目標制御値、つまり第1の蒸発器における冷媒の蒸発圧力を的確に設定できる。 In this case, the target control value for the refrigerant pressure detected by the parallel-side pressure sensor, that is, the refrigerant evaporation pressure in the first evaporator can be accurately set.

また、本発明にかかる他の冷凍装置は、圧縮機と、凝縮器と、第1の膨張弁と、第1の蒸発器とが、この順に冷媒を循環させるように接続された冷凍回路と、前記冷凍回路における前記凝縮器の下流側で且つ前記第1の膨張弁の上流側の部分から冷媒を分岐させ、第2の膨張弁、第2の蒸発器及び蒸発圧力調整弁の順で通過させて、前記冷凍回路における前記第1の蒸発器の下流側で且つ前記圧縮機の上流側の部分に戻す並列回路と、前記蒸発圧力調整弁の開度を制御する制御装置と、を備え、前記制御装置は、前記第2の蒸発器における冷媒の蒸発温度と前記第2の蒸発器において冷媒と熱交換する前の温度制御対象の温度との差が所定値以上の場合に、前記第2の蒸発器における冷媒の蒸発温度と前記第2の蒸発器において冷媒と熱交換する前の温度制御対象の温度との差が前記所定値よりも小さくなるように前記蒸発圧力調整弁の開度を制御する。 Another refrigeration system according to the present invention includes a refrigeration circuit in which a compressor, a condenser, a first expansion valve, and a first evaporator are connected in this order so as to circulate the refrigerant, Refrigerant is branched from a portion of the refrigeration circuit downstream of the condenser and upstream of the first expansion valve, and passed through the second expansion valve, the second evaporator and the evaporation pressure regulating valve in that order. a parallel circuit returning to a portion downstream of the first evaporator and upstream of the compressor in the refrigeration circuit; When the difference between the evaporation temperature of the refrigerant in the second evaporator and the temperature of the temperature controlled object before heat exchange with the refrigerant in the second evaporator is equal to or greater than a predetermined value, the second The degree of opening of the evaporating pressure regulating valve is controlled so that the difference between the evaporating temperature of the refrigerant in the evaporator and the temperature of the temperature controlled object before heat exchange with the refrigerant in the second evaporator becomes smaller than the predetermined value. do.

本発明によれば、並列に設けられた複数の蒸発器で複数の温度制御対象を温度制御する際、一部の温度制御対象の目標温度を変化させた場合であっても、高精度な温度制御を安定的に実施できるとともに、一部の温度制御領域を冷却する必要がある一方で、他の一部の温度制御領域を加熱する必要があるような制御パターンの際に生じ得る蒸発器に対する負担を簡易に軽減できる。 According to the present invention, when temperature-controlling a plurality of temperature-controlled targets with a plurality of evaporators provided in parallel, high-accuracy temperature control can be achieved even when the target temperatures of some of the temperature-controlled targets are changed. While the control can be performed stably, the evaporator that can occur during a control pattern in which some temperature control areas need to be cooled while other temperature control areas need to be heated You can easily reduce the burden.

本発明の一実施の形態に係る冷凍装置を備える温調システムの概略構成を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows schematic structure of the temperature control system provided with the refrigerating device which concerns on one embodiment of this invention. 図1に示す冷凍装置の動作の一例を説明するフローチャートを示した図である。FIG. 2 is a diagram showing a flowchart for explaining an example of the operation of the refrigeration system shown in FIG. 1;

以下、本発明の一実施の形態について説明する。 An embodiment of the present invention will be described below.

図1は、本発明の一実施の形態に係る冷凍装置1を備える温調システムSの概略構成を示す図である。図1に示すように、本実施の形態に係る温調システムSは、冷凍装置1と、冷凍装置1によって温度制御される流体を通流させる流体通流ユニット2と、制御装置50と、を備えている。温度制御される流体は、液体であっても、気体であってもよい。冷凍装置1は、冷凍回路10と、並列回路20と、冷凍回路側圧力センサ30と、並列側圧力センサ40と、並列側第1温度センサ61、並列側第2温度センサ62と、を備えている。流体通流ユニット2は、第1の流体を通流させる第1流体通流装置2Aと、第2の流体を通流させる第2流体通流装置2Bと、第3の流体を通流させる第3流体通流装置2Cと、を備えている。 FIG. 1 is a diagram showing a schematic configuration of a temperature control system S including a refrigerating apparatus 1 according to one embodiment of the present invention. As shown in FIG. 1, the temperature control system S according to the present embodiment includes a refrigerating device 1, a fluid circulation unit 2 for circulating a fluid whose temperature is controlled by the refrigerating device 1, and a control device 50. I have. The temperature controlled fluid may be a liquid or a gas. The refrigerating apparatus 1 includes a refrigerating circuit 10, a parallel circuit 20, a refrigerating circuit side pressure sensor 30, a parallel side pressure sensor 40, a parallel side first temperature sensor 61, and a parallel side second temperature sensor 62. there is The fluid circulation unit 2 includes a first fluid circulation device 2A for circulating the first fluid, a second fluid circulation device 2B for circulating the second fluid, and a second fluid circulation device 2B for circulating the third fluid. and a three-fluid flow device 2C.

<冷凍装置>
まず、冷凍装置1について説明する。冷凍装置1の冷凍回路10は、圧縮機11と、凝縮器12と、第1の膨張弁13と、第1の蒸発器14とが、この順に冷媒を循環させるように配管によって接続されたものである。
<Freezer>
First, the refrigerator 1 will be described. A refrigerating circuit 10 of the refrigerating apparatus 1 includes a compressor 11, a condenser 12, a first expansion valve 13, and a first evaporator 14, which are connected by piping so as to circulate the refrigerant in this order. is.

冷凍回路10では、圧縮機11によって圧縮された冷媒が、凝縮器12に流入し、凝縮器12に流入した冷媒は、空冷又は液冷により凝縮される。その後、冷媒は、第1の膨張弁13によって減圧されて低温の気液混合状態となり、第1の蒸発器14に流入する。第1の蒸発器14に流入した冷媒は、温度制御対象(本例では、第1の流体)と熱交換を行った後に、圧縮機11に流入し、その後、圧縮機11によって再度圧縮される。 In the refrigeration circuit 10, the refrigerant compressed by the compressor 11 flows into the condenser 12, and the refrigerant flowing into the condenser 12 is condensed by air cooling or liquid cooling. After that, the refrigerant is decompressed by the first expansion valve 13 to be in a low-temperature gas-liquid mixed state, and flows into the first evaporator 14 . The refrigerant that has flowed into the first evaporator 14 exchanges heat with a temperature controlled object (the first fluid in this example), flows into the compressor 11, and is then compressed again by the compressor 11. .

第1の膨張弁13は電子膨張弁であり、パルス信号等の制御信号によって開度を調整自在である。第1の膨張弁13は、制御装置50に電気的に接続され、制御装置50が出力する制御信号に応じて開度を調整するようになっている。 The first expansion valve 13 is an electronic expansion valve whose opening can be adjusted by a control signal such as a pulse signal. The first expansion valve 13 is electrically connected to the control device 50 and adjusts the degree of opening according to the control signal output by the control device 50 .

並列回路20は、冷凍回路10における凝縮器12の下流側で且つ第1の膨張弁13の上流側の部分から冷媒を分岐させ、第2の膨張弁21、第2の蒸発器22及び蒸発圧力調整弁23の順で通過させて、冷凍回路10における第1の蒸発器14の下流側で且つ圧縮機11の上流側の部分に戻すように構成されたものである。 The parallel circuit 20 branches the refrigerant from a portion of the refrigeration circuit 10 downstream of the condenser 12 and upstream of the first expansion valve 13, and connects the second expansion valve 21, the second evaporator 22, and the evaporating pressure It is configured to pass through the regulating valve 23 in order and return to the downstream side of the first evaporator 14 and the upstream side of the compressor 11 in the refrigeration circuit 10 .

また、本実施の形態における並列回路20は、上記第2の膨張弁21及び第2の蒸発器22に対して並列に設けられた第3の膨張弁24及び第3の蒸発器25をさらに有している。そして、並列回路20は、冷凍回路10から分岐する冷媒を第3の膨張弁24及び第3の蒸発器25の順で通過させて冷凍回路10に戻すようにもなっている。第2の膨張弁21は、冷媒を減圧して低温の気液混合状態とし、第2の蒸発器22に送る。第3の膨張弁24は、冷媒を減圧して低温の気液混合状態とし、第3の蒸発器25に送る。これにより、冷凍装置1では、第2の蒸発器22及び第3の蒸発器25によって、第1の蒸発器14の温度制御対象とは別の温度制御対象(本例では、第2の流体と第3の流体)を温度制御することができる。第2の蒸発器22及び第3の蒸発器25は、同じ温度制御対象を温度制御してもよいし、別々の温度制御対象を温度制御してもよい。 The parallel circuit 20 in the present embodiment further includes a third expansion valve 24 and a third evaporator 25 provided in parallel with the second expansion valve 21 and the second evaporator 22. is doing. The parallel circuit 20 also allows the refrigerant branched from the refrigerating circuit 10 to pass through the third expansion valve 24 and the third evaporator 25 in that order and return to the refrigerating circuit 10 . The second expansion valve 21 decompresses the refrigerant into a low-temperature gas-liquid mixed state, and sends the refrigerant to the second evaporator 22 . The third expansion valve 24 decompresses the refrigerant into a low-temperature gas-liquid mixed state, and sends the refrigerant to the third evaporator 25 . As a result, in the refrigerating apparatus 1, the second evaporator 22 and the third evaporator 25 control the temperature of a temperature controlled object other than the temperature controlled object of the first evaporator 14 (in this example, the second fluid and third fluid) can be temperature controlled. The second evaporator 22 and the third evaporator 25 may temperature-control the same temperature-controlled object, or may temperature-control different temperature-controlled objects.

また、本実施の形態では、第2の蒸発器22から流出した冷媒と、第3の蒸発器25から流出した冷媒が、蒸発圧力調整弁23の上流側で合流している。そして、合流した冷媒は、蒸発圧力調整弁23を通って、圧縮機11に流入する。 Further, in the present embodiment, the refrigerant flowing out from the second evaporator 22 and the refrigerant flowing out from the third evaporator 25 join on the upstream side of the evaporating pressure regulating valve 23 . The merged refrigerant flows into the compressor 11 through the evaporating pressure regulating valve 23 .

なお、第3の蒸発器25から流出した冷媒は、蒸発圧力調整弁23の下流側に流入するようになっていてもよいが、この場合には、第3の蒸発器25の下流側に蒸発圧力調整弁23とは別の蒸発圧力調整弁を設けることが好ましい。また、本実施の形態では、第3の膨張弁24及び第3の蒸発器25が設けられるが、これらは無くてもよい。また、第2の膨張弁21及び第2の蒸発器22、第3の膨張弁24及び第3の蒸発器25に対して、さらに並列に設けられる膨張弁及び蒸発器の組がさらに設けられても構わない。 The refrigerant flowing out of the third evaporator 25 may flow into the downstream side of the evaporating pressure regulating valve 23. It is preferable to provide an evaporation pressure regulating valve separate from the pressure regulating valve 23 . Moreover, although the third expansion valve 24 and the third evaporator 25 are provided in the present embodiment, these may be omitted. A set of an expansion valve and an evaporator is further provided in parallel with the second expansion valve 21 and the second evaporator 22, and the third expansion valve 24 and the third evaporator 25. I don't mind.

第2の膨張弁21及び第3の膨張弁24は電子膨張弁であり、パルス信号等の制御信号によって開度を調整自在となっている。第2の膨張弁21及び第3の膨張弁24は、制御装置50に電気的に接続され、制御装置50が出力する制御信号に応じて開度を調整するようになっている。 The second expansion valve 21 and the third expansion valve 24 are electronic expansion valves, and their opening degrees can be adjusted by control signals such as pulse signals. The second expansion valve 21 and the third expansion valve 24 are electrically connected to the control device 50 and adjust their opening according to the control signal output by the control device 50 .

蒸発圧力調整弁23も電子膨張弁であり、第1の蒸発器14と同様に、パルス信号等の制御信号によって開度を調整自在となっている。蒸発圧力調整弁23は、制御装置50に電気的に接続され、制御装置50が出力する制御信号に応じて開度を調整する。蒸発圧力調整弁23は、第2の蒸発器22と第3の蒸発器25とから流出して合流した冷媒の圧力を所望の値に調整するために設けられている。 The evaporating pressure adjusting valve 23 is also an electronic expansion valve, and like the first evaporator 14, the opening can be adjusted by a control signal such as a pulse signal. The evaporating pressure regulating valve 23 is electrically connected to the control device 50 and adjusts the degree of opening according to the control signal output by the control device 50 . Evaporation pressure adjustment valve 23 is provided to adjust the pressure of the refrigerant flowing out from second evaporator 22 and third evaporator 25 and joining together to a desired value.

一方で、冷凍回路側圧力センサ30は、冷凍回路10における第1の蒸発器14の下流側であって、並列回路20の接続位置の上流側の部分を流れる冷媒の圧力を検出するために設けられている。より具体的に説明すると、冷凍回路側圧力センサ30は、第1の蒸発器14における冷媒の蒸発圧力(P1)を特定するために設けられている。 On the other hand, the refrigeration circuit side pressure sensor 30 is provided to detect the pressure of the refrigerant flowing in the portion downstream of the first evaporator 14 in the refrigeration circuit 10 and upstream of the connection position of the parallel circuit 20 . It is More specifically, the refrigeration circuit side pressure sensor 30 is provided to identify the refrigerant evaporation pressure (P1) in the first evaporator 14 .

並列側圧力センサ40は、並列回路20における第2の蒸発器22と蒸発圧力調整弁23との間を流れる冷媒の圧力を検出する。より詳しくは、本実施の形態における並列側圧力センサ40は、第2の蒸発器22から流出した冷媒と第3の蒸発器25から流出した冷媒との合流部分又は合流部分の下流側における冷媒の圧力を検出することで、第2の蒸発器22と第3の蒸発器25とから流出して合流した冷媒の圧力を検出するようになっている。 The parallel side pressure sensor 40 detects the pressure of refrigerant flowing between the second evaporator 22 and the evaporation pressure regulating valve 23 in the parallel circuit 20 . More specifically, the parallel side pressure sensor 40 in the present embodiment detects the confluence of the refrigerant flowing out of the second evaporator 22 and the refrigerant flowing out of the third evaporator 25 or the downstream side of the confluence. By detecting the pressure, the pressure of the refrigerant that flows out from the second evaporator 22 and the third evaporator 25 and merges is detected.

また、並列側第1温度センサ61は、第2の膨張弁21で膨張された気液混合状態の冷媒の蒸発温度、すなわち第2の蒸発器22における冷媒の蒸発温度を検出するようになっている。また、並列側第2温度センサ62は、第3の膨張弁24で膨張された気液混合状態の冷媒の蒸発温度、すなわち第3の蒸発器25における冷媒の蒸発温度を検出するようになっている。 The parallel-side first temperature sensor 61 detects the evaporation temperature of the gas-liquid mixed refrigerant expanded by the second expansion valve 21, that is, the evaporation temperature of the refrigerant in the second evaporator 22. there is The parallel-side second temperature sensor 62 detects the evaporation temperature of the gas-liquid mixed refrigerant expanded by the third expansion valve 24, that is, the evaporation temperature of the refrigerant in the third evaporator 25. there is

<流体通流ユニット>
流体通流ユニット2では、第1流体通流装置2Aが通流させる第1の流体が第1の蒸発器14によって温度制御され、第2流体通流装置2Bが通流させる第2の流体が第2の蒸発器22によって温度制御され、第3流体通流装置2Cが通流させる第3の流体が第3の蒸発器25によって温度制御される。流体通流ユニット2は、各温度制御された流体により温度制御を行うようになっている。
<Fluid circulation unit>
In the fluid circulation unit 2, the temperature of the first fluid circulated by the first fluid circulation device 2A is controlled by the first evaporator 14, and the second fluid circulated by the second fluid circulation device 2B is The temperature of the third fluid is controlled by the second evaporator 22 , and the temperature of the third fluid circulated by the third fluid flow device 2</b>C is controlled by the third evaporator 25 . The fluid communication unit 2 performs temperature control with each temperature-controlled fluid.

第1流体通流装置2Aは、第1の流体を通流させるための駆動力を発生させる第1ポンプ2A1を有する。 The first fluid circulation device 2A has a first pump 2A1 that generates driving force for causing the first fluid to flow.

第2流体通流装置2Bは、第2の流体を通流させるための駆動力を発生させる第2ポンプ2B1と、第2の蒸発器22において冷媒と熱交換する前の第2の流体の温度を検出する第2の流体用温度センサ2B2とを有する。 The second fluid circulation device 2B includes a second pump 2B1 that generates a driving force for causing the second fluid to flow, and a second fluid temperature before heat exchange with the refrigerant in the second evaporator 22. and a second fluid temperature sensor 2B2 for detecting .

第3流体通流装置2Cは、第3の流体を通流させるための駆動力を発生させる第3ポンプ2C1と、第3の蒸発器25において冷媒と熱交換する前の第3の流体の温度を検出する第3の流体用温度センサ2C2とを有する。 The third fluid circulation device 2C includes a third pump 2C1 that generates driving force for causing the third fluid to flow, and a third fluid temperature before heat exchange with the refrigerant in the third evaporator 25. and a third fluid temperature sensor 2C2 for detecting .

<制御装置>
続いて制御装置50は、第1の膨張弁13、第2の膨張弁21、第3の膨張弁24及び蒸発圧力調整弁23の各開度を少なくとも制御するようになっている。また、制御装置50は、冷凍回路側圧力センサ30が検出した冷媒の圧力と、並列側圧力センサ40が検出した冷媒の圧力とを取得可能となっている。また、制御装置50は、並列側第1温度センサ61が検出した、第2の蒸発器22における冷媒の蒸発温度と、並列側第2温度センサ62が検出した、第3の蒸発器25における冷媒の蒸発温度とを取得可能となっている。さらに、制御装置50は、第2の流体用温度センサ2B2が検出した、第2の蒸発器22において冷媒と熱交換する前の第2の流体の温度と、第3の流体用温度センサ2C2が検出した、第3の蒸発器25において冷媒と熱交換する前の第3の流体の温度とを取得可能となっている。
<Control device>
Subsequently, the control device 50 controls at least the opening degrees of the first expansion valve 13 , the second expansion valve 21 , the third expansion valve 24 and the evaporation pressure control valve 23 . Further, the control device 50 can acquire the refrigerant pressure detected by the refrigerating circuit-side pressure sensor 30 and the refrigerant pressure detected by the parallel-side pressure sensor 40 . In addition, the control device 50 detects the evaporation temperature of the refrigerant in the second evaporator 22 detected by the parallel-side first temperature sensor 61 and the refrigerant in the third evaporator 25 detected by the parallel-side second temperature sensor 62. and the evaporation temperature of Further, the control device 50 detects the temperature of the second fluid before heat exchange with the refrigerant in the second evaporator 22 detected by the second fluid temperature sensor 2B2, and the temperature of the second fluid detected by the third fluid temperature sensor 2C2. It is possible to acquire the detected temperature of the third fluid before heat exchange with the refrigerant in the third evaporator 25 .

制御装置50は、各蒸発器(14、22、25)が出力する冷凍能力を調整するために、第1の膨張弁13、第2の膨張弁21及び第3の膨張弁24の開度を調整して各弁から流出する冷媒の流量を増減させる。また、このような冷媒の流量調整がなされた際に、制御装置50は蒸発圧力調整弁23の開度を連動して調整するようになっている。蒸発圧力調整弁23の調整は、第2の蒸発器22における冷媒の蒸発温度と第2の蒸発器22において冷媒と熱交換する前の温度制御対象(第2の流体)の温度との差(温度差ΔTx)、及び、第3の蒸発器25における冷媒の蒸発温度と第3の蒸発器25において冷媒と熱交換する前の温度制御対象(第3の流体)の温度との差(温度差ΔTy)が所定値Thよりも小さいか又は所定値Th以上であるかに応じて、異なる態様で行われる。所定値Thは、第2の蒸発器22及び第3の蒸発器25に過度な負担を与えない程度の第2の蒸発器22及び第3の蒸発器25における冷媒と温度制御対象との温度差の上限側に設定され、第2の蒸発器22及び第3の蒸発器25の仕様(耐温度差性能)によって変化する値である。本実施の形態では、第2の蒸発器22及び第3の蒸発器25における冷媒と温度制御対象との温度差が90℃以上である場合を温度差警戒レベルと想定しており、所定値Thを一例として80℃に設定している。 The control device 50 adjusts the opening degrees of the first expansion valve 13, the second expansion valve 21 and the third expansion valve 24 in order to adjust the refrigerating capacity output by each evaporator (14, 22, 25). Adjust to increase or decrease the flow of refrigerant out of each valve. Further, when the flow rate of the refrigerant is adjusted in this way, the controller 50 interlocks and adjusts the opening degree of the evaporating pressure regulating valve 23 . The adjustment of the evaporating pressure regulating valve 23 is performed by adjusting the difference ( temperature difference ΔTx), and the difference (temperature difference ΔTy) is smaller than the predetermined value Th or is greater than or equal to the predetermined value Th. The predetermined value Th is the temperature difference between the refrigerant in the second evaporator 22 and the third evaporator 25 and the temperature control object to the extent that the second evaporator 22 and the third evaporator 25 are not overloaded. is set on the upper limit side of , and varies depending on the specifications (temperature difference resistance performance) of the second evaporator 22 and the third evaporator 25 . In the present embodiment, it is assumed that the temperature difference warning level is the case where the temperature difference between the refrigerant and the temperature controlled object in the second evaporator 22 and the third evaporator 25 is 90° C. or more, and the predetermined value Th is set to 80° C. as an example.

制御装置50の制御について具体的に説明すると、制御装置50は、例えば第1の蒸発器14によって温度制御していた温度制御対象に対する目標温度が現在の値から大幅に低い温度に変更された場合等に、第1の膨張弁13から流出する冷媒の流量と、第2の膨張弁21及び/又は第3の膨張弁24から流出する冷媒の流量とが互いに異なる値となるように第1の膨張弁13、第2の膨張弁21及び第3の膨張弁24のうちの少なくともいずれかの開度を制御することができる。具体的には、第1の膨張弁13から流出する冷媒の流量が、第2の膨張弁21及び/又は第3の膨張弁24から流出する冷媒の流量よりも大きくなるように、第1の膨張弁13、第2の膨張弁21及び第3の膨張弁24のうちの少なくともいずれかの開度を制御することができる。このような制御では、例えば、第1の膨張弁13から流出する冷媒の流量を、第2の膨張弁21及び第3の膨張弁24のそれぞれから流出する冷媒の流量よりも大きくすることで、第2の蒸発器22及び第3の蒸発器25の冷凍能力の一部を第1の蒸発器14の冷凍能力に加算し、第1の蒸発器14が出力する冷凍能力を増加させ、変更された目標温度に即座に対応することができる。 Specifically, the control of the control device 50 will be described. When the target temperature for the temperature controlled object whose temperature is controlled by the first evaporator 14, for example, is changed from the current value to a significantly lower temperature For example, the first expansion valve 13 and the second expansion valve 21 and/or the third expansion valve 24 have different values for the flow rate of the refrigerant flowing out from The degree of opening of at least one of the expansion valve 13, the second expansion valve 21 and the third expansion valve 24 can be controlled. Specifically, the flow rate of the refrigerant flowing out of the first expansion valve 13 is higher than the flow rate of refrigerant flowing out of the second expansion valve 21 and/or the third expansion valve 24. The degree of opening of at least one of the expansion valve 13, the second expansion valve 21 and the third expansion valve 24 can be controlled. In such control, for example, by making the flow rate of refrigerant flowing out of the first expansion valve 13 larger than the flow rate of refrigerant flowing out of each of the second expansion valve 21 and the third expansion valve 24, A part of the refrigerating capacity of the second evaporator 22 and the third evaporator 25 is added to the refrigerating capacity of the first evaporator 14 to increase the refrigerating capacity output by the first evaporator 14 and change It is possible to immediately respond to the target temperature.

上述のような制御を実施した際に、第2の蒸発器22における冷媒の蒸発温度と第2の蒸発器22において冷媒と熱交換する前の温度制御対象(第2の流体)の温度との差(温度差ΔTx)、及び、第3の蒸発器25における冷媒の蒸発温度と第3の蒸発器25において冷媒と熱交換する前の温度制御対象(第3の流体)の温度との差(温度差ΔTy)が所定値Thよりも小さい場合には、制御装置50は、並列側圧力センサ40で検出する冷媒の圧力が、第1の蒸発器14における冷媒の蒸発圧力と一致するように、蒸発圧力調整弁23の開度を制御する。このとき、第1の蒸発器14における冷媒の蒸発圧力は、冷凍回路側圧力センサ30から取得される。
より具体的に説明すると、第1の膨張弁13から流出する冷媒の流量を、第2の膨張弁21及び第3の膨張弁24のそれぞれから流出する冷媒の流量よりも大きくした場合には、第2の膨張弁21及び第3の膨張弁24のそれぞれから流出する冷媒の流量が少なくなることで、対応する第2の蒸発器22及び第3の蒸発器25から流出する冷媒の圧力(蒸発圧力)が、第1の蒸発器14における冷媒の蒸発圧力よりも下がる状況が生じ得る。この際に、蒸発圧力調整弁23の開度を、膨張弁(13、21、24)の開度を制御する前(流量制御の前)の状態よりも小さくすることで、並列側圧力センサ40で検出する冷媒の圧力が、第1の蒸発器14における冷媒の蒸発圧力と一致するようにする。これにより、後述するように冷凍装置1の運転が安定する。
When the above-described control is performed, the temperature of the temperature controlled object (second fluid) before heat exchange with the refrigerant in the second evaporator 22 and the temperature of the refrigerant in the second evaporator 22 The difference (temperature difference ΔTx), and the difference between the evaporation temperature of the refrigerant in the third evaporator 25 and the temperature of the temperature controlled object (third fluid) before heat exchange with the refrigerant in the third evaporator 25 ( When the temperature difference ΔTy) is smaller than the predetermined value Th, the control device 50 controls the pressure of the refrigerant detected by the parallel side pressure sensor 40 to match the evaporation pressure of the refrigerant in the first evaporator 14. The opening degree of the evaporation pressure control valve 23 is controlled. At this time, the evaporating pressure of the refrigerant in the first evaporator 14 is acquired from the refrigerating circuit side pressure sensor 30 .
More specifically, when the flow rate of refrigerant flowing out of the first expansion valve 13 is made larger than the flow rate of refrigerant flowing out of each of the second expansion valve 21 and the third expansion valve 24, As the flow rate of the refrigerant flowing out of each of the second expansion valve 21 and the third expansion valve 24 decreases, the pressure of the refrigerant flowing out of the corresponding second evaporator 22 and third evaporator 25 (evaporation A situation may arise where the pressure) is lower than the evaporating pressure of the refrigerant in the first evaporator 14 . At this time, by making the degree of opening of the evaporating pressure regulating valve 23 smaller than the state before controlling the degree of opening of the expansion valves (13, 21, 24) (before controlling the flow rate), the parallel side pressure sensor 40 The pressure of the refrigerant detected by is made to match the evaporation pressure of the refrigerant in the first evaporator 14 . This stabilizes the operation of the refrigeration system 1 as described later.

一方で、第1の膨張弁13から流出する冷媒の流量を、第2の膨張弁21及び第3の膨張弁24のそれぞれから流出する冷媒の流量よりも大きくした際に、第2の蒸発器22における冷媒の蒸発温度と第2の蒸発器22において冷媒と熱交換する前の温度制御対象(第2の流体)の温度との差(温度差ΔTx)、及び、第3の蒸発器25における冷媒の蒸発温度と第3の蒸発器25において冷媒と熱交換する前の温度制御対象(第3の流体)の温度との差(温度差ΔTy)のうちの少なくともいずれかが所定値Th以上である場合には、制御装置50は、第2の蒸発器22における冷媒の蒸発温度と第2の蒸発器22において冷媒と熱交換する前の温度制御対象(第2の流体)の温度との差(温度差ΔTx)及び第3の蒸発器25における冷媒の蒸発温度と第3の蒸発器25において冷媒と熱交換する前の温度制御対象(第3の流体)の温度との差(温度差ΔTy)が所定値Thよりも小さくなるように蒸発圧力調整弁23の開度を、膨張弁(13、21、24)の開度を制御する前(流量制御の前)の状態よりも小さくする。蒸発圧力調整弁23の開度が小さくした場合には、冷媒の蒸発温度が上がるため、第2の蒸発器22及び/又は第3の蒸発器25における冷媒と温度制御対象との温度差を抑制でき、第2の蒸発器22及び/又は第3の蒸発器25にかかる負担を軽減することが可能となる。
なお、制御装置50は、CPU,ROM,RAM等を備えるコンピュータで構成され、記憶されたプログラムに従って各部の動作を制御してもよい。
On the other hand, when the flow rate of refrigerant flowing out of the first expansion valve 13 is made larger than the flow rate of refrigerant flowing out of each of the second expansion valve 21 and the third expansion valve 24, the second evaporator 22 and the difference (temperature difference ΔTx) between the evaporation temperature of the refrigerant in the second evaporator 22 and the temperature of the temperature controlled object (second fluid) before heat exchange with the refrigerant in the second evaporator 22, and the third evaporator 25 At least one of the difference (temperature difference ΔTy) between the evaporation temperature of the refrigerant and the temperature of the temperature controlled object (third fluid) before heat exchange with the refrigerant in the third evaporator 25 is equal to or greater than a predetermined value Th. In some cases, the control device 50 detects the difference between the evaporation temperature of the refrigerant in the second evaporator 22 and the temperature of the temperature controlled object (second fluid) before heat exchange with the refrigerant in the second evaporator 22. (temperature difference ΔTx) and the difference (temperature difference ΔTy ) is smaller than the predetermined value Th, the opening degree of the evaporating pressure regulating valve 23 is made smaller than the state before controlling the opening degree of the expansion valves (13, 21, 24) (before the flow rate control). When the opening degree of the evaporating pressure regulating valve 23 is reduced, the evaporation temperature of the refrigerant rises, so the temperature difference between the refrigerant and the temperature controlled object in the second evaporator 22 and/or the third evaporator 25 is suppressed. It is possible to reduce the load on the second evaporator 22 and/or the third evaporator 25 .
Note that the control device 50 may be configured by a computer including a CPU, ROM, RAM, etc., and may control the operation of each section according to a stored program.

次に、冷凍装置1の動作の一例について図2に示したフローチャートを参照しつつ説明する。 Next, an example of the operation of the refrigeration system 1 will be described with reference to the flowchart shown in FIG.

図2に示す処理は、膨張弁(13、21、24)の開度制御による流量制御が行われた際に開始する。 The process shown in FIG. 2 starts when the flow rate is controlled by controlling the degree of opening of the expansion valves (13, 21, 24).

処理が開始すると、まずステップS1において、制御装置50は、第2の蒸発器22における冷媒の蒸発温度と第2の蒸発器22において冷媒と熱交換する前の第2の流体の温度との温度差ΔTx、及び、第3の蒸発器25における冷媒の蒸発温度と第3の蒸発器25において冷媒と熱交換する前の第3の流体の温度との温度差ΔTyのうちの少なくともいずれかが所定値Th以上であるか否かを検出する。温度差ΔTx及び温度差ΔTyがともに所定値Thよりも小さいときには、処理がステップS2に移行し、所定値Th以上のときには、処理がステップS6に移行する。 When the process starts, first in step S1, the control device 50 determines the temperature between the evaporation temperature of the refrigerant in the second evaporator 22 and the temperature of the second fluid before heat exchange with the refrigerant in the second evaporator 22. At least one of the difference ΔTx and the temperature difference ΔTy between the evaporation temperature of the refrigerant in the third evaporator 25 and the temperature of the third fluid before heat exchange with the refrigerant in the third evaporator 25 is predetermined. It detects whether or not it is greater than or equal to the value Th. When both the temperature differences ΔTx and ΔTy are smaller than the predetermined value Th, the process proceeds to step S2, and when they are equal to or greater than the predetermined value Th, the process proceeds to step S6.

ステップS2に処理が移行した際、制御装置50は、冷凍回路10における第1の蒸発器14の下流側であって、並列回路20の接続位置の上流側の部分を流れる冷媒の圧力(P1)を冷凍回路側圧力センサ30から取得する。ここで検出された圧力(P1)は、第1の蒸発器14における冷媒の蒸発圧力として扱われる。また、制御装置50は、第2の蒸発器22及び第3の蒸発器25から流出して合流した冷媒の圧力(P2)を並列側圧力センサ40から取得する。そして、制御装置50は、圧力(P1)と圧力(P2)とが一致するか否かを判定し、一致する場合は、温度差の監視(S1)の処理に戻る。一致しなかった場合は、ステップS3の処理に移行する。 When the process proceeds to step S2, the control device 50 controls the pressure (P1) of the refrigerant flowing in the portion downstream of the first evaporator 14 in the refrigerating circuit 10 and upstream of the connection position of the parallel circuit 20. is acquired from the refrigerating circuit side pressure sensor 30 . The pressure (P1) detected here is treated as the evaporation pressure of the refrigerant in the first evaporator 14 . The control device 50 also obtains from the parallel side pressure sensor 40 the pressure (P2) of the refrigerant that flows out from the second evaporator 22 and the third evaporator 25 and merges. Then, the control device 50 determines whether or not the pressure (P1) and the pressure (P2) match, and if they match, returns to the process of monitoring the temperature difference (S1). If they do not match, the process proceeds to step S3.

ステップS3においては、制御装置50は、圧力(P1)が圧力(P2)よりも大きいか否かを判定する。圧力(P1)が圧力(P2)よりも大きい状態は、第1の蒸発器14における冷媒の蒸発圧力が、第2の蒸発器22及び第3の蒸発器25から流出して合流した冷媒の蒸発圧力よりも大きいことを意味する。この場合、ステップS4において、制御装置50は、蒸発圧力調整弁23の開度を小さくして(DOWN)、第2の蒸発器22及び第3の蒸発器25から流出して合流した冷媒の蒸発圧力を上昇させる。そして、制御装置50は、温度差の監視(S1)の処理に戻り、温度差ΔTx及び温度差ΔTyが上述所定値Thよりも小さいときには、圧力(P1)が圧力(P2)と一致するまで蒸発圧力調整弁23の開度を調整する。 In step S3, control device 50 determines whether pressure (P1) is greater than pressure (P2). When the pressure (P1) is higher than the pressure (P2), the evaporation pressure of the refrigerant in the first evaporator 14 is equal to the evaporation pressure of the refrigerant flowing out of the second evaporator 22 and the third evaporator 25 and joining together. Means greater than pressure. In this case, in step S4, the control device 50 reduces the opening degree of the evaporating pressure regulating valve 23 (DOWN), and evaporates the refrigerant flowing out and joining the second evaporator 22 and the third evaporator 25. Increase pressure. Then, the control device 50 returns to the process of monitoring the temperature difference (S1). The degree of opening of the pressure regulating valve 23 is adjusted.

一方で、圧力(P1)が圧力(P2)よりも小さい場合、この状態は、第1の蒸発器14における冷媒の蒸発圧力が、第2の蒸発器22及び第3の蒸発器25から流出して合流した冷媒の蒸発圧力よりも小さいことを意味する。この場合、ステップS5において、制御装置50は、蒸発圧力調整弁23の開度を大きくして(UP)、第2の蒸発器22及び第3の蒸発器25から流出して合流した冷媒の蒸発圧力を低下させる。そして、制御装置50は、温度差ΔTx及び温度差ΔTyが上述所定値Thよりも小さいときには、圧力(P1)が圧力(P2)と一致するまで蒸発圧力調整弁23の開度を調整する。 On the other hand, if the pressure (P1) is less than the pressure (P2), this condition is such that the evaporating pressure of the refrigerant in the first evaporator 14 flows out of the second evaporator 22 and the third evaporator 25. It means that the evaporation pressure is lower than the evaporating pressure of the refrigerant that joins together. In this case, in step S5, the control device 50 increases the opening degree of the evaporating pressure regulating valve 23 (UP), and evaporates the refrigerant that flows out from the second evaporator 22 and the third evaporator 25 and merges. Reduce pressure. Then, when the temperature difference ΔTx and the temperature difference ΔTy are smaller than the predetermined value Th, the controller 50 adjusts the opening degree of the evaporating pressure regulating valve 23 until the pressure (P1) matches the pressure (P2).

上述のような蒸発圧力調整弁23の開度調整により、並列側圧力センサ40で検出する冷媒の圧力(P2)が、第1の蒸発器14における冷媒の蒸発圧力(P1)と一致した場合には、第1の蒸発器14側から流出した冷媒と、第2の蒸発器22及び第3の蒸発器25側から流出した冷媒とが合流した際に、冷媒の状態が乱れることを抑制でき、その結果、冷凍装置1の運転が安定することになる。 When the refrigerant pressure (P2) detected by the parallel side pressure sensor 40 matches the refrigerant evaporation pressure (P1) in the first evaporator 14 by adjusting the opening degree of the evaporation pressure regulating valve 23 as described above, can suppress the state of the refrigerant from being disturbed when the refrigerant flowing out from the first evaporator 14 side and the refrigerant flowing out from the second evaporator 22 and the third evaporator 25 side merge, As a result, the operation of the refrigeration system 1 is stabilized.

一方で、ステップS1において、温度差ΔTx及び温度差ΔTyの少なくともいずれかが上述所定値Th以上のときには、温度差ΔTx及び/又は温度差ΔTyが第2の蒸発器22及び/又は第3の蒸発器25に与える負荷が大きいと判断される。この際、制御装置50は、温度差ΔTx及び温度差ΔTyが所定値Thよりも小さくなるように蒸発圧力調整弁23の開度を小さくして(DOWN)、第2の蒸発器22及び第3の蒸発器25における冷媒の蒸発温度を上昇させる。これにより、温度差ΔTx及び温度差ΔTyを抑えることが可能となる。 On the other hand, in step S1, when at least one of the temperature difference ΔTx and the temperature difference ΔTy is equal to or greater than the predetermined value Th, the temperature difference ΔTx and/or the temperature difference ΔTy is the second evaporator 22 and/or the third evaporator. It is determined that the load applied to the device 25 is large. At this time, the control device 50 reduces the opening degree of the evaporating pressure regulating valve 23 so that the temperature difference ΔTx and the temperature difference ΔTy become smaller than the predetermined value Th (DOWN), and the second evaporator 22 and the third increases the evaporation temperature of the refrigerant in the evaporator 25 of . This makes it possible to suppress the temperature difference ΔTx and the temperature difference ΔTy.

以上に説明した本実施の形態にかかる冷凍装置1では、例えば、第1の蒸発器14で温度制御する温度制御対象(第1の流体)の目標温度をある時点から低温側に大きく変化させる必要があり、第2の蒸発器22及び第3の蒸発器25で温度制御する温度制御対象(第2の流体、第3の流体)が大きい冷凍能力を必要としない状況下において、第1の膨張弁13から流出する冷媒の流量を第2の膨張弁21及び第3の膨張弁24から流出する冷媒の流量よりも大きくすることで、第1の蒸発器14の冷凍能力を増加させる方向へ変更できるとともに、第2の膨張弁21及び第3の膨張弁24の冷凍能力を低下させる方向へ変更できる。しかし、この際、第2の蒸発器22及び第3の蒸発器25側から流出した冷媒の圧力が第1の蒸発器14における冷媒の蒸発圧力よりも小さくなり得るため、第2の蒸発器22及び第3の蒸発器25側から流出した冷媒が第1の蒸発器14側からの冷媒と合流した際に、冷媒の状態が乱れ得ることで、冷凍装置1の運転の安定性が損なわれ得る。ここで、本実施の形態にかかる冷凍装置1では、上述した温度差ΔTx及び温度差ΔTyが所定値Thよりも小さい場合には、第2の蒸発器22及び第3の蒸発器25側から流出した冷媒の圧力が第1の蒸発器14おける冷媒の蒸発圧力と一致するように蒸発圧力調整弁23が開度の調整を行う。これにより、第1の蒸発器14側から流出した冷媒と、第2の蒸発器22及び第3の蒸発器25側から流出した冷媒とが合流した際の冷媒の状態が安定する。 In the refrigerating apparatus 1 according to the present embodiment described above, for example, it is necessary to greatly change the target temperature of the temperature controlled object (first fluid) whose temperature is controlled by the first evaporator 14 from a certain point to the low temperature side. , and the first expansion By making the flow rate of the refrigerant flowing out of the valve 13 larger than the flow rate of the refrigerant flowing out of the second expansion valve 21 and the third expansion valve 24, the refrigerating capacity of the first evaporator 14 is changed to increase. In addition, the refrigerating capacity of the second expansion valve 21 and the third expansion valve 24 can be changed to decrease. However, at this time, since the pressure of the refrigerant flowing out from the second evaporator 22 and the third evaporator 25 may be lower than the refrigerant evaporation pressure in the first evaporator 14, the second evaporator 22 And when the refrigerant flowing out from the third evaporator 25 side joins with the refrigerant from the first evaporator 14 side, the state of the refrigerant may be disturbed, and the stability of the operation of the refrigeration system 1 may be impaired. . Here, in the refrigerating apparatus 1 according to the present embodiment, when the temperature difference ΔTx and the temperature difference ΔTy are smaller than the predetermined value Th, The evaporating pressure regulating valve 23 adjusts the degree of opening so that the pressure of the refrigerant thus obtained matches the evaporating pressure of the refrigerant in the first evaporator 14 . This stabilizes the state of the refrigerant when the refrigerant flowing out from the first evaporator 14 side and the refrigerant flowing out from the second evaporator 22 and the third evaporator 25 side join together.

また、例えば、第1の蒸発器14で温度制御する温度制御対象(第1の流体)を冷却する必要があり、第2の蒸発器22及び第3の蒸発器25で温度制御していた温度制御対象(第2の流体、第3の流体)を加熱する必要がある場合に、第1の膨張弁13から流出する冷媒の流量を第2の膨張弁21及び第3の膨張弁24から流出する冷媒の流量よりも大きくすることで、第1の蒸発器14の冷凍能力を増加する方向へ変更できるとともに、第2の蒸発器22及び第3の蒸発器25の冷凍能力を低下させる方向へ変更できる。しかし、この際、第2の蒸発器22における冷媒の蒸発温度と第2の蒸発器22によって熱交換される前の温度制御対象(第2の流体)の温度との温度差ΔTx及び/又は第3の蒸発器25における冷媒の蒸発温度と第3の蒸発器25によって熱交換される前の温度制御対象(第3の流体)の温度との温度差ΔTyが過剰に大きい場合には、第2の蒸発器22及び/又は第3の蒸発器25に負担がかかり、損傷のリスクが生じ得る。
ここで、本実施の形態にかかる冷凍装置1では、温度差ΔTx及び温度差ΔTyのうちの少なくともいずれかが所定値Th以上の場合には、温度差警戒レベルであると判定し、温度差ΔTx及び温度差ΔTyが所定値Thよりも小さくなるように蒸発圧力調整弁23の開度を、第1の膨張弁13、第2の膨張弁21及び第3の膨張弁24のうちの少なくともいずれかの開度を制御する前の状態よりも小さくする。これにより、第2の蒸発器22及び第3の蒸発器25における冷媒の蒸発温度を引き上げて、温度差ΔTx及び温度差ΔTyを抑制することで、第2の蒸発器22及び第3の蒸発器25に対する負担を軽減できる。
In addition, for example, it is necessary to cool the temperature controlled object (first fluid) whose temperature is controlled by the first evaporator 14, and the temperature controlled by the second evaporator 22 and the third evaporator 25 When it is necessary to heat the object to be controlled (second fluid, third fluid), the flow rate of the refrigerant flowing out from the first expansion valve 13 is reduced from the second expansion valve 21 and the third expansion valve 24. By increasing the flow rate of the refrigerant, the refrigerating capacity of the first evaporator 14 can be changed to increase, and the refrigerating capacity of the second evaporator 22 and the third evaporator 25 can be decreased. can be changed. However, at this time, the temperature difference ΔTx between the evaporation temperature of the refrigerant in the second evaporator 22 and the temperature of the temperature controlled object (second fluid) before heat exchange by the second evaporator 22 and/or the second When the temperature difference ΔTy between the evaporation temperature of the refrigerant in the third evaporator 25 and the temperature of the temperature controlled object (third fluid) before heat exchange by the third evaporator 25 is excessively large, the second The first evaporator 22 and/or the third evaporator 25 may be strained and risk of damage.
Here, in the refrigerating apparatus 1 according to the present embodiment, when at least one of the temperature difference ΔTx and the temperature difference ΔTy is equal to or greater than the predetermined value Th, it is determined that the temperature difference alert level is reached, and the temperature difference ΔTx and at least one of the first expansion valve 13, the second expansion valve 21, and the third expansion valve 24 so that the temperature difference ΔTy becomes smaller than the predetermined value Th. The opening of the is made smaller than the state before controlling. As a result, the evaporation temperature of the refrigerant in the second evaporator 22 and the third evaporator 25 is raised, and the temperature difference ΔTx and the temperature difference ΔTy are suppressed, so that the second evaporator 22 and the third evaporator 25 can be reduced.

よって、並列に設けられた複数の蒸発器(14、22、25)で複数の温度制御対象を温度制御する際、一部の温度制御対象の目標温度を変化させた場合であっても、高精度な温度制御を安定的に実施できるとともに、一部の温度制御領域を冷却する必要がある一方で、他の一部の温度制御領域を加熱する必要があるような制御パターンの際に生じ得る蒸発器(加熱側の蒸発器)に対する負担を簡易に軽減できる。 Therefore, when temperature-controlling a plurality of temperature-controlled targets with a plurality of evaporators (14, 22, 25) provided in parallel, even if the target temperatures of some of the temperature-controlled targets are changed, Accurate temperature control can be stably performed, and while some temperature control areas need to be cooled, other temperature control areas need to be heated. The load on the evaporator (heating-side evaporator) can be easily reduced.

以上、本発明の一実施の形態を説明したが、本発明は上述の実施の形態に限られるものではなく、上述の実施の形態には各種の変更を加えることができる。 Although one embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and various modifications can be made to the above-described embodiment.

1…冷凍装置
2…流体通流ユニット
2A…第1流体通流装置
2A1…第1ポンプ
2B…第2流体通流装置
2B1…第2ポンプ
2B2…第2の流体用温度センサ
2C…第3流体通流装置
2C1…第3ポンプ
2C2…第3の流体用温度センサ
10…冷凍回路
11…圧縮機
12…凝縮器
13…第1の膨張弁
14…第1の蒸発器
20…並列回路
21…第2の膨張弁
22…第2の蒸発器
23…蒸発圧力調整弁
24…第3の膨張弁
25…第3の蒸発器
30…冷凍回路側圧力センサ
40…並列側圧力センサ
50…制御装置
61…並列側第1温度センサ
62…並列側第2温度センサ
Reference Signs List 1 Refrigerating device 2 Fluid circulation unit 2A First fluid circulation device 2A1 First pump 2B Second fluid circulation device 2B1 Second pump 2B2 Second fluid temperature sensor 2C Third fluid Flow device 2C1 Third pump 2C2 Third fluid temperature sensor 10 Refrigerating circuit 11 Compressor 12 Condenser 13 First expansion valve 14 First evaporator 20 Parallel circuit 21 Second expansion valve 22 Second evaporator 23 Evaporation pressure regulating valve 24 Third expansion valve 25 Third evaporator 30 Refrigerating circuit side pressure sensor 40 Parallel side pressure sensor 50 Control device 61 Parallel side first temperature sensor 62... Parallel side second temperature sensor

Claims (4)

圧縮機と、凝縮器と、第1の膨張弁と、第1の蒸発器とが、この順に冷媒を循環させるように接続された冷凍回路と、
前記冷凍回路における前記凝縮器の下流側で且つ前記第1の膨張弁の上流側の部分から冷媒を分岐させ、第2の膨張弁、第2の蒸発器及び蒸発圧力調整弁の順で通過させて、前記冷凍回路における前記第1の蒸発器の下流側で且つ前記圧縮機の上流側の部分に戻す並列回路と、
前記並列回路における前記第2の蒸発器と前記蒸発圧力調整弁との間を流れる冷媒の圧力を検出する並列側圧力センサと、
前記第1の膨張弁、前記第2の膨張弁及び前記蒸発圧力調整弁の各開度を制御する制御装置と、を備え、
前記制御装置は、
前記第1の膨張弁から流出する冷媒の流量と、前記第2の膨張弁から流出する冷媒の流量とが互いに異なる値となるように前記第1の膨張弁及び/又は前記第2の膨張弁の開度を制御した際に、前記第2の蒸発器における冷媒の蒸発温度と前記第2の蒸発器において冷媒と熱交換する前の温度制御対象の温度との差が所定値よりも小さい場合には、前記並列側圧力センサで検出する冷媒の圧力が、前記第1の蒸発器における冷媒の蒸発圧力と一致するように、前記蒸発圧力調整弁の開度を制御し、
前記第1の膨張弁から流出する冷媒の流量と、前記第2の膨張弁から流出する冷媒の流量とが互いに異なる値となるように前記第1の膨張弁及び/又は前記第2の膨張弁の開度を制御した際に、前記第2の蒸発器における冷媒の蒸発温度と前記第2の蒸発器において冷媒と熱交換する前の温度制御対象の温度との差が前記所定値以上の場合には、前記第2の蒸発器における冷媒の蒸発温度と前記第2の蒸発器において冷媒と熱交換する前の温度制御対象の温度との差が前記所定値よりも小さくなるように前記蒸発圧力調整弁の開度を、前記第1の膨張弁及び/又は前記第2の膨張弁の開度を制御する前の状態よりも小さくする、冷凍装置。
a refrigeration circuit in which the compressor, the condenser, the first expansion valve, and the first evaporator are connected in this order so as to circulate the refrigerant;
Refrigerant is branched from a portion of the refrigeration circuit downstream of the condenser and upstream of the first expansion valve, and passed through the second expansion valve, the second evaporator and the evaporation pressure regulating valve in that order. a parallel circuit returning to a portion of the refrigeration circuit downstream of the first evaporator and upstream of the compressor;
a parallel side pressure sensor that detects the pressure of the refrigerant flowing between the second evaporator and the evaporation pressure regulating valve in the parallel circuit;
a control device that controls opening degrees of the first expansion valve, the second expansion valve, and the evaporation pressure adjustment valve;
The control device is
the first expansion valve and/or the second expansion valve such that the flow rate of the refrigerant flowing out of the first expansion valve and the flow rate of the refrigerant flowing out of the second expansion valve are different values from each other; When the opening degree of is controlled, the difference between the evaporation temperature of the refrigerant in the second evaporator and the temperature of the temperature controlled object before heat exchange with the refrigerant in the second evaporator is smaller than a predetermined value controls the opening of the evaporating pressure regulating valve so that the pressure of the refrigerant detected by the parallel side pressure sensor matches the evaporating pressure of the refrigerant in the first evaporator;
the first expansion valve and/or the second expansion valve such that the flow rate of the refrigerant flowing out of the first expansion valve and the flow rate of the refrigerant flowing out of the second expansion valve are different values from each other; When the opening degree of is controlled, the difference between the evaporation temperature of the refrigerant in the second evaporator and the temperature of the temperature controlled object before heat exchange with the refrigerant in the second evaporator is the predetermined value or more The evaporating pressure is such that the difference between the evaporating temperature of the refrigerant in the second evaporator and the temperature of the temperature controlled object before heat exchange with the refrigerant in the second evaporator is smaller than the predetermined value A refrigeration system, wherein the degree of opening of a regulating valve is made smaller than the state before the degree of opening of the first expansion valve and/or the second expansion valve is controlled.
前記並列回路は、前記第2の膨張弁及び前記第2の蒸発器に対して並列に設けられた第3の膨張弁及び第3の蒸発器をさらに有し、前記冷凍回路における前記凝縮器の下流側で且つ前記第1の膨張弁の上流側の部分から分岐する冷媒を前記第3の膨張弁及び前記第3の蒸発器の順で通過させ、前記第2の蒸発器から流出した冷媒と合流させた後、前記冷凍回路に戻すようにもなっており、
前記制御装置は、前記第3の膨張弁の開度も制御し、
前記制御装置は、
前記第1の膨張弁から流出する冷媒の流量と、前記第2の膨張弁及び/又は前記第3の膨張弁から流出する冷媒の流量とが互いに異なる値となるように前記第1の膨張弁、前記第2の膨張弁及び第3の膨張弁のうちの少なくともいずれかの開度を制御した際に、前記第2の蒸発器における冷媒の蒸発温度と前記第2の蒸発器において冷媒と熱交換する前の温度制御対象の温度との差、及び、前記第3の蒸発器における冷媒の蒸発温度と前記第3の蒸発器において冷媒と熱交換する前の温度制御対象の温度との差が前記所定値よりも小さい場合には、前記並列側圧力センサで検出する冷媒の圧力が、前記第1の蒸発器における冷媒の蒸発圧力と一致するように、前記蒸発圧力調整弁の開度を制御し、
前記第1の膨張弁から流出する冷媒の流量と、前記第2の膨張弁及び/又は前記第3の膨張弁から流出する冷媒の流量とが互いに異なる値となるように前記第1の膨張弁、前記第2の膨張弁及び第3の膨張弁のうちの少なくともいずれかの開度を制御した際に、前記第2の蒸発器における冷媒の蒸発温度と前記第2の蒸発器において冷媒と熱交換する前の温度制御対象の温度との差、及び、前記第3の蒸発器における冷媒の蒸発温度と前記第3の蒸発器において冷媒と熱交換する前の温度制御対象の温度との差のうちの少なくともいずれかが前記所定値以上の場合には、前記第2の蒸発器における冷媒の蒸発温度と前記第2の蒸発器において冷媒と熱交換する前の温度制御対象の温度との差及び前記第3の蒸発器における冷媒の蒸発温度と前記第3の蒸発器において冷媒と熱交換する前の温度制御対象の温度との差が前記所定値よりも小さくなるように前記蒸発圧力調整弁の開度を前記第1の膨張弁、前記第2の膨張弁及び前記第3の膨張弁のうちの少なくともいずれかの開度を制御する前の状態よりも小さくする、請求項1に記載の冷凍装置。
The parallel circuit further includes a third expansion valve and a third evaporator provided in parallel with the second expansion valve and the second evaporator, Refrigerant branching from a portion downstream of the first expansion valve and upstream of the first expansion valve is passed through the third expansion valve and the third evaporator in that order, and the refrigerant flowing out of the second evaporator and After joining, it is also designed to return to the refrigeration circuit,
The control device also controls the degree of opening of the third expansion valve,
The control device is
the first expansion valve such that the flow rate of refrigerant flowing out of the first expansion valve and the flow rate of refrigerant flowing out of the second expansion valve and/or the third expansion valve are different values from each other; , when the opening degree of at least one of the second expansion valve and the third expansion valve is controlled, the evaporation temperature of the refrigerant in the second evaporator and the refrigerant and heat in the second evaporator The difference between the temperature of the temperature controlled object before exchange and the difference between the evaporation temperature of the refrigerant in the third evaporator and the temperature of the temperature controlled object before heat exchange with the refrigerant in the third evaporator When it is smaller than the predetermined value, the opening degree of the evaporating pressure regulating valve is controlled so that the pressure of the refrigerant detected by the parallel side pressure sensor matches the evaporating pressure of the refrigerant in the first evaporator. death,
the first expansion valve such that the flow rate of refrigerant flowing out of the first expansion valve and the flow rate of refrigerant flowing out of the second expansion valve and/or the third expansion valve are different values from each other; , when the opening degree of at least one of the second expansion valve and the third expansion valve is controlled, the evaporation temperature of the refrigerant in the second evaporator and the refrigerant and heat in the second evaporator The difference between the temperature of the temperature controlled object before exchange and the difference between the evaporation temperature of the refrigerant in the third evaporator and the temperature of the temperature controlled object before heat exchange with the refrigerant in the third evaporator when at least one of them is equal to or greater than the predetermined value, the difference between the evaporation temperature of the refrigerant in the second evaporator and the temperature of the temperature controlled object before heat exchange with the refrigerant in the second evaporator; The evaporating pressure regulating valve is adjusted so that the difference between the evaporating temperature of the refrigerant in the third evaporator and the temperature of the temperature controlled object before heat exchange with the refrigerant in the third evaporator becomes smaller than the predetermined value. 2. The refrigeration system according to claim 1, wherein the degree of opening is made smaller than the state before controlling the degree of opening of at least one of the first expansion valve, the second expansion valve and the third expansion valve. Device.
前記並列側圧力センサは、前記第2の蒸発器から流出した冷媒と前記第3の蒸発器から流出した冷媒との合流部分又は合流部分の下流側における冷媒の圧力を検出する、請求項2に記載の冷凍装置。 3. The parallel side pressure sensor detects the pressure of the refrigerant at a confluence portion of the refrigerant flowing out of the second evaporator and the refrigerant flowing out of the third evaporator or downstream of the confluence portion. Refrigeration equipment as described. 前記冷凍回路における前記第1の蒸発器の下流側であって、前記並列回路の接続位置の上流側の部分を流れる冷媒の圧力を検出する冷凍回路側圧力センサをさらに備え、
前記冷凍回路側圧力センサによって、前記第1の蒸発器における冷媒の蒸発圧力を特定する、請求項1乃至3のいずれかに記載の冷凍装置。
further comprising a refrigerating circuit-side pressure sensor that detects the pressure of refrigerant flowing in a portion downstream of the first evaporator in the refrigerating circuit and upstream of a connection position of the parallel circuit;
4. The refrigeration system according to any one of claims 1 to 3, wherein said refrigeration circuit side pressure sensor specifies the evaporation pressure of refrigerant in said first evaporator.
JP2019036503A 2019-02-28 2019-02-28 refrigeration equipment Active JP7171044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019036503A JP7171044B2 (en) 2019-02-28 2019-02-28 refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019036503A JP7171044B2 (en) 2019-02-28 2019-02-28 refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2020139703A JP2020139703A (en) 2020-09-03
JP7171044B2 true JP7171044B2 (en) 2022-11-15

Family

ID=72280173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019036503A Active JP7171044B2 (en) 2019-02-28 2019-02-28 refrigeration equipment

Country Status (1)

Country Link
JP (1) JP7171044B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024019117A1 (en) * 2022-07-21 2024-01-25 伸和コントロールズ株式会社 Temperature control system, temperature control method, control device, and computer program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286309A (en) 2001-03-27 2002-10-03 Sanyo Electric Co Ltd Refrigerator
JP2004028354A (en) 2002-06-21 2004-01-29 Hitachi Home & Life Solutions Inc Refrigerator
JP2008224163A (en) 2007-03-14 2008-09-25 Matsushita Electric Ind Co Ltd Precision air temperature control device
JP2009236330A (en) 2008-03-25 2009-10-15 Calsonic Kansei Corp Cooling system
JP2010025412A (en) 2008-07-17 2010-02-04 Daikin Ind Ltd Refrigerating device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04251164A (en) * 1991-01-08 1992-09-07 Toshiba Corp Freezing cycle device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002286309A (en) 2001-03-27 2002-10-03 Sanyo Electric Co Ltd Refrigerator
JP2004028354A (en) 2002-06-21 2004-01-29 Hitachi Home & Life Solutions Inc Refrigerator
JP2008224163A (en) 2007-03-14 2008-09-25 Matsushita Electric Ind Co Ltd Precision air temperature control device
JP2009236330A (en) 2008-03-25 2009-10-15 Calsonic Kansei Corp Cooling system
JP2010025412A (en) 2008-07-17 2010-02-04 Daikin Ind Ltd Refrigerating device

Also Published As

Publication number Publication date
JP2020139703A (en) 2020-09-03

Similar Documents

Publication Publication Date Title
EP3693682B1 (en) Control, diagnostics, and architecture for micro booster supermarket refrigeration architecture
CN104566823B (en) The refrigerant control method of multi-connected machine in parallel
EP2588818B1 (en) A method for operating a vapour compression system using a subcooling value
EP2270405B1 (en) Refrigerating device
RU2660723C1 (en) Method for controlling ejector unit of variable capacity
KR20100123729A (en) Refrigeration device
JP2009156540A (en) Refrigeration unit for land transportation and operation control method of refrigeration unit for land transportation
JP2008101884A (en) Heat source machine, heat source system and control method of heat source machine
JP7171044B2 (en) refrigeration equipment
WO2019087882A1 (en) Liquid temperature adjustment apparatus and temperature adjustment method using same
RU2640142C1 (en) Method to control supply of refrigerant to evaporator based on temperature measurements
US11802725B2 (en) Air-conditioning apparatus
US11391497B2 (en) Refrigeration apparatus and temperature control apparatus
JP2012242053A (en) Refrigeration air conditioning system
JP3188989B2 (en) Air conditioner
JP7174502B2 (en) Temperature control device using multi-stage refrigeration cycle and temperature control method using the same
RU2735041C1 (en) Method of suction pressure control, based on cooling object under the biggest load
JPH05258164A (en) Cooling device for vending machine
CN115325751B (en) Control method for precisely controlling temperature in multiple temperature areas, refrigerating system and refrigerator
JP2013217602A (en) Heat source device, refrigeration air conditioner, and control device
CN115823787B (en) Rapid and stable control method for room temperature between refrigeration systems
US20070137229A1 (en) Method of obtaining stable conditions for the evaporation temperature of a media to be cooled through evaporation in a refrigerating installation
JPH055417Y2 (en)
US20170328617A1 (en) A method for controlling a supply of refrigerant to an evaporator including calculating a reference temperature
JP7029979B2 (en) Temperature control device, temperature control method, and charged particle beam device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221026

R150 Certificate of patent or registration of utility model

Ref document number: 7171044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150