JP7169009B2 - Drone system, drone, moving body, motion determination device, drone system control method, and drone system control program - Google Patents

Drone system, drone, moving body, motion determination device, drone system control method, and drone system control program Download PDF

Info

Publication number
JP7169009B2
JP7169009B2 JP2020568142A JP2020568142A JP7169009B2 JP 7169009 B2 JP7169009 B2 JP 7169009B2 JP 2020568142 A JP2020568142 A JP 2020568142A JP 2020568142 A JP2020568142 A JP 2020568142A JP 7169009 B2 JP7169009 B2 JP 7169009B2
Authority
JP
Japan
Prior art keywords
drone
charging
work
plan
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020568142A
Other languages
Japanese (ja)
Other versions
JPWO2020153316A1 (en
Inventor
千大 和氣
洋 柳下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nileworks Inc
Original Assignee
Nileworks Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nileworks Inc filed Critical Nileworks Inc
Publication of JPWO2020153316A1 publication Critical patent/JPWO2020153316A1/en
Application granted granted Critical
Publication of JP7169009B2 publication Critical patent/JP7169009B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/37Charging when not in flight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/24Aircraft characterised by the type or position of power plant using steam, electricity, or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/26Ducted or shrouded rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U80/00Transport or storage specially adapted for UAVs
    • B64U80/80Transport or storage specially adapted for UAVs by vehicles

Description

本願発明は、ドローンシステム、ドローン、移動体、動作決定装置、ドローンシステムの制御方法、および、ドローンシステム制御プログラムに関する。 TECHNICAL FIELD The present invention relates to a drone system, a drone, a moving body, a motion determination device, a drone system control method, and a drone system control program.

一般にドローンと呼ばれる小型ヘリコプター(マルチコプター)の応用が進んでいる。その重要な応用分野の一つとして農地(圃場)への農薬や液肥などの薬剤散布が挙げられる(たとえば、特許文献1)。欧米と比較して農地が狭い日本においては、有人の飛行機やヘリコプターではなくドローンの使用が適しているケースが多い。 The application of small helicopters (multi-copters), generally called drones, is progressing. One of its important application fields is the spraying of chemicals such as agricultural chemicals and liquid fertilizers on farmlands (fields) (for example, Patent Document 1). In Japan, where farmland is narrower than in Europe and the United States, the use of drones rather than manned airplanes and helicopters is often suitable.

準天頂衛星システムやRTK-GPS(Real Time Kinematic - Global Positioning System)などの技術によりドローンが飛行中に自機の絶対位置をセンチメートル単位で正確に知ることができるようになったことで、日本において典型的な狭く複雑な地形の農地でも、人手による操縦を最小限として自律的に飛行し、効率的かつ正確に薬剤散布を行なえるようになっている。 Technologies such as the Quasi-Zenith Satellite System and RTK-GPS (Real Time Kinematic - Global Positioning System) have made it possible for drones to accurately determine their absolute position in centimeters during flight. Even in farmland with narrow and complex topography typical of , it can fly autonomously with minimal manual operation and can spray chemicals efficiently and accurately.

その一方で、農業用の薬剤散布向け自律飛行型ドローンについては安全性に対する考慮が十分とは言いがたいケースがあった。薬剤を搭載したドローンの重量は数10キログラムになるため、人の上に落下する等の事故が起きた場合に重大な結果を招きかねない。また、通常、ドローンの操作者は専門家ではないためフールプルーフの仕組みが必要であるが、これに対する考慮も不十分であった。今までに、人間による操縦を前提としたドローンの安全性技術は存在していたが(たとえば、特許文献2)、特に農業用の薬剤散布向けの自律飛行型ドローンに特有の安全性課題に対応するための技術は存在していなかった。 On the other hand, there were cases where it was difficult to say that consideration of safety was sufficient for autonomous flying drones for spraying agricultural chemicals. Drones loaded with drugs can weigh tens of kilograms, which could lead to serious consequences in the event of an accident such as falling on a person. In addition, drone operators are usually not experts, so a fool-proof mechanism is necessary, but consideration for this has been insufficient. Until now, there have been drone safety technologies premised on human operation (for example, Patent Document 2), but it addresses the unique safety issues of autonomous flying drones, especially for agricultural chemical spraying. The technology to do so did not exist.

また、ドローンに搭載できるバッテリや薬剤等の資源の量には限りがあるため、ドローンは作業中に資源を補充する必要がある。例えば、圃場周辺で待機する軽トラック等の移動体に資源が収容されていて、ドローンは適宜作業を中断して移動体に帰還し、資源の補充を行う。この構成によれば、補充機構が移動体に備えられているため、補充機構を作業中の圃場周辺に待機させることができる。すなわち、ドローンは短時間の飛行で資源の補充を行うことができ、エネルギー的にも時間的にも効率がよい。しかしながら、移動体に収容されている資源が不足する場合がある。そこで、移動体に収容されている資源が不足する場合に、移動体に効率よく資源を補充することができるシステムが必要とされている。 In addition, since the amount of resources such as batteries and medicines that can be loaded on the drone is limited, the drone needs to be replenished with resources during work. For example, resources are stored in a moving body such as a light truck waiting around a field, and the drone appropriately interrupts the work and returns to the moving body to replenish the resources. According to this configuration, since the replenishment mechanism is provided on the moving body, the replenishment mechanism can be made to stand by around the field being worked. In other words, drones can replenish resources in a short flight, which is efficient both in terms of energy and time. However, there may be a shortage of resources housed in the mobile. Therefore, there is a need for a system capable of efficiently replenishing resources to a mobile body when the resources contained in the mobile body are insufficient.

特許文献3には、複数の無人搬送車と、これら無人搬送車を作業箇所に導くメインルートと、各無人搬送車に充電する充電部と、各無人搬送車の充電後の走行回数を認知し、走行要求が入力されると共に、各無人搬送車に所定の動作を指令する集中制御部と、を備える無人搬送車の制御方法が記載されている。この制御方法は、経験的に求められてデータ化されている走行要求頻度分布に基づいて、走行要求の未処理量が大で走行要求数の減少が予想される場合は、充電時間が基準充電時間より短時間に定められた所定時間に達すると無人搬送車の走行を開始させる。 In Patent Document 3, a plurality of automated guided vehicles, a main route that guides these automated guided vehicles to work sites, a charging unit that charges each automated guided vehicle, and the number of times each automated guided vehicle travels after charging are recognized. , a centralized control section for receiving a travel request and instructing each automatic guided vehicle to perform a predetermined operation. This control method is based on the travel request frequency distribution that is empirically obtained and converted into data. When the predetermined time set shorter than the time is reached, the automatic guided vehicle is started to run.

しかしながら、特許文献3には、作業を行う無人搬送車に充電を行う充電部に、さらに資源を補充することについては記載がない。 However, Patent Literature 3 does not describe replenishing resources to a charging unit that charges an unmanned guided vehicle that performs work.

特許公開公報 特開2001-120151Patent Publication JP 2001-120151 特許公開公報 特開2017-163265Patent publication publication JP 2017-163265 特許公開公報 特開平4-127303Patent publication publication JP-A-4-127303

ドローンのバッテリに充電する工程を管理するシステムにおいて、ドローンのバッテリ蓄電量が作業中に不足する場合にも、ドローンに効率よく充電することができるドローンシステムを提供する。 To provide a drone system capable of efficiently charging a drone even when the amount of electricity stored in the battery of the drone is insufficient during work in a system for managing the process of charging the battery of the drone.

上記目的を達成するため、本発明の一の観点に係るドローンシステムは、ドローンと、前記ドローンに、飛行に必要なエネルギーを補充可能な補充部と、前記ドローンの動作を決定する動作決定装置と、を少なくとも含むドローンシステムであって、前記動作決定装置は、前記ドローンの作業に必要な、前記ドローンが保持可能なエネルギーを超える総充電量を取得する必要充電量取得部と、前記作業中に1回又は複数回の充電を行い、前記ドローンへ前記総充電量のエネルギーを補充するための充電計画を決定する充電計画部と、を備える。 To achieve the above object, a drone system according to one aspect of the present invention includes a drone, a replenishment unit capable of replenishing the drone with energy necessary for flight, and an operation determination device that determines the operation of the drone. , wherein the operation determination device includes a required charge amount acquisition unit that acquires a total charge amount that is required for work of the drone and exceeds the energy that the drone can hold; a charging planning unit that determines a charging plan for charging the drone one or more times and replenishing the drone with energy of the total charging amount.

前記ドローンへの充電時間と、前記充電時間の充電により得られるエネルギーによる前記ドローンの飛行可能時間と、の合計が最短となるような前記充電計画を決定するように構成されていてもよい。 It may be configured to determine the charging plan that minimizes the sum of the charging time of the drone and the flightable time of the drone due to the energy obtained by charging during the charging time.

前記充電計画部は、前記ドローンの充電率が満充電より低い所定範囲で使用されるように充電計画を決定するように構成されていてもよい。 The charging plan unit may be configured to determine a charging plan so that the drone is used within a predetermined range in which the charging rate of the drone is lower than a full charge.

前記充電計画部は、前記充電計画において複数回の充電時間を設定するように構成されていてもよい。 The charging plan section may be configured to set a plurality of charging times in the charging plan.

前記充電計画部は、充電中における充電速度を算出し、前記充電速度が所定以下になるとき充電を終了するように構成されていてもよい。 The charging planning unit may be configured to calculate a charging speed during charging and terminate charging when the charging speed becomes equal to or less than a predetermined value.

前記ドローンの充電率と、前記充電率を有する前記ドローンに所定量を充電するための所要時間との対応関係を記憶する充電率―充電時間記憶部をさらに備え、前記充電計画部は、前記対応関係に基づいて、前記充電計画を決定するように構成されていてもよい。 A charging rate-charging time storage unit that stores a correspondence relationship between the charging rate of the drone and a time required for charging the drone having the charging rate to a predetermined amount, wherein the charging planning unit stores the correspondence Based on the relationship, it may be configured to determine the charging plan.

前記ドローンシステムは複数の前記ドローンを含み、第1の前記ドローンが前記補充部により充電中のとき、第2の前記ドローンは、地面に着陸して待機し、前記第1のドローンが充電を終了した後に前記補充部による充電を行うように構成されていてもよい。 The drone system includes a plurality of the drones, and when the first drone is being charged by the replenishment unit, the second drone is on the ground and waits, and the first drone finishes charging. After that, the replenishment unit may charge the battery.

前記第2のドローンは、待機している地点から前記補充部における充電可能な地点まで飛行可能な蓄電量を少なくとも保持して前記地点に着陸するように構成されていてもよい。 The second drone may be configured to hold at least an amount of electricity that can fly from a point where it is waiting to a point where it can be charged in the replenishment unit and land at the point.

前記補充部は、前記ドローンが着陸可能であり、前記ドローンと共に移動可能な移動体に配置されているように構成されていてもよい。 The replenishment unit may be arranged on a mobile body on which the drone can land and which can move together with the drone.

前記ドローンシステムは複数の前記ドローンを含み、前記ドローンが前記移動体への帰還時において前記移動体に他の前記ドローンが着陸しているとき、当該前記ドローンは、地面に着陸して待機し、前記他のドローンが離陸した後に前記移動体に着陸するように構成されていてもよい。 The drone system includes a plurality of the drones, and when the drones return to the moving body and another drone has landed on the moving body, the drones land on the ground and stand by, It may be configured to land on the moving body after the other drone takes off.

前記ドローンおよび前記補充部の状態を使用者に通知可能な携帯端末をさらに含み、前記携帯端末は、前記ドローンの位置および状態、前記補充部の位置および状態、ならびに前記ドローンシステムの作業が終了する予想終了時刻の少なくともいずれかを前記使用者に通知するように構成されていてもよい。 Further comprising a mobile terminal capable of notifying a user of the status of the drone and the replenishment unit, wherein the mobile terminal notifies the location and status of the drone, the location and status of the replenishment unit, and the completion of work of the drone system. It may be configured to notify the user of at least one of the expected end times.

上記目的を達成するため、本発明の一の観点に係るドローンシステムの制御方法は、ドローンと、前記ドローンのバッテリを充電可能な補充部と、前記ドローンの動作を決定する動作決定装置と、を少なくとも含むドローンシステムの制御方法であって、前記ドローンの作業に必要な、前記ドローンが保持可能なエネルギーを超える総充電量を取得するステップと、前記作業中に1回又は複数回の充電を行うことで、前記ドローンへ前記総充電量のエネルギーを補充するための充電計画を決定するステップと、を含む。 In order to achieve the above object, a drone system control method according to one aspect of the present invention includes a drone, a replenishment unit capable of charging a battery of the drone, and an operation determination device that determines the operation of the drone. A method of controlling a drone system comprising at least obtaining a total charge required for a task of the drone that exceeds the energy that the drone can hold, and charging one or more times during the task. determining a charging plan for replenishing the drone with the total amount of energy.

上記目的を達成するため、本発明の一の観点に係るドローンシステムの制御プログラムは、ドローンと、前記ドローンに、飛行に必要なエネルギーを補充可能な補充部と、前記ドローンの動作を決定する動作決定装置と、を少なくとも含むドローンシステムの制御プログラムであって、前記ドローンの作業に必要な、前記ドローンが保持可能なエネルギーを超える総充電量を取得する命令と、前記作業中に1回又は複数回の充電を行うことで、前記ドローンへ前記総充電量のエネルギーを補充するための充電計画を決定する命令と、を含む。
なお、コンピュータプログラムは、インターネット等のネットワークを介したダウンロードによって提供したり、CD-ROMなどのコンピュータ読取可能な各種の記録媒体に記録して提供したりすることができる。
In order to achieve the above object, a control program for a drone system according to one aspect of the present invention includes a drone, a replenishment unit capable of replenishing the energy required for flight to the drone, and an operation for determining the operation of the drone. a control program for a drone system comprising at least a determining device, instructions to obtain a total charge required for a task of said drone that exceeds the energy that said drone can hold, and one or more times during said task determining a charging plan for replenishing the drone with the total amount of energy by charging the drone once.
The computer program can be provided by downloading via a network such as the Internet, or can be provided by being recorded on various computer-readable recording media such as a CD-ROM.

上記目的を達成するため、本発明の一の観点に係る動作決定装置は、ドローンの位置および状態を把握し、前記ドローンの動作を決定する動作決定装置であって、前記動作決定装置は、前記ドローンの作業に必要な、前記ドローンが保持可能なエネルギーを超える総充電量を取得する必要充電量取得部と、前記作業中に1回又は複数回の充電を行うことで、前記ドローンへ前記総充電量のエネルギーを補充するための充電計画を決定する充電計画部と、を備える。 In order to achieve the above object, a motion determination device according to one aspect of the present invention is a motion determination device that grasps the position and state of a drone and determines the motion of the drone, the motion determination device comprising: A required charge amount acquisition unit that acquires a total charge amount that is necessary for the work of the drone and exceeds the energy that the drone can hold; a charging planning unit that determines a charging plan for replenishing the charging amount of energy.

上記目的を達成するため、本発明の一の観点に係るドローンは、ドローンと、前記ドローンに、飛行に必要なエネルギーを補充可能な補充部と、前記ドローンの動作を決定する動作決定装置と、を少なくとも含むドローンシステムに含まれるドローンであって、前記動作決定装置は、前記ドローンの作業に必要な、前記ドローンが保持可能なエネルギーを超える総充電量を取得する必要充電量取得部と、前記作業中に1回又は複数回の充電を行うことで、前記ドローンへ前記総充電量のエネルギーを補充するための充電計画を決定する充電計画部と、を備え、前記ドローンは、前記充電計画に基づいて前記補充部から充電される。 In order to achieve the above object, a drone according to one aspect of the present invention includes a drone, a replenishment unit capable of replenishing the drone with energy necessary for flight, an operation determination device that determines an operation of the drone, wherein the operation determination device includes a required charge amount acquisition unit that acquires a total charge amount that is required for the work of the drone and exceeds the energy that the drone can hold; a charging planning unit that determines a charging plan for replenishing the drone with the total amount of energy by charging the drone once or multiple times during work, wherein the drone complies with the charging plan. Based on this, the battery is charged from the replenishment unit.

上記目的を達成するため、本発明の一の観点に係る移動体は、ドローンと、前記ドローンに、飛行に必要なエネルギーを補充可能な補充部を備える移動体と、前記ドローンの動作を決定する動作決定装置と、を少なくとも含むドローンシステムに含まれる移動体であって、前記動作決定装置は、前記ドローンの作業に必要な、前記ドローンが保持可能なエネルギーを超える総充電量を取得する必要充電量取得部と、前記作業中に1回又は複数回の充電を行うことで、前記ドローンへ前記総充電量のエネルギーを補充するための充電計画を決定する充電計画部と、を備え、前記移動体は、前記充電計画に基づいて前記ドローンを充電する。 In order to achieve the above object, a mobile object according to one aspect of the present invention is a mobile object that includes a drone, a replenishment unit capable of replenishing energy required for flight in the drone, and determining the operation of the drone. a moving body included in a drone system including at least a motion determining device, wherein the motion determining device is required to obtain a total charge required for a task of the drone and exceeding the energy that the drone can hold. an amount acquiring unit; and a charging planning unit that determines a charging plan for replenishing the drone with the energy of the total charging amount by charging the drone once or multiple times during the work; A body charges the drone based on the charging plan.

ドローンのバッテリに充電する工程を管理するシステムにおいて、ドローンのバッテリ蓄電量が作業中に不足する場合にも、ドローンに効率よく充電することができる。 In a system that manages the process of charging a drone's battery, the drone can be efficiently charged even if the drone's battery charge is insufficient during work.

本願発明に係るドローンシステムが有するドローンの平面図である。1 is a plan view of a drone included in a drone system according to the present invention; FIG. 上記ドローンシステムが有するドローンの正面図である。It is a front view of the drone which the said drone system has. 上記ドローンの右側面図である。It is a right view of the said drone. 上記ドローンの背面図である。It is a rear view of the said drone. 上記ドローンの斜視図である。It is a perspective view of the said drone. 上記ドローンが有する薬剤散布システムの全体概念図である。1 is an overall conceptual diagram of a chemical spraying system that the drone has. FIG. 上記ドローンが有する薬剤散布システムの第2実施形態を示す全体概念図である。FIG. 4 is an overall conceptual diagram showing a second embodiment of a chemical spraying system that the drone has. 上記ドローンが有する薬剤散布システムの第3実施形態を示す全体概念図である。It is an overall conceptual diagram showing a third embodiment of a chemical spraying system that the drone has. 上記ドローンが作業を行う圃場、上記移動体が走行する自動走行許可エリアの配置の様子を示す概念図である。It is a conceptual diagram which shows the state of arrangement|positioning of the agricultural field which the said drone works, and the automatic driving|running|working permission area which the said mobile body drive|works. 上記ドローンの制御機能を表した模式図である。It is a schematic diagram showing the control function of the said drone. 本願発明にかかる移動体の様子を示す概略斜視図である。It is a schematic perspective view which shows the appearance of the mobile body concerning this invention. 上記移動体の、上記ドローンが載置される上面板が後方にスライドしている様子を示す概略斜視図である。FIG. 4 is a schematic perspective view showing a state in which an upper plate of the moving body on which the drone is placed is sliding backward; 上記ドローン、上記移動体、および本願発明にかかる動作決定装置が有する、上記ドローンおよび上記移動体に対する資源の補充に関する機能ブロック図である。4 is a functional block diagram of the drone, the moving body, and the motion determining device according to the present invention, relating to replenishment of resources for the drone and the moving body; FIG. 。上記ドローンが有するバッテリの、充電時間と充電率の関係を示すグラフである。. It is a graph which shows the relationship of the charge time and charge rate of the battery which the said drone has. 上記バッテリの、充電率と蓄電量の関係を示すグラフである。It is a graph which shows the relationship between a charging rate and the electrical storage amount of the said battery. 総作業の開始から終了までにおける上記ドローンおよび上記移動体の動作の例を示す(a)タイムチャート、(b)圃場内作業の完了率を示すグラフ、(c)上記ドローンが有するバッテリの充電率を示すグラフである。(a) A time chart showing an example of the operation of the drone and the mobile object from the start to the end of the total work, (b) a graph showing the completion rate of the work in the field, (c) the charging rate of the battery of the drone. is a graph showing

以下、図を参照しながら、本願発明を実施するための形態について説明する。図はすべて例示である。以下の詳細な説明では、説明のために、開示された実施形態の完全な理解を促すために、ある特定の詳細について述べられている。しかしながら、実施形態は、これらの特定の詳細に限られない。また、図面を単純化するために、周知の構造および装置については概略的に示されている。 Embodiments for carrying out the present invention will be described below with reference to the drawings. All figures are illustrative. In the following detailed description, for purposes of explanation, certain details are set forth in order to provide a thorough understanding of the disclosed embodiments. However, embodiments are not limited to these specific details. Also, well-known structures and devices are schematically shown to simplify the drawings.

まず、本発明にかかるドローンシステムが有する、ドローンの構成について説明する。本願明細書において、ドローンとは、動力手段(電力、原動機等)、操縦方式(無線であるか有線であるか、および、自律飛行型であるか手動操縦型であるか等)を問わず、複数の回転翼を有する飛行体全般を指すこととする。 First, the configuration of the drone that the drone system according to the present invention has will be described. In the specification of the present application, a drone refers to a power means (electric power, prime mover, etc.), a control method (wireless or wired, and whether it is an autonomous flight type or a manually operated type, etc.), It refers to an aircraft in general that has a plurality of rotor blades.

図1乃至図5に示すように、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4b(ローターとも呼ばれる)は、ドローン100を飛行させるための手段であり、飛行の安定性、機体サイズ、および、電力消費量のバランスを考慮し、8機(2段構成の回転翼が4セット)備えられている。各回転翼101は、ドローン100の本体110からのび出たアームにより本体110の四方に配置されている。すなわち、進行方向左後方に回転翼101-1a、101-1b、左前方に回転翼101-2a、101-2b、右後方に回転翼101-3a、101-3b、右前方に回転翼101-4a、101-4bがそれぞれ配置されている。なお、ドローン100は図1における紙面下向きを進行方向とする。回転翼101の回転軸から下方には、それぞれ棒状の足107-1,107-2,107-3,107-4が伸び出ている。 As shown in FIGS. 1 to 5, the rotor blades 101-1a, 101-1b, 101-2a, 101-2b, 101-3a, 101-3b, 101-4a, 101-4b (also called rotors) are: It is a means to fly the drone 100, and considering the balance of flight stability, aircraft size, and power consumption, it is equipped with 8 aircraft (4 sets of two-stage rotor blades). Each rotor 101 is arranged on the four sides of the main body 110 of the drone 100 by means of arms protruding from the main body 110 of the drone 100 . That is, rotor blades 101-1a and 101-1b are on the left rear in the traveling direction, rotor blades 101-2a and 101-2b are on the left front, rotor blades 101-3a and 101-3b are on the right rear, and rotor blades 101- on the right front. 4a and 101-4b are arranged respectively. In addition, the drone 100 makes the downward direction of the paper surface in FIG. 1 the traveling direction. Rod-shaped legs 107-1, 107-2, 107-3, and 107-4 extend downward from the rotating shaft of rotor blade 101, respectively.

モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、102-4a、102-4bは、回転翼101-1a、101-1b、101-2a、101-2b、101-3a、101-3b、101-4a、101-4bを回転させる手段(典型的には電動機だが発動機等であってもよい)であり、一つの回転翼に対して1機設けられている。モーター102は、推進器の例である。1セット内の上下の回転翼(たとえば、101-1aと101-1b)、および、それらに対応するモーター(たとえば、102-1aと102-1b)は、ドローンの飛行の安定性等のために軸が同一直線上にあり、かつ、互いに反対方向に回転する。図2、および、図3に示されるように、ローターが異物と干渉しないよう設けられたプロペラガードを支えるための放射状の部材は水平ではなくやぐら状の構造である。衝突時に当該部材が回転翼の外側に座屈することを促し、ローターと干渉することを防ぐためである。 Motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 102-4a, 102-4b are equipped with rotors 101-1a, 101-1b, 101-2a, 101- Means for rotating 2b, 101-3a, 101-3b, 101-4a, 101-4b (typically an electric motor, but may be a motor, etc.), one machine provided for one rotor blade It is Motor 102 is an example of a propeller. The upper and lower rotors in one set (e.g. 101-1a and 101-1b) and their corresponding motors (e.g. 102-1a and 102-1b) are used for drone flight stability etc. The axes are collinear and rotate in opposite directions. As shown in FIGS. 2 and 3, the radial members for supporting the propeller guard provided to prevent the rotor from interfering with foreign objects are not horizontal but have a scaffold-like structure. This is to prevent the member from interfering with the rotor by promoting the buckling of the member to the outside of the rotor blade at the time of collision.

薬剤ノズル103-1、103-2、103-3、103-4は、薬剤を下方に向けて散布するための手段であり4機備えられている。なお、本願明細書において、薬剤とは、農薬、除草剤、液肥、殺虫剤、種、および、水などの圃場に散布される液体または粉体を一般的に指すこととする。 Four drug nozzles 103-1, 103-2, 103-3, and 103-4 are provided and are means for spraying the drug downward. In the present specification, chemicals generally refer to liquids or powders such as pesticides, herbicides, liquid fertilizers, insecticides, seeds, and water that are applied to fields.

薬剤タンク104は散布される薬剤を保管するためのタンクであり、重量バランスの観点からドローン100の重心に近い位置でかつ重心より低い位置に設けられている。薬剤ホース105-1、105-2、105-3、105-4は、薬剤タンク104と各薬剤ノズル103-1、103-2、103-3、103-4とを接続する手段であり、硬質の素材から成り、当該薬剤ノズルを支持する役割を兼ねていてもよい。ポンプ106は、薬剤をノズルから吐出するための手段である。 The drug tank 104 is a tank for storing the sprayed drug, and is provided at a position close to and lower than the center of gravity of the drone 100 from the viewpoint of weight balance. The drug hoses 105-1, 105-2, 105-3, 105-4 are means for connecting the drug tank 104 and the drug nozzles 103-1, 103-2, 103-3, 103-4, and are hard material, and may also serve to support the drug nozzle. A pump 106 is means for ejecting a drug from a nozzle.

図6に本願発明に係るドローン100の薬剤散布用途の実施例を使用したシステムの全体概念図を示す。本図は模式図であって、縮尺は正確ではない。同図において、ドローン100、操作器401、小型携帯端末401a(携帯端末の例)、基地局404および移動体406aは、営農クラウド405にそれぞれ接続されている。これらの接続は、Wi-Fiや移動通信システム等による無線通信を行ってもよいし、一部又は全部が有線接続されていてもよい。 FIG. 6 shows an overall conceptual diagram of a system using an embodiment of the drone 100 for chemical spraying according to the present invention. This figure is a schematic diagram and not to scale. In the figure, drone 100, controller 401, small portable terminal 401a (example of portable terminal), base station 404, and mobile object 406a are connected to farming cloud 405, respectively. These connections may be wireless communication using Wi-Fi, a mobile communication system, or the like, or may be partially or wholly wired.

ドローン100および移動体406aは、互いに情報の送受信を行い、協調して動作する。移動体406a上は、発着地点406を有する。ドローン100は、ドローン100の飛行を制御する飛行制御部21の他、移動体406aと情報を送受信するための機能部を有している。 Drone 100 and mobile object 406a transmit and receive information to each other and operate cooperatively. A departure and arrival point 406 is provided on the moving body 406a. The drone 100 has a flight control unit 21 that controls the flight of the drone 100, and a functional unit that transmits and receives information to and from the moving object 406a.

操作器401は、使用者402の操作によりドローン100に指令を送信し、また、ドローン100から受信した情報(たとえば、位置、薬剤量、電池残量、カメラ映像等)を表示するための手段であり、コンピューター・プログラムを稼働する一般的なタブレット端末等の携帯情報機器によって実現されてよい。本願発明に係るドローン100は自律飛行を行なうよう制御されるが、離陸や帰還などの基本操作時、および、緊急時にはマニュアル操作が行なえるようになっていてもよい。携帯情報機器に加えて、緊急停止専用の機能を有する非常用操作器(図示していない)を使用してもよい。非常用操作器は緊急時に迅速に対応が取れるよう大型の緊急停止ボタン等を備えた専用機器であってもよい。さらに、操作器401とは別に、操作器401に表示される情報の一部又は全部を表示可能な小型携帯端末401a、例えばスマートホンがシステムに含まれていてもよい。また、小型携帯端末401aから入力される情報に基づいて、ドローン100の動作が変更される機能を有していてもよい。小型携帯端末401aは、例えば基地局404と接続されていて、基地局404を介して営農クラウド405からの情報等を受信可能である。 The operation device 401 is a means for transmitting commands to the drone 100 by the operation of the user 402 and displaying information received from the drone 100 (for example, position, drug amount, remaining battery level, camera image, etc.). Yes, and may be implemented by a portable information device such as a general tablet terminal that runs a computer program. The drone 100 according to the present invention is controlled to fly autonomously, but manual operation may be performed during basic operations such as takeoff and return, and in an emergency. In addition to the portable information device, an emergency operator (not shown) having a dedicated emergency stop function may be used. The emergency operation device may be a dedicated device equipped with a large emergency stop button or the like so that a quick response can be taken in case of emergency. Furthermore, apart from the operation device 401, the system may include a small portable terminal 401a, such as a smart phone, capable of displaying part or all of the information displayed on the operation device 401. FIG. Further, it may have a function of changing the operation of the drone 100 based on information input from the small portable terminal 401a. The small portable terminal 401a is connected to a base station 404, for example, and can receive information and the like from the farming cloud 405 via the base station 404. FIG.

圃場403は、ドローン100による薬剤散布の対象となる田圃や畑等である。実際には、圃場403の地形は複雑であり、事前に地形図が入手できない場合、あるいは、地形図と現場の状況が食い違っている場合がある。通常、圃場403は家屋、病院、学校、他作物圃場、道路、鉄道等と隣接している。また、圃場403内に、建築物や電線等の侵入者が存在する場合もある。 A farm field 403 is a rice field, a field, or the like to which the drone 100 sprays chemicals. In reality, the topography of the farm field 403 is complicated, and there are cases where a topographic map cannot be obtained in advance, or there are cases where the topographic map differs from the situation of the field. Fields 403 are usually adjacent to houses, hospitals, schools, other crop fields, roads, railroads, and the like. Moreover, there may be intruders such as buildings and electric wires in the field 403 .

基地局404は、Wi-Fi通信の親機機能等を提供する装置であり、RTK-GPS基地局としても機能し、ドローン100の正確な位置を提供できるようになっていてもよい(Wi-Fi通信の親機機能とRTK-GPS基地局が独立した装置であってもよい)。また、基地局404は、3G、4G、およびLTE等の移動通信システムを用いて、営農クラウド405と互いに通信可能であってもよい。基地局404は、本実施の形態においては、発着地点406と共に移動体406aに積載されている。 The base station 404 is a device that provides a Wi-Fi communication base unit function, etc., and may also function as an RTK-GPS base station and provide an accurate position of the drone 100 (Wi-Fi Fi communication master unit function and RTK-GPS base station may be independent devices). Also, the base station 404 may be able to communicate with the farming cloud 405 using a mobile communication system such as 3G, 4G, and LTE. The base station 404 is on board a vehicle 406a along with a point of origin 406 in this embodiment.

営農クラウド405は、典型的にはクラウドサービス上で運営されているコンピュータ群と関連ソフトウェアであり、操作器401と携帯電話回線等で無線接続されていてもよい。営農クラウド405は、ドローン100が撮影した圃場403の画像を分析し、作物の生育状況を把握して、飛行ルートを決定するための処理を行ってよい。また、保存していた圃場403の地形情報等をドローン100に提供してよい。加えて、ドローン100の飛行および撮影映像の履歴を蓄積し、様々な分析処理を行ってもよい。 The farming cloud 405 is typically a group of computers and related software operated on a cloud service, and may be wirelessly connected to the operation device 401 via a mobile phone line or the like. The farming cloud 405 may analyze the image of the field 403 captured by the drone 100, grasp the growth status of crops, and perform processing for determining the flight route. In addition, the drone 100 may be provided with topographical information and the like of the field 403 that has been saved. In addition, a history of flight and captured images of the drone 100 may be accumulated and various analysis processes may be performed.

小型携帯端末401aは例えばスマートホン等である。小型携帯端末401aの表示部には、ドローン100の運転に関し予測される動作の情報、より具体的にはドローン100が発着地点406に帰還する予定時刻や、帰還時に使用者402が行うべき作業の内容等の情報が適宜表示される。また、小型携帯端末401aからの入力に基づいて、ドローン100および移動体406aの動作を変更してもよい。小型携帯端末401aは、ドローン100および移動体406aのいずれからでも情報を受信可能である。また、ドローン100からの情報は、移動体406aを介して小型携帯端末401aに送信されてもよい。 The small portable terminal 401a is, for example, a smart phone. The display unit of the small portable terminal 401a displays information about the expected operation of the drone 100, more specifically, the scheduled time for the drone 100 to return to the departure/arrival point 406, and the work to be done by the user 402 when returning. Information such as the content is displayed as appropriate. Also, the operations of the drone 100 and the moving object 406a may be changed based on the input from the small portable terminal 401a. The small portable terminal 401a can receive information from both the drone 100 and the moving object 406a. Information from the drone 100 may also be transmitted to the small portable terminal 401a via the mobile object 406a.

通常、ドローン100は圃場403の外部にある発着地点406から離陸し、圃場403に薬剤を散布した後に、あるいは、薬剤補充や充電等が必要になった時に発着地点406に帰還する。発着地点406から目的の圃場403に至るまでの飛行経路(侵入経路)は、営農クラウド405等で事前に保存されていてもよいし、使用者402が離陸開始前に入力してもよい。 Normally, the drone 100 takes off from the departure/arrival point 406 outside the field 403 and returns to the departure/arrival point 406 after spraying the chemical on the field 403 or when replenishment of the chemical, charging, or the like is required. The flight path (entry path) from the departure/arrival point 406 to the target field 403 may be stored in advance in the farming cloud 405 or the like, or may be input by the user 402 before starting takeoff.

なお、図7に示す第2実施形態のように、本願発明に係るドローン100の薬剤散布システムは、ドローン100、操作器401、小型携帯端末401a、営農クラウド405が、それぞれ基地局404と接続されている構成であってもよい。 As in the second embodiment shown in FIG. 7, the drone 100 pesticide spraying system according to the present invention includes the drone 100, the operation device 401, the small portable terminal 401a, and the farming cloud 405, each of which is connected to a base station 404. It may be a configuration that

また、図8に示す第3実施形態のように、本願発明に係るドローン100の薬剤散布システムは、ドローン100、操作器401、小型携帯端末401aが、それぞれ基地局404と接続されていて、操作器401のみが営農クラウド405と接続されている構成であってもよい。 Further, as in the third embodiment shown in FIG. 8, in the chemical spraying system for drone 100 according to the present invention, drone 100, operation unit 401, and small portable terminal 401a are each connected to base station 404 and operated. A configuration in which only the device 401 is connected to the farming cloud 405 may be used.

図9に示すように、ドローン100は、圃場403a、403bの上空を飛行し、圃場内の作業を遂行する。移動体406aは、圃場403a、403bの周辺に設けられている自動運転許可エリア90を自動で走行する。自動運転許可エリア90は、例えば農道である。圃場403a、403bおよび自動運転許可エリア90は、作業エリアを構成する。また、自動運転許可エリア90は、移動体406aは移動可能であるが、ドローン100の着陸はできない移動許可エリア901と、移動体406aが移動可能で、かつ移動体406a上にドローン100が着陸可能な着陸許可エリア902と、に細分化されている。ドローン100の着陸ができない理由として、例えば当該エリアと圃場403aとの間に、ガードレール、電柱、電線、倉庫、墓等の障害物80が設置されていること等が挙げられる。 As shown in FIG. 9, the drone 100 flies over fields 403a and 403b and performs work in the fields. The moving body 406a automatically travels in the automatic operation permitted area 90 provided around the fields 403a and 403b. The automatic driving permitted area 90 is, for example, a farm road. Fields 403a and 403b and automatic operation permitted area 90 constitute a work area. Automatic operation permission area 90 includes movement permission area 901 in which mobile object 406a can move but drone 100 cannot land, and mobile object 406a can move and drone 100 can land on mobile object 406a. It is subdivided into a landing clearance area 902 and . Reasons why the drone 100 cannot land include, for example, obstacles 80 such as guardrails, utility poles, electric wires, warehouses, and graves that are installed between the area and the field 403a.

本実施形態においては、1個の圃場403a(作業エリアの例)に複数のドローン100a、100b(以下、第1ドローン100a、および第2ドローン100bともいう。)が同時に飛行し、それぞれ作業を行ってもよい。第1ドローン100aが行う作業は第1作業の例、第2ドローン100bが行う作業は第2作業の例である。第1作業は、圃場403aの一部である第1作業エリア403cに網羅的に設定される第1運転経路51を飛行する動作を含む。第2作業は、圃場403aのうち第1作業エリア403c以外の領域である第2作業エリア403dに、網羅的に設定される第2運転経路52を飛行する動作を含む。ドローン100a、100bは、第1、第2運転経路51、52に沿って飛行しながら、薬剤を散布したり、圃場403a内を撮影したりする。 In the present embodiment, a plurality of drones 100a and 100b (hereinafter also referred to as first drone 100a and second drone 100b) simultaneously fly to one farm field 403a (example of work area) to perform work. may The work performed by the first drone 100a is an example of the first work, and the work performed by the second drone 100b is an example of the second work. The first work includes an operation of flying along the first driving route 51 comprehensively set in the first work area 403c that is part of the field 403a. The second work includes an operation of flying the second driving route 52 comprehensively set in the second work area 403d, which is an area other than the first work area 403c in the farm field 403a. The drones 100a and 100b fly along the first and second driving routes 51 and 52 to spray chemicals and photograph the inside of the field 403a.

第1運転経路51は、始点51s、作業済経路51a、未作業経路51b、および終点51eを備える。第1ドローン100aは始点51sから飛行を開始し、終点51eまで飛行する。ドローン100aがすでに飛行した経路を作業済経路51a、これから飛行する予定の経路を未作業経路51bとする。同様に、第2運転経路52は始点52s、作業済経路52a、未作業経路52b、および終点52eを備える。第2ドローン100bは始点52sから飛行を開始し、終点52eまで飛行する。ドローン100bがすでに飛行した経路を作業済経路52a、これから飛行する予定の経路を未作業経路52bとする。 The first driving route 51 includes a start point 51s, a worked route 51a, an unworked route 51b, and an end point 51e. The first drone 100a starts flying from the start point 51s and flies to the end point 51e. Let the route already flown by the drone 100a be a completed route 51a, and the route to be flown from now on be a non-worked route 51b. Similarly, the second driving path 52 comprises a start point 52s, a worked path 52a, an unworked path 52b, and an end point 52e. The second drone 100b starts flying from start point 52s and flies to end point 52e. Let the route already flown by the drone 100b be the completed route 52a, and the route to be flown from now on be the unworked route 52b.

複数の移動体406A、406b(以下、第1移動体406A、第2移動体406Bともいう。)が、自動運転許可エリア90内を走行する。ドローンシステム500に含まれる複数のドローン100a、100b、および複数の移動体406A、406Bは、互いにネットワークを介して接続され、図13に後述する動作決定装置40により集中管理されている。 A plurality of moving bodies 406A and 406b (hereinafter also referred to as first moving body 406A and second moving body 406B) run within the automatic operation permitted area 90. A plurality of drones 100a and 100b and a plurality of moving bodies 406A and 406B included in drone system 500 are connected to each other via a network and centrally managed by operation determining device 40 described later with reference to FIG.

本実施形態においては、ドローンおよび移動体の数は同数であるが、同数でなくてもよい。ドローンおよび移動体の数が同数である場合、移動体1台につきドローンが1台搭載可能であるので、移動体にすべてのドローンを積載して、作業エリア外からドローンを搬入することができる。また、移動体は複数のドローンに対して同時に資源を補充することはできないが、ドローンシステム500内にドローンと移動体が同数含まれる構成によれば全てのドローンに同時に資源補充が可能である。 In this embodiment, the numbers of drones and moving bodies are the same, but they do not have to be the same. If the number of drones and moving bodies is the same, one drone can be mounted on each moving body, so all drones can be loaded on the moving body and the drones can be brought in from outside the work area. In addition, although a moving object cannot replenish resources for multiple drones at the same time, if the same number of drones and moving objects are included in the drone system 500, all drones can be replenished with resources at the same time.

動作決定装置40は、独立した装置であってもよいし、複数のドローン100a、100b、複数の移動体406A、406B又は営農クラウド405等、ドローンシステム500に含まれる構成のいずれかに搭載されていてもよい。 The operation determination device 40 may be an independent device, or may be mounted on any of the configurations included in the drone system 500, such as the plurality of drones 100a and 100b, the plurality of moving bodies 406A and 406B, or the farming cloud 405. may

ドローン100は、移動体406aから離陸して圃場403a、403b内での作業を遂行する。ドローン100は、圃場403a、403b内での作業中に、適宜作業を中断して移動体406aに帰還し、バッテリ502および薬剤の補充を行う。ドローン100は所定の圃場の作業が完了すると、移動体406aに乗って別の圃場近傍まで移動した上で、移動体406aから再度離陸し、当該別の圃場における作業を開始する。このように、ドローン100の自動運転許可エリア90内の移動は、原則的に、移動体406aに乗って行われ、移動体406aは、作業を行う圃場近傍までドローン100を運搬する。この構成によれば、ドローン100のバッテリ502を節約することができる。また、移動体406aは、ドローン100に補充可能なバッテリ502や薬剤を格納しているため、ドローン100が作業を行っている圃場近傍に移動体406aが移動して待機する構成によれば、ドローン100への資源の補充を効率的に行うことができる。 The drone 100 takes off from the mobile object 406a and performs work in the fields 403a and 403b. The drone 100 interrupts the work as appropriate during the work in the fields 403a and 403b, returns to the moving body 406a, and replenishes the battery 502 and the chemical. When the work of a predetermined field is completed, the drone 100 rides on the moving body 406a to move to the vicinity of another field, then takes off again from the moving body 406a, and starts working on the other field. In this way, the movement of the drone 100 within the automatic operation permitted area 90 is basically carried out on the mobile body 406a, and the mobile body 406a transports the drone 100 to the vicinity of the field where the work is to be performed. With this configuration, the battery 502 of the drone 100 can be saved. In addition, since the moving body 406a stores the battery 502 and the medicine that can be replenished to the drone 100, according to the configuration in which the moving body 406a moves to the vicinity of the field where the drone 100 is working and stands by, the drone Replenishment of resources to 100 can be done efficiently.

自動運転許可エリア90の外の領域は、自動運転不許可エリア91である。自動運転許可エリア90と自動運転不許可エリア91とは、区画部材407a、407b、407c、407d、407eにより区画されている。自動運転許可エリア90と自動運転不許可エリア91とは、各種障害物等で隔てられている他、道路が連続的に形成されていて、区画部材407a、407b、407c、407d、407eは、当該道路上に配置されていてもよい。言い換えれば、区画部材407a、407b、407c、407d、407eは、自動運転許可エリア90への侵入口に配置されている。 An area outside the automatic operation permitted area 90 is an automatic operation non-permitted area 91 . The automatic operation permitted area 90 and the automatic operation prohibited area 91 are partitioned by partition members 407a, 407b, 407c, 407d, and 407e. The automatic driving permitted area 90 and the automatic driving non-permitted area 91 are separated by various obstacles and the like, and roads are continuously formed. It may be placed on the road. In other words, the partition members 407a, 407b, 407c, 407d, and 407e are arranged at entrances to the automatic operation permitted area 90.

区画部材407は、圃場403およびその周辺の領域であって、移動体406aやドローン100が作業する際に移動する作業エリアを区画するための部材であり、例えばカラーコーン(登録商標)、三角コーン、コーンバー、バリケード、フィールドアーチ、フェンス等である。区画部材407は、物理的に区画してもよいし、赤外線等の光線により区画されていてもよい。区画部材407は、主に作業エリア外の侵入者に作業中であることを知らせ、作業エリア内への立ち入りを制限するために用いられる。したがって、侵入者が遠方からでも視認できるような部材である。また、区画部材407は、作業の開始時に使用者402により設置されるため、設置および撤去が容易であるとよい。区画部材407は、ドローンシステム500内に複数含まれていてもよい。区画部材407は、侵入者が作業エリア内に侵入したことを検知して、移動体406aや操作器401、小型携帯端末401a等に当該侵入情報を伝達してもよい。なお、侵入者は、人や車、その他の移動体を含む。 The partition member 407 is a member for partitioning the work area, which is the field 403 and its surrounding area, and is moved when the moving body 406a and the drone 100 work, and is, for example, a color cone (registered trademark) or a triangular cone. , corn bars, barricades, field arches, fences, etc. The partitioning member 407 may be physically partitioned or may be partitioned by light rays such as infrared rays. The partition member 407 is mainly used to notify intruders outside the work area that work is in progress and to restrict entry into the work area. Therefore, it is a member that an intruder can visually recognize even from a distance. In addition, since the partition member 407 is installed by the user 402 at the start of work, it is preferable that installation and removal be easy. Multiple partition members 407 may be included within the drone system 500 . The partitioning member 407 may detect that an intruder has entered the work area and transmit the intrusion information to the moving body 406a, the operation device 401, the small portable terminal 401a, and the like. Intruders include people, cars, and other moving objects.

図10に本願発明に係る薬剤散布用ドローンの実施例の制御機能を表したブロック図を示す。フライトコントローラー501は、ドローン全体の制御を司る構成要素であり、具体的にはCPU、メモリー、関連ソフトウェア等を含む組み込み型コンピュータであってよい。フライトコントローラー501は、操作器401から受信した入力情報、および、後述の各種センサーから得た入力情報に基づき、ESC(Electronic Speed Control)等の制御手段を介して、モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの回転数を制御することで、ドローン100の飛行を制御する。モーター102-1a、102-1b、102-2a、102-2b、102-3a、102-3b、104-a、104-bの実際の回転数はフライトコントローラー501にフィードバックされ、正常な回転が行なわれているかを監視できる構成になっている。あるいは、回転翼101に光学センサー等を設けて回転翼101の回転がフライトコントローラー501にフィードバックされる構成でもよい。 FIG. 10 shows a block diagram showing control functions of an embodiment of the chemical spray drone according to the present invention. The flight controller 501 is a component that controls the entire drone, and specifically may be an embedded computer including a CPU, memory, related software, and the like. Flight controller 501 controls motors 102-1a and 102-1b via control means such as ESC (Electronic Speed Control) based on input information received from operation device 401 and input information obtained from various sensors described later. , 102-2a, 102-2b, 102-3a, 102-3b, 104-a, and 104-b, the flight of the drone 100 is controlled. The actual rotation speeds of motors 102-1a, 102-1b, 102-2a, 102-2b, 102-3a, 102-3b, 104-a, and 104-b are fed back to flight controller 501 to ensure normal rotation. It is configured to be able to monitor whether or not Alternatively, an optical sensor or the like may be provided on the rotor blade 101 and the rotation of the rotor blade 101 may be fed back to the flight controller 501 .

フライトコントローラー501が使用するソフトウェアは、機能拡張・変更、問題修正等のために記憶媒体等を通じて、または、Wi-Fi通信やUSB等の通信手段を通じて書き換え可能になっている。この場合において、不正なソフトウェアによる書き換えが行なわれないように、暗号化、チェックサム、電子署名、ウィルスチェックソフト等による保護が行われている。また、フライトコントローラー501が制御に使用する計算処理の一部が、操作器401上、または、営農クラウド405上や他の場所に存在する別のコンピュータによって実行されてもよい。フライトコントローラー501は重要性が高いため、その構成要素の一部または全部が二重化されていてもよい。 The software used by the flight controller 501 is rewritable through a storage medium or the like, or through communication means such as Wi-Fi communication or USB, in order to extend/change functions or correct problems. In this case, protection is provided by encryption, checksum, electronic signature, virus check software, etc. to prevent rewriting by unauthorized software. Also, part of the calculation processing used for control by the flight controller 501 may be executed by another computer existing on the operation device 401, on the farming cloud 405, or at another location. Due to the high importance of flight controller 501, some or all of its components may be duplicated.

フライトコントローラー501は、Wi-Fi子機機能503を介して、さらに、基地局404を介して操作器401とやり取りを行ない、必要な指令を操作器401から受信すると共に、必要な情報を操作器401に送信できる。この場合に、通信には暗号化を施し、傍受、成り済まし、機器の乗っ取り等の不正行為を防止できるようにしておいてもよい。基地局404は、Wi-Fiによる通信機能に加えて、RTK-GPS基地局の機能も備えている。RTK基地局の信号とGPS測位衛星からの信号を組み合わせることで、フライトコントローラー501により、ドローン100の絶対位置を数センチメートル程度の精度で測定可能となる。フライトコントローラー501は重要性が高いため、二重化・多重化されていてもよく、また、特定のGPS衛星の障害に対応するため、冗長化されたそれぞれのフライトコントローラー501は別の衛星を使用するよう制御されていてもよい。 The flight controller 501 communicates with the controller 401 via the Wi-Fi slave device function 503 and via the base station 404, receives necessary commands from the controller 401, and sends necessary information to the controller. You can send to 401. In this case, the communication may be encrypted to prevent fraudulent acts such as interception, impersonation, and device hijacking. The base station 404 also has a function of an RTK-GPS base station in addition to a Wi-Fi communication function. By combining the signals from the RTK base station and the signals from the GPS positioning satellite, the flight controller 501 can measure the absolute position of the drone 100 with an accuracy of several centimeters. Due to the high importance of the flight controller 501, it may be duplicated or multiplexed, and each redundant flight controller 501 should use a different satellite in order to cope with the failure of a particular GPS satellite. may be controlled.

6軸ジャイロセンサー505はドローン機体の互いに直交する3方向の加速度を測定する手段であり、さらに、加速度の積分により速度を計算する手段である。6軸ジャイロセンサー505は、上述の3方向におけるドローン機体の姿勢角の変化、すなわち角速度を測定する手段である。地磁気センサー506は、地磁気の測定によりドローン機体の方向を測定する手段である。気圧センサー507は、気圧を測定する手段であり、間接的にドローンの高度も測定することもできる。レーザーセンサー508は、レーザー光の反射を利用してドローン機体と地表との距離を測定する手段であり、IR(赤外線)レーザーであってもよい。ソナー509は、超音波等の音波の反射を利用してドローン機体と地表との距離を測定する手段である。これらのセンサー類は、ドローンのコスト目標や性能要件に応じて取捨選択してよい。また、機体の傾きを測定するためのジャイロセンサー(角速度センサー)、風力を測定するための風力センサーなどが追加されていてもよい。また、これらのセンサー類は、二重化または多重化されていてもよい。同一目的複数のセンサーが存在する場合には、フライトコントローラー501はそのうちの一つのみを使用し、それが障害を起こした際には、代替のセンサーに切り替えて使用するようにしてもよい。あるいは、複数のセンサーを同時に使用し、それぞれの測定結果が一致しない場合には障害が発生したと見なすようにしてもよい。 The 6-axis gyro sensor 505 is means for measuring the acceleration of the drone body in three mutually orthogonal directions, and is means for calculating the velocity by integrating the acceleration. The 6-axis gyro sensor 505 is means for measuring changes in the attitude angle of the drone body in the three directions described above, that is, angular velocity. The geomagnetic sensor 506 is a means of determining the direction of the drone body by measuring geomagnetism. The air pressure sensor 507 is a means of measuring air pressure, and can also indirectly measure the altitude of the drone. The laser sensor 508 is means for measuring the distance between the drone body and the ground surface using reflection of laser light, and may be an IR (infrared) laser. Sonar 509 is a means of measuring the distance between the drone body and the ground using the reflection of sound waves such as ultrasonic waves. These sensors may be selected according to the drone's cost targets and performance requirements. Also, a gyro sensor (angular velocity sensor) for measuring the inclination of the airframe, a wind sensor for measuring wind force, etc. may be added. Also, these sensors may be duplicated or multiplexed. If there are multiple sensors for the same purpose, the flight controller 501 may use only one of them and switch to an alternative sensor if it fails. Alternatively, multiple sensors may be used at the same time and a failure is assumed to occur if their measurements do not match.

流量センサー510は薬剤の流量を測定するための手段であり、薬剤タンク104から薬剤ノズル103に至る経路の複数の場所に設けられている。液切れセンサー511は薬剤の量が所定の量以下になったことを検知するセンサーである。マルチスペクトルカメラ512は圃場403を撮影し、画像分析のためのデータを取得する手段である。侵入者検知カメラ513はドローン侵入者を検知するためのカメラであり、画像特性とレンズの向きがマルチスペクトルカメラ512とは異なるため、マルチスペクトルカメラ512とは別の機器である。スイッチ514はドローン100の使用者402が様々な設定を行なうための手段である。侵入者接触センサー515はドローン100、特に、そのローターやプロペラガード部分が電線、建築物、人体、立木、鳥、または、他のドローン等の侵入者に接触したことを検知するためのセンサーである。なお、侵入者接触センサー515は、6軸ジャイロセンサー505で代用してもよい。カバーセンサー516は、ドローン100の操作パネルや内部保守用のカバーが開放状態であることを検知するセンサーである。薬剤注入口センサー517は薬剤タンク104の注入口が開放状態であることを検知するセンサーである。これらのセンサー類はドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。また、ドローン100外部の基地局404、操作器401、または、その他の場所にセンサーを設けて、読み取った情報をドローンに送信してもよい。たとえば、基地局404に風力センサーを設け、風力・風向に関する情報をWi-Fi通信経由でドローン100に送信するようにしてもよい。 Flow rate sensors 510 are means for measuring the flow rate of the drug, and are provided at multiple locations along the path from drug tank 104 to drug nozzle 103 . A liquid shortage sensor 511 is a sensor that detects when the amount of medicine has fallen below a predetermined amount. Multispectral camera 512 is a means of photographing field 403 and acquiring data for image analysis. The intruder detection camera 513 is a camera for detecting drone intruders, and is a separate device from the multispectral camera 512 because its image characteristics and lens orientation are different from those of the multispectral camera 512 . Switch 514 is a means for user 402 of drone 100 to make various settings. The intruder contact sensor 515 is a sensor for detecting that the drone 100, especially its rotor or propeller guard portion, has come into contact with an intruder such as an electric wire, building, human body, standing tree, bird, or other drone. . Note that the intruder contact sensor 515 may be replaced by the 6-axis gyro sensor 505. The cover sensor 516 is a sensor that detects that the operation panel of the drone 100 and the internal maintenance cover are open. A drug inlet sensor 517 is a sensor that detects that the inlet of the drug tank 104 is open. These sensors may be selected, duplicated or multiplexed depending on the drone's cost targets and performance requirements. Also, a sensor may be provided outside the drone 100 at the base station 404, the controller 401, or at another location to transmit the read information to the drone. For example, a wind sensor may be provided in the base station 404 to transmit information on wind power and wind direction to the drone 100 via Wi-Fi communication.

フライトコントローラー501はポンプ106に対して制御信号を送信し、薬剤吐出量の調整や薬剤吐出の停止を行なう。ポンプ106の現時点の状況(たとえば、回転数等)は、フライトコントローラー501にフィードバックされる構成となっている。 The flight controller 501 transmits a control signal to the pump 106 to adjust the medicine ejection amount and stop the medicine ejection. The current status of the pump 106 (eg, number of revolutions, etc.) is configured to be fed back to the flight controller 501 .

LED107は、ドローンの操作者に対して、ドローンの状態を知らせるための表示手段である。LEDに替えて、または、それに加えて液晶ディスプレイ等の表示手段を使用してもよい。ブザー518は、音声信号によりドローンの状態(特にエラー状態)を知らせるための出力手段である。Wi-Fi子機機能519は操作器401とは別に、たとえば、ソフトウェアの転送などのために外部のコンピューター等と通信するためのオプショナルな構成要素である。Wi-Fi子機機能に替えて、または、それに加えて、赤外線通信、Bluetooth(登録商標)、ZigBee(登録商標)、NFC等の他の無線通信手段、または、USB接続などの有線通信手段を使用してもよい。また、Wi-Fi子機機能に替えて、3G、4G、およびLTE等の移動通信システムにより相互に通信可能であってもよい。スピーカー520は、録音した人声や合成音声等により、ドローンの状態(特にエラー状態)を知らせる出力手段である。天候状態によっては飛行中のドローン100の視覚的表示が見にくいことがあるため、そのような場合には音声による状況伝達が有効である。警告灯521はドローンの状態(特にエラー状態)を知らせるストロボライト等の表示手段である。これらの入出力手段は、ドローンのコスト目標や性能要件に応じて取捨選択してよく、二重化・多重化してもよい。 The LED 107 is display means for informing the operator of the drone of the state of the drone. Display means such as a liquid crystal display may be used in place of or in addition to LEDs. The buzzer 518 is an output means for informing the state of the drone (especially error state) by means of an audio signal. A Wi-Fi slave device function 519 is an optional component for communicating with an external computer or the like for transferring software, for example, separately from the operation device 401 . In place of or in addition to the Wi-Fi slave unit function, infrared communication, Bluetooth (registered trademark), ZigBee (registered trademark), other wireless communication means such as NFC, or wired communication means such as USB connection may be used. Also, instead of the Wi-Fi slave device function, it may be possible to communicate with each other by mobile communication systems such as 3G, 4G, and LTE. The speaker 520 is output means for notifying the state of the drone (especially error state) by means of recorded human voice, synthesized voice, or the like. Weather conditions can make it difficult to see the visual display of the drone 100 in flight, and in such cases, audible status communication is effective. A warning light 521 is a display means such as a strobe light that indicates the state of the drone (especially an error state). These input/output means may be selected, duplicated or multiplexed according to the drone's cost targets and performance requirements.

●移動体の構成
図11および図12に示す移動体406aは、ドローン100が有する情報を受信して、使用者402に適宜通知し、又は使用者402からの入力を受け付けてドローン100に送信する装置である。また、移動体406aは、ドローン100を積載して移動可能である。移動体406aは、使用者402により運転可能である他、自律的に移動可能であってもよい。なお、本実施形態における移動体406aは自動車等の車両、より具体的には軽トラックを想定しているが、電車等の陸上走行可能な適宜の移動体であってもよいし、船舶や飛行体であってもよい。移動体406aの駆動源は、ガソリン、電気、燃料電池等、適宜のものであってよい。
Configuration of moving object A moving object 406a shown in FIGS. 11 and 12 receives information possessed by the drone 100 and appropriately notifies the user 402, or accepts input from the user 402 and transmits it to the drone 100. It is a device. Also, the moving body 406a can move with the drone 100 loaded. The moving object 406a can be driven by the user 402, or can move autonomously. It should be noted that the moving body 406a in the present embodiment is assumed to be a vehicle such as an automobile, more specifically a light truck, but it may be a suitable moving body capable of traveling on land such as a train, a ship or a plane. It can be a body. The driving source of the moving body 406a may be gasoline, electricity, a fuel cell, or any suitable source.

移動体406aは、進行方向前方に乗車席81、後方に荷台82が配置されている車両である。移動体406aの底面側には、移動手段の例である4個の車輪83が、駆動可能に配置されている。乗車席81には、使用者402が乗り込むことが可能である。 The moving body 406a is a vehicle in which a passenger seat 81 is arranged in front in the traveling direction and a loading platform 82 is arranged in the rear. Four wheels 83, which are examples of moving means, are drivably arranged on the bottom side of the moving body 406a. A user 402 can get into the passenger seat 81 .

乗車席81には、移動体406aおよびドローン100の様子を表示する表示部65が配置されている。表示部65は、画面を有する装置であってもよいし、フロントガラスに情報を投影する機構により実現されていてもよい。また、この表示部65に加えて、乗車席81を覆う車体810の背面側にも背面表示部65aが設置されていてもよい。この背面表示部65aは、車体810に対する角度が左右に変更可能であり、荷台82の後方および左右側方で作業している使用者402が画面を見て情報を取得することができる。 The passenger seat 81 is provided with a display unit 65 for displaying the state of the moving object 406a and the drone 100. FIG. The display unit 65 may be a device having a screen, or may be realized by a mechanism for projecting information onto the windshield. Further, in addition to the display section 65, a rear display section 65a may be installed on the rear side of the vehicle body 810 covering the passenger seat 81. FIG. The angle of the rear display unit 65a with respect to the vehicle body 810 can be changed left and right, and the user 402 working behind and on the left and right sides of the loading platform 82 can view the screen and obtain information.

移動体406aの荷台82前部左端には、丸棒の上方に円盤状の部材が連結された形状をしている基地局404が、乗車席81よりも上方に伸び出ている。なお、基地局404の形状および位置は、任意である。基地局404が荷台82の乗車席81側にある構成によれば、荷台82の後方にある構成と比較して、基地局404がドローン100の離着陸の妨げになりづらい。 A base station 404 having a shape in which a disk-shaped member is connected to the upper part of a round bar extends above the passenger seat 81 at the front left end of the loading platform 82 of the moving body 406a. Note that the shape and position of the base station 404 are arbitrary. According to the configuration in which the base station 404 is located on the passenger seat 81 side of the loading platform 82, compared to the configuration in which the base station 404 is located behind the loading platform 82, the base station 404 is less likely to interfere with takeoff and landing of the drone 100.

荷台82は、ドローン100のバッテリ502や、ドローン100の薬剤タンク104に補充される薬剤を格納する荷室821を有する。荷室821は、乗車席81を覆う車体810と、後方板822と、1対の側方板823、823と、上面板824とに囲まれた領域である。後方板822および側方板823は、「あおり」とも呼ばれる。後方板822の上部両端それぞれには、レール825が、側方板823の上端に沿って乗車席81背面側の車体810まで配設されている。上面板824は、ドローン100が載置され、離着陸することが可能な発着地点406である発着領域となっており、レール825に沿って進行方向前後に摺動可能になっている。レール825は、上面板824の平面より上方に突出するリブとなっていて、上面板824上に乗っているドローン100が移動体406aの左右端から滑り出てしまうことを防いでいる。また、上面板824の後方にも、レール825と同程度上面側に突出するリブ8241が形成されている。 The carrier 82 has a luggage compartment 821 that stores the battery 502 of the drone 100 and the drug to be replenished in the drug tank 104 of the drone 100 . The luggage compartment 821 is an area surrounded by the vehicle body 810 that covers the passenger seat 81 , a rear plate 822 , a pair of side plates 823 and 823 , and an upper plate 824 . The rear plate 822 and the side plates 823 are also called "tilts". Rails 825 are arranged on both ends of the upper portion of the rear plate 822 along the upper ends of the side plates 823 to reach the vehicle body 810 on the back side of the passenger seat 81 . The top plate 824 is a landing/departure area where the drone 100 is placed and is a landing/departure point 406 from which the drone 100 can take off and land. The rails 825 are ribs projecting upward from the plane of the top plate 824 to prevent the drone 100 riding on the top plate 824 from slipping out of the left and right ends of the moving body 406a. Further, a rib 8241 is formed on the rear side of the top plate 824 so as to protrude upward to the same extent as the rail 825 .

車体810上部および後方板822の進行方向後ろ側には、ドローンシステム500が作業中である旨を表示する警告灯830が配置されていてもよい。警告灯830は、配色又は明滅等で作業中と作業中以外とを区別する表示器であってもよいし、文字又は絵柄等が表示可能であってもよい。また、車体810上部の警告灯830は、車体810上方まで伸びあがって両面に表示することが可能であってもよい。この構成によれば、荷台82にドローン100が配置されている場合であっても、後方から警告を視認することができる。また、移動体406aの進行方向前方からも、警告を視認することができる。警告灯830が前方および後方から視認できることで、区画部材407を設置する手間を一部省略することができる。 A warning light 830 that indicates that the drone system 500 is working may be arranged on the upper part of the vehicle body 810 and on the rear side of the rear plate 822 in the traveling direction. The warning light 830 may be a display that distinguishes between work and non-work by color scheme or blinking, or may be capable of displaying characters or patterns. Also, the warning light 830 on the upper part of the vehicle body 810 may extend up to the upper part of the vehicle body 810 and display on both sides. According to this configuration, even when the drone 100 is placed on the loading platform 82, the warning can be visually recognized from behind. In addition, the warning can also be visually recognized from the front of the traveling direction of the moving body 406a. Since the warning light 830 can be visually recognized from the front and rear, it is possible to partially omit the trouble of installing the partition member 407 .

上面板824は、手動で摺動可能であってもよいし、ラックアンドピニオン機構などを利用して自動で摺動してもよい。上面板824を後方に摺動させると、荷台82の上方から荷室821に物品を格納したり、物品を取り出したりすることができる。また、上面板824が後方に摺動している形態においては、上面板824と車体810とが十分離間するため、ドローン100が発着地点406に離着陸可能である。 The top plate 824 may be manually slidable, or may be slid automatically using a rack and pinion mechanism or the like. When the top plate 824 is slid rearward, articles can be stored in the luggage compartment 821 from above the loading platform 82, and articles can be taken out. In addition, in the configuration in which the top plate 824 slides backward, the drone 100 can take off and land at the departure/arrival point 406 because the top plate 824 and the vehicle body 810 are sufficiently separated.

上面板824には、ドローン100の足107-1,107-2,107-3,107-4が固定可能な足受部826が4個配設されている。足受部826は、例えばドローン100の4本の足107-1,107-2,107-3,107-4に対応する位置に1個ずつ設置されている、上面が円錐台状に凹んでいる円盤状の部材である。なお、足受部826の円錐台状の凹みの底と、足107-1,107-2,107-3,107-4の先端とは、互いに嵌合可能な形状になっていてもよい。足受部826上に着陸しているとき、ドローン100の足107-1,107-2,107-3,107-4は、足受部826の円錐面に沿って滑り、円錐台の底部に足107-1,107-2,107-3,107-4の先端が誘導される。ドローン100は適宜の機構により足受部826に自動又は手動で固定可能であり、移動体406aがドローン100を載せて移動する際にも、ドローン100が過度に振動したり落下することなくドローン100を安全に輸送することができる。また、移動体406aは、ドローン100が足受部826に固定されているか否かを検知可能である。The top plate 824 is provided with four leg receiving portions 826 to which the legs 107-1, 107-2, 107-3, and 107-4 of the drone 100 can be fixed. The foot receiving part 826 is a disc-shaped member having a truncated cone-shaped concave upper surface, which is installed one by one at positions corresponding to the four legs 107-1, 107-2, 107-3, and 107-4 of the drone 100, for example. be. It should be noted that the bottom of the truncated cone-shaped recess of the foot receiving portion 826 and the tips of the feet 107-1, 107-2, 107-3, and 107-4 may be shaped so as to be fittable with each other. When landing on the footrest 826, the feet 107-1, 107-2, 107-3, 107-4 of the drone 100 slide along the conical surface of the footrest 826, and the feet 107-1, 107-2, 107 reach the bottom of the truncated cone. -3,107-4 tips are induced. The drone 100 can be automatically or manually fixed to the foot support portion 826 by an appropriate mechanism, and even when the moving body 406a carries the drone 100 thereon, the drone 100 can be secured without excessive vibration or falling. can be safely transported. In addition, the moving body 406a can detect whether the drone 100 is fixed to the foot support section 826 or not.

上面板824の、略中央部には、ドローン100の離着陸の位置の目安を表示する円周灯850が配置されている。円周灯850は、略円状に配設される発光体群により形成されていて、発光体群は個別に明滅可能である。本実施形態では、円周上に約90度ごとに配置される4個の大きな発光体850aと、大きな発光体850aの間に2個ずつ等間隔に配置される小さな発光体850bとで、1の円周灯850を構成している。円周灯850は、発光体群850a、850bのうち1又は複数が点灯することで、ドローン100の離陸後の飛行方向、又は着陸する際に飛来する方向を表示する。なお、円周灯850は、部分的に明滅可能な1個の円環状の発光体により構成されていてもよい。 A circular light 850 that displays a guideline for the take-off and landing positions of the drone 100 is arranged in the approximate center of the top plate 824 . Circumferential light 850 is formed by a group of light emitters arranged in a substantially circular shape, and the group of light emitters can be individually blinked. In this embodiment, four large light emitters 850a are arranged at approximately 90-degree intervals on the circumference, and two small light emitters 850b are arranged at regular intervals between the large light emitters 850a. Circumferential light 850 is constructed. Circumferential light 850 displays the flight direction after takeoff of drone 100 or the direction in which drone 100 flies when landing by lighting one or more of light emitter groups 850a and 850b. Circumferential light 850 may be composed of a single annular light emitter that can partially blink.

1対の側方板823は、底部の辺が荷台82にヒンジで連結されていて、側方板823を外側に倒すことが可能である。図12では、進行方向左側の側方板823が外側に倒れている様子を示している。側方板823が外側に倒れると、移動体406aの側方から格納物を格納および取り出しが可能になる。側方板823は荷室821の底面と略平行に固定され、側方板823を作業台としても使用することができる。 A pair of side plates 823 are hinged to the loading platform 82 at their bottom edges, and can be tilted outward. FIG. 12 shows a state in which the side plate 823 on the left side in the traveling direction is tilted outward. When the side plate 823 falls outward, it becomes possible to store and take out stored items from the side of the moving body 406a. The side plate 823 is fixed substantially parallel to the bottom surface of the luggage compartment 821, and the side plate 823 can also be used as a workbench.

1対のレール825は、形態切替機構を構成する。また、側方板823と荷台82を連結するヒンジも、形態切替機構に含まれていてもよい。上面板824が荷室821の上方を覆って配置され、側方板823が起立して荷室821の側面を覆っている形態において、移動体406aは移動する。移動体406aが静止しているとき、上面板824が後方に摺動している形態、又は側方板823が倒れている形態に切り替えられ、使用者402は荷室821の内部にアプローチできる。 A pair of rails 825 constitutes a mode switching mechanism. A hinge connecting the side plate 823 and the loading platform 82 may also be included in the form switching mechanism. In the configuration in which the top plate 824 is arranged to cover the upper side of the luggage compartment 821 and the side plates 823 stand up to cover the sides of the luggage compartment 821, the moving body 406a moves. When the moving body 406a is stationary, the upper plate 824 is switched to the rearward sliding form or the side plate 823 is tilted, and the user 402 can approach the inside of the luggage compartment 821. FIG.

ドローン100は、発着地点406に着陸している状態において、飛行に必要なエネルギーの補充を行うことができる。例えば、バッテリ502の充電を行うことができる。荷室821にはバッテリ502の充電装置が格納されていて、荷室821に格納されているバッテリ502の充電が可能である。また、ドローン100は、バッテリ502に代えてウルトラキャパシタの機構を備え、荷室821内にはウルトラキャパシタ用の充電器が格納されていてもよい。この構成においては、ドローン100が足受部826に固定されている際に、ドローン100の足を介して、ドローン100に搭載されているバッテリ502を急速充電することができる。 The drone 100 can replenish the energy required for flight while landing at the departure/arrival point 406 . For example, battery 502 can be charged. A charging device for the battery 502 is stored in the luggage compartment 821, and the battery 502 stored in the luggage compartment 821 can be charged. Further, the drone 100 may include an ultracapacitor mechanism instead of the battery 502, and a charger for the ultracapacitor may be stored in the luggage compartment 821. In this configuration, the battery 502 mounted on the drone 100 can be rapidly charged via the legs of the drone 100 when the drone 100 is fixed to the foot rests 826.

ドローン100は、発着地点406に着陸している状態において、薬剤タンク104に貯留される薬剤の補充を行うことができる。荷室821には、薬剤を希釈混合するための希釈混合タンク、撹拌機構、ならびに希釈混合タンクから薬剤を吸い上げて薬剤タンク104に注入せしめるポンプおよびホース等の希釈混合を行う適宜の構成要素が格納されていてもよい。また、荷室821から上面板824の上方へ伸び出て、薬剤タンク104の注入口に接続可能な補充用ホースが配管されていてもよい。 The drone 100 can replenish the medicine stored in the medicine tank 104 while landing at the departure/arrival point 406 . The luggage compartment 821 stores appropriate components for dilution and mixing, such as a dilution and mixing tank for diluting and mixing the drug, a stirring mechanism, and a pump and hose for sucking up the drug from the dilution and mixing tank and injecting it into the drug tank 104. may have been Further, a replenishing hose that extends from the luggage compartment 821 to the upper side of the top plate 824 and is connectable to the injection port of the chemical tank 104 may be arranged.

上面板824の上面側には、薬剤タンク104から排出される薬剤を誘導する廃液溝840および廃液孔841が形成されている。廃液溝840および廃液孔841は、それぞれ2個ずつ配置されていて、ドローン100が移動体406aの左右どちらを向いて着陸しても、薬剤ノズル103の下方に廃液溝840が位置するようになっている。廃液溝840は、薬剤ノズル103の位置に沿って、移動体406aの長さ方向に沿って略真っ直ぐに形成されている、所定の幅を有する溝であり、乗車席81側に向かってわずかに傾斜している。廃液溝840の乗車席81側の端部には、それぞれ上面板824を貫通して荷室821の内部に薬液を誘導する廃液孔841が形成されている。廃液孔841は、荷室821内であって廃液孔841の略真下に設置されている廃液タンク842に連通している。 A waste liquid groove 840 and a waste liquid hole 841 for guiding the drug discharged from the drug tank 104 are formed on the upper surface side of the top plate 824 . Two liquid waste grooves 840 and two liquid waste holes 841 are arranged so that the liquid waste grooves 840 are positioned below the drug nozzle 103 regardless of whether the drone 100 lands on the left or right side of the moving body 406a. ing. The waste liquid groove 840 is a groove having a predetermined width, which is formed substantially straight along the length direction of the moving body 406a along the position of the drug nozzle 103, and slightly extends toward the passenger seat 81 side. Inclined. At the end of the waste liquid groove 840 on the passenger seat 81 side, a waste liquid hole 841 is formed to pass through the upper surface plate 824 and guide the chemical liquid into the luggage compartment 821 . The waste liquid hole 841 communicates with a waste liquid tank 842 installed in the luggage compartment 821 and substantially directly below the waste liquid hole 841 .

薬剤タンク104に薬剤を注入する際、薬剤タンク104内に充満する気体、主に空気を外部に排出するエア抜き動作を行う。このとき、薬剤タンク104の排出口から薬剤が排出する動作が必要になる。また、ドローン100が作業終了後に、薬剤タンク104から薬剤を排出する動作が必要になる。上面板824に廃液溝840および廃液孔841が形成されている構成によれば、ドローン100を上面板824に配置した状態で、薬剤タンク104への薬剤注入および排出を行う際、廃液を廃液タンク842に誘導することができ、安全に薬剤注入および排出を行うことができる。 When injecting the medicine into the medicine tank 104, an air bleeding operation is performed to discharge gas, mainly air, filling the medicine tank 104 to the outside. At this time, an operation for discharging the medicine from the discharge port of the medicine tank 104 is required. Also, after the drone 100 finishes its work, it is necessary to discharge the medicine from the medicine tank 104 . According to the configuration in which the waste liquid groove 840 and the waste liquid hole 841 are formed in the top plate 824, when the drone 100 is arranged on the top plate 824 and the drug is injected into and discharged from the drug tank 104, the waste liquid is discharged into the waste liquid tank. It can be guided to 842 and can be safely drugged and discharged.

●ドローンシステムが有するドローン、移動体、および動作決定装置の構成
図13に示すように、ドローンシステム500は、ドローン100、第1移動体406A、第2移動体406B、および動作決定装置40を含む。ドローン100、第1移動体406A、第2移動体406B、および動作決定装置40は、例えば互いにネットワークNWを介して接続されて構成されている。なお、ネットワークNWは、すべて無線であってもよいし、一部又は全部が有線であってもよい。また、具体的な接続関係は同図に限られるものではなく、各構成が直接又は間接的に接続されていればよい。
Configuration of Drone, Moving Body, and Motion Determining Device of Drone System As shown in FIG. 13, drone system 500 includes drone 100, first moving body 406A, second moving body 406B and motion determining device . The drone 100, the first mobile body 406A, the second mobile body 406B, and the motion determining device 40 are configured to be connected to each other via a network NW, for example. Note that the network NW may be entirely wireless, or partially or wholly wired. In addition, the specific connection relationship is not limited to that shown in the figure, and each component may be connected directly or indirectly.

本実施形態では、ドローンは1個、移動体は2個であるが、それぞれこれ以上であってもよい。また、ドローンと移動体の数は同数であってもよいし、個数が異なっていてもよい。複数のドローンは、複数の移動体406A、406Bのいずれでも離着陸可能であり、資源の補充が可能である。なお、資源の補充とは、バッテリ502の補充および薬剤の補充を含む概念である。 In this embodiment, there are one drone and two moving bodies, but there may be more. Also, the number of drones and moving bodies may be the same or may be different. A plurality of drones can take off and land on any of the plurality of moving bodies 406A and 406B, and can replenish resources. Note that replenishment of resources is a concept that includes replenishment of the battery 502 and replenishment of medicines.

ドローン100は、飛行制御部21、搭載資源取得部22およびバッテリ502を備える。 Drone 100 includes flight control unit 21 , on-board resource acquisition unit 22 and battery 502 .

飛行制御部21は、ドローン100が有するモータ102を稼働させ、ドローン100の飛行および離着陸を制御する機能部である。飛行制御部21は、例えばフライトコントローラ501の機能によって実現される。 The flight control unit 21 is a functional unit that operates the motor 102 of the drone 100 and controls flight, takeoff and landing of the drone 100 . The flight control unit 21 is implemented by the functions of the flight controller 501, for example.

搭載資源取得部22は、ドローン100に搭載されている資源の量、すなわちバッテリ502の蓄電量および薬剤量を取得する機能部である。搭載資源取得部22は、蓄電量取得部221および薬剤量取得部222を備える。 The mounted resource acquisition unit 22 is a functional unit that acquires the amount of resources mounted on the drone 100, that is, the amount of electricity stored in the battery 502 and the amount of medicine. The on-board resource acquisition unit 22 includes a power storage amount acquisition unit 221 and a medicine amount acquisition unit 222 .

蓄電量取得部221は、ドローン100に搭載されているバッテリ502の蓄電量を取得する機能部である。バッテリ502の蓄電量は、資源の補充なしにドローン100を動作可能なエネルギー量を指すものとする。バッテリ502は、一次電池、二次電池、キャパシタ又は燃料電池等どのような形式のエネルギー供給機構であってもよい。 The power storage amount acquisition unit 221 is a functional unit that acquires the power storage amount of the battery 502 mounted on the drone 100 . The amount of power stored in the battery 502 refers to the amount of energy that can operate the drone 100 without replenishment of resources. Battery 502 may be any type of energy supply, such as a primary battery, secondary battery, capacitor, or fuel cell.

蓄電量取得部221はバッテリ502の蓄電量を計測する別の構成から情報を取得してもよいし、蓄電量取得部221自身がバッテリ502の蓄電量を計測してもよい。 The stored electricity amount acquisition unit 221 may acquire information from another configuration for measuring the stored electricity amount of the battery 502, or the stored electricity amount acquisition unit 221 may measure the stored electricity amount of the battery 502 itself.

薬剤量取得部222は、薬剤タンク104における薬剤の現在の貯留量を推定する機能部である。薬剤量取得部222は、重量測定部211aにより測定されるドローン100の重量から貯留量を推定してもよい。また、薬剤量取得部222は、例えば薬剤タンク104内の液面高さを推定する機能を有していてもよい。薬剤量取得部222は、薬剤タンク104内に配置される液面計又は水圧センサー等を用いて貯留量を推定してもよい。ドローン100が作業中の場合は、薬剤量取得部222は、流量センサー510によって測定される薬剤タンク104からの吐出流量を積算して薬剤吐出量を求め、当初積載された薬剤量から薬剤吐出量を減算することにより、貯留量を推定してもよい。 The drug amount acquisition unit 222 is a functional unit that estimates the current storage amount of the drug in the drug tank 104 . The drug amount acquisition unit 222 may estimate the storage amount from the weight of the drone 100 measured by the weight measurement unit 211a. Further, the drug amount acquisition unit 222 may have a function of estimating the liquid level in the drug tank 104, for example. The drug amount acquisition unit 222 may estimate the storage amount using a liquid level gauge, a water pressure sensor, or the like arranged in the drug tank 104 . When the drone 100 is in operation, the drug amount acquisition unit 222 calculates the drug ejection amount by integrating the ejection flow rate from the drug tank 104 measured by the flow rate sensor 510, and determines the drug ejection amount from the initially loaded drug amount. The amount of storage may be estimated by subtracting .

第1移動体406Aは、荷室821a、収容資源取得部31a、着陸検知部32aおよび補充部33aを備える。第2移動体406Bは、荷室821b、収容資源取得部31b、着陸検知部32bおよび補充部33bを備える。第1移動体406Aと第2移動体406Bの構成は略同一である。荷室821aおよび821bは、前述した荷室821の構成と同一である。 The first mobile unit 406A includes a luggage compartment 821a, a storage resource acquisition unit 31a, a landing detection unit 32a, and a replenishment unit 33a. The second moving body 406B includes a luggage compartment 821b, a storage resource acquisition unit 31b, a landing detection unit 32b, and a replenishment unit 33b. The configurations of the first moving body 406A and the second moving body 406B are substantially the same. Luggage compartments 821a and 821b have the same configuration as luggage compartment 821 described above.

収容資源取得部31a、31bは、移動体406A、406Bが保有する資源の量を計量する機能部である。資源の量は、充電済みのバッテリ502の個数や薬剤量を含む。また、資源の量は、バッテリ502を充電する設備の充電余力であってもよい。ドローン100a、100bが燃料電池で駆動する構成の場合は、ドローン100a、100bに貯留可能な燃料ガス、例えば水素ガスの量であってもよい。移動体406A、406Bに準備されている資源の量は、使用者402による手入力によって取得されてもよいし、自動で取得する構成であってもよい。自動で取得する構成の例としては、薬剤量を取得するために荷室821の所定範囲の重量を計測する構成を有していてもよい。また、充電済みのバッテリ502の個数を取得するために、荷室821の所定範囲の重量に加えて、バッテリ502の蓄電量を測定する構成を有していてもよい。 The accommodation resource acquisition units 31a and 31b are functional units that measure the amount of resources held by the moving bodies 406A and 406B. The amount of resources includes the number of charged batteries 502 and the amount of medicine. In addition, the amount of resources may be the remaining charge capacity of the equipment that charges the battery 502 . If the drones 100a and 100b are configured to be driven by fuel cells, it may be the amount of fuel gas, such as hydrogen gas, that can be stored in the drones 100a and 100b. The amount of resources prepared for the moving bodies 406A and 406B may be obtained manually by the user 402, or may be obtained automatically. As an example of an automatic acquisition configuration, a configuration may be employed in which the weight of a predetermined range in luggage compartment 821 is measured in order to acquire the drug amount. Further, in order to obtain the number of charged batteries 502, in addition to the weight of the luggage compartment 821 within a predetermined range, the storage amount of the batteries 502 may be measured.

着陸検知部32a、32bは、移動体406A、406Bにドローン100が着陸しているか否かを検知する機能部である。着陸検知部32a、32bは、例えば足受部826に搭載されているタッチスイッチや静電容量センサ等、ドローン100の足107-1乃至107-4を検出する構成により、ドローン100が移動体406A、406Bに着陸しているか否かを検知する。着陸検知部32a、32bは、ドローンシステム500内にドローン100が複数ある場合は、足107-1乃至107-4からドローン100の固有情報を取得することで、いずれのドローン100が着陸しているかを識別可能であってもよい。また、着陸検知部32a、32bは、RTK-GPS等により各ドローン100の位置情報を取得することで、着陸しているドローン100を識別してもよい。 The landing detection units 32a and 32b are functional units that detect whether or not the drone 100 has landed on the moving objects 406A and 406B. The landing detection units 32a and 32b are configured to detect the feet 107-1 to 107-4 of the drone 100, for example, touch switches and capacitance sensors mounted on the foot receiving unit 826. , 406B to detect whether it has landed. When there are a plurality of drones 100 in the drone system 500, the landing detection units 32a and 32b acquire the unique information of the drones 100 from the legs 107-1 to 107-4 to determine which drone 100 has landed. may be identifiable. Also, the landing detection units 32a and 32b may identify the landing drone 100 by acquiring the position information of each drone 100 using RTK-GPS or the like.

補充部33a、33bは、移動体406A、406Bに着陸しているドローン100に資源を補充する機能部である。補充部33a、33bは、前述したように、移動体406A、406Bに着陸しているドローン100に搭載されているバッテリ502に充電することができる。また、補充部33a、33bは、薬剤タンク104に貯留される薬剤の補充を行うことができる。 Replenishment units 33a and 33b are functional units that replenish resources to drones 100 landing on moving bodies 406A and 406B. As described above, the replenishment units 33a and 33b can charge the batteries 502 mounted on the drones 100 landing on the moving bodies 406A and 406B. Further, the replenishment units 33a and 33b can replenish the medicine stored in the medicine tank 104. As shown in FIG.

動作決定装置40は、ドローン100および移動体406aの作業計画を決定する機能部である。動作決定装置40は、資源補充決定部41、通知部42、優先順位切替部43、充電計画部44、および着陸位置決定部45を備える。 The motion determination device 40 is a functional unit that determines the work plan of the drone 100 and the moving body 406a. Operation determination device 40 includes resource replenishment determination unit 41 , notification unit 42 , priority switching unit 43 , charging plan unit 44 , and landing position determination unit 45 .

資源補充決定部41は、それぞれの移動体406A、406Bに収容されている資源の量が所定の条件を満たしているか否かを判定し、当該移動体406A、406Bに資源を補充することを決定する機能部である。 The resource replenishment determination unit 41 determines whether or not the amount of resources accommodated in each of the moving bodies 406A and 406B satisfies a predetermined condition, and determines to replenish the resources to the moving bodies 406A and 406B. It is a functional part that

資源補充決定部41は、移動体406A、406Bに収容されている資源の量を取得する移動体資源取得部411を備える。移動体資源取得部411は、ドローンシステム500に含まれる複数の移動体406A、406Bごとに、収容されている資源の量を取得する。移動体資源取得部411は、移動体406A、406Bがそれぞれ有する収容資源取得部31a、31bを介して、資源の量を取得してもよい。 The resource replenishment determination unit 41 includes a mobile resource acquisition unit 411 that acquires the amount of resources accommodated in the mobile units 406A and 406B. The mobile object resource acquisition unit 411 acquires the amount of resources accommodated for each of the plurality of mobile objects 406A and 406B included in the drone system 500. FIG. The mobile resource acquisition unit 411 may acquire the amount of resources via the accommodation resource acquisition units 31a and 31b of the mobile units 406A and 406B, respectively.

資源補充決定部41は、例えば、移動体406A、406Bに収容されている資源の量が所定未満であるとき、当該移動体406A、406Bに資源を補充することを決定する。本実施形態のように、ドローンシステム500に移動体406aが複数含まれている場合は、移動体406A、406Bごとに資源の補充要否を決定する。 The resource replenishment determination unit 41 determines to replenish resources to the moving bodies 406A and 406B, for example, when the amount of resources accommodated in the moving bodies 406A and 406B is less than a predetermined amount. When the drone system 500 includes a plurality of moving bodies 406a as in the present embodiment, whether or not to replenish resources is determined for each of the moving bodies 406A and 406B.

また、資源補充決定部41は、ドローン100の作業計画を参照して、移動体406A、406Bに収容されている資源の量が、作業計画においてドローン100に補充する計画値を下回っているとき、移動体406A、406Bに資源を補充することを決定してもよい。本実施形態のように、ドローンシステム500に移動体406aが複数含まれている場合は、作業計画に予定されている移動体406aごとの補充の計画を参照し、移動体406A、406Bに資源を補充することを決定してもよい。 In addition, the resource replenishment determining unit 41 refers to the work plan of the drone 100, and when the amount of resources housed in the moving bodies 406A and 406B is less than the planned value for replenishing the drone 100 in the work plan, A decision may be made to replenish resources for the mobiles 406A, 406B. When the drone system 500 includes a plurality of mobile bodies 406a as in the present embodiment, the replenishment plan for each mobile body 406a scheduled in the work plan is referenced, and resources are allocated to the mobile bodies 406A and 406B. You may decide to supplement.

資源補充決定部41は、資源の補充が決定される移動体406A、406Bを、資源を補充可能な位置に移動させることを決定する。資源を補充可能な位置とは、例えば移動体406A、406Bの自動運転許可エリア90の端部である。自動運転許可エリア90の端部は、自動運転許可エリア90と自動運転不許可エリア91との境界部全てが含まれる。使用者402は別途の倉庫から資源を運搬し、自動運転許可エリア90の外周近傍まで資源を運搬する。移動体406A、406Bが資源補充のために自動運転許可エリア90の端部まで移動する構成によれば、使用者402は自動運転許可エリア90の外部から移動体406A、406Bにアプローチして、移動体406A、406Bに資源を補充することができる。使用者402含め人、車等の侵入者が自動運転許可エリア90に侵入すると、移動体406A、406B又はドローン100に衝突するおそれがある。また、自動運転許可エリア90に侵入者が侵入するとき、移動体406A、406B又はドローン100の動作を停止させる構成を有している場合がある。本構成によれば、使用者402は自動運転許可エリア90に侵入せずに資源を補充できるので、安全であり、移動体406A、406B又はドローン100の動作を継続することができる。 The resource replenishment decision unit 41 decides to move the moving bodies 406A and 406B for which resource replenishment is decided to a resource replenishable position. The positions where resources can be replenished are, for example, the ends of the automatic operation permitted area 90 of the moving bodies 406A and 406B. The edge of the automatic driving permitted area 90 includes the entire border between the automatic driving permitted area 90 and the automatic driving non-permitted area 91 . The user 402 transports the resource from a separate warehouse and transports the resource to the vicinity of the outer circumference of the automatic operation permitted area 90 . According to the configuration in which the moving bodies 406A and 406B move to the end of the automatic operation permitting area 90 for resource replenishment, the user 402 approaches the moving bodies 406A and 406B from outside the automatic driving permitting area 90 and moves. Bodies 406A, 406B can be replenished with resources. If an intruder such as a person or a car including the user 402 enters the automatic operation permitted area 90, there is a risk of colliding with the moving objects 406A and 406B or the drone 100. FIG. In addition, when an intruder enters the automatic operation permitted area 90, there may be a configuration that stops the operation of the moving bodies 406A and 406B or the drone 100. FIG. According to this configuration, the user 402 can replenish resources without intruding into the automatic operation permitted area 90, so that it is safe and the operation of the moving objects 406A, 406B or the drone 100 can be continued.

資源補充決定部41は、通知部42を介して、移動体406A、406Bに資源の補充が必要であるとき、ドローンシステム500内の各種構成、例えば操作器401や小型携帯端末401aにその旨を通知する。通知部42は、資源補充が必要である旨の情報をドローンシステム500内の各種構成に送信する機能部である。 When the moving objects 406A and 406B need to be replenished with resources, the resource replenishment determination unit 41 notifies various components in the drone system 500, such as the operation device 401 and the small portable terminal 401a, via the notification unit 42. Notice. The notification unit 42 is a functional unit that transmits information indicating that resource replenishment is necessary to various components within the drone system 500 .

同通知を受信した操作器401や小型携帯端末401aは、使用者402に通知し、移動体406A、406Bの在庫の補充を促す。このとき、操作器401や小型携帯端末401aは、作業計画を参照して、補充すべき資源量を移動体406A、406Bごとに表示してもよい。また、操作器401や小型携帯端末401aは、作業計画を参照して、ドローン100a、100bが補充のために帰還する予想時刻、又は現時刻を基準として帰還するまでの所要時間を算出し、資源の補充がいつまでに必要なのかを合わせて表示してもよい。この構成によれば、使用者402が圃場403a、403bから離れて遠方にいる場合であっても、小型携帯端末401aを通じて在庫の補充に関する通知を受け取ることができる。本システムにおいては、ドローン100a、100b、および移動体406A、406Bがそれぞれ自動で動作するため、使用者402による作業は、移動体406A,406Bへの在庫補充にほぼ限られる。そのため、遠隔にいる使用者402に在庫補充の情報を通知可能とすることにより、使用者402は常時圃場403a、403bにいる必要がなくなる。 The operating device 401 and the small portable terminal 401a that have received the notification notify the user 402 and urges the mobile units 406A and 406B to replenish the inventory. At this time, the operation device 401 and the small portable terminal 401a may refer to the work plan and display the amount of resources to be replenished for each of the moving bodies 406A and 406B. In addition, the operation device 401 and the small portable terminal 401a refer to the work plan, calculate the estimated time that the drones 100a and 100b will return for replenishment, or the time required to return based on the current time, and By when the replenishment of is required may also be displayed. According to this configuration, even when the user 402 is far away from the fields 403a and 403b, it is possible to receive the notification regarding stock replenishment through the small portable terminal 401a. In this system, the drones 100a and 100b and the moving bodies 406A and 406B operate automatically, respectively, so the work by the user 402 is almost limited to restocking the moving bodies 406A and 406B. Therefore, by making it possible to notify the remote user 402 of inventory replenishment information, the user 402 does not need to be in the fields 403a and 403b all the time.

なお、操作器401及び小型携帯端末401aは、上述の情報と共に、ドローン100および移動体406aの現在の位置および作業状態、すなわちドローン100が散布中、撮影中、又は準備中であるかの情報、および移動体406aが移動中であるか否かの情報を表示してもよい。また、操作器401及び小型携帯端末401aは、圃場403における作業の進行状況、すなわち作業が進んでいるか使用者402の介入待ちであるかの情報や、作業の完了有無、作業完了率を表示してもよい。 Note that the operator 401 and the small portable terminal 401a, along with the above-mentioned information, the current position and working status of the drone 100 and the moving object 406a, that is, information on whether the drone 100 is spraying, photographing, or preparing; and information as to whether or not the moving object 406a is moving. In addition, the operation device 401 and the small portable terminal 401a display the progress of work in the field 403, that is, information indicating whether the work is progressing or waiting for the intervention of the user 402, whether the work is completed, and the work completion rate. may

小型携帯端末401aは、操作器401に表示される情報のうち一部の情報のみを表示してもよいし、さらに一部の情報についてのみ音等別途の発報手段により発報してもよい。例えば、小型携帯端末401aには、4406aへの資源の補充が必要な場合や、総作業が完了して片付けが必要な場合など、使用者402の介入が必要な時点の情報、および各時点の予測に関する情報のみ小型携帯端末401aに表示がなされるように構成されていてもよい。また、移動体406aへの資源の補充が必要な時点、総作業が完了した時点、および異常が発生した時点において、使用者402に発報してもよい。 The small portable terminal 401a may display only a part of the information displayed on the operation device 401, or may report only a part of the information by a separate reporting means such as sound. . For example, in the small portable terminal 401a, there is information at the time when the user 402 needs to intervene, such as when resources for the 4406a need to be replenished, or when the total work is completed and cleanup is needed, and information on each time. It may be configured such that only information related to prediction is displayed on the small portable terminal 401a. Also, the user 402 may be notified at the time when the moving body 406a needs to be replenished with resources, when the total work is completed, and when an abnormality occurs.

なお、在庫の補充は、充分な資源が保有されている別の移動体から補充してもよいし、別途の倉庫から補充してもよい。操作器401や小型携帯端末401aは、いずれから資源を補充するかを表示してもよい。別の移動体から補充することで、作業完了後に移動体から倉庫に格納する手間が短縮できる。したがって、別の移動体からの補充を優先的に行うよう決定してもよい。 Note that the inventory may be replenished from another moving body that has sufficient resources, or from a separate warehouse. The operating device 401 or the small portable terminal 401a may display which resource is to be replenished. By replenishing from another moving body, it is possible to reduce the time and effort required to store it in the warehouse from the moving body after the completion of the work. Therefore, it may be decided to prioritize replenishment from another mobile unit.

優先順位切替部43は、動作決定装置40が、総作業時間と総蓄電量のどちらを優先して作業計画を決定するかを切り替える機能部である。使用者402が圃場403近傍にいて作業を監視している場合は、作業が早く終わることが望ましい一方、使用者402が遠隔地にいる場合は、総蓄電量を優先した方が、作業コストが節約できるため、望まれる場合がある。優先順位切替部43は、使用者402からの入力に基づいて優先順位を決定してもよい。また、優先順位切替部43は、使用者402が有する小型携帯端末401aの位置情報に基づいて、使用者402が圃場403の作業を監視しているか否かを判別し、優先順位を切り替え可能に構成されていてもよい。 The priority switching unit 43 is a functional unit that switches whether the operation determining device 40 gives priority to the total working time or the total amount of electricity to determine the work plan. When the user 402 is in the vicinity of the field 403 and is monitoring the work, it is desirable that the work be completed quickly. It saves money and may be desired. The priority switching unit 43 may determine the priority based on an input from the user 402. FIG. Also, the priority switching unit 43 determines whether or not the user 402 is monitoring the work in the field 403 based on the position information of the small portable terminal 401a possessed by the user 402, and can switch the priority. may be configured.

充電計画部44は、総充電率分の蓄電量をドローン100のバッテリ502に充電するための充電計画を決定する。充電計画は、作業計画の一部であり、ドローン100が移動体406A、406Bに帰還して充電を行うタイミング、充電時間、および充電回数を含む。充電を行うタイミングとは、例えば、充電を行う時刻、又は、ドローン100の離陸時等所定の基準時点から充電を行う時点までの経過時間である。充電時間は、1回の充電ごとに充電を行う時間である。充電回数は、作業計画内において充電を行う回数である。 The charging plan unit 44 determines a charging plan for charging the battery 502 of the drone 100 with the amount of electricity stored for the total charging rate. The charging plan is a part of the work plan, and includes the timing, charging time, and number of charging times for drone 100 to return to mobile objects 406A and 406B for charging. The timing of charging is, for example, the time of charging, or the elapsed time from a predetermined reference time such as when the drone 100 takes off to the time of charging. The charging time is the time for charging each charge. The number of times of charging is the number of times charging is performed within the work plan.

充電計画部44は、充電率取得部441、必要充電量取得部442および充電率-充電時間記憶部443を備える。 The charging planning unit 44 includes a charging rate acquiring unit 441 , a required charging amount acquiring unit 442 and a charging rate-charging time storage unit 443 .

充電率取得部441は、ドローン100に搭載されているバッテリ502の現在の充電率を取得する機能部である。充電率は、SOC(state of charge)とも呼ばれ、バッテリ502が完全充電された状態から放電した電気量を除いた残りの割合であり、残容量ともいう。充電率取得部441は、ドローン100の蓄電量取得部221から蓄電量を取得する。また、充電率取得部441は、移動体406A、406Bに着陸しているドローン100のバッテリ502の蓄電量を計測する構成であってもよい。 The charging rate acquisition unit 441 is a functional unit that acquires the current charging rate of the battery 502 mounted on the drone 100 . The charging rate is also referred to as SOC (state of charge), which is the remaining rate of the fully charged state of the battery 502 excluding the amount of discharged electricity, and is also referred to as remaining capacity. The charging rate acquisition unit 441 acquires the stored power amount from the stored power amount acquisition unit 221 of the drone 100 . Also, the charging rate acquisition unit 441 may be configured to measure the amount of charge in the batteries 502 of the drones 100 landing on the moving bodies 406A and 406B.

必要充電量取得部442は、ドローン100の作業計画の完遂に必要な総充電量を取得する機能部である。作業計画は、1又は複数の圃場を飛行して行う作業、例えば薬剤散布や監視作業である。作業計画は、ドローン100が移動体406A、406Bに帰還してバッテリ502を充電し、圃場への作業を再開する動作を含む。総充電量は、充電のために帰還するのに要するバッテリ502の蓄電量も含む。総充電量は、作業計画中に充電する動作を含むため、ドローン100が保持可能なエネルギーを超えていてもよく、すなわち充電率に換算して100%を超える値であってもよい。作業計画は、使用者402又は別途の構成により指定される作業エリアの情報に基づいて、自動又は手動で策定される。 The required charge amount acquisition unit 442 is a functional unit that acquires the total charge amount required for completing the work plan of the drone 100 . The work plan is work to be performed by flying over one or more fields, such as chemical spraying or monitoring work. The work plan includes operations for drones 100 to return to moving bodies 406A and 406B, charge batteries 502, and resume work on fields. The total charge also includes the storage of battery 502 required to return for charging. Since the total charge includes the operation of charging during the work plan, it may exceed the energy that the drone 100 can hold, that is, it may exceed 100% in terms of charging rate. A work plan is developed automatically or manually based on the work area information specified by the user 402 or another configuration.

充電率-充電時間記憶部443は、バッテリ502の充電率と、当該充電率を有するドローンに所定量を充電するための所要時間が対応付けられて記憶されている機能部である。 The charging rate-charging time storage unit 443 is a functional unit that stores the charging rate of the battery 502 and the required time for charging a drone having the charging rate to a predetermined amount in association with each other.

図14に示すように、バッテリ502の充電率と所要時間とは非線形である。充電率が小さい場合、短時間の充電で充電率を大きく上昇させることができる。充電率が大きい場合、充電率を上昇させるのにより多くの時間が必要になる。同図の例では、充電率が0%において充電を開始すると、初めの30分で充電率は80%に達する。一方、充電率80%から100%まで充電するためには、さらに150分を要する。 As shown in FIG. 14, the charge rate and duration of battery 502 are non-linear. When the charging rate is small, charging for a short period of time can greatly increase the charging rate. If the charge rate is large, more time is required to increase the charge rate. In the example shown in the figure, when charging is started at a charging rate of 0%, the charging rate reaches 80% in the first 30 minutes. On the other hand, it takes an additional 150 minutes to charge from 80% to 100%.

充電率-充電時間記憶部443は、図14に示されるような充電率と充電時間との対応関係を記憶している。充電率-充電時間記憶部443は、充電率と充電時間との複数の組み合わせをテーブルとして記憶していてもよいし、数式で保持していてもよい。充電率-充電時間記憶部443は、バッテリ502の個体ごとに、異なる対応関係を記憶してもよい。バッテリ502は使用回数等により劣化するため、バッテリ502ごとに対応関係が異なる場合があるためである。充電率-充電時間記憶部443は、バッテリ502に記憶されている情報、例えば使用履歴に基づいて、計算に使用する対応関係を呼び出すように構成されていてもよい。また、充電率-充電時間記憶部443が、当該対応関係を算出して記憶するように構成されていてもよい。充電率-充電時間記憶部443は、温度等の他の要素に応じて対応関係を補正してもよい。 The charging rate-charging time storage unit 443 stores the correspondence relationship between the charging rate and the charging time as shown in FIG. The charging rate-charging time storage unit 443 may store a plurality of combinations of charging rates and charging times as a table, or may hold them as mathematical expressions. The charging rate-charging time storage unit 443 may store different correspondence relationships for each individual battery 502 . This is because the battery 502 deteriorates due to the number of times it is used, etc., and the corresponding relationship may differ for each battery 502 . The charging rate-charging time storage unit 443 may be configured to call the correspondence used for calculation based on the information stored in the battery 502, such as the usage history. Also, the charging rate-charging time storage unit 443 may be configured to calculate and store the corresponding relationship. The charging rate-charging time storage unit 443 may correct the correspondence relationship according to other factors such as temperature.

充電計画部44は、バッテリ502の蓄電量が所定未満になる時点を予想して、ドローン100を帰還させる時点を決定してもよい。また、充電計画部44は、充電を終了して作業を再開する条件を判別可能に構成されていてもよい。例えば、充電計画部44は、充電率が所定の条件になるとき充電を終了して圃場内作業を再開するように構成されていてもよい。さらに言えば、充電計画部44は、充電率が所定値以上になるとき充電を終了するよう構成されていてもよい。当該所定値は、例えば70%未満であってもよいし、50%未満であってもよい。さらに、充電計画部44は、充電中における蓄電量又は充電率を随時計測し、充電速度を算出した上で、充電速度が所定以下になるとき充電を終了するよう構成されていてもよい。充電率が上昇するにつれて充電速度が下がるため、所定以上の充電速度が発揮される範囲において充電を行うことで、充電効率を向上させることができる。 The charging planning unit 44 may determine the time to return the drone 100 by predicting the time when the amount of charge in the battery 502 becomes less than a predetermined amount. Also, the charging planning unit 44 may be configured to be able to determine conditions for terminating charging and resuming work. For example, the charging planning unit 44 may be configured to terminate charging and resume work in the field when the charging rate meets a predetermined condition. Furthermore, the charging scheduler 44 may be configured to terminate charging when the charging rate reaches or exceeds a predetermined value. The predetermined value may be, for example, less than 70% or less than 50%. Furthermore, the charging planning unit 44 may be configured to measure the amount of stored electricity or the charging rate during charging as needed, calculate the charging speed, and terminate charging when the charging speed becomes equal to or less than a predetermined value. Since the charging speed decreases as the charging rate rises, the charging efficiency can be improved by performing charging in a range where a predetermined charging speed or higher is exhibited.

図15に示すように、バッテリ502の充電率と蓄電量は、略線形である。蓄電量は、ドローン100の動作にかかるエネルギーに相当し、バッテリ502の充電率には関わらない。すなわち、例えば、充電率が100%のバッテリ502を90%になるまで放電させて発生するエネルギー量と、充電率が20%のバッテリ502を10%になるまで放電させて発生するエネルギー量とは略同一である。一方で、図14に示すように、充電率に応じて充電時間が異なり、充電率が低い範囲の方が同蓄電量の充電が速い。そこで、充電時間に対する充電率の上昇の割合、すなわち充電速度の速い範囲で繰り返し充電しながら作業をするようドローン100の作業計画を決定することで、充電に要する時間を短縮し、作業効率を向上させることができる。 As shown in FIG. 15, the charging rate and the amount of charge of battery 502 are substantially linear. The amount of stored electricity corresponds to the energy required for the operation of the drone 100 and is not related to the charging rate of the battery 502 . That is, for example, the amount of energy generated by discharging the battery 502 with a charging rate of 100% to 90% and the amount of energy generated by discharging the battery 502 with a charging rate of 20% to 10% They are almost identical. On the other hand, as shown in FIG. 14, the charging time differs depending on the charging rate, and charging of the same amount of electricity is faster in the lower charging rate range. Therefore, by determining the rate of increase in the charging rate to the charging time, that is, the work plan of the Drone 100 to work while repeatedly charging in the high charging speed range, the time required for charging is shortened and work efficiency is improved. can be made

充電計画部44は、ドローン100への充電の所要時間(充電時間)、当該充電により得られる充電率、および充電率に基づく飛行可能時間に基づいて、充電のための作業中断時間を含む総作業時間が最も短くなる充電計画を決定する。より具体的には、充電計画部44は、充電時間および飛行可能時間の合計が最短となるような充電計画を決定する。充電計画部44は、充電率が満充電より低い所定範囲で使用されるように充電計画を決定してもよい。 The charging planning unit 44 calculates the total work including work interruption time for charging based on the time required for charging the drone 100 (charging time), the charging rate obtained by the charging, and the flightable time based on the charging rate. Determine the charging plan that will result in the shortest time. More specifically, the charging plan unit 44 determines a charging plan that minimizes the sum of the charging time and the flightable time. The charging plan unit 44 may determine the charging plan so that the charge rate is used within a predetermined range lower than the full charge.

図16の例を用いて、総作業の開始から終了までの流れについて説明する。図16(a)に示すように、総作業時間は、移動体-圃場間移動時間60a乃至60hと、圃場内作業時間61a乃至61dと、充電時間62a乃至62cと、の総和である。まず、ドローン100は、移動体-圃場間移動時間60aをかけて、移動体406aから圃場403への移動を行う。ドローン100が圃場403に到達すると、圃場内作業時間61a乃至61dにおいて、圃場内作業を行う。ドローン100は、圃場内作業を適宜中断して、移動体―圃場間移動時間60b、60d、60fをかけて移動体406aに帰還し、充電時間62a乃至62cだけ充電を行う。所定の充電の後、ドローン100は、移動体―圃場間移動時間60c、60e、60gで圃場403に戻り、圃場内作業を再開する。圃場内作業が完了すると、移動体―圃場間移動時間60hにより移動体406aに帰還し、総作業を終了する。なお、本実施例においては充電回数は3回であるが、本願発明の技術的範囲はこれに限られない。なお、複数回の充電回数を設定する構成によれば、ドローン100に充電可能なエネルギーが少量である場合にも、自動で充電を繰り返し、総作業時間が長時間にわたる作業が可能である。ドローン100に搭載されるバッテリ502等のエネルギー保持機能部を小型かつ軽量に構成することができる。また、複数回の充電を行う構成であるので、充電速度の速い範囲で充電を繰り返すことは、総作業時間の短縮に一層効果的である。 Using the example of FIG. 16, the flow from start to finish of the total work will be described. As shown in FIG. 16(a), the total working time is the sum of moving body-field moving times 60a to 60h, in-field working times 61a to 61d, and charging times 62a to 62c. First, the drone 100 moves from the moving body 406a to the farm field 403 over the moving body-farm field movement time 60a. When the drone 100 reaches the field 403, it performs field work during field work times 61a to 61d. The drone 100 appropriately interrupts the work in the field, returns to the moving body 406a over the moving body-to-field moving times 60b, 60d, and 60f, and charges for the charging times 62a to 62c. After a predetermined charge, the drone 100 returns to the field 403 at mobile-to-field travel times 60c, 60e, and 60g, and resumes field work. When the work in the field is completed, it returns to the moving body 406a with the movement time between the moving body and the field of 60h, and completes the total work. Although the number of times of charging is three in this embodiment, the technical scope of the present invention is not limited to this. In addition, according to the configuration in which the number of times of charging is set multiple times, even when the amount of energy that can be charged to the drone 100 is small, the charging is automatically repeated, and the total work time is long. The energy retention function unit such as the battery 502 mounted on the drone 100 can be configured to be small and lightweight. In addition, since the battery is charged a plurality of times, repeating the charging within a high charging speed range is more effective in shortening the total working time.

図16(b)に示すように、圃場内作業の作業完了率は、総作業の開始時点においては0%である。作業完了率は、圃場内作業時間61a乃至61dにおいて上昇し、総作業時間のうち圃場内作業時間61a乃至61dを除いた作業中断時間63a乃至63cにおいては、変化しない。作業完了率は、圃場内作業時間61dの終点において100%に達する。 As shown in FIG. 16(b), the work completion rate of field work is 0% at the start of the total work. The work completion rate increases during the field work hours 61a to 61d, and does not change during the work interruption times 63a to 63c, which are the total work hours excluding the field work times 61a to 61d. The work completion rate reaches 100% at the end of the field work time 61d.

図16(c)に示すように、ドローン100に搭載されているバッテリ502の充電率は、充電時間62a乃至62cを除いた飛行時間64a乃至64dにおいて下降し、充電時間62a乃至62cにおいては上昇する。なお、充電時間62a乃至62cにおける充電率の上昇の様子は、図14に対応しており、非線形である。例えば、約30分間充電を行うことで、ドローン100は約10分間飛行することができる。 As shown in FIG. 16(c), the charging rate of the battery 502 mounted on the drone 100 decreases during the flight times 64a to 64d excluding the charging times 62a to 62c, and increases during the charging times 62a to 62c. . Note that the manner in which the charging rate rises during the charging times 62a to 62c corresponds to FIG. 14 and is nonlinear. For example, the drone 100 can fly for about 10 minutes by charging for about 30 minutes.

作業開始時の蓄電量による飛行時間64aに加えて、1回の作業中断時間63aと、当該作業中断時間により得られる飛行時間64bの和を、充電回数分積算し、開始時および終了時の移動体-圃場間移動時間60a,60hを足すことで、総作業時間が算出できる。充電計画部44は、総作業時間が最小となる作業中断時の充電率および1回の作業中断時間を決定することにより、充電計画を決定する。 In addition to the flight time 64a based on the amount of electricity stored at the start of work, the sum of one work interruption time 63a and the flight time 64b obtained from the work interruption time is integrated for the number of times of charging, and movement at the start and end The total working time can be calculated by adding the 60a and 60h travel times between the body and the field. The charging plan unit 44 determines the charging plan by determining the charging rate at the time of work interruption that minimizes the total work time and the time for one work interruption.

総作業のうち最後の充電における充電時間62cは、他の充電時間62a、62bとは異なっていてもよい。特に、最後の充電時間62cは、他の充電時間62a、62bより短くてもよい。総作業中の最後の圃場内作業時間61dは、ほとんどの場合、他の圃場内作業時間61a乃至61cに比べて短いため、作業を完了させるのに要する蓄電量だけ充電すれば足りるためである。このように構成することにより、充電時間62cを短縮し、総作業時間を短くすることができる。 The charge time 62c for the last charge of the total work may be different than the other charge times 62a, 62b. In particular, the last charging time 62c may be shorter than the other charging times 62a, 62b. This is because, in most cases, the last in-field work time 61d of the total work is shorter than the other in-field work times 61a to 61c, and therefore it is sufficient to charge the power storage amount necessary to complete the work. By configuring in this way, the charging time 62c can be shortened, and the total working time can be shortened.

着陸位置決定部45は、ドローン100a、100bの着陸位置を決定する機能部である。例えば、着陸位置決定部45は、それぞれ複数の移動体406A、406Bのいずれに着陸させるかを決定する機能部である。1個のドローンシステム500が複数の移動体406A、406Bを有する構成においては、圃場403a、403b周辺に複数の移動体406A、406Bが存在している。着陸位置決定部45によれば、ドローン100は離陸した移動体406A、406Bに着陸する必要はなく、より条件に合致する移動体406A、406Bを判別して着陸することができる。また、着陸位置決定部45は、移動体406A、406B上に限らず、地面にドローン100a、100bを着陸させることを決定してもよい。例えば、後述するように、複数のドローンが同じ移動体406A、406Bに着陸したい場合に、一方を地面に着陸させて待機する決定を行うことも可能である。 The landing position determination unit 45 is a functional unit that determines the landing positions of the drones 100a and 100b. For example, the landing position determination unit 45 is a functional unit that determines on which of the plurality of moving bodies 406A and 406B each is to land. In a configuration in which one drone system 500 has multiple moving bodies 406A and 406B, multiple moving bodies 406A and 406B exist around fields 403a and 403b. According to the landing position determination unit 45, the drone 100 does not need to land on the mobile bodies 406A and 406B that have taken off, and can land by determining the mobile bodies 406A and 406B that more closely match the conditions. Also, the landing position determining unit 45 may determine to land the drones 100a and 100b not only on the moving bodies 406A and 406B but also on the ground. For example, as described below, if multiple drones wish to land on the same vehicle 406A, 406B, one may decide to land on the ground and wait.

着陸位置決定部45は、蓄電量取得部451および移動情報取得部452を備える。 The landing position determination unit 45 includes a power storage amount acquisition unit 451 and a movement information acquisition unit 452 .

蓄電量取得部451は、バッテリ502の蓄電量を取得する機能部である。 The power storage amount acquisition unit 451 is a functional unit that acquires the power storage amount of the battery 502 .

移動情報取得部452は、移動体406A、406Bの位置と、移動体406A、406Bが、ドローン100の着陸予定位置に到達するまでの到達所要時間を含む、移動体406A、406Bの移動情報を取得する。また、移動情報は、移動体406A、406Bそれぞれに収容されている資源の量を含んでいてもよい。さらに、移動情報は、移動体406A、406Bにドローン100が着陸しているか否かの情報を含んでいてもよい。 The movement information acquisition unit 452 acquires movement information of the moving bodies 406A and 406B, including the positions of the moving bodies 406A and 406B and the time required for the moving bodies 406A and 406B to reach the planned landing position of the drone 100. do. The mobility information may also include the amount of resources housed in each of the mobiles 406A, 406B. Further, the movement information may include information on whether or not the drone 100 has landed on the moving objects 406A, 406B.

着陸位置決定部45は、複数の移動体406A、406Bのうち、ドローン100に補充が必要な資源量を保有している移動体406A、406Bにドローン100a、100bを着陸させることを決定してもよい。また、着陸位置決定部46は、ドローン100a、100bに補充が必要な資源量を保有している移動体406A、406Bのうち、最も保有量の少ない移動体にドローン100a、100bを着陸させることを決定してもよい。資源は、バッテリ502の保有量であってもよいし、薬剤の保有量であってもよい。ドローン100が着陸時に補充する資源の種類に応じて、バッテリ502および薬剤のどちらの保有量に基づいて移動体406A、406Bを選別するかを決定するようになっていてもよい。この構成によれば、特定の移動体にのみ資源を補充すれば足りるため、移動体406A、406Bの在庫の移動距離および在庫を補充する回数を軽減できる。 The landing position determining unit 45 determines to land the drones 100a and 100b on the moving bodies 406A and 406B that have the amount of resources required to replenish the drone 100 among the plurality of moving bodies 406A and 406B. good. In addition, the landing position determination unit 46 determines that the drones 100a and 100b should be landed on the mobile body with the least amount of resources among the mobile bodies 406A and 406B that have the amount of resources required to replenish the drones 100a and 100b. may decide. The resource may be the amount of battery 502 held, or the amount of medicine held. Depending on the type of resource replenished when the drone 100 lands, it may be determined based on which of the battery 502 or the drug is retained to sort out the moving bodies 406A and 406B. According to this configuration, it is sufficient to replenish resources only for specific moving bodies, so the moving distance of the inventory of the moving bodies 406A and 406B and the number of times of replenishing the inventory can be reduced.

着陸位置決定部45は、複数の移動体406A、406Bのうち、他のドローン100が着陸していない移動体にドローン100を着陸させることを決定してもよい。一方のドローン100が着陸している移動体には、他方のドローン100を着陸させることができない。したがって、この構成によれば、複数のドローン100a、100bが干渉することなく同時に移動体406A、406Bに着陸することができる。すなわち、複数のドローン100a、100bに対する資源の補充が同時に可能になり、総作業時間を短縮し、効率良く作業を行うことができる。 The landing position determining unit 45 may determine to land the drone 100 on one of the plurality of moving bodies 406A and 406B to which other drones 100 have not landed. The other drone 100 cannot be landed on the mobile object on which one drone 100 is landing. Therefore, according to this configuration, multiple drones 100a and 100b can simultaneously land on moving bodies 406A and 406B without interference. That is, it is possible to simultaneously replenish resources for a plurality of drones 100a and 100b, shorten the total work time, and efficiently perform work.

着陸位置決定部45は、複数のドローン100a、100bが同じ移動体406Aに着陸を予定していて、一方のドローン100aが移動体406Aへの帰還時において移動体406Aに他のドローン100bが着陸している場合は、当該ドローン100bを、地面に着陸させて待機し、他のドローン100bが離陸した後に移動体406Aに着陸するよう決定してもよい。このとき、ドローン100bは、待機中および移動体406Aへの着陸に要する蓄電量を確保した状態で、着陸して待機するように構成されていてもよい。 The landing position determination unit 45 determines that a plurality of drones 100a and 100b are scheduled to land on the same moving object 406A, and that one drone 100a is returning to the moving object 406A and the other drone 100b lands on the moving object 406A. If so, it may decide to land the drone 100b on the ground, wait, and then land on the moving object 406A after the other drone 100b takes off. At this time, the drone 100b may be configured to land and stand by while the amount of power storage required for standby and landing on the moving object 406A is ensured.

なお、本説明においては、農業用薬剤散布ドローンを例に説明したが、本発明の技術的思想はこれに限られるものではなく、撮影・監視用など他の用途のドローン全般に適用可能である。特に、自律的に動作する機械に適用可能である。また、移動体は、車両に限らず適宜の構成であってもよい。 In this description, an agricultural chemical spraying drone has been described as an example, but the technical idea of the present invention is not limited to this, and can be applied to general drones for other purposes such as shooting and monitoring. . It is particularly applicable to machines that operate autonomously. Further, the moving body is not limited to a vehicle, and may be of any suitable configuration.

(本願発明による技術的に顕著な効果)
本発明にかかるドローンシステムにおいては、ドローンのバッテリに充電する工程を管理するシステムにおいて、ドローンのバッテリ蓄電量が作業中に不足する場合にも、ドローンのバッテリに効率よく充電することができる。

(Technically Remarkable Effects of the Present Invention)
In the drone system according to the present invention, in the system that manages the process of charging the battery of the drone, the battery of the drone can be efficiently charged even when the amount of charge in the battery of the drone is insufficient during work.

Claims (16)

ドローンと、
前記ドローンに、飛行に必要なエネルギーを補充可能な補充部と、
前記ドローンの動作を決定する動作決定装置と、
を少なくとも含むドローンシステムであって、
前記ドローンには、前記ドローンが保持可能なエネルギーを超える総充電量が必要な作業計画が策定され、
前記動作決定装置は、
前記作業計画の完遂に必要な前記充電量を算出する必要充電量取得部と、
前記作業計画に含まれる作業中における複数回の充電タイミングをあらかじめ設定することで前記ドローンへ前記総充電量のエネルギーを補充するための充電計画を決定する充電計画部と、
を備える、
ドローンシステム。
drone and
a replenishment unit capable of replenishing the drone with energy necessary for flight;
a motion determination device that determines a motion of the drone;
A drone system comprising at least
the drone has a work plan that requires a total charge that exceeds the energy that the drone can hold;
The action determining device is
a required charge amount acquisition unit that calculates the total charge amount required to complete the work plan ;
a charging planning unit that determines a charging plan for replenishing the total amount of energy to the drone by presetting multiple charging timings during the work included in the work plan ;
comprising
drone system.
前記充電タイミングは、所定の基準時点からの時間経過により特定される、前記ドローンへの充電を開始する時刻である、
請求項1記載のドローンシステム。
The charging timing is a time to start charging the drone, which is specified by the passage of time from a predetermined reference time.
The drone system of claim 1.
前記ドローンへの前記複数回の充電タイミングにおけるそれぞれの充電時間を決定することによって、前記ドローンへの充電時間と、前記充電時間の充電により得られるエネルギーによる前記ドローンの飛行可能時間と、の合計が最短となるような前記充電計画を決定する、
請求項1又は2記載のドローンシステム。
By determining each charging time at the plurality of charging timings for the drone, the total of the charging time for the drone and the flightable time of the drone due to the energy obtained by charging the charging time is determining the shortest charging plan;
The drone system according to claim 1 or 2.
前記充電計画部は、前記ドローンの充電率が満充電より低い所定範囲で使用されるように充電計画を決定する、
請求項1乃至3のいずれかに記載のドローンシステム。
The charging plan unit determines the charging plan so that the drone is used within a predetermined range where the charging rate is lower than the full charge.
A drone system according to any one of claims 1 to 3.
前記充電計画部は、充電中における充電速度を算出し、前記充電速度が所定以下になるとき充電を終了する、
請求項1乃至4のいずれかに記載のドローンシステム。
The charging planning unit calculates a charging speed during charging, and terminates charging when the charging speed is equal to or lower than a predetermined value.
A drone system according to any one of claims 1 to 4.
前記ドローンの充電率と、前記充電率を有する前記ドローンに所定量を充電するための所要時間との対応関係を記憶する充電率―充電時間記憶部をさらに備え、
前記充電計画部は、前記対応関係に基づいて、前記充電計画を決定する、
請求項1乃至5のいずれかに記載のドローンシステム。
further comprising a charging rate-charging time storage unit that stores a correspondence relationship between the charging rate of the drone and the time required to charge the drone having the charging rate to a predetermined amount;
The charging plan unit determines the charging plan based on the correspondence relationship.
A drone system according to any one of claims 1 to 5.
前記ドローンシステムは複数の前記ドローンを含み、第1の前記ドローンが前記補充部により充電中のとき、第2の前記ドローンは、地面に着陸して待機し、前記第1のドローンが充電を終了した後に前記補充部による充電を行う、
請求項1乃至6のいずれかに記載のドローンシステム。
The drone system includes a plurality of the drones, and when the first drone is being charged by the replenishment unit, the second drone is on the ground and waits, and the first drone finishes charging. after charging by the replenishment unit,
A drone system according to any one of claims 1 to 6.
前記第2のドローンは、待機している地点から前記補充部における充電可能な地点まで飛行可能な蓄電量を少なくとも保持して前記地点に着陸する、
請求項7記載のドローンシステム。
The second drone lands at least a flightable charge amount from a standby point to a chargeable point in the replenishment unit and lands at the point.
The drone system according to claim 7.
前記補充部は、前記ドローンが着陸可能であり、前記ドローンと共に移動可能な移動体に配置されている、
請求項1乃至8のいずれかに記載のドローンシステム。
The replenishment unit is arranged on a mobile body on which the drone can land and which can move together with the drone.
A drone system according to any one of claims 1 to 8.
前記ドローンシステムは複数の前記ドローンを含み、前記ドローンが前記移動体への帰還時において前記移動体に他の前記ドローンが着陸しているとき、当該前記ドローンは、地面に着陸して待機し、前記他のドローンが離陸した後に前記移動体に着陸する、
請求項9記載のドローンシステム。
The drone system includes a plurality of the drones, and when the drones return to the moving body and another drone has landed on the moving body, the drones land on the ground and stand by, landing on the mobile object after the other drone takes off;
A drone system according to claim 9 .
前記ドローンおよび前記補充部の状態を使用者に通知可能な携帯端末をさらに含み、
前記携帯端末は、前記ドローンの位置および状態、前記補充部の位置および状態、ならびに前記ドローンシステムの作業が終了する予想終了時刻の少なくともいずれかを前記使用者に通知する、
請求項1乃至10のいずれかに記載のドローンシステム。
further comprising a mobile terminal capable of notifying the user of the state of the drone and the replenishment unit;
The mobile terminal notifies the user of at least one of the position and state of the drone, the position and state of the replenishment unit, and an expected end time when the work of the drone system will end.
Drone system according to any one of claims 1 to 10.
ドローンと、
前記ドローンのバッテリを充電可能な補充部と、
前記ドローンの動作を決定する動作決定装置と、
を少なくとも含むドローンシステムの制御方法であって、
前記ドローンには、前記ドローンが保持可能なエネルギーを超える総充電量が必要な作業計画が策定され、
前記作業計画の完遂に必要な前記充電量を算出するステップと、
前記作業計画に含まれる作業中における複数回の充電タイミングをあらかじめ設定することで前記ドローンへ前記総充電量のエネルギーを補充するための充電計画を決定するステップと、
を含む、ドローンシステムの制御方法。
drone and
a replenishment unit capable of charging the battery of the drone;
a motion determination device that determines a motion of the drone;
A drone system control method comprising at least
the drone has a work plan that requires a total charge that exceeds the energy that the drone can hold;
calculating the total amount of charge required to complete the work plan ;
determining a charging plan for replenishing the drone with energy of the total charging amount by presetting multiple charging timings during the work included in the work plan ;
A method of controlling a drone system, including;
ドローンと、
前記ドローンに、飛行に必要なエネルギーを補充可能な補充部と、
前記ドローンの動作を決定する動作決定装置と、
を少なくとも含むドローンシステムの制御プログラムであって、
前記ドローンには、前記ドローンが保持可能なエネルギーを超える総充電量が必要な作業計画が策定され、
前記作業計画の完遂に必要な前記充電量を算出する命令と、
前記作業計画に含まれる作業中における複数回の充電タイミングをあらかじめ設定することで前記ドローンへ前記総充電量のエネルギーを補充するための充電計画を決定する命令と、
を含む、ドローンシステムの制御プログラム。
drone and
a replenishment unit capable of replenishing the drone with energy necessary for flight;
a motion determination device that determines a motion of the drone;
A drone system control program comprising at least
the drone has a work plan that requires a total charge that exceeds the energy that the drone can hold;
an instruction to calculate the total amount of charge required to complete the work plan ;
a command for determining a charging plan for replenishing the drone with energy of the total charging amount by presetting multiple charging timings during the work included in the work plan ;
Drone system control program, including;
ドローンの位置および状態を把握し、前記ドローンの動作を決定する動作決定装置であって、
前記ドローンには、前記ドローンが保持可能なエネルギーを超える総充電量が必要な作業計画が策定され、
前記動作決定装置は、
前記作業計画の完遂に必要な前記充電量を算出する必要充電量取得部と、
前記作業計画に含まれる作業中における複数回の充電タイミングをあらかじめ設定することで前記ドローンへ前記総充電量のエネルギーを補充するための充電計画を決定する充電計画部と、
を備える、
動作決定装置。
A motion determination device that grasps the position and state of a drone and determines the motion of the drone,
the drone has a work plan that requires a total charge that exceeds the energy that the drone can hold;
The action determining device is
a required charge amount acquisition unit that calculates the total charge amount required to complete the work plan ;
a charging planning unit that determines a charging plan for replenishing the total amount of energy to the drone by presetting multiple charging timings during the work included in the work plan ;
comprising
Action decision device.
ドローンと、
前記ドローンに、飛行に必要なエネルギーを補充可能な補充部と、
前記ドローンの動作を決定する動作決定装置と、
を少なくとも含むドローンシステムに含まれるドローンであって、
前記ドローンには、前記ドローンが保持可能なエネルギーを超える総充電量が必要な作業計画が策定され、
前記動作決定装置は、
前記作業計画の完遂に必要な前記充電量を算出する必要充電量取得部と、
前記作業計画に含まれる作業中における複数回の充電タイミングをあらかじめ設定することで、前記ドローンへ前記総充電量のエネルギーを補充するための充電計画を決定する充電計画部と、
を備え、
前記ドローンは、前記充電計画に基づいて前記補充部から充電される、
ドローン。
drone and
a replenishment unit capable of replenishing the drone with energy necessary for flight;
a motion determination device that determines a motion of the drone;
A drone included in a drone system comprising at least
the drone has a work plan that requires a total charge that exceeds the energy that the drone can hold;
The action determining device is
a required charge amount acquisition unit that calculates the total charge amount required to complete the work plan ;
a charging planning unit that determines a charging plan for replenishing the drone with energy of the total charging amount by presetting multiple charging timings during the work included in the work plan ;
with
the drone is charged from the replenishment unit based on the charging plan;
drone.
ドローンと、
前記ドローンに、飛行に必要なエネルギーを補充可能な補充部を備える移動体と、
前記ドローンの動作を決定する動作決定装置と、
を少なくとも含むドローンシステムに含まれる移動体であって、
前記ドローンには、前記ドローンが保持可能なエネルギーを超える総充電量が必要な作業計画が策定され、
前記動作決定装置は、
前記作業計画の完遂に必要な前記充電量を算出する必要充電量取得部と、
前記作業計画に含まれる作業中における複数回の充電タイミングをあらかじめ設定することで、前記ドローンへ前記総充電量のエネルギーを補充するための充電計画を決定する充電計画部と、
を備え、
前記移動体は、前記充電計画に基づいて前記ドローンを充電する、
移動体。
drone and
a mobile body comprising a replenishment unit capable of replenishing the energy required for flight in the drone;
a motion determination device that determines a motion of the drone;
A mobile object included in a drone system that includes at least
the drone has a work plan that requires a total charge that exceeds the energy that the drone can hold;
The action determining device is
a required charge amount acquisition unit that calculates the total charge amount required to complete the work plan ;
a charging planning unit that determines a charging plan for replenishing the drone with energy of the total charging amount by presetting multiple charging timings during the work included in the work plan ;
with
the mobile body charges the drone based on the charging plan;
Mobile.
JP2020568142A 2019-01-23 2020-01-20 Drone system, drone, moving body, motion determination device, drone system control method, and drone system control program Active JP7169009B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019009213 2019-01-23
JP2019009213 2019-01-23
PCT/JP2020/001776 WO2020153316A1 (en) 2019-01-23 2020-01-20 Drone system, drone, mobile unit, operation determination device, drone system control method, and drone system control program

Publications (2)

Publication Number Publication Date
JPWO2020153316A1 JPWO2020153316A1 (en) 2021-10-21
JP7169009B2 true JP7169009B2 (en) 2022-11-10

Family

ID=71735608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020568142A Active JP7169009B2 (en) 2019-01-23 2020-01-20 Drone system, drone, moving body, motion determination device, drone system control method, and drone system control program

Country Status (2)

Country Link
JP (1) JP7169009B2 (en)
WO (1) WO2020153316A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6965468B1 (en) * 2021-01-26 2021-11-10 Kddi株式会社 Information processing device and information processing method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001120151A (en) 1999-10-27 2001-05-08 Nec Corp Automatic agrochemical spraying device with radio controlled helicopter using gps
JP2011146331A (en) 2010-01-18 2011-07-28 Mitsubishi Heavy Ind Ltd Battery system
JP2013150440A (en) 2012-01-19 2013-08-01 Sumitomo Electric Ind Ltd Charging device and power supply device
JP2015207149A (en) 2014-04-21 2015-11-19 薫 渡部 monitoring system and monitoring method
US20160307448A1 (en) 2013-03-24 2016-10-20 Bee Robotics Corporation Hybrid airship-drone farm robot system for crop dusting, planting, fertilizing and other field jobs
JP2017037369A (en) 2015-08-06 2017-02-16 Simplex Quantum株式会社 Small size aviation system
WO2017130080A1 (en) 2016-01-29 2017-08-03 株式会社半導体エネルギー研究所 Electric power control system
JP2017163265A (en) 2016-03-08 2017-09-14 株式会社リコー Controlling support system, information processing device, and program
JP2017527479A (en) 2014-08-08 2017-09-21 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Energy supply station

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127303A (en) * 1987-11-12 1989-05-19 Bridgestone Corp Holding method of insert part in mold for molding resin
JP2909179B2 (en) * 1990-09-19 1999-06-23 松下電器産業株式会社 Control method of unmanned transfer device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001120151A (en) 1999-10-27 2001-05-08 Nec Corp Automatic agrochemical spraying device with radio controlled helicopter using gps
JP2011146331A (en) 2010-01-18 2011-07-28 Mitsubishi Heavy Ind Ltd Battery system
JP2013150440A (en) 2012-01-19 2013-08-01 Sumitomo Electric Ind Ltd Charging device and power supply device
US20160307448A1 (en) 2013-03-24 2016-10-20 Bee Robotics Corporation Hybrid airship-drone farm robot system for crop dusting, planting, fertilizing and other field jobs
JP2015207149A (en) 2014-04-21 2015-11-19 薫 渡部 monitoring system and monitoring method
JP2017527479A (en) 2014-08-08 2017-09-21 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Energy supply station
JP2017037369A (en) 2015-08-06 2017-02-16 Simplex Quantum株式会社 Small size aviation system
WO2017130080A1 (en) 2016-01-29 2017-08-03 株式会社半導体エネルギー研究所 Electric power control system
JP2017163265A (en) 2016-03-08 2017-09-14 株式会社リコー Controlling support system, information processing device, and program

Also Published As

Publication number Publication date
WO2020153316A1 (en) 2020-07-30
JPWO2020153316A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
CN113226025B (en) Unmanned aerial vehicle system
WO2020153372A1 (en) Drone system and drone system control method
JP7008997B2 (en) Drone system, drone, mobile, drone system control method, and drone system control program
JP6996789B2 (en) Mobile
CN113165753B (en) Unmanned aerial vehicle system, unmanned aerial vehicle, mobile body, control method for unmanned aerial vehicle system, and computer-readable storage medium
JP7242077B2 (en) Drone system, drone system control method, drone system control program, and control device
JP7195652B2 (en) DRONE SYSTEM, DRONE SYSTEM CONTROL METHOD, AND OPERATION DETERMINATION DEVICE
WO2020162584A1 (en) Drone system, drone, control device, and drone system control method
JP6813161B2 (en) Drone system, drone system control method
JP7198446B2 (en) Drone system, control method for drone system, and motion decision device
JP2020191059A (en) Drone system
WO2020116443A1 (en) Movable body
JP7169009B2 (en) Drone system, drone, moving body, motion determination device, drone system control method, and drone system control program
WO2020116494A1 (en) Drone system
WO2020116496A1 (en) Drone system
JP7093126B2 (en) Drone system
JP7184385B2 (en) Drone system, drone, control device, and control method for drone system
JP7169010B2 (en) Drone system, drone, control device, and control method for drone system
JP7199648B2 (en) Drone system, drone, moving body, motion determination device, drone system control method, and drone system control program
JP7329858B2 (en) drone system
JP7217895B2 (en) drone system, drone system control method, drone system control program
JP2022068885A (en) Drone system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221021

R150 Certificate of patent or registration of utility model

Ref document number: 7169009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150