JP7170512B2 - Acoustic characteristic measurement system and acoustic characteristic measurement method - Google Patents

Acoustic characteristic measurement system and acoustic characteristic measurement method Download PDF

Info

Publication number
JP7170512B2
JP7170512B2 JP2018215741A JP2018215741A JP7170512B2 JP 7170512 B2 JP7170512 B2 JP 7170512B2 JP 2018215741 A JP2018215741 A JP 2018215741A JP 2018215741 A JP2018215741 A JP 2018215741A JP 7170512 B2 JP7170512 B2 JP 7170512B2
Authority
JP
Japan
Prior art keywords
measured
sound
acoustic characteristic
acoustic
mesh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018215741A
Other languages
Japanese (ja)
Other versions
JP2020085495A (en
Inventor
健吾 後藤
文人 竹内
宏行 宮武
友則 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2018215741A priority Critical patent/JP7170512B2/en
Publication of JP2020085495A publication Critical patent/JP2020085495A/en
Application granted granted Critical
Publication of JP7170512B2 publication Critical patent/JP7170512B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

本発明は、音響特性測定システムおよび音響特性測定方法に関する。 The present invention relates to an acoustic property measuring system and an acoustic property measuring method.

建物や乗物等において、主に外部からの騒音の進入を抑制するために、音の伝達を遮断または低減する吸音材が用いられている。吸音材の吸音効果を示す指標の1つとして、特許文献1に記載されている残響室法吸音率が挙げられる。残響室法吸音率を測定する際には、残響室の床面上に吸音材を載置した状態で、残響室内において発音してその残響時間を測定する。こうして求めた残響時間と、吸音材が存在しない状態で残響室内において発音した後に測定した残響時間との差異を求めることにより、吸音材の吸音効果を求めることができる。 2. Description of the Related Art In buildings, vehicles, etc., sound-absorbing materials that block or reduce the transmission of sound are used mainly in order to suppress the intrusion of noise from the outside. One of the indices indicating the sound absorbing effect of a sound absorbing material is the reverberation room method sound absorption coefficient described in Patent Document 1. When measuring the reverberation room method sound absorption coefficient, sound is generated in the reverberation room with the sound absorbing material placed on the floor of the reverberation room, and the reverberation time is measured. The sound absorbing effect of the sound absorbing material can be obtained by calculating the difference between the reverberation time thus obtained and the reverberation time measured after the sound is produced in the reverberation room without the sound absorbing material.

目的とする周波数における吸音効果をより向上させるために、吸音材の設置時に吸音材の背後に空間を設けて、この空間に存在する空気層を利用する場合がある。このように、吸音材が、背後に空気層が存在する状態で用いられる場合には、残響室法吸音率を求める際にも、吸音材の背後に空気層を存在させることによって、実際の使用状態に即した吸音効果を求めることが好ましい。特許文献1のように吸音材と空気層(空間)とを内包する外装材が設けられている場合には、残響室の床面上に外装材を載置して測定を行うことにより、吸音材と空気層との吸音効果を求めることができる。しかし、そのような外装材が設けられず、吸音材の背後に空間が生じるように吸音材を設置するだけの簡単な構造の場合には、残響室の床面に吸音材を載置して測定を行うと、実際の使用時に存在する空気層の吸音効果が反映されない測定結果になる。そこで、吸音材を残響室の床面から浮かせた状態で残響室法吸音率を測定することにより、吸音材と残響室の床面との間に位置する空気層の吸音効果を加味した、実際の使用状態に即した吸音効果を求めることができる。 In order to further improve the sound absorbing effect at the target frequency, a space may be provided behind the sound absorbing material when the sound absorbing material is installed, and the air layer existing in this space may be utilized. In this way, when the sound absorbing material is used with an air layer behind it, even when obtaining the reverberation room method sound absorption coefficient, the presence of an air layer behind the sound absorbing material makes it possible to obtain the actual use. It is preferable to obtain a sound absorbing effect suitable for the state. When an exterior material that encloses a sound absorbing material and an air layer (space) is provided as in Patent Document 1, the sound absorption is obtained by placing the exterior material on the floor surface of the reverberation room and performing measurement. It is possible to obtain the sound absorption effect between the material and the air layer. However, in the case of a simple structure in which the sound absorbing material is installed so that there is a space behind the sound absorbing material without such an exterior material, the sound absorbing material is placed on the floor of the reverberation room. When the measurement is performed, the measurement result does not reflect the sound absorption effect of the air layer that exists during actual use. Therefore, by measuring the reverberation room method sound absorption coefficient with the sound absorbing material suspended from the floor of the reverberation room, the sound absorption effect of the air layer located between the sound absorbing material and the floor of the reverberation room was taken into account. It is possible to obtain a sound absorbing effect suitable for the usage condition of the

特開平11-247322号公報JP-A-11-247322

残響室法吸音率を求める際に吸音材の背後に空気層を存在させるために、残響室の床面に複数のスペーサを配置して、そのスペーサの上に吸音材を配置することにより、床面と吸音材との間に空間を設けることができる。しかし、吸音材が柔らかく剛性が低い場合には、スペーサとスペーサの間において吸音材が重力で垂れ下がり、床面と吸音材との間に一定の厚さの空間を形成することが困難である。その場合、実際の使用時と同様な空気層を吸音材の背後に存在させることできず、吸音効果を正確に求めることができない。 In order to create an air layer behind the sound-absorbing material when obtaining the reverberation room method sound absorption coefficient, multiple spacers are placed on the floor of the reverberation room, and the sound-absorbing material is placed on top of the spacers. A space can be provided between the surface and the sound absorbing material. However, when the sound absorbing material is soft and has low rigidity, the sound absorbing material hangs down between the spacers due to gravity, making it difficult to form a space with a constant thickness between the floor surface and the sound absorbing material. In that case, the same air layer as in actual use cannot exist behind the sound absorbing material, and the sound absorbing effect cannot be obtained accurately.

そこで、本発明の目的は、実際の使用時に即した状態で吸音材およびその背後の空気層の吸音効果を求めることが容易にできる音響特性測定システムおよび音響特性測定方法を提供することにある。 Therefore, an object of the present invention is to provide an acoustic characteristic measuring system and an acoustic characteristic measuring method that can easily determine the sound absorbing effect of the sound absorbing material and the air layer behind it in a state suitable for actual use.

本発明の音響特性測定システムは、外装材が設けられず、背後に空間が生じるように設置されて用いられる吸音材を被測定物とする音響特性測定システムであって、残響室と、残響室の床面上に配置されている複数のスペーサと、複数のスペーサの上に置かれている、被測定物支持用の網材と、を含むことを特徴とする。 The acoustic characteristic measurement system of the present invention is an acoustic characteristic measurement system in which an object to be measured is a sound absorbing material which is not provided with an exterior material and is used so as to create a space behind it. a plurality of spacers arranged on the floor of the apparatus; and a mesh material for supporting the object to be measured placed on the plurality of spacers.

本発明の音響特性測定方法は、外装材が設けられず、背後に空間が生じるように設置されて用いられる吸音材を被測定物とする音響特性測定方法であって、残響室の床面上に複数のスペーサを配置し、複数のスペーサの上に網材を配置し、網材の上に被測定物を載置した状態で音響特性の測定を行うことを特徴とする。 The method of measuring acoustic characteristics of the present invention is a method of measuring acoustic characteristics in which an object to be measured is a sound absorbing material that is installed so as to create a space behind it without an exterior material. A plurality of spacers are arranged in the space, a mesh material is arranged on the plurality of spacers, and the acoustic characteristics are measured in a state in which an object to be measured is placed on the mesh material.

本発明によると、実際の使用時に即した状態で吸音材およびその背後の空気層の吸音効果を求めることが容易にできる。 According to the present invention, it is possible to easily obtain the sound absorbing effect of the sound absorbing material and the air layer behind it in a state suitable for actual use.

本発明の音響特性測定システムの要部を示す断面図と平面図である。1A and 1B are a cross-sectional view and a plan view showing a main part of an acoustic characteristic measurement system of the present invention; FIG. 図1に示す音響特性測定システムのスペーサの配置を示す平面図と、スペーサの形状の例を示す斜視図である。2A and 2B are a plan view showing an arrangement of spacers in the acoustic characteristic measurement system shown in FIG. 1 and a perspective view showing an example of the shape of the spacers; FIG. 従来の音響特性測定システムの要部を示す断面図である。FIG. 2 is a cross-sectional view showing a main part of a conventional acoustic characteristic measurement system; 本発明の実施例と参考例1,2とにおける剛性の低い被測定物の残響室法吸音率の測定結果を示すグラフである。4 is a graph showing measurement results of reverberation chamber method sound absorption coefficients of objects to be measured having low rigidity in Examples of the present invention and Reference Examples 1 and 2. FIG. 本発明の実施例と参考例1とにおける剛性の高い被測定物の残響室法吸音率の測定結果を示すグラフである。5 is a graph showing measurement results of reverberation chamber method sound absorption coefficients of objects to be measured having high rigidity in the example of the present invention and reference example 1. FIG.

以下、本発明の実施の形態について図面を参照して説明する。本実施形態の音響特性測定システムを、図1~2に示している。図1(a)はこの音響特性測定システムの要部の断面図であって、図1(b)のA-A線断面図である。図1(b)はその平面図である。図2はその音響特性測定システムのスペーサの配置を示す平面図である。残響室1の床面1aに複数のスペーサ2が設けられ、それらのスペーサ2の上に、被測定物支持用の網材3が載置されている。網材3は、平板状の外形を有しており、可撓性の部材ではない。スペーサ2の高さは、所定の空気層の厚さから網材3の厚さを引いたものとする。すなわち、網材3の厚さとスペーサ2の高さとの和が、被測定物4の実際の使用時に被測定物4の背後に存在する空気層の厚さと一致するように、スペーサ2の高さが決められる。この構成によると、被測定物4の背後に所定の厚さ、すなわち実際の使用時と同様の厚さの空気層が存在する状態の吸音効果を求めることができる。なお、網材3の外周縁に接する位置に、例えば金属製のフレーム5が配置されている。また、図1(a)に模式的に示すように、残響室1内には、音響特性測定用の少なくとも1つの発音体(スピーカー6)と複数の集音器(マイクロフォン7)とが配置されている。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. The acoustic property measurement system of this embodiment is shown in FIGS. 1 and 2. FIG. FIG. 1(a) is a cross-sectional view of the main part of this acoustic characteristic measurement system, taken along line AA of FIG. 1(b). FIG. 1(b) is a plan view thereof. FIG. 2 is a plan view showing the arrangement of spacers in the acoustic characteristic measurement system. A plurality of spacers 2 are provided on the floor 1a of the reverberation chamber 1, and a mesh material 3 for supporting the object to be measured is placed on the spacers 2. As shown in FIG. The mesh material 3 has a flat plate-like outer shape and is not a flexible member. The height of the spacer 2 is obtained by subtracting the thickness of the mesh material 3 from the predetermined thickness of the air layer. That is, the height of the spacers 2 is adjusted so that the sum of the thickness of the mesh material 3 and the height of the spacers 2 matches the thickness of the air layer existing behind the object 4 to be measured when the object 4 is actually used. is determined. According to this configuration, it is possible to obtain the sound absorbing effect in a state where there is an air layer with a predetermined thickness behind the object 4 to be measured, that is, the same thickness as in actual use. A metal frame 5 , for example, is arranged at a position in contact with the outer periphery of the net material 3 . Further, as schematically shown in FIG. 1(a), at least one sounding body (speaker 6) for acoustic characteristic measurement and a plurality of sound collectors (microphones 7) are arranged in the reverberation chamber 1. ing.

図1,2に示す音響特性測定システムの技術的意義について説明すると、従来は、図3に示すように、残響室1の床面1a上に複数のスペーサ2を配置して、そのスペーサ2上に被測定物4を直接載置していた。しかし、例えば吸音性の不織布のように柔らかくて剛性の低い被測定物4を用いる場合には、スペーサ2とスペーサ2との間で被測定物4が垂れ下がるため、被測定物4の背後の空気層が部分的に薄くなり、実際の使用時と同様な空気層は形成されない。仮に、極めて多くのスペーサ2を配置すると、被測定物4の垂れ下がりを抑制することができると考えられる。しかし、被測定物4がほとんど垂れ下がらない程度にスペーサ2を配置するためには、非常に多くのスペーサ2が必要であり、コストの上昇を招くとともに、スペーサ2を配置する作業が極めて煩雑になる。 To explain the technical significance of the acoustic characteristic measurement system shown in FIGS. 1 and 2, conventionally, as shown in FIG. The object to be measured 4 was placed directly on the . However, when using an object 4 to be measured that is soft and has low rigidity, such as sound-absorbing non-woven fabric, the object 4 hangs down between the spacers 2, so the air behind the object 4 is The layer becomes partially thin, and the same air layer as in actual use is not formed. If an extremely large number of spacers 2 are arranged, it is conceivable that the hanging of the object 4 to be measured can be suppressed. However, in order to arrange the spacers 2 to such an extent that the object 4 to be measured hardly hangs down, an extremely large number of spacers 2 are required, which increases the cost and makes the work of arranging the spacers 2 extremely complicated. Become.

それに対し、図1,2に示す本実施形態では、従来と比べてスペース2の数を増やす必要はなく、スペーサ2の上に金網のような網材3を載置するだけよいので、コストの上昇や作業の繁雑さは小さく抑えられる。そして、被測定物4が吸音性の不織布のような柔らかく剛性の低い部材であっても、網材3によって容易に被測定物4の垂れ下がりを抑制することができる。網材3は多数の小さな網目(開口部分)を有しているため、被測定物4の吸音効果をほとんど損なうことはない。したがって、この構成によると、被測定物4の背後にほぼ一定の厚さの空気層が存在し、実際の使用状態に即した音響特性(吸音効果)が容易に求められる。 In contrast, in the present embodiment shown in FIGS. 1 and 2, it is not necessary to increase the number of spaces 2 as compared with the prior art, and it is only necessary to place a net material 3 such as a wire net on the spacer 2, thus reducing the cost. Elevation and work complexity are kept small. Even if the object 4 to be measured is a soft, low-rigidity member such as a sound-absorbing non-woven fabric, the mesh material 3 can easily suppress the sagging of the object 4 to be measured. Since the mesh material 3 has a large number of small meshes (openings), it hardly impairs the sound absorbing effect of the object 4 to be measured. Therefore, according to this configuration, an air layer with a substantially constant thickness exists behind the object 4 to be measured, and acoustic characteristics (sound absorption effect) suitable for actual usage conditions can be easily obtained.

以上説明した音響特性測定システムの詳細な実施例について説明する。本発明では、平面的な面積が1m2以上の被測定物4を対象として、残響室法吸音率のような音響特性を測定する。本実施例の被測定物4は、平面形状が面積1m2の正方形であり、厚さが4.5mmの吸音性不織布である。スペーサ2は、図2(a)に示すように、残響室1の床面1aの、被測定物4の平面形状に対応する正方形の領域R(被測定物4が配置される領域)に17個配置されている。具体的には、正方形の領域Rの各辺に沿って5個のスペーサ2が均等な間隔でそれぞれ並ぶように配置されている。各辺の両端部のスペーサ2はその辺に直交する辺の端部のスペーサ2を兼ねているため、正方形の外周に沿って16個のスペーサ2が存在する。さらに、この正方形の領域Rの中心位置に1個のスペーサ2が配置されている。こうして、本実施例では合計17個のスペーサ2が配置されている。スペーサ2は、ウレタンやエラストマーのように防振効果を有する材料からなることが好ましい。スペーサ2の形状は図2(b)に示す円柱状や図2(c)に示す多角柱状など様々な形状であってよく、その平面形状の面積は1cm2~40cm2であることが好ましい。スペーサ2の平面形状の面積が小さ過ぎると、網材3を載置した時に水平に保持することが困難である。また、平面形状の面積が大き過ぎると、被測定物4の背後に位置する空気層の体積を十分に確保できなくなるおそれがある。スペーサ2の高さは、被測定物4の実際の使用時における、被測定物4の背後の空間(空気層)の厚さ(例えば10mm)から、網材3の厚さ(例えば3.5mm)を差し引いたもの(この場合、6.5mm)である。 A detailed embodiment of the acoustic characteristic measurement system described above will be described. In the present invention, an object 4 to be measured having a planar area of 1 m 2 or more is measured for acoustic characteristics such as a reverberation room method sound absorption coefficient. The measured object 4 of this embodiment is a sound-absorbing nonwoven fabric having a square planar shape with an area of 1 m 2 and a thickness of 4.5 mm. As shown in FIG. 2(a), the spacer 2 is placed 17 in a square area R corresponding to the planar shape of the object 4 to be measured (area where the object 4 to be measured is placed) on the floor 1a of the reverberation chamber 1. are arranged individually. Specifically, along each side of the square region R, five spacers 2 are arranged at equal intervals. Since the spacers 2 at both ends of each side also serve as the spacers 2 at the ends of the sides perpendicular to that side, there are 16 spacers 2 along the perimeter of the square. Furthermore, one spacer 2 is arranged at the center position of this square region R. As shown in FIG. In this way, a total of 17 spacers 2 are arranged in this embodiment. The spacer 2 is preferably made of a material having a vibration-damping effect, such as urethane or elastomer. The spacer 2 may have various shapes such as the columnar shape shown in FIG . 2(b) and the polygonal columnar shape shown in FIG. 2 (c). If the planar area of the spacer 2 is too small, it will be difficult to hold the net material 3 horizontally when placed. Moreover, if the area of the planar shape is too large, there is a possibility that a sufficient volume of the air layer located behind the object 4 to be measured cannot be ensured. The height of the spacer 2 varies from the thickness of the space (air layer) behind the object 4 (eg, 10 mm) to the thickness of the mesh material 3 (eg, 3.5 mm) when the object 4 is actually used. ) is subtracted (6.5 mm in this case).

前述した正方形の領域Rにおいて複数のスペーサ2の上に載置される網材3は、金属(ステンレス鋼線全般、硬鋼線、亜鉛めっき鉄線等)からなるか、あるいは樹脂(ポリプロピレン、ポリエチレン、ポリエステル、ナイロン(商標)等)からなる。網材3の好ましい形態は、フラットトップ織金網(滑面式金網)、平織金網、クリンプ織金網、ロッククリンプ織金網、トンキャップ織金網(長目金網)等の金網、または前述した樹脂材料により一体成形された網状成形品である。本実施例では、網材3はステンレス鋼線からなるフラットトップ織金網(滑面式金網)である。そして、網材3の好ましい寸法および特性は以下の通りである。 The mesh material 3 placed on the plurality of spacers 2 in the square region R described above is made of metal (generally stainless steel wire, hard steel wire, galvanized iron wire, etc.) or resin (polypropylene, polyethylene, polyester, nylon (trademark), etc.). A preferable form of the mesh material 3 is a wire mesh such as a flat top woven wire mesh (smooth wire mesh), a plain woven wire mesh, a crimp woven wire mesh, a lock crimp woven wire mesh, a toncap woven wire mesh (long wire mesh), or a resin material as described above. It is an integrally molded net-like molded product. In this embodiment, the mesh material 3 is a flat top woven wire mesh (smooth surface type wire mesh) made of stainless steel wire. The preferred dimensions and characteristics of the mesh material 3 are as follows.

Figure 0007170512000001
ここで、厚さは網材3の最大厚さである。線径は網材3を構成する線(例えばステンレス鋼線)の太さである。メッシュは、網材3の網目の数を表す単位であり、一つの方向に沿って見た時に長さ25.4mm(1インチ)の範囲に存在する網目(開口部分)の数である。開き目は、網材3を構成する線と線の間の空間の長さ、すなわち、隣り合う線の近接縁部同士の間の間隔であって、線自体の太さを含まない寸法である。開き目=(25.4mm/メッシュ数)-線径である。空間率(open area)は、網目における空間(開口部分)の面積の割合であり、空間率={(開き目)2/(開き目+線径)2}×100である。本実施例の網材3は、空間率が58%で、厚さが3.5mm、線径が1.2mm、メッシュ数が5個/インチ、開き目が3.88mmである。
Figure 0007170512000001
Here, the thickness is the maximum thickness of the mesh material 3 . The wire diameter is the thickness of the wire (for example, stainless steel wire) forming the mesh material 3 . The mesh is a unit representing the number of meshes of the mesh material 3, and is the number of meshes (openings) present in a range of 25.4 mm (1 inch) in length when viewed along one direction. The opening is the length of the space between the lines forming the mesh material 3, that is, the distance between the adjacent edges of adjacent lines, and is a dimension that does not include the thickness of the lines themselves. . Open mesh = (25.4 mm/number of meshes) - wire diameter. The open area is the ratio of the area of the spaces (openings) in the mesh, and is expressed as {(opening) 2 /(opening + wire diameter) 2 }×100. The mesh material 3 of this embodiment has a void ratio of 58%, a thickness of 3.5 mm, a wire diameter of 1.2 mm, a mesh number of 5 per inch, and an opening of 3.88 mm.

ここで、網材3の厚みが0.2mm以下である時、網材3の線径が0.05mm以下である時、または網材3のメッシュ数が2個/インチ未満である時には、網材3上に被測定物4を載置した際に、網材3がひずみ、床面1aと被測定物(吸音材)4との間に一定の厚さの空間を形成することが困難になる傾向がある。また、網材3の厚みが10mm以上である時、または網材3の線径が8mm以上である時にも、床面1aと被測定物(吸音材)4との間に、所定の厚さの空間を形成することが困難になる傾向がある。これらの場合には、被測定物4の背後に空気層が存在する状態での音響特性を精度良く求めることはできない。また、網材3のメッシュ数が15個/インチ以上である時には、網材3の通気性が低いため、被測定物(吸音材)4と残響室の床面1aとの間に位置する空気層を加味した被測定物4の音響特性を正確に得ることが困難になる傾向がある。 Here, when the thickness of the net material 3 is 0.2 mm or less, when the wire diameter of the net material 3 is 0.05 mm or less, or when the number of meshes of the net material 3 is less than 2/inch, the net When the object 4 to be measured is placed on the material 3, the mesh material 3 is distorted, making it difficult to form a space with a constant thickness between the floor surface 1a and the object to be measured (sound absorbing material) 4. tend to become Moreover, when the thickness of the net material 3 is 10 mm or more, or when the wire diameter of the net material 3 is 8 mm or more, a predetermined thickness is provided between the floor surface 1a and the object to be measured (sound absorbing material) 4. space tends to be difficult to form. In these cases, the acoustic characteristics cannot be obtained with high accuracy when there is an air layer behind the object 4 to be measured. Also, when the number of meshes of the net material 3 is 15 or more per inch, the air permeability of the net material 3 is low. It tends to be difficult to accurately obtain the acoustic characteristics of the device under test 4 with layers added.

さらに、本実施例では、前述した正方形の領域Rの外側に、網材3の外周縁に接するように、例えばアルミニウムなどの金属からなり反射性を有するフレーム5が配置されている(図1参照)。このフレーム5は被測定物4の側部端面を実質的に覆う。それにより、被測定物4の側部端面における吸音効果を抑えている。一般に、吸音材の側部端面が開放された状態で吸音材が使用されることはあまり無いと思われるため、その側部端面の吸音効果を抑えることにより、実際の使用時に即した音響効果が得られやすい。 Furthermore, in the present embodiment, a reflective frame 5 made of metal such as aluminum is arranged outside the above-described square region R so as to be in contact with the outer periphery of the mesh material 3 (see FIG. 1). ). The frame 5 substantially covers the side end surfaces of the object 4 to be measured. As a result, the sound absorbing effect on the side end faces of the object 4 to be measured is suppressed. In general, it is thought that the sound absorbing material is not often used with the side end faces of the sound absorbing material open. easy to obtain.

残響室1内には、少なくとも1つのスピーカー6と、複数のマイクロフォン7とを配置している。図1(a)には模式的に示しているが、複数のマイクロフォン7は、JIS A 1409に記載された方法で配置されている。 At least one speaker 6 and a plurality of microphones 7 are arranged in the reverberation chamber 1. - 特許庁Although schematically shown in FIG. 1(a), the plurality of microphones 7 are arranged according to the method described in JIS A1409.

以上説明した本実施例の音響特性測定システムを用いて、柔らかく剛性が低い吸音性の不織布を被測定物4として、その音響特性の1つである残響室法吸音率を測定した結果を図4に示す。図4には、参考例1として、残響室1内にスペーサ2を配置し、網材3を用いることなく、被測定物4をスペーサ2の上に直接載置した状態で、残響室法吸音率を求めた結果も示している。また、参考例2として、残響室1内にスペーサ2も網材3も配置せず、被測定物4を残響室1の床面1aに直接載置した状態で、残響室法吸音率を求めた結果を示している。参考例1による残響室法吸音率の測定結果は、参考例2による残響室法吸音率の測定結果と比べてさほど大きな違いは無い。すなわち、参考例1では、スペーサ2を用いているにもかかわらず、被測定物4の背後の空気層による吸音効果があまり作用していない。これに対し、本実施例では、参考例1,2と比較して、特に630Hzから4kHzの周波数帯域の音に関する残響室法吸音率が高くなっている。これは、被測定物4の背後に位置する空気層の吸音効果を含む結果であり、被測定物4の実際の使用状態に即した吸音効果を示すものである。そして、本実施例では、残響室法吸音率のピークが参考例1,2と比べて低周波数側にシフトしている。これは、被測定物4の背後に位置する空気層の吸音効果に基づくものであると考えられる。 FIG. 4 shows the result of measuring the reverberation chamber method sound absorption coefficient, which is one of the acoustic characteristics of a soft, low-rigidity sound-absorbing nonwoven fabric as the object 4 to be measured, using the acoustic characteristic measurement system of the present embodiment described above. shown in In FIG. 4, as Reference Example 1, a spacer 2 is placed in a reverberation chamber 1, and an object 4 to be measured is placed directly on the spacer 2 without using a net material 3. The results of calculating the ratio are also shown. Further, as Reference Example 2, neither the spacer 2 nor the mesh material 3 is placed in the reverberation chamber 1, and the reverberation chamber method sound absorption coefficient is obtained in a state in which the object 4 to be measured is placed directly on the floor surface 1a of the reverberation chamber 1. The results are shown. The measurement results of the reverberation room method sound absorption coefficient in Reference Example 1 are not significantly different from the measurement results of the reverberation chamber method sound absorption coefficient in Reference Example 2. That is, in Reference Example 1, although the spacer 2 is used, the sound absorption effect of the air layer behind the object 4 to be measured does not act much. On the other hand, in the present embodiment, compared with Reference Examples 1 and 2, the reverberation room method sound absorption coefficient for sound in the frequency band from 630 Hz to 4 kHz is particularly high. This result includes the sound absorbing effect of the air layer located behind the object 4 to be measured, and indicates the sound absorbing effect that matches the actual use condition of the object 4 to be measured. In addition, in the present embodiment, the peak of the reverberating room method sound absorption coefficient is shifted to the low frequency side as compared with the first and second reference examples. It is considered that this is based on the sound absorbing effect of the air layer located behind the object 4 to be measured.

上記の実施例で用いた不織布は、ポリプロピレンをメルトブローン法で加工して作製した不織布であり、吸水率は16%であり、かさ密度は31kg/m3であり、表面積が4000mm2となるように形成したものであり、不織布の圧縮方向の寸法が25%低減するまで圧縮するための圧縮応力(25%圧縮応力)が測定下限以下(測定不可)で、50%低減するまで圧縮するための圧縮応力が0.09N/cm2の材料からなる。吸水率の測定は以下のようにして行う。すなわち、表面積が4000mm2となるように形成した不織布を水面下50mmの位置で-635mmHgまで減圧し、3分間保持した。続いて大気圧に戻し3分間経過した後に、吸水した試験片の重量を測定し、以下の式から試験片の吸水率を算出した。
吸水率[%]={(W2―W1)/W1}×100
W1:浸せき前の試験片の重量(g)
W2:浸せき後の試験片の重量(g)
The nonwoven fabric used in the above examples is a nonwoven fabric produced by processing polypropylene by a meltblown method, and has a water absorption rate of 16%, a bulk density of 31 kg/m 3 , and a surface area of 4000 mm 2 . It is formed, and the compressive stress (25% compressive stress) for compressing the dimension in the compression direction of the nonwoven fabric is less than the lower limit of measurement (cannot be measured), and the compression for compressing it until it is reduced by 50% It consists of a material with a stress of 0.09 N/cm 2 . Measurement of water absorption is performed as follows. That is, a non-woven fabric having a surface area of 4000 mm 2 was evacuated to -635 mmHg at a position 50 mm below the water surface and held for 3 minutes. Subsequently, after returning to the atmospheric pressure for 3 minutes, the weight of the water-absorbed test piece was measured, and the water absorption rate of the test piece was calculated from the following formula.
Water absorption [%]={(W2−W1)/W1}×100
W1: Weight of test piece before immersion (g)
W2: Weight of test piece after immersion (g)

また、本実施例の音響特性測定システムを用いて、不織布に比べて剛性が高い吸音性の多孔質材のシート(株式会社イノアックコーポレーション製カームフレックス)を被測定物4として、残響室法吸音率を測定した結果を図5に示す。図5には、参考例1として、残響室1内にスペーサ2を配置し、網材3を用いることなく、被測定物4をスペーサ2の上に直接載置した状態で、残響室法吸音率を求めた結果も示している。図5に示す実験結果を見ると、参考例1と本実施例とでほぼ同等の残響室法吸音率が求められている。剛性が高い被測定物4の場合には、網材3を用いなくても、スペーサ2とスペーサ2の間で被測定物4が垂れ下がりにくい。そのため、残響室1内の被測定物4の背後に、スペーサ2の高さと網材3の厚さの和に対応した、ほぼ一定の厚さの空気層が形成される。従って、前述したように網材3を用いて被測定物4を支持して測定した本実施例の残響室法吸音率と、網材3を用いずスペーサ2のみによって被測定物4を支持して測定した参考例1の残響室法吸音率との差が小さい。 In addition, using the acoustic property measurement system of this example, a sound absorbing porous material sheet (Calmflex manufactured by INOAC Corporation) having higher rigidity than non-woven fabric was used as the measurement object 4, and the reverberation chamber method sound absorption coefficient is shown in FIG. In FIG. 5, as Reference Example 1, a spacer 2 is placed in a reverberation chamber 1, and an object 4 to be measured is placed directly on the spacer 2 without using a net material 3. The results of calculating the ratio are also shown. Looking at the experimental results shown in FIG. 5, substantially the same reverberation room method sound absorption coefficient is obtained for Reference Example 1 and this embodiment. In the case of the object to be measured 4 having high rigidity, the object to be measured 4 does not easily hang down between the spacers 2 even without using the net material 3 . Therefore, an air layer having a substantially constant thickness corresponding to the sum of the height of the spacer 2 and the thickness of the mesh material 3 is formed behind the object 4 to be measured in the reverberation chamber 1 . Therefore, as described above, the reverberation chamber method sound absorption coefficient of this embodiment, in which the object to be measured 4 is supported using the net material 3 and measured, and the sound absorption coefficient in which the object to be measured 4 is supported only by the spacer 2 without using the net material 3 are obtained. The difference from the reverberation room method sound absorption coefficient of Reference Example 1 measured by

このように、網材3を用いた本実施例によると、網材3を用いない参考例1に比べて常に残響室法吸音率が上昇するというわけではない。参考例1でも比較的精度良く残響室法吸音率が測定できる場合には、本実施例でも参考例1と概ね同様な結果が得られる。この点について説明すると、参考例1に比べて常に残響室法吸音率が上昇する測定結果が得られる場合に、常に良好な測定精度が得られるわけでは無い。すなわち、被測定物4の剛性によっては、参考例1でも被測定物4がスペーサ2とスペーサ2との間においてあまり垂れ下がらず、空気層の吸音効果を加味した比較的精度の良い測定結果が得られる場合がある。そのような場合に、参考例1よりも高い残響室法吸音率が求められると、むしろ測定精度が悪いと言える。これに対して本実施例では、図5に示すように被測定物4の剛性が高く参考例1でも残響室法吸音率を精度良く求められる場合には、参考例1と同程度の測定結果が得られる。すなわち、図5において、本実施例で参考例1に近い測定結果が得られていることは、むしろ本実施例の残響室法吸音率の測定の信頼性が高いことを示している。そして、図4に示すように、被測定物の剛性が低く参考例1では残響室法吸音率を精度良く求められない場合には、本実施例によると、参考例1よりも高い(空気層の吸音効果を加味した)残響室法吸音率を精度良く求められる。このように、図4,5に示す実験結果から、本実施例によると、被測定物の剛性にかかわらず音響特性の良好な測定が行えることがわかる。 As described above, according to the present embodiment using the net material 3, the reverberation room method sound absorption coefficient does not always increase as compared with the reference example 1 which does not use the net material 3. If the reverberation room method sound absorption coefficient can be measured with relatively high accuracy in Reference Example 1, the present example will also yield substantially the same results as in Reference Example 1. To explain this point, even when measurement results in which the reverberation room method sound absorption coefficient is always higher than that of Reference Example 1 are obtained, it is not always possible to obtain good measurement accuracy. That is, depending on the rigidity of the object to be measured 4, the object to be measured 4 does not sag much between the spacers 2 and 2 even in the reference example 1, and the measurement results are relatively accurate considering the sound absorbing effect of the air layer. may be obtained. In such a case, if a reverberation chamber method sound absorption coefficient higher than that of Reference Example 1 is required, it can be said that the measurement accuracy is rather poor. On the other hand, in the present embodiment, as shown in FIG. 5, when the rigidity of the object 4 to be measured is high and the reverberation room method sound absorption coefficient can be obtained with high accuracy even in Reference Example 1, the measurement results are about the same as in Reference Example 1. is obtained. That is, in FIG. 5, the fact that the measurement result close to that of Reference Example 1 is obtained in this embodiment indicates that the measurement of the reverberation room method sound absorption coefficient in this embodiment is rather highly reliable. As shown in FIG. 4, when the rigidity of the object to be measured is low and the reverberation chamber method sound absorption coefficient cannot be obtained with high accuracy in Reference Example 1, according to the present embodiment, it is higher than Reference Example 1 (air layer The reverberation room method sound absorption coefficient can be obtained with high accuracy. As described above, from the experimental results shown in FIGS. 4 and 5, it can be seen that according to this embodiment, the acoustic characteristics can be measured satisfactorily regardless of the rigidity of the object to be measured.

以上説明したように、参考例1では、被測定物4の剛性に依って、実際の使用状態に即した残響室法吸音率を求めることが可能な場合(図5の場合)と、それが困難な場合(図4の場合)とがある。しかし、本実施例によると、被測定物4の剛性の高さに左右されず、適切に実際の使用状態を再現して精度良く音響特性(例えば残響室法吸音率)を求めることができるという優れた効果が得られる。 As described above, in Reference Example 1, depending on the rigidity of the object 4 to be measured, it is possible to obtain the reverberation room method sound absorption coefficient that matches the actual usage conditions (case of FIG. 5). There is a difficult case (case of FIG. 4). However, according to this embodiment, it is possible to appropriately reproduce the actual usage conditions and obtain the acoustic characteristics (for example, the reverberation chamber method sound absorption coefficient) with high accuracy without being affected by the rigidity of the object 4 to be measured. Excellent effect is obtained.

以上説明した本発明に係る音響特性測定は、JIS A 1409中に依拠しない環境および条件であっても、音響特性を評価可能な環境および条件の下であれば実施可能である。例えば、残響室内でなく、その他の建造物の屋内、または屋外であっても、音響特性を評価可能な環境および条件の下であれば、本発明を適用可能である。また、マイクロフォンやスピーカーの数や設置位置や設置方向等についても、音響特性を評価可能である限り、任意に設定可能かつ変更可能である。 The acoustic characteristic measurement according to the present invention described above can be carried out under the environment and conditions that do not rely on JIS A 1409, as long as the acoustic characteristics can be evaluated. For example, the present invention can be applied not only in a reverberant room but also indoors or outdoors in other buildings as long as the environment and conditions allow acoustic characteristics to be evaluated. Also, the number of microphones and speakers, installation positions, installation directions, etc. can be arbitrarily set and changed as long as the acoustic characteristics can be evaluated.

1 残響室
1a 床面
2 スペーサ
3 網材
4 被測定物
5 フレーム
6 スピーカー(発音体)
7 マイクロフォン(集音器)
R 領域
1 reverberation chamber 1a floor 2 spacer 3 mesh 4 object to be measured 5 frame 6 speaker (sounding body)
7 Microphone (sound collector)
R area

Claims (9)

外装材が設けられず、背後に空間が生じるように設置されて用いられる吸音材を被測定物とする音響特性測定システムであって、
残響室と、前記残響室の床面上に配置されている複数のスペーサと、複数の前記スペーサの上に置かれている、前記被測定物支持用の網材と、を含むことを特徴とする、音響特性測定システム。
An acoustic characteristic measurement system in which an object to be measured is a sound absorbing material that is not provided with an exterior material and is used so as to create a space behind it,
A reverberation chamber, a plurality of spacers arranged on the floor surface of the reverberation chamber, and a mesh material for supporting the object to be measured, which is placed on the plurality of spacers. and an acoustic characteristic measurement system.
前記網材は金属または樹脂からなることを特徴とする、請求項1に記載の音響特性測定システム。 2. The acoustic characteristic measuring system according to claim 1, wherein said mesh material is made of metal or resin. 前記網材はステンレス鋼線、硬鋼線または亜鉛めっき鉄線からなることを特徴とする、請求項2に記載の音響特性測定システム。 3. The acoustic property measuring system according to claim 2, wherein the mesh material is made of stainless steel wire, hard steel wire or galvanized iron wire. 前記網材の空間率が40%以上70%以下であることを特徴とする、請求項1から3のいずれか1項に記載の音響特性測定システム。 4. The acoustic characteristic measuring system according to any one of claims 1 to 3, wherein the net material has a void ratio of 40% or more and 70% or less. 前記網材の厚さが2mm以上5mm以下であることを特徴とする、請求項1から4のいずれか1項に記載の音響特性測定システム。 5. The acoustic characteristic measuring system according to any one of claims 1 to 4, wherein the mesh material has a thickness of 2 mm or more and 5 mm or less. 前記網材を構成する線の線径が0.5mm以上2mm以下であり、前記網材のメッシュが2以上11以下で、開き目が0.3mm以上12.2mm以下であることを特徴とする、請求項1から5のいずれか1項に記載の音響特性測定システム。 The wire diameter of the wire constituting the net material is 0.5 mm or more and 2 mm or less, the mesh of the net material is 2 or more and 11 or less, and the mesh size is 0.3 mm or more and 12.2 mm or less. The acoustic property measurement system according to any one of claims 1 to 5. 外装材が設けられず、背後に空間が生じるように設置されて用いられる吸音材を被測定物とする音響特性測定方法であって、
残響室の床面上に複数のスペーサを配置し、複数の前記スペーサの上に網材を配置し、前記網材の上に前記被測定物を載置した状態で音響特性の測定を行うことを特徴とする、音響特性測定方法。
A method for measuring acoustic characteristics in which an object to be measured is a sound-absorbing material that is installed so that a space is created behind it without an exterior material,
Arranging a plurality of spacers on the floor of a reverberation chamber, arranging a mesh material on the plurality of spacers, and measuring the acoustic characteristics in a state where the object to be measured is placed on the mesh material. A method for measuring acoustic characteristics, characterized by:
前記音響特性として残響室法吸音率を求めることを特徴とする、請求項7に記載の音響特性測定方法。 8. The acoustic characteristic measuring method according to claim 7, wherein a reverberation room method sound absorption coefficient is obtained as the acoustic characteristic. 前記残響室の内部に配置された少なくとも1つの発音体から発音し、前記残響室の内部に配置された複数の集音器によって集音して残響時間を求めることを特徴とする、請求項7または8に記載の音響特性測定方法。 8. The reverberation time is obtained by generating sound from at least one sounding body arranged inside the reverberation room and collecting the sound with a plurality of sound collectors arranged inside the reverberation room. Or the acoustic characteristic measuring method according to 8.
JP2018215741A 2018-11-16 2018-11-16 Acoustic characteristic measurement system and acoustic characteristic measurement method Active JP7170512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018215741A JP7170512B2 (en) 2018-11-16 2018-11-16 Acoustic characteristic measurement system and acoustic characteristic measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018215741A JP7170512B2 (en) 2018-11-16 2018-11-16 Acoustic characteristic measurement system and acoustic characteristic measurement method

Publications (2)

Publication Number Publication Date
JP2020085495A JP2020085495A (en) 2020-06-04
JP7170512B2 true JP7170512B2 (en) 2022-11-14

Family

ID=70909875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018215741A Active JP7170512B2 (en) 2018-11-16 2018-11-16 Acoustic characteristic measurement system and acoustic characteristic measurement method

Country Status (1)

Country Link
JP (1) JP7170512B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004353294A (en) 2003-05-29 2004-12-16 Unix:Kk Light transmission type film-vibrating sound absorbing plate and light transmission type sound absorbing panel
JP2011197536A (en) 2010-03-23 2011-10-06 Unix Co Ltd Film vibration sound absorbing plate and sound absorbing panel employing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004353294A (en) 2003-05-29 2004-12-16 Unix:Kk Light transmission type film-vibrating sound absorbing plate and light transmission type sound absorbing panel
JP2011197536A (en) 2010-03-23 2011-10-06 Unix Co Ltd Film vibration sound absorbing plate and sound absorbing panel employing the same

Also Published As

Publication number Publication date
JP2020085495A (en) 2020-06-04

Similar Documents

Publication Publication Date Title
US7178630B1 (en) Acoustic device for wall mounting for diffusion and absorption of sound
CN108457393B (en) Sound absorbing structure for anechoic chamber and anechoic chamber comprising same
JP2005250474A (en) Sound attenuation structure
Jeong Converting Sabine absorption coefficients to random incidence absorption coefficients
KR101224996B1 (en) Sound-absorbing body
JP2024016279A (en) Sound deadening system
JP7170512B2 (en) Acoustic characteristic measurement system and acoustic characteristic measurement method
US11468872B2 (en) Sound absorbing panel
Bedell Some data on a room designed for free field measurements
JP2508397B2 (en) Sound absorber
JP5065176B2 (en) Living room structure considering acoustics
CN104457970B (en) A kind of half silencer box of broadband measurement
JP7108491B2 (en) noise reduction device
Koidan et al. Acoustical properties of the National Bureau of Standards anechoic chamber
RU2011110292A (en) ACOUSTIC COMFORT ROOM WITH NOISE PROTECTIVE EQUIPMENT
US10139126B2 (en) Airborne noise reduction system and method
KR100772650B1 (en) Structure of sound filter panel
JPH07213418A (en) Sound absorbing curtain and sound absorbing curtain structure
Datta et al. Hexahedron reverberation box for measurement of frequency dependent reverberant noise absorption coefficient and experimental verification
KR102546593B1 (en) Sound Absorption Measuring Method and Apparatus Utilizing Electrical Impedance of the Speaker
Mohanty Improvement of interior acoustics and speech quality in small office room using natural material
Kim et al. Influence of Perforated Ceiling on Floor Impact Sound Insulation in Reinforced Concrete Buildings
JP7207901B2 (en) Impact noise reduction structure and impact noise reduction method
Vennerød The hard case—Improving room acoustics in cuboid rooms by using diffusors
Ćirić et al. ENERGY DECAY CURVE DEVIATION IN THE ABSORPTION COEFFICIENT MEASUREMENT IN A SMALL REVERBERATION ROOM

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221101

R150 Certificate of patent or registration of utility model

Ref document number: 7170512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150