JP7165346B2 - particle detector - Google Patents

particle detector Download PDF

Info

Publication number
JP7165346B2
JP7165346B2 JP2018151576A JP2018151576A JP7165346B2 JP 7165346 B2 JP7165346 B2 JP 7165346B2 JP 2018151576 A JP2018151576 A JP 2018151576A JP 2018151576 A JP2018151576 A JP 2018151576A JP 7165346 B2 JP7165346 B2 JP 7165346B2
Authority
JP
Japan
Prior art keywords
substrate
light
particles
microchannel
irradiation unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018151576A
Other languages
Japanese (ja)
Other versions
JP2020027002A (en
Inventor
俊薫 豊嶋
和樹 飯嶋
晃治 片山
尚孝 神
実 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Tosoh Corp
Original Assignee
Chiba University NUC
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC, Tosoh Corp filed Critical Chiba University NUC
Priority to JP2018151576A priority Critical patent/JP7165346B2/en
Publication of JP2020027002A publication Critical patent/JP2020027002A/en
Application granted granted Critical
Publication of JP7165346B2 publication Critical patent/JP7165346B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、粒子を検出する装置に関する。 The present invention relates to a device for detecting particles.

サブビジブル粒子と言われる直径が0.1から数μmの粒子は、医学及び薬学分野で注目されている。この範囲の粒径を有する粒子としては、エクソソーム、リポソーム、ウイルス様粒子、抗体医薬品の凝集体、ワクチン粒子などがあり、それらの分析及び評価方法が熱望されている。これらの粒子を検出する手法は幾つか存在するが、精度よく検出する方法は知られていない。光学的手法において理論的に光源の波長の1/2程度が検出限界であるが、現時点において、高出力及び高感度に利用可能な測定波長が400~500nm付近の光源及びその検出素子(例えばカメラ、光センサー)しか存在しない。サブビジブルサイズの粒子の検出に必要な400nm以下の測定波長で利用可能な光源及び検出素子で性能の良いものは現時点で存在しない。光学的手法の限界を解消する方法として、直接粒子を観測するのではなく、粒子の散乱光を検出する方法がある。 Particles with a diameter of 0.1 to several μm, called subvisible particles, have attracted attention in the medical and pharmaceutical fields. Particles having a particle size within this range include exosomes, liposomes, virus-like particles, aggregates of antibody drugs, vaccine particles, and the like, and methods for their analysis and evaluation are eagerly awaited. There are several techniques for detecting these particles, but no method for detecting them with high accuracy is known. In the optical method, the detection limit is theoretically about 1/2 of the wavelength of the light source. , light sensor). There are currently no good light sources and detectors available at the measurement wavelengths below 400 nm, which are necessary for the detection of sub-visible particles. As a method of overcoming the limitations of optical techniques, there is a method of detecting scattered light from particles instead of directly observing particles.

粒子の散乱光を検出する装置として、レーザー回折・散乱法(非特許文献1)を利用した装置であるAggregates Sizer(島津製作所製)や、ナノトラッキング法(特許文献1)を利用したナノサイト(Malvern Instruments製)が存在する。 As a device for detecting scattered light of particles, Aggregates Sizer (manufactured by Shimadzu Corporation), which is a device that uses a laser diffraction/scattering method (Non-Patent Document 1), and Nanosite that uses a nanotracking method (Patent Document 1). manufactured by Malvern Instruments).

特許第4002577号Patent No. 4002577

JOURNAL OF PHARMACEUTICAL SCIENCES 104:618-626(2015)JOURNAL OF PHARMACEUTICAL SCIENCES 104:618-626 (2015)

マイクロ流路チップに光を照射しながら粒子を検出する方法(例えばレーザー回折・散乱法)において、マイクロ流路チップの表面の粗さのために、光源から照射された光は当該チップ基板を完全に透過することはできず、当該光がマイクロ流路チップに入射する領域に散乱光が発生する。当該散乱光が検出部に入射することで、マイクロ流路を流れる粒子から生じる散乱光の検出に際してシグナル-ノイズ比(S/N比)が低下するという問題があった。 In a method of detecting particles while irradiating a microfluidic chip with light (for example, a laser diffraction/scattering method), the light emitted from the light source completely penetrates the chip substrate due to the roughness of the surface of the microfluidic chip. and scattered light is generated in the area where the light enters the microchannel chip. When the scattered light is incident on the detection section, there is a problem that the signal-to-noise ratio (S/N ratio) is lowered when detecting the scattered light generated from the particles flowing through the microchannel.

したがって本発明は、マイクロ流路チップを使用して粒子(特にサブビジブル粒子)を検出するにあたり、S/N比の低下を抑制して粒子を良好に検出する方法の提供を課題とする。 Accordingly, it is an object of the present invention to provide a method for detecting particles (especially sub-visible particles) using a microchannel chip by suppressing a decrease in the S/N ratio and detecting particles satisfactorily.

上記課題を解決するために、本発明者らは鋭意検討を重ねた結果、以下の粒子検出装置を発明するに至った。 In order to solve the above problems, the inventors of the present invention have made intensive studies, and as a result, have invented the following particle detection device.

すなわち、本発明は、
第1基板と前記第1基板に接合した第2基板とを備え、前記第1基板に掘削された流路構造と前記第2基板との間に、粒子を含む流体が流れるマイクロ流路が形成されている、マイクロ流路チップと、
第1基板側から前記粒子を含む流体に光を照射する光照射部と、
前記光照射部からの光を前記流体に照射することによって前記粒子で発生する散乱光を検出する検出部と、
を備える粒子検出装置であって、
前記光照射部から光を照射することによって前記第1基板で発生する散乱光が、前記検出部で検出されることが防止されている、前記装置に関する。
That is, the present invention
A first substrate and a second substrate bonded to the first substrate are provided, and a microchannel through which a fluid containing particles flows is formed between the channel structure excavated in the first substrate and the second substrate. a microfluidic chip,
a light irradiation unit that irradiates the fluid containing the particles with light from the first substrate side;
a detection unit that detects scattered light generated by the particles by irradiating the fluid with the light from the light irradiation unit;
A particle detection device comprising
The present invention relates to the apparatus, wherein scattered light generated in the first substrate by irradiating light from the light irradiation section is prevented from being detected by the detection section.

上述の防止手段の具体例としては:
(1)第1基板で発生する散乱光の発生領域が前記検出部の検出範囲から外れるように光照射部を配置する;
(2)第1基板に、第1基板で発生する散乱光が検出部で検出されることを防止するための遮蔽板を設ける;
(3)第1基板表面の光入射領域に、第1基板と同一の屈折率を有する液体を塗布する;
等が挙げられる。
Specific examples of the above preventive measures include:
(1) disposing the light irradiator so that the scattered light generation region generated by the first substrate is out of the detection range of the detector;
(2) The first substrate is provided with a shielding plate for preventing the scattered light generated by the first substrate from being detected by the detector;
(3) applying a liquid having the same refractive index as that of the first substrate to the light incident area of the surface of the first substrate;
etc.

前記流路を、粒子を分級可能な流路とすれば連続的に粒子の粒径と数を検出できるため、好ましい。また、前記第1基板の材質としては、微細加工の性能に優れたポリジメチルシロキサン(PDMS)が好ましい。 It is preferable to use a channel capable of classifying particles as the channel, since the particle size and number of particles can be continuously detected. Moreover, as the material of the first substrate, polydimethylsiloxane (PDMS), which is excellent in microfabrication performance, is preferable.

本発明により、マイクロ流路チップを使用して粒子を検出するにあたり、S/N比の低下を抑制して粒子(特にサブビジブル粒子)を良好に検出することができる。 According to the present invention, in detecting particles using a microchannel chip, it is possible to satisfactorily detect particles (especially sub-visible particles) while suppressing a decrease in the S/N ratio.

従来の粒子検出装置の一態様の断面図である。1 is a cross-sectional view of one aspect of a conventional particle detection device; FIG. 従来の粒子検出装置の一態様を、第1基板側から見た平面図である。図中の矢印は、流体の流れる方向を示す。1 is a plan view of one aspect of a conventional particle detection device, viewed from the first substrate side; FIG. The arrows in the figure indicate the direction of fluid flow. ノイズ領域が検出部の検出範囲から外れるように光照射部を配置した本発明の粒子検出装置の一態様を、第1基板側から見た平面図である。FIG. 2 is a plan view, viewed from the first substrate side, of one embodiment of the particle detection device of the present invention in which the light irradiation section is arranged such that the noise region is out of the detection range of the detection section; 図3Aの平面図から、光照射部、第1基板及び流路を残した平面図である。図中のaは、マイクロ流路の中心線110と光照射部400から照射された光との交点を始点とし、光照射部400の端部からマイクロ流路の中心線に垂直に引いた線と前記中心線との交点を終点とする直線の長さである。図中のbは、光照射部400の端部を始点とし、光照射部400の端部からマイクロ流路の中心線に垂直に引いた線と前記中心線との交点を終点とする直線の長さである。図中のcは、当該平面図においてマイクロ流路の中心線110と光照射部400から照射された光とのなす角度である。FIG. 3B is a plan view of the plan view of FIG. 3A with the light irradiation section, the first substrate, and the flow path left; In the figure, a is a line drawn perpendicular to the center line of the microchannel from the end of the light irradiation unit 400, starting at the intersection of the centerline 110 of the microchannel and the light emitted from the light irradiation unit 400. is the length of a straight line whose end point is the intersection of the center line and the center line. b in the figure is a straight line whose starting point is the end of the light irradiation unit 400 and whose end point is the intersection of a line drawn perpendicular to the center line of the microchannel from the end of the light irradiation unit 400 and the center line. length. In the figure, c is the angle formed by the center line 110 of the microchannel and the light irradiated from the light irradiation unit 400 in the plan view. 第1基板に遮蔽板が設けられている、本発明の粒子検出装置の一態様の断面図である。1 is a cross-sectional view of one embodiment of a particle detection device of the present invention, in which a first substrate is provided with a shielding plate; FIG. 第1基板に遮蔽板が設けられている本発明の粒子検出装置の一態様を、第1基板側から見た平面図である。1 is a plan view of one aspect of a particle detection device of the present invention in which a first substrate is provided with a shielding plate, viewed from the first substrate side; FIG. 第1基板の光入射領域に第1基板と同一の屈折率を有する液体が塗布されている、本発明の粒子検出装置の一態様の断面図である。FIG. 2 is a cross-sectional view of one embodiment of the particle detection device of the present invention, in which the light incident area of the first substrate is coated with a liquid having the same refractive index as that of the first substrate; 第1基板の光入射領域に第1基板と同一の屈折率を有する液体が塗布されている、本発明の粒子検出装置の一態様を第1基板側から見た平面図である。FIG. 2 is a plan view of one embodiment of the particle detection device of the present invention, in which the light incident area of the first substrate is coated with a liquid having the same refractive index as that of the first substrate, viewed from the first substrate side; 実施例1の粒子の散乱光とノイズを観測したカメラ画像である。4 is a camera image obtained by observing scattered light and noise of particles in Example 1. FIG. 実施例2の粒子の散乱光とノイズを観測したカメラ画像である。4 is a camera image obtained by observing scattered light and noise of particles in Example 2. FIG. 実施例3の粒子の散乱光を観測したカメラ画像である。4 is a camera image obtained by observing the scattered light of the particles of Example 3. FIG. 比較例1の粒子の散乱光とノイズを観測したカメラ画像である。4 is a camera image obtained by observing scattered light and noise of particles of Comparative Example 1. FIG. 比較例2の粒子の散乱光とノイズを観測したカメラ画像である。7 is a camera image obtained by observing scattered light and noise of particles of Comparative Example 2. FIG. 実施例3(シリコーンオイル塗布有り)及び比較例3(シリコーンオイル塗布無し)における、観察される輝点の数と輝度との関係を示すグラフである。10 is a graph showing the relationship between the number of observed bright spots and luminance in Example 3 (with silicone oil applied) and Comparative Example 3 (without silicone oil applied).

以下、本発明を実施するための形態について、図面を用いて詳細に説明する。但し本発明は多くの異なる形態による実施が可能であり、以下に示す実施形態、実施例の例示にのみ限定されるものではない。 EMBODIMENT OF THE INVENTION Hereinafter, the form for implementing this invention is demonstrated in detail using drawing. However, the present invention can be implemented in many different forms and is not limited to the exemplary embodiments and examples shown below.

従来の粒子検出装置の一態様を図1に示す。図1に示す粒子検出装置は、
第1基板200と当該第1基板に接合した第2基板300とを備え、当該第1基板と第2基板との間に、粒子を含む流体が流れるマイクロ流路100が形成されている、マイクロ流路チップと、
光照射部400と、
散乱光を検出する検出部600と
を備える。
One aspect of a conventional particle detector is shown in FIG. The particle detection device shown in FIG.
A microchannel comprising a first substrate 200 and a second substrate 300 bonded to the first substrate, wherein a microchannel 100 through which a fluid containing particles flows is formed between the first substrate and the second substrate. a channel chip;
a light irradiation unit 400;
and a detection unit 600 that detects scattered light.

光照射部400から照射された光(好ましくはレーザー光)は、マイクロ流路100を流れる粒子500を含む流体に照射されることで、粒子で発生する散乱光800と、散乱せずに直進する光700に分離される。散乱光800を検出部600で検出することで、マイクロ流路100を流れる流体中の粒子500の個数と粒子500の位置情報を検出することができる。 The light (preferably laser light) irradiated from the light irradiation unit 400 is irradiated to the fluid containing the particles 500 flowing through the microchannel 100, and travels straight without being scattered along with the scattered light 800 generated by the particles. Light 700 is separated. By detecting the scattered light 800 with the detection unit 600, the number of the particles 500 in the fluid flowing through the microchannel 100 and the positional information of the particles 500 can be detected.

マイクロ流路チップは、モールディング、エンボッシング、フォトリソグラフィー、ソフトリソグラフィー、ウェットエッチング、ドライエッチング、ナノインプリンティング、レーザー加工、電子線直接描画、機械加工等の技術を用いることで容易に作製可能である。また、第1基板及び第2基板の材質としては、PDMS、アクリル樹脂等の各種ポリマー材料、ガラスなどを用いることができ、また、これらの材料のうち、任意の2種類の基板を組み合わせて用いることも可能である。好ましくは、第1基板の材質はPDMSである。作製の容易さから、マイクロ流路の幅及び深さは、サブミクロンから数百μmの値に設定することが好ましい。特にナノ~マイクロレベル程度の大きさを持つ粒子を検出する場合、マイクロ流路の幅及び深さはサブミクロンから数十μmの値に設定することが好ましい。第1基板と第2基板との接合方法は特に限定されず、接着剤を用いる手法、熱圧着法、超音波接合法等で行うことができる。 A microchannel chip can be easily produced by using techniques such as molding, embossing, photolithography, soft lithography, wet etching, dry etching, nanoimprinting, laser processing, electron beam direct writing, and machining. As materials for the first substrate and the second substrate, PDMS, various polymer materials such as acrylic resin, glass, and the like can be used, and any two kinds of substrates among these materials can be used in combination. is also possible. Preferably, the material of the first substrate is PDMS. For ease of fabrication, it is preferable to set the width and depth of the microchannel to values ranging from submicrons to several hundreds of micrometers. In particular, when detecting particles having sizes on the order of nano- to micro-levels, it is preferable to set the width and depth of the micro-channel to values ranging from submicrons to several tens of micrometers. The bonding method of the first substrate and the second substrate is not particularly limited, and can be performed by a method using an adhesive, a thermocompression bonding method, an ultrasonic bonding method, or the like.

図1で光照射部400から照射された光が第1基板に入射する際、第1基板の表面の粗さに起因する散乱光(以下で「ノイズ」とも呼ぶ)が生じる。第1基板における散乱光の発生領域(以下でノイズ領域900とも呼ぶ)が測定対象の粒子の散乱光の発生領域の近傍である場合(図2参照)、S/N比が低下して、粒子の散乱光の検出が困難となる。 When the light irradiated from the light irradiation unit 400 in FIG. 1 is incident on the first substrate, scattered light (hereinafter also referred to as “noise”) is generated due to the roughness of the surface of the first substrate. When the scattered light generation region (hereinafter also referred to as a noise region 900) on the first substrate is in the vicinity of the scattered light generation region of the particles to be measured (see FIG. 2), the S/N ratio decreases and the particles It becomes difficult to detect the scattered light of

図3A及び3Bは本発明の粒子検出装置の一態様を示す。図1の粒子検出装置とは、光照射部400の位置が異なる。本発明者らは光照射部の空間配置について鋭意検討した結果、例えば図3Bに示す、本発明の粒子検出装置を第1基板側から見た平面図において、マイクロ流路の中心線110と光照射部400から照射された光とのなす角(図3B中のc)が0度超であって、かつ180度未満とすることで、ノイズを検出範囲から外すことができることを見出した。前記角度が0度又は180度である場合、第1基板における散乱光が、その直下を流れる粒子に当たって散乱する。ここで生じた粒子からの散乱光が検出部600の検出範囲に入るため、検出範囲全体の明るさが上昇して、本来観測したい検出範囲の粒子の散乱光のコントラストを下げてしまうと考えられる。上記のようにノイズを検出範囲から外すことで検出部600の検出範囲における粒子の散乱光のコントラストの低下を抑制することができる。 3A and 3B show one embodiment of the particle detection device of the present invention. The position of the light irradiation unit 400 is different from that of the particle detection device in FIG. As a result of intensive studies by the present inventors on the spatial arrangement of the light irradiation section, for example, in the plan view of the particle detection device of the present invention as seen from the first substrate side shown in FIG. It was found that noise can be excluded from the detection range by setting the angle (c in FIG. 3B) with the light emitted from the irradiation unit 400 to be more than 0 degrees and less than 180 degrees. When the angle is 0 degree or 180 degrees, the scattered light on the first substrate hits the particles flowing directly under it and is scattered. Since the scattered light from the particles generated here enters the detection range of the detection unit 600, the brightness of the entire detection range increases, and it is thought that the contrast of the scattered light of the particles in the detection range that is originally desired to be observed is lowered. . By removing noise from the detection range as described above, it is possible to suppress a decrease in the contrast of scattered light from particles in the detection range of the detection unit 600 .

図4及び5は本発明の粒子検出装置の一態様を示す。図1の粒子検出装置とは、第1基板に遮蔽板1000が設けられている点で異なる。遮蔽板1000は、第1基板の表面に設置されてもよいし、又は図4及び5で示すように、遮蔽板を第1基板に埋め込んでもよい。当該遮蔽板によって、検出部の検出範囲へのノイズの入り込みを防止することができる。遮蔽板の位置はノイズ領域900と測定対象の粒子の散乱光の発生領域との間であることが好ましい。好ましくは、遮蔽板は図5に示すように流路に流体が流れる方向に対して直交するように設置される。遮蔽板は図4に示すように第1基板のマイクロ流路に接する面に達するまで埋め込まれてもよいし、検出範囲にノイズが入ることが妨げられている限り、マイクロ流路に接する面に到達しない程度に埋め込まれてもよい。遮蔽板の大きさには制限はないが、使用する光の線幅以上の大きさが好ましく、図5で示されるようにマイクロ流路の幅以上の大きさがより好ましい。遮蔽板の色は光の反射を防ぐため黒色が好ましい。 4 and 5 show one embodiment of the particle detection device of the present invention. It differs from the particle detector of FIG. 1 in that a shielding plate 1000 is provided on the first substrate. The shielding plate 1000 may be placed on the surface of the first substrate, or the shielding plate may be embedded in the first substrate as shown in FIGS. The shield plate can prevent noise from entering the detection range of the detection unit. The position of the shielding plate is preferably between the noise region 900 and the scattered light generation region of the particles to be measured. Preferably, the shielding plate is installed perpendicular to the direction of fluid flow in the channel as shown in FIG. The shielding plate may be embedded until reaching the surface of the first substrate in contact with the microchannel as shown in FIG. It may be embedded to the extent that it does not reach. Although the size of the shielding plate is not limited, it is preferably larger than the line width of the light used, and more preferably larger than the width of the microchannel as shown in FIG. The color of the shielding plate is preferably black in order to prevent reflection of light.

図6及び7は、本発明の粒子検出装置の一態様を示す。図1の粒子検出装置とは、第1基板表面の光入射領域に、第1基板と同一の屈折率を有する液体1100が塗布されている点で異なる。第一基板がポリマー樹脂である場合は、ポリマーに対応するモノマーを用いることで、同一の屈折率を有する液体を塗布できる。例えば、第1基板がPDMSである場合、第1基板と同一の屈折率を有する液体としてシリコーンオイルが、アクリル樹脂の場合はメタクリル酸メチルが挙げられる。また第1基板がガラスの場合は屈折率の近いアルコールやパラフィン油を塗布することで、類似の効果が得られる。図6及び7に示すように、第1基板と同一の屈折率を有する液体を塗布することによって、第1基板表面にある凸凹による散乱光の発生を防止することができる。図7に記載のように、当該液体を塗布する範囲は使用する光の線幅以上であれば良く、第1基板の全面に塗布しても問題はない。 6 and 7 show one embodiment of the particle detection device of the present invention. 1 in that a liquid 1100 having the same refractive index as that of the first substrate is applied to the light incident area on the surface of the first substrate. When the first substrate is a polymer resin, a liquid having the same refractive index can be applied by using a monomer corresponding to the polymer. For example, if the first substrate is PDMS, the liquid having the same refractive index as that of the first substrate may be silicone oil, and if it is an acrylic resin, methyl methacrylate. When the first substrate is glass, a similar effect can be obtained by applying alcohol or paraffin oil having a similar refractive index. As shown in FIGS. 6 and 7, by applying a liquid having the same refractive index as that of the first substrate, it is possible to prevent the generation of scattered light due to unevenness on the surface of the first substrate. As shown in FIG. 7, the area to be coated with the liquid should be equal to or larger than the line width of the light to be used, and there is no problem even if the entire surface of the first substrate is coated.

本発明の粒子検出装置において使用されるマイクロ流路は、好ましくは粒子を分級可能な流路である。そのような流路としては、ピンチドフローフラクショネーション法を利用する態様(例えば、M. Yamada, M. Nakashima, and M. Seki, Anal. Chem. 76, 5465-5471(2004)を参照)、水力学的作用を利用する態様(例えば、M. Yamada et al., Lab on a Chip, 5, 1233-1239 (2005)を参照)、決定論的分離作用を利用する態様(例えばKeith J. Morton. et al., Proceedings of National Academic Society, Vol. 105, No21, pp. 7434-7438 (2008)を参照)、慣性力を利用する態様(例えばMehdi Rafeie et al., Lab on a Chip, 16, 2791-2802 (2016)を参照)が例示できる。 The microchannel used in the particle detection device of the present invention is preferably a channel capable of classifying particles. As such a channel, an embodiment using a pinched flow fractionation method (see, for example, M. Yamada, M. Nakashima, and M. Seki, Anal. Chem. 76, 5465-5471 (2004)) , an embodiment using hydraulic action (see, for example, M. Yamada et al., Lab on a Chip, 5, 1233-1239 (2005)), an embodiment using deterministic separation action (for example, Keith J. Morton. et al., Proceedings of National Academic Society, Vol. 105, No21, pp. 7434-7438 (2008)), embodiments using inertial force (e.g. Mehdi Rafeie et al., Lab on a Chip, 16 , 2791-2802 (2016)) can be exemplified.

本発明の粒子検出装置における検出対象粒子は、試料および流体に対し不溶性の物質からなる粒子であれば特に限定はなく、一例としてビーズ、粉砕用ボール、液晶用スペーサー、クロマトグラフィー用分離剤、吸着剤といった工業材料や、細胞、DNA、抗体などのタンパク質、ウイルスといった研究用・医療用材料が挙げられる。抗体などタンパク質の大きさ(粒径)は一般に数nm程度であるが、製造工程で機械的または熱ストレスなどにさらされると凝集し、不溶化するおそれがある。不溶化したタンパク質の大きさ(粒径)は数十nmから数十μm程度である。数十nm程度の不溶化タンパク質であれば、従来のカラムクロマトグラフィー法や超遠心分離法で分離・除去することができる。しかしながら粒径0.1μmから2μm程度のサブビジブル凝集体に該当する不溶化タンパク質は、前述した従来法では精度よく検出することができなかった。本発明の粒子検出装置は、サブビジブル凝集体であっても精度よく検出できる。 The particles to be detected in the particle detection device of the present invention are not particularly limited as long as they are particles made of substances insoluble in the sample and fluid. Examples include industrial materials such as agents, research and medical materials such as cells, DNA, proteins such as antibodies, and viruses. The size (particle size) of proteins such as antibodies is generally about several nanometers, but there is a risk of aggregation and insolubilization when exposed to mechanical or thermal stress during the production process. The size (particle size) of the insolubilized protein is about several tens of nm to several tens of μm. Insolubilized proteins of several tens of nanometers can be separated and removed by conventional column chromatography or ultracentrifugation. However, insolubilized proteins corresponding to subvisible aggregates with a particle size of about 0.1 μm to 2 μm could not be detected with high accuracy by the above-described conventional method. The particle detector of the present invention can accurately detect even sub-visible aggregates.

本発明において、マイクロ流路チップに導入する流体は、検出する粒子に応じ、適宜当該粒子に対し不溶性の液体を選択すればよい。例えば検出する粒子が工業材料の場合、製造時用いた溶媒をそのまま用いてもよいし、水などの安価かつ無害な溶媒に置換してもよい。一方、検出する粒子が細胞、ウイルス、抗体といった生体試料の場合は、製造時または調製時に用いた溶媒を用いると好ましい。具体的には検出する粒子が細胞の場合、当該細胞の生存を担保する点で、培養に用いた培地、全血、血漿、生理食塩水、PBS(Phosphate Buffered Saline)、TBS(Tris Buffered Saline)などが好ましい。なお、流体に界面活性剤、タンパク質、pH調製剤、安定剤、増粘剤、保存剤、抗生物質、ポリマー、モノマーなどの添加物を添加してもよい。 In the present invention, as the fluid to be introduced into the microchannel chip, a liquid insoluble to the particles may be appropriately selected according to the particles to be detected. For example, when the particles to be detected are industrial materials, the solvent used during production may be used as it is, or may be replaced with an inexpensive and harmless solvent such as water. On the other hand, when the particles to be detected are biological samples such as cells, viruses, and antibodies, it is preferable to use the solvent used during production or preparation. Specifically, when the particles to be detected are cells, the culture medium, whole blood, plasma, physiological saline, PBS (Phosphate Buffered Saline), and TBS (Tris Buffered Saline) are used to ensure the survival of the cells. etc. are preferable. Additives such as surfactants, proteins, pH adjusters, stabilizers, thickeners, preservatives, antibiotics, polymers, and monomers may be added to the fluid.

本発明の方法で使用可能な光照射部は、検出する粒子の性状に応じ、適宜選択すればよい。光照射部は、指向性の高い光を照射できる限り特に限定されず、水銀ランプ、タングステンランプ、蛍光ランプ、発光ダイオード、ナトリウムランプ、キセノンランプなどが利用できるが、レーザー光源(例えば緑色レーザー光源)が好ましい。なお、検出対象粒子が蛍光色素や発光色素などで染色されている場合は、当該蛍光の励起波長に相当する光源を用いることが好ましい。また、光源の出力や検出部の感度の点で500nm付近の光源を用いることが好ましい。 The light irradiation unit that can be used in the method of the present invention may be appropriately selected according to the properties of the particles to be detected. The light irradiation part is not particularly limited as long as it can irradiate light with high directivity, and mercury lamps, tungsten lamps, fluorescent lamps, light emitting diodes, sodium lamps, xenon lamps, etc. can be used, but laser light sources (for example, green laser light sources) can be used. is preferred. In addition, when the particles to be detected are dyed with a fluorescent dye, a luminescent dye, or the like, it is preferable to use a light source corresponding to the excitation wavelength of the fluorescence. Moreover, it is preferable to use a light source of around 500 nm from the viewpoint of the output of the light source and the sensitivity of the detection section.

本発明の粒子検出装置において使用される検出部は、特に限定されないが、例えばカメラ、光センサー、顕微鏡が挙げられる。検出部は、第1基板側(すなわち、第2基板から第1基板に向かう方向に位置する空間であって、光照射部が配置されている空間)に配置されていてもよいし、第2基板側(すなわち、第1基板から第2基板に向かう方向に位置する空間であって、光照射部が配置されていない空間)に配置されていてもよい。好ましくは、検出部は図3~7に示されるように第2基板側に配置される。 The detection unit used in the particle detection device of the present invention is not particularly limited, but examples include cameras, optical sensors, and microscopes. The detection unit may be arranged on the first substrate side (that is, the space located in the direction from the second substrate to the first substrate and in which the light irradiation unit is arranged). It may be arranged on the substrate side (that is, a space located in the direction from the first substrate to the second substrate and in which the light irradiation section is not arranged). Preferably, the detector is arranged on the second substrate side as shown in FIGS.

以下、実施例および比較例を用いて本発明をさらに詳細に説明するが、本発明はこれらの例に限定されるものではない。 The present invention will be described in more detail below using examples and comparative examples, but the present invention is not limited to these examples.

なお、流体中の検出対象粒子として、0.1μm粒子としてポリスチレン標準粒子3100A(ThermoFisher製)、および0.5μm粒子としてポリスチレン標準粒子3500A(ThermoFisher製)を用いた。検出対象粒子を含有する流体としては、0.05%(v/v)ツイーン20含有の1×PBS溶液(リン酸緩衝液)を用いた。0.05%(v/v)ツイーン20含有の1×PBS溶液は、実験前にポアサイズ0.1μmのシリンジフィルター(メルクミリポア社製)を用いて異物除去を行ってから用いた。 As particles to be detected in the fluid, polystyrene standard particles 3100A (manufactured by ThermoFisher) as 0.1 μm particles and polystyrene standard particles 3500A (manufactured by ThermoFisher) as 0.5 μm particles were used. A 1×PBS solution (phosphate buffer) containing 0.05% (v/v) Tween 20 was used as the fluid containing particles to be detected. A 1×PBS solution containing 0.05% (v/v) Tween 20 was used after removal of foreign matter using a syringe filter with a pore size of 0.1 μm (manufactured by Merck Millipore) prior to the experiment.

以下の実施例及び比較例において、倒立型顕微鏡IX71(オリンパス社)を用い、光照射部として520nm緑色LED光源(PGL-F-520-20mW、Changchun New Industries Optoelectronics Tech. Co., Ltd.製)を用いて観察領域へ照射し、粒子による散乱光を検出部としてデジタルCMOSカメラORCA-FLASH(浜松ホトニクス社)を用いて観察した。 In the following examples and comparative examples, an inverted microscope IX71 (Olympus) was used, and a 520 nm green LED light source (PGL-F-520-20 mW, manufactured by Changchun New Industries Optoelectronics Tech. Co., Ltd.) was used as the light irradiation unit. was used to irradiate the observation area, and the light scattered by the particles was observed using a digital CMOS camera ORCA-FLASH (Hamamatsu Photonics Co., Ltd.) as a detector.

製造実施例
マイクロ流路チップの製造
以下の実施例及び比較例において使用されるマイクロチップは、一般的なフォトリソグラフィーとソフトリソグラフィー技術を用いて作製した。具体的な手順を以下の通り示す。
Production Examples Production of Microchannel Chip Microchips used in the following examples and comparative examples were produced using general photolithography and soft lithography techniques. Specific procedures are shown below.

4インチベアシリコンウェハ(株式会社フィルテック)上へ、フォトレジストSU-8 3005(Microchem社)を滴下後、スピンコーター(MIKASA社)を用いてフォトレジスト薄膜を形成した。マスクアライナー(ウシオ電機社)と、任意のパターンを形成したクロムマスクを用いて流路パターンをフォトレジスト膜へ形成し、SU-8Developer(Microchem社)を用いて流路パターンを現像することで、用いたい流路の鋳型を作製した。 After dropping a photoresist SU-8 3005 (Microchem) onto a 4-inch bare silicon wafer (Filtec Co., Ltd.), a photoresist thin film was formed using a spin coater (MIKASA). A channel pattern is formed on a photoresist film using a mask aligner (Ushio Inc.) and a chrome mask with an arbitrary pattern, and the channel pattern is developed using SU-8 Developer (Microchem). A template of the desired channel was made.

続いて、作製した鋳型へ、SYLGARD SILICONE ELASTOMER KIT(東レ・ダウコーニング社)を用いて調製した未硬化のシロキサンモノマーと重合開始剤の混合物(重量比10:1)を流し込み、80℃で2時間加熱することで、流路の形状を転写されたポリジメチルシロキサン(PDMS)を作製した。硬化したPDMSを鋳型から慎重に剥がし、カッターで任意の大きさに成形後、パンチャーを用いて流路の入り口側ポート及びアウトレットを形成した。剥離したPDMSとスライドガラス(松浪ガラス社)を酸素プラズマ発生装置(メイワフォーシス社)で表面処理後、PDMSとスライドガラスを貼り合わせることでマイクロチップを作製した。 Subsequently, a mixture of an uncured siloxane monomer and a polymerization initiator (weight ratio: 10:1) prepared using SYLGARD SILICONE ELASTOMER KIT (Dow Corning Toray) was poured into the prepared mold and heated at 80°C for 2 hours. By heating, a polydimethylsiloxane (PDMS) having the shape of the channel transferred was produced. The hardened PDMS was carefully peeled off from the mold, shaped into an arbitrary size with a cutter, and then a puncher was used to form inlet ports and outlets of the channels. After surface treatment of the exfoliated PDMS and slide glass (Matsunami Glass Co., Ltd.) with an oxygen plasma generator (Meiwa Forsyth Co., Ltd.), the PDMS and the slide glass were bonded together to prepare a microchip.

実施例1
図3Bのaが14cmであり、bが5mmであり、かつ第1基板(PDMS基板)表面から光照射部の端部までの高さが10cmとなるように、光照射部を設置した。光を照射しながら、マイクロ流路へ、粒子(0.5μm粒子)を含む流体を0.2μL導入した。次に、流速2μL/hでリン酸緩衝液を送液し、図8の顕微鏡像を得た。ノイズ領域が検出範囲から離れ、粒子の散乱光を明確に検出できた。
Example 1
In FIG. 3B, a was 14 cm, b was 5 mm, and the light irradiation part was installed so that the height from the surface of the first substrate (PDMS substrate) to the end of the light irradiation part was 10 cm. While irradiating with light, 0.2 μL of fluid containing particles (0.5 μm particles) was introduced into the microchannel. Next, a phosphate buffer solution was fed at a flow rate of 2 μL/h, and the microscope image of FIG. 8 was obtained. The noise area was far from the detection range, and the scattered light of particles could be clearly detected.

実施例2
上記で製造したマイクロ流路チップの流路に流体が流れる方向に対して直交するように、黒色の遮蔽板を、第1基板の流路に接する面に到達するまで埋め込んで配置した(図4)。図3Bのaが14mであり、bが5mmであり、かつ第1基板表面から光照射部の端部までの高さが10cmとなるように、光照射部を設置した。実施例1と同様に光を照射しながらマイクロ流路へ粒子(0.5μm粒子)を含む流体を送液し、図9の顕微鏡像を得た。遮蔽板によってノイズが検出範囲に入ることが防止され、粒子の散乱光を明確に検出できた。
Example 2
A black shielding plate was embedded until it reached the surface of the first substrate in contact with the channel so as to be perpendicular to the direction in which the fluid flows in the channel of the microchannel chip manufactured above (Fig. 4 ). In FIG. 3B, a was 14 m, b was 5 mm, and the light irradiation part was installed so that the height from the surface of the first substrate to the end of the light irradiation part was 10 cm. A fluid containing particles (0.5 μm particles) was sent to the microchannel while irradiating light in the same manner as in Example 1, and the microscope image of FIG. 9 was obtained. The shielding plate prevented noise from entering the detection range, and the scattered light of the particles could be clearly detected.

実施例3
上記で製造したマイクロ流路チップの第1基板表面の光入射領域にシリコーンオイル(信越化学製)を塗布した。図3Bのaが14cmであり、bが5mmであり、かつ第1基板表面から光照射部の端部までの高さが10cmとなるように、光照射部を設置した。実施例1と同様に光を照射しながら粒子(0.1μm粒子)を含む流体を送液し、図10の顕微鏡像を得た。シリコーンオイルによって第1基板において発生するノイズが防止され、粒子の散乱光を明確に検出できた。
Example 3
Silicone oil (manufactured by Shin-Etsu Chemical Co., Ltd.) was applied to the light incident area on the surface of the first substrate of the microchannel chip manufactured above. In FIG. 3B, a is 14 cm, b is 5 mm, and the light irradiation part was installed so that the height from the surface of the first substrate to the end of the light irradiation part was 10 cm. A fluid containing particles (0.1 μm particles) was fed while irradiating light in the same manner as in Example 1, and a microscope image of FIG. 10 was obtained. The noise generated in the first substrate was prevented by the silicone oil, and the scattered light of the particles could be clearly detected.

比較例1
実施例1で用いたマイクロ流路チップを用いた。図3Bのaが14cmであり、bが0mmであり、かつ第1基板表面から光照射部の端部までの高さが10cmとなるように、光照射部を設置した。実施例1と同様の条件で、光を照射しながらマイクロ流路に粒子を含む流体を送液し、図11の顕微鏡像を得た。粒子の散乱光がノイズに隠れて、明確に判別できなかった。
Comparative example 1
The microchannel chip used in Example 1 was used. In FIG. 3B, a is 14 cm, b is 0 mm, and the light irradiation section was installed so that the height from the surface of the first substrate to the end of the light irradiation section was 10 cm. Under the same conditions as in Example 1, a fluid containing particles was fed into the microchannel while being irradiated with light, and a microscope image of FIG. 11 was obtained. The scattered light of the particles was hidden by the noise and could not be clearly identified.

比較例2
実施例2で用いたものと遮蔽板を設置しないこと以外は同一形状のマイクロ流路チップを用いた。実施例2と同様の条件で、光を照射しながらマイクロ流路に粒子を含む流体を送液し、図12の顕微鏡像を得た。粒子の散乱光がノイズに隠れて、明確に判別できなかった。
Comparative example 2
A microchannel chip having the same shape as that used in Example 2 was used except that the shielding plate was not provided. Under the same conditions as in Example 2, a fluid containing particles was fed into the microchannel while being irradiated with light, and a microscope image of FIG. 12 was obtained. The scattered light of the particles was hidden by the noise and could not be clearly identified.

比較例3
実施例3で用いたマイクロ流路チップを用いた。マイクロ流路チップの第1基板表面の光入射領域にシリコーンオイルを塗布しない点以外は実施例3と同様の条件で、光を照射しながらマイクロ流路に粒子を含む流体を送液した。図13は、実施例3及び比較例3において、検出部で検出される輝点の数と輝度との関係を示す。輝度値は、検出画像をソフトウェア(ImageJ;アメリカ国立衛生研究所が配布)に取り込み、まずFind Maximaによって極大値の座標一覧を求め、次にMeasureによって各座標の輝度値を求めた。実施例3(実線)と比較して比較例3(破線)ではノイズ(高輝度側の輝点)が増えるため、相対的に粒子の散乱光(低輝度側の輝点)の観測数が減ることが分かった。
Comparative example 3
The microchannel chip used in Example 3 was used. Under the same conditions as in Example 3 except that silicone oil was not applied to the light incident area of the first substrate surface of the microchannel chip, the fluid containing the particles was sent to the microchannel while irradiating with light. FIG. 13 shows the relationship between the number of bright spots detected by the detector and the luminance in Example 3 and Comparative Example 3. FIG. The brightness values were obtained by importing the detected image into software (ImageJ; distributed by the National Institutes of Health, USA), first obtaining a coordinate list of maximum values by Find Maxima, and then obtaining the brightness value of each coordinate by Measure. Compared to Example 3 (solid line), Comparative Example 3 (dashed line) has more noise (bright spots on the high-brightness side), so the number of observations of scattered light from particles (bright spots on the low-brightness side) is relatively reduced. I found out.

100:マイクロ流路
110:マイクロ流路の中心線
200:第1基板
300:第2基板
400:光照射部
500:粒子
600:検出部
700:光
800:粒子で発生する散乱光
900:ノイズ領域
1000:遮蔽板
1100:第1基板と同一の屈折率を有する液体
100: Microchannel 110: Center line of microchannel 200: First substrate 300: Second substrate 400: Light irradiation unit 500: Particles 600: Detection unit 700: Light 800: Scattered light generated by particles 900: Noise region 1000: shield plate 1100: liquid having the same refractive index as the first substrate

Claims (4)

第1基板と前記第1基板に接合した第2基板とを備え、前記第1基板と前記第2基板との間に、粒子を含む流体が流れるマイクロ流路が形成されている、マイクロ流路チップと、
第1基板側から前記粒子を含む流体に光を照射する光照射部(ここで前記照射部は、前記第1基板に対して垂直に光が照射される位置には配置されない)と、
前記光照射部からの光を前記流体に照射することによって前記粒子で発生する散乱光を検出する検出部と、
を備える粒子検出装置であって、
以下の(i)~(iii):
(i) 前記光照射部が、前記マイクロ流路の中心線と前記光照射部から照射された光とのなす角が0度超かつ180度未満となるよう配置されている;
(ii) 前記マイクロ流路チップの流路に流体が流れる方向に対して直交し、かつ、前記第1基板におけるノイズ領域と測定対象の粒子の散乱光の発生領域とのに遮蔽板が設けられている;及び
(iii)前記第1基板の表面における前記光照射部からの光入射領域に、前記第1基板と同一の屈折率を有する液体が塗布されている、
から選択される1又は複数の手段を備えることを特徴とし、
前記光照射部から光を照射することによって前記第1基板で発生する散乱光が、前記検出部で検出されることが防止されている、前記装置。
A microchannel comprising a first substrate and a second substrate bonded to the first substrate, wherein a microchannel through which a fluid containing particles flows is formed between the first substrate and the second substrate. a chip;
a light irradiation unit that irradiates the fluid containing the particles with light from the first substrate side (where the irradiation unit is not arranged at a position where the light is irradiated perpendicularly to the first substrate) ;
a detection unit that detects scattered light generated by the particles by irradiating the fluid with the light from the light irradiation unit;
A particle detection device comprising
(i) to (iii) below:
(i) The light irradiator is arranged such that the angle between the center line of the microchannel and the light emitted from the light irradiator is greater than 0 degrees and less than 180 degrees;
(ii) A shielding plate is provided perpendicular to the direction in which the fluid flows in the channel of the microchannel chip and between the noise region and the scattered light generation region of the particles to be measured on the first substrate. and
(iii) a liquid having the same refractive index as that of the first substrate is applied to a light incidence area from the light irradiation unit on the surface of the first substrate;
characterized by comprising one or more means selected from
The apparatus according to the above, wherein scattered light generated by the first substrate is prevented from being detected by the detection unit by irradiating the light from the light irradiation unit.
前記マイクロ流路は粒子を分級可能な流路である、請求項1記載の装置。 The device according to claim 1 , wherein the microchannel is a channel capable of classifying particles. 前記第1基板の材質がポリジメチルシロキサンである、請求項1又は2に記載の装置。 3. A device according to claim 1 or 2 , wherein the material of said first substrate is polydimethylsiloxane. 前記第1基板の材質がポリジメチルシロキサンである場合、前記液体はシリコーンオイルであり;前記第1基板の材質がアクリル樹脂である場合、前記液体はメタクリル酸メチルであり;又は、前記第1基板の材質がガラスである場合、前記液体はアルコールもしくはパラフィン油である、請求項1又は2に記載の装置。 When the material of the first substrate is polydimethylsiloxane, the liquid is silicone oil; When the material of the first substrate is acrylic resin, the liquid is methyl methacrylate; or 3. The device according to claim 1 or 2, wherein the liquid is alcohol or paraffin oil when the material of is glass.
JP2018151576A 2018-08-10 2018-08-10 particle detector Active JP7165346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018151576A JP7165346B2 (en) 2018-08-10 2018-08-10 particle detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018151576A JP7165346B2 (en) 2018-08-10 2018-08-10 particle detector

Publications (2)

Publication Number Publication Date
JP2020027002A JP2020027002A (en) 2020-02-20
JP7165346B2 true JP7165346B2 (en) 2022-11-04

Family

ID=69619954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018151576A Active JP7165346B2 (en) 2018-08-10 2018-08-10 particle detector

Country Status (1)

Country Link
JP (1) JP7165346B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4108790A1 (en) 2020-02-20 2022-12-28 Nippon Steel Corporation Steel sheet for non-oriented electromagnetic steel sheet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004117096A (en) 2002-09-25 2004-04-15 Horiba Ltd Method and apparatus for measuring particle size distribution
JP2013137267A (en) 2011-12-28 2013-07-11 Sony Corp Microchip and microchip-type fine-particle measuring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004117096A (en) 2002-09-25 2004-04-15 Horiba Ltd Method and apparatus for measuring particle size distribution
JP2013137267A (en) 2011-12-28 2013-07-11 Sony Corp Microchip and microchip-type fine-particle measuring device

Also Published As

Publication number Publication date
JP2020027002A (en) 2020-02-20

Similar Documents

Publication Publication Date Title
US11162948B2 (en) Immunoassay for detection of virus-antibody nanocomplexes in solution by chip-based pillar array
JP5236110B2 (en) Nanochannel arrays for high-throughput macromolecular analysis and their preparation and use
TWI691724B (en) Apparatus for detecting particle in fluid sample and method for isolating aliquot of fluid sample within microfluidic chip
CA2658122C (en) Nanonozzle device arrays: their preparation and use for macromolecular analysis
US8926906B2 (en) Microfluidic device and method for fabricating the microfluidic device
JP2019168471A (en) Detecting and using of light representing sample
JP6229174B2 (en) Diagnostic kit and method of use thereof
KR20110110209A (en) Assay device and method for performing biological assays
JP2007292773A (en) Microfabricated chemical sensor of diffusion base
JP2005533636A (en) Gradient structure for interface between microfluidic and nanofluid, and method for producing and using the same
US20230280274A1 (en) Systems and methods for multicolor imaging
WO2016170345A1 (en) Mifrofluidic apparatus and method for producing an emulsion, use of the apparatus, method for making a microfluidic apparatus and a surfactant
JP2004340702A (en) Microchip and liquid detection method
JP7165346B2 (en) particle detector
CA2701069C (en) Apparatus and method for detection of an analyte in a sample
US11525765B2 (en) Particle detection device and particle detection method
JP6172021B2 (en) Cell alignment chip, manufacturing method thereof, target cell detection method, target cell detection device, and cell capture defect region detection method
JP6482774B2 (en) Biological analysis device, analysis apparatus, and analysis method
Meng CMOS nanofluidics
JP2011095193A (en) Analytical device, method for manufacturing the same, and analyzer using the same
US20220412891A1 (en) Detection device, method for preparing the same, detection system comprising the same, and detection method using the same
TW504491B (en) Chip-type device for counting/classifying and analyzing the micro-fluid particle and manufacturing method thereof
Paiva et al. Development of a microfluidic device for the isolation of tumour-derived extracellular vesicles
de Faria et al. Development of a Microfluidic Device for the Isolation of Tumour-Derived Extracellular Vesicles
JP2019136691A (en) Particulate separation device and particulate separation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221014

R150 Certificate of patent or registration of utility model

Ref document number: 7165346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150