JP7162952B1 - Air leak inspection device and method - Google Patents

Air leak inspection device and method Download PDF

Info

Publication number
JP7162952B1
JP7162952B1 JP2022122388A JP2022122388A JP7162952B1 JP 7162952 B1 JP7162952 B1 JP 7162952B1 JP 2022122388 A JP2022122388 A JP 2022122388A JP 2022122388 A JP2022122388 A JP 2022122388A JP 7162952 B1 JP7162952 B1 JP 7162952B1
Authority
JP
Japan
Prior art keywords
exhaust
valve
vacuum pump
pipe
narrow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022122388A
Other languages
Japanese (ja)
Other versions
JP2024019390A (en
Inventor
守 藤山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2022122388A priority Critical patent/JP7162952B1/en
Application granted granted Critical
Publication of JP7162952B1 publication Critical patent/JP7162952B1/en
Publication of JP2024019390A publication Critical patent/JP2024019390A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

【課題】被検査体及び装置内部を検査可能な所定圧力までの排気するために必要な時間を短縮することができるエアリーク検査装置を提供する。【解決手段】被検査体2に接続される排気管4と、排気管から開閉弁V1,V2を介して分岐し、排気管より細い径を有する排気細管5a、5bと、排気管に接続され、被検査体内の圧力を検出する真空計6と、排気管に遮断弁V0を介して接続された第1真空ポンプ3aと、排気細管に接続された第2真空ポンプ3bとを備える。遮断弁V0を開き、開閉弁V1,V2を閉じて、第1真空ポンプ3aにより排気管4を介して被検査体2及び排気管4内を排気するとともに、第2真空ポンプ3bにより排気細管5a、5b内を排気する。遮断弁V0を閉じ、開閉弁V1、V2を開いて排気管4と排気細管5a、5bを連通させたとき、真空計の検出圧力が所定の閾値を越えるとリーク有りと判定する。【選択図】図1An air leak inspection device capable of shortening the time required to evacuate an object to be inspected and the inside of the device to a predetermined pressure that allows inspection is provided. An exhaust pipe (4) connected to an object to be inspected (2), exhaust narrow pipes (5a, 5b) branching from the exhaust pipe via on-off valves (V1, V2) and having a diameter smaller than that of the exhaust pipe, and connected to the exhaust pipe. , a vacuum gauge 6 for detecting the pressure in the object to be inspected, a first vacuum pump 3a connected to an exhaust pipe via a shutoff valve V0, and a second vacuum pump 3b connected to an exhaust narrow pipe. The shut-off valve V0 is opened, the on-off valves V1 and V2 are closed, and the inspected object 2 and the inside of the exhaust pipe 4 are evacuated through the exhaust pipe 4 by the first vacuum pump 3a, and the exhaust narrow pipe 5a is evacuated by the second vacuum pump 3b. , 5b are evacuated. When the shut-off valve V0 is closed and the on-off valves V1 and V2 are opened to communicate the exhaust pipe 4 with the exhaust narrow pipes 5a and 5b, it is determined that there is a leak if the pressure detected by the vacuum gauge exceeds a predetermined threshold value. [Selection drawing] Fig. 1

Description

本発明は真空機器、加圧機器、密封機器等の被検査体のリークの有無を検査するエアリーク検査装置及び方法に関する。 The present invention relates to an air leak inspection apparatus and method for inspecting for leaks in an object to be inspected, such as a vacuum device, a pressurized device, and a sealed device.

一般に、リーク検査には、水没式検査のほか、エアリークデテクタ、ヘリウムリークデテクタを用いる検査がある。エアリークデテクタには、加圧式と、吸引式(負圧式)とがある。加圧式は、被検査体に検出ガスを充填して加圧し、圧力の低下により漏れを検査する。吸引式は、被検査体を真空に排気し、圧力の上昇により漏れを検査する。これらのエアリークデテクタは、1×10-3Pa・m/sec(圧力差1気圧に換算)程度までの漏れを検査可能である。ヘリウムリークデテクタは、被検査体にヘリウムを充填し、漏れ出たヘリウムを検出するもので、製造ライン等で許容リーク量未満であるか否かのみを検査する場合には、検査時間短縮および感度維持時間の延長等の理由から1×10-6Pa・m/sec程度までの漏れ検査を行い、研究・調査・解析等に於いては、1×10-10Pa・m/sec程度までの小さな漏れを検査可能である。 In general, leak inspection includes inspection using an air leak detector and a helium leak detector in addition to a submerged inspection. There are two types of air leak detectors: pressurization type and suction type (negative pressure type). In the pressurization type, the object to be inspected is filled with a detection gas and pressurized, and leaks are inspected by the decrease in pressure. In the suction type, the object to be inspected is evacuated and leaks are inspected by increasing the pressure. These air leak detectors can detect leaks up to about 1×10 −3 Pa·m 3 /sec (converted to a pressure difference of 1 atmosphere). A helium leak detector fills the object to be inspected with helium and detects the leaked helium. When inspecting only whether or not the leak amount is less than the allowable amount in a production line, etc., the inspection time can be shortened and the sensitivity can be improved. For reasons such as extension of the maintenance time, leak inspection is performed up to about 1×10 -6 Pa·m 3 /sec, and in research, investigation, analysis, etc., it is about 1×10 -10 Pa·m 3 /sec. Small leaks up to

エアリークデテクタは、安価で扱いやすいが、精度は低い。ヘリウムリークデテクタは、高精度であるが、価格が非常に高く、ヘリウムガスを用いるためにランニングコストも高い。また、近年ではヘリウムガスの枯渇化に対応して、高価な回収設備の併用も普通に行われる。更に、分析管、高真空ポンプ、液体窒素冷却器等の精密で汚れに弱い構成機器を有するので、漏れ量が多く水や油の付着した被検査体を検査すると、精度が低下したり、故障しやすく、修復に非常な手間を要する等の問題がある。 Air leak detectors are inexpensive and easy to handle, but their accuracy is low. Helium leak detectors are highly accurate, but they are very expensive, and running costs are also high due to the use of helium gas. In recent years, in response to the depletion of helium gas, expensive recovery equipment is also commonly used. Furthermore, since it has precision components such as analysis tubes, high-vacuum pumps, liquid nitrogen coolers, etc., which are sensitive to contamination, if a test object with a large amount of leakage and water or oil adhered is inspected, the accuracy may decrease or malfunction may occur. There are problems such as that it is easy to repair and that it takes a lot of time and effort to repair.

特許文献1には、従来のエアリークデテクタと価格が同等以下で、扱いやすく、ヘリウムリークデテクタに近い精度(製造ライン等で許容リーク量未満であるか否かのみを検査するレベル)で漏れを検査することができるエアリーク検査装置が本発明者により提案されている。特許文献1のエアリーク検査装置は、真空ポンプにより排気管を介して被検査体を所定圧力まで排気した後、排気管の遮断弁を閉じて排気細管のみにより排気している間に、排気管の圧力が上昇するか否かによってリークを検出している。 Patent Document 1 describes a leak detector that is less than the same price as conventional air leak detectors, is easy to handle, and has an accuracy close to that of helium leak detectors (a level that only inspects whether or not the leak amount is less than the allowable leak amount on a production line, etc.). The present inventor has proposed an air leak inspection device that can In the air leak inspection apparatus of Patent Document 1, after exhausting an object to be inspected to a predetermined pressure through an exhaust pipe by a vacuum pump, the shutoff valve of the exhaust pipe is closed and exhaust is performed only by the exhaust narrow pipe. A leak is detected depending on whether the pressure rises or not.

特許文献1のエアリーク検査装置では、真空ポンプの到達可能圧力に極力近づくまで排気して遮断弁を閉じることで、排気細管の下流側の圧力が真空ポンプの到達可能圧力になっていると推定していた。また、特許文献1のエアリーク検査装置では、被検査体及び装置内部を検査可能な所定圧力まで排気するのに時間がかかるという問題がある。これは、大気圧から10~1Pa程度の領域まで排気する場合、到達可能圧力が0.5~1Paの真空ポンプを使用するのが一般的であるが、到達可能圧力に近づくほど排気速度が遅くなり、特に10Paから1Paに下がるのに非常に時間がかかるからである。 In the air leak inspection device of Patent Literature 1, by closing the shutoff valve by exhausting the pressure as close as possible to the reachable pressure of the vacuum pump, it is estimated that the pressure on the downstream side of the exhaust capillary is the reachable pressure of the vacuum pump. was Moreover, the air leak inspection device of Patent Document 1 has a problem that it takes time to exhaust the object to be inspected and the inside of the device to a predetermined pressure that allows inspection. When evacuating from atmospheric pressure to a range of about 10 to 1 Pa, it is common to use a vacuum pump with a reachable pressure of 0.5 to 1 Pa, but the closer to the reachable pressure, the slower the evacuation speed. This is because it takes a very long time to drop from 10 Pa to 1 Pa.

特許第6228285号公報Japanese Patent No. 6228285

本発明は、斯かる従来の問題点に鑑みてなされたもので、被検査体及び装置内部を検査可能な所定圧力までの排気するために必要な時間を短縮することができるエアリーク検査装置を提供することを課題とする。 SUMMARY OF THE INVENTION The present invention has been made in view of such conventional problems, and provides an air leak inspection apparatus capable of shortening the time required to evacuate an object to be inspected and the inside of the apparatus to a predetermined pressure that allows inspection. The task is to

前記課題を解決するための手段は、以下の通りである。
(1)被検査体に接続される排気管と、
前記排気管から開閉弁を介して分岐し、前記排気管より細い径を有する排気細管と、
前記排気管に接続され、前記被検査体内の圧力を検出する真空計と、
前記排気管に遮断弁を介して接続された第1真空ポンプと、
前記排気細管に接続された第2真空ポンプとを備え、
前記開閉弁を閉じ、前記遮断弁を開いて、前記第1真空ポンプにより前記排気管を介して前記被検査体及び前記排気管内を排気するとともに、前記第2真空ポンプにより前記排気細管内を排気して、
前記開閉弁を開き、前記遮断弁を閉じたとき、前記真空計の検出圧力が所定の閾値を越えるとリーク有りと判定する検査工程を行う制御部を備えることを特徴とするエアリーク検査装置。
Means for solving the above problems are as follows.
(1) an exhaust pipe connected to an object to be inspected;
an exhaust narrow pipe branched from the exhaust pipe via an on-off valve and having a diameter smaller than that of the exhaust pipe;
a vacuum gauge that is connected to the exhaust pipe and detects the pressure inside the test subject;
a first vacuum pump connected to the exhaust pipe via a shutoff valve;
A second vacuum pump connected to the exhaust capillary,
The on-off valve is closed and the shut-off valve is opened to evacuate the inspected object and the inside of the exhaust pipe through the exhaust pipe by the first vacuum pump, and evacuate the inside of the exhaust narrow pipe by the second vacuum pump. do,
An air leak inspection apparatus, comprising: a control unit that performs an inspection step of determining that there is a leak when the pressure detected by the vacuum gauge exceeds a predetermined threshold value when the on-off valve is opened and the cutoff valve is closed.

前記(1)の手段では、第1真空ポンプにより排気管を介して被検査体及び排気管内を排気するとともに、第2真空ポンプにより排気細管内を排気して、排気細管の排気方向の下流側を上流側より低い圧力に排気した後、排気管と排気細管を連通させて、排気細管の上流側と下流側の圧力差により排気細管に微小流量を発生させる。被検査体にリークがあり、その漏れ量が排気細管の排気速度より大きいと、排気管の圧力が上昇する。漏れ量が小さいと、排気細管から排気されるので、排気管の圧力は上昇しない。真空計の圧力が所定の閾値より大きいと、漏れ有り、当該閾値より小さいと漏れ無しと判断できる。 In the means (1), the object to be inspected and the inside of the exhaust pipe are evacuated through the exhaust pipe by the first vacuum pump, and the inside of the exhaust narrow pipe is evacuated by the second vacuum pump, and the downstream side of the exhaust pipe in the exhaust direction is discharged. is evacuated to a pressure lower than that on the upstream side, the exhaust pipe is communicated with the exhaust narrow pipe, and the pressure difference between the upstream side and the downstream side of the exhaust narrow pipe generates a minute flow rate in the exhaust narrow pipe. If there is a leak in the object to be inspected and the amount of leakage is greater than the exhaust speed of the narrow exhaust pipe, the pressure in the exhaust pipe will rise. If the leakage amount is small, the air will be exhausted from the narrow exhaust pipe, so the pressure in the exhaust pipe will not increase. If the pressure of the vacuum gauge is greater than a predetermined threshold value, it can be determined that there is a leak, and if it is less than the threshold value, it can be determined that there is no leak.

第1真空ポンプによる被検査体及び排気管内の排気は、従来のように系全体を1つの真空ポンプで所定の真空度まで排気するのに比べて、短時間で済む。また、第2真空ポンプによる排気細管の排気は、排気細管の内容積が被検査体及び排気管の内容積より小さいので、第1真空ポンプよりも小型で安価なポンプで済む。したがって、遮断弁を閉じ、開閉弁を開いた時点では、既に排気細管の下流側は上流側より低い圧力になっているので、排気細管の上流側と下流側にリーク検査に必要な圧力差を発生させるまでに要する排気時間が速くなり、検査時間を短縮することができる。複数の被検査体について検査が連続して複数回行われる場合には、検査が終了した時点で開閉弁を閉じて排気細管内を排気状態に維持しておくことで、次の検査を行う毎に排気細管内を排気する必要がなく、排気管内を排気するだけでよいので、検査全体の検査時間を大幅に短縮することができる。 Evacuation of the object to be inspected and the inside of the exhaust pipe by the first vacuum pump can be completed in a short period of time, compared to conventionally evacuating the entire system to a predetermined degree of vacuum with one vacuum pump. In addition, since the inner volume of the exhaust narrow tube is smaller than that of the object to be inspected and the inner volume of the exhaust pipe, the second vacuum pump suffices to evacuate the exhaust narrow tube with a pump that is smaller and less expensive than the first vacuum pump. Therefore, when the shut-off valve is closed and the on-off valve is opened, the pressure on the downstream side of the exhaust pipe is already lower than the pressure on the upstream side. Evacuation time required for generation is shortened, and inspection time can be shortened. When multiple inspections are continuously performed on multiple objects to be inspected, the on-off valve is closed at the end of the inspection to keep the inside of the exhaust pipe in an exhausted state. Since it is not necessary to evacuate the inside of the exhaust narrow pipe immediately, it is only necessary to evacuate the inside of the exhaust pipe, so the inspection time for the entire inspection can be greatly shortened.

(2)前記開閉弁は、前記排気細管の排気方向の上流側に設けられていることを特徴とする(1)に記載のエアリーク検査装置。 (2) The air leak inspection device according to (1), wherein the on-off valve is provided upstream of the exhaust narrow pipe in the exhaust direction.

前記(2)の手段では、開閉弁が排気細管の上流側に設けられているので、検査が終了した時点で開閉弁を閉じることで、複数の被検査体を連続して検査している間、常に排気細管内を排気状態にしておくことができる。一方、特許文献1の方法では、排気細管の上流側に開閉弁を設けた場合でも、V0、Vwを開くや否や、下流側から大量のエアーが排気細管内に侵入するため、新たに被検査物の検査を始める毎に、細管内の排気という手間のかかることを行う必要があった。 In the above means (2), since the on-off valve is provided on the upstream side of the exhaust narrow pipe, by closing the on-off valve when the inspection is completed, it is possible to continuously inspect a plurality of objects to be inspected. , the inside of the exhaust narrow tube can always be kept in an exhausted state. On the other hand, in the method of Patent Document 1, even if the on-off valve is provided on the upstream side of the exhaust narrow pipe, as soon as V0 and Vw are opened, a large amount of air enters the exhaust narrow pipe from the downstream side. Each time an object was inspected, it was necessary to evacuate the inside of the narrow tube, which took time and effort.

(3)前記第2真空ポンプの到達可能圧力は、前記第1真空ポンプの到達可能圧力と同等又はそれ以下であることを特徴とする(1)又は(2)に記載のエアリーク検査装置。 (3) The air leak inspection apparatus according to (1) or (2), wherein the reachable pressure of the second vacuum pump is equal to or lower than the reachable pressure of the first vacuum pump.

前記(3)の手段では、第2真空ポンプは、被検査体及び排気管より内容積が小さい排気細管内を排気するので、第1真空ポンプの到達可能圧力より低くても、第1真空ポンプよりも小型で比較的安価なポンプを採用できる。 In the above means (3), the second vacuum pump evacuates the inside of the narrow exhaust tube having an inner volume smaller than that of the object to be inspected and the exhaust tube. A smaller and relatively inexpensive pump can be used.

(4)前記排気細管は、コンダクタンスが異なる複数の排気細管が並列に接続されていることを特徴とする(1)~(3)のいずれかに記載のエアリーク検査装置。 (4) The air leak inspection device according to any one of (1) to (3), wherein the exhaust narrow pipe is connected in parallel with a plurality of exhaust narrow pipes having different conductances.

前記(4)の手段では、コンダクタンスが異なる複数の排気細管のいずれか又は幾つかを組み合わせて選択することで、複数のリークレベルの判定が可能になる。また、コンダクタンスが良い排気細管で被検査値をスクリーニングすることで、排気細管にリークガスが進入したときでも、排気細管内の真空度の回復時間を短縮することができる。 In the above means (4), it is possible to determine a plurality of leak levels by selecting one or a combination of a plurality of exhaust tubules having different conductances. Further, by screening the value to be inspected with an exhaust narrow tube having good conductance, even when leak gas enters the exhaust narrow tube, the recovery time of the degree of vacuum in the exhaust narrow tube can be shortened.

(5)前記制御部は、前記検査工程の前に、前記遮断弁及び前記開閉弁を開いて、前記第1真空ポンプにより前記排気細管及び前記排気管内を排気するとともに、前記第2真空ポンプにより前記排気細管内を排気する準備工程を行うことを特徴とする(1)~(4)のいずれかに記載のエアリーク検査装置。 (5) Before the inspection step, the control unit opens the shut-off valve and the on-off valve, evacuates the inside of the narrow exhaust pipe and the exhaust pipe by the first vacuum pump, and The air leak inspection device according to any one of (1) to (4), characterized in that a preparatory step of evacuating the inside of the exhaust narrow pipe is performed.

前記(5)の手段では、検査工程の前に排気管及び排気細管内を排気する準備工程を行うので、検査工程で最初から排気する必要がなく、直ちに検査を行うことができる。 In the above means (5), since the preparation process of evacuating the inside of the exhaust pipe and the narrow exhaust pipe is performed before the inspection process, it is not necessary to exhaust the air from the beginning in the inspection process, and the inspection can be performed immediately.

(6)前記制御部は、前記検査工程でリーク有と判定したとき、前記遮断弁及び前記開閉弁を開いて、前記第1真空ポンプにより前記排気細管及び前記排気管内を排気するとともに、前記第2真空ポンプにより前記排気細管内を排気する細管排気工程を行うことを特徴とする(1)~(5)のいずれかにエアリーク検査装置。 (6) When the control unit determines that there is a leak in the inspection step, the control unit opens the shut-off valve and the on-off valve, evacuates the narrow exhaust pipe and the exhaust pipe by the first vacuum pump, and 2. The air leak inspection device according to any one of (1) to (5), characterized in that a narrow tube evacuation process is performed to evacuate the inside of the exhaust narrow tube by a vacuum pump.

前記(6)の手段では、リーク有りとなった被検査体内のエアーが排気細管に進入するので、排気細管内を排気して、次の被検査体の検査に影響がないように備えることができる。 In the above means (6), since the air in the object to be inspected that has a leak enters the exhaust narrow pipe, it is necessary to evacuate the inside of the exhaust narrow pipe so as not to affect the inspection of the next object to be inspected. can.

(7)被検査体に接続される排気管と、
前記排気管から開閉弁を介して分岐し、前記排気管より細い径を有する排気細管と、
前記排気管に接続され、前記被検査体内の圧力を検出する真空計と、
前記排気管に遮断弁を介して接続された第1真空ポンプと、
前記排気細管に接続された第2真空ポンプとを備え、
前記開閉弁を閉じ、前記遮断弁を開いて、前記第1真空ポンプにより前記排気管を介して前記被検査体及び前記排気管内を排気するとともに、前記第2真空ポンプにより前記排気細管内を排気する排気工程と、
前記排気工程の後、前記開閉弁を開き、前記遮断弁を閉じたとき、前記真空計の検出圧力が所定の閾値を越えるとリーク有りと判定する検査工程とを有することを特徴とするエアリーク検査方法。
(7) an exhaust pipe connected to an object to be inspected;
an exhaust narrow pipe branched from the exhaust pipe via an on-off valve and having a diameter smaller than that of the exhaust pipe;
a vacuum gauge that is connected to the exhaust pipe and detects the pressure inside the test subject;
a first vacuum pump connected to the exhaust pipe via a shutoff valve;
A second vacuum pump connected to the exhaust capillary,
The on-off valve is closed and the shut-off valve is opened to evacuate the inspected object and the inside of the exhaust pipe through the exhaust pipe by the first vacuum pump, and evacuate the inside of the exhaust narrow pipe by the second vacuum pump. an exhaust process to
an inspection step of determining that there is a leak when the pressure detected by the vacuum gauge exceeds a predetermined threshold value when the on-off valve is opened after the exhaust step and the shutoff valve is closed after the exhaust step. Method.

(8)前記検査工程の前に、前記遮断弁及び前記開閉弁を開いて、前記第1真空ポンプにより前記排気細管及び前記排気管内を排気するとともに、前記第2真空ポンプにより前記排気細管内を排気する準備工程を有することを特徴とする(7)に記載のエアリーク検査方法。 (8) Before the inspection step, the shut-off valve and the on-off valve are opened to evacuate the exhaust tube and the inside of the exhaust tube by the first vacuum pump, and evacuate the inside of the exhaust tube by the second vacuum pump. The air leak inspection method according to (7), further comprising a preparatory step for evacuation.

(9)前記検査工程でリーク有と判定したとき、前記遮断弁及び前記開閉弁を開いて、前記第1真空ポンプにより前記排気細管及び前記排気管内を排気するとともに、前記第2真空ポンプにより前記排気細管内を排気する細管排気工程を有することを特徴とする(7)又は(8)に記載のエアリーク検査方法。 (9) When it is determined that there is a leak in the inspection step, the shut-off valve and the on-off valve are opened, the first vacuum pump evacuates the narrow exhaust pipe and the exhaust pipe, and the second vacuum pump The air leak inspection method according to (7) or (8), further comprising a narrow tube exhaust step of exhausting the inside of the exhaust narrow tube.

本発明によれば、第1真空ポンプによる被検査体及び排気管内の排気は、従来のように系全体を1つの真空ポンプで所定の真空度まで排気するのに比べて、短時間で済む。また、第2真空ポンプによる排気細管の排気は、排気細管の内容積が被検査体及び排気管の内容積より小さいので、第1真空ポンプよりも小型で安価なポンプで済む。したがって、排気細管の上流側と下流側にリーク検査に必要な圧力差を発生させるまでに要する排気時間が速くなり、検査時間を短縮することができ、また、次の検査を行う毎に、排気細管内を排気状態にして待機し、排気管内を排気するだけで検査を開始できるので、検査全体の検査時間を大幅に短縮することができるという効果を有している。 According to the present invention, evacuation of the object to be inspected and the inside of the evacuation pipe by the first vacuum pump can be completed in a short period of time compared to conventional evacuation of the entire system to a predetermined degree of vacuum by one vacuum pump. In addition, since the inner volume of the exhaust narrow tube is smaller than that of the object to be inspected and the inner volume of the exhaust pipe, the second vacuum pump suffices to evacuate the exhaust narrow tube with a pump that is smaller and less expensive than the first vacuum pump. Therefore, the exhaust time required to generate the pressure difference necessary for the leak inspection between the upstream side and the downstream side of the exhaust narrow tube is shortened, and the inspection time can be shortened. Since the inspection can be started only by evacuating the inside of the exhaust pipe after the inside of the narrow tube is evacuated, the inspection time for the entire inspection can be significantly shortened.

本発明の実施形態に係るエアリーク検査装置の系統図。1 is a system diagram of an air leak inspection device according to an embodiment of the present invention; FIG. 図1のエアリーク検査装置の準備工程の動作を示すフローチャート。2 is a flow chart showing the operation of the preparation process of the air leak inspection device of FIG. 1; 図1のエアリーク検査装置の検査工程の動作を示すフローチャート。2 is a flow chart showing the operation of the inspection process of the air leak inspection apparatus of FIG. 1; 図1のエアリーク検査装置の細管排気工程の動作を示すフローチャート。2 is a flow chart showing the operation of the narrow tube exhaust process of the air leak inspection device of FIG. 1; 図1のエアリーク検査装置と従来のエアリーク検査装置の排気時間の差を示す図。FIG. 2 is a diagram showing the difference in exhaust time between the air leak inspection device of FIG. 1 and a conventional air leak inspection device; 図1のエアリーク検査装置による検出圧力の時間的変化を示す図。FIG. 2 is a diagram showing a temporal change in detected pressure by the air leak inspection device of FIG. 1;

以下、本発明の実施形態を添付図面に従って説明する。 Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は本発明の実施形態に係るエアリーク検査装置1を示す。このエアリーク検査装置1は、被検査体2のリークを検査するもので、第1真空ポンプ3a及び第2真空ポンプ3b(両者を合わせて、真空ポンプ3という。)と、排気管4と、第1排気細管5a及び第2排気細管5b(両者を合わせて、排気細管5という。)と、真空計6と、制御部7とを備えている。 FIG. 1 shows an air leak inspection device 1 according to an embodiment of the present invention. This air leak inspection device 1 is for inspecting leaks in an object 2 to be inspected, and includes a first vacuum pump 3a and a second vacuum pump 3b (they are collectively referred to as vacuum pumps 3), an exhaust pipe 4, and a first vacuum pump 3b. A first exhaust narrow tube 5 a and a second exhaust narrow tube 5 b (both are collectively referred to as an exhaust narrow tube 5 ), a vacuum gauge 6 , and a control section 7 are provided.

被検査体2は、エアリーク検査の検査対象である。本発明では、魔法瓶や真空ジャケット等の真空排気された空間を有する真空機器、圧力容器等の加圧空間を有する加圧機器、気密又は液密の密封部分を有する密封機器等、種々のものを検査対象とすることができる。図1は、真空排気される空間2aに連通するチップ管2bが接続された真空容器を示している。 The object 2 to be inspected is an object to be inspected for an air leak inspection. In the present invention, various devices such as a vacuum device having an evacuated space such as a thermos bottle or a vacuum jacket, a pressurized device having a pressurized space such as a pressure vessel, and a sealed device having an airtight or liquid-tight sealed portion are used. Can be inspected. FIG. 1 shows a vacuum vessel to which a tip tube 2b communicating with a space 2a to be evacuated is connected.

第1真空ポンプ3aは、被検査体2及び排気管4内を0.5~1Pa程度の真空に排気できるロータリポンプでよく、メカニカルブースターポンプや拡散ポンプは必要でない。 The first vacuum pump 3a may be a rotary pump capable of evacuating the inspected object 2 and the exhaust pipe 4 to a vacuum of about 0.5 to 1 Pa, and does not require a mechanical booster pump or a diffusion pump.

第2真空ポンプ3bは、第1排気細管5a、第2排気細管5b内を0.5~1Pa程度の真空に排気できる真空ポンプであり、ロータリポンプでよい。但し、より感度を高める場合や排気細管の内径を比較的太くしたい場合には、小型の分子ターボポンプ等の高真空ポンプを使用してもよい。 The second vacuum pump 3b is a vacuum pump capable of evacuating the insides of the first exhaust narrow tube 5a and the second exhaust narrow tube 5b to a vacuum of about 0.5 to 1 Pa, and may be a rotary pump. However, if the sensitivity is to be further enhanced or if the inner diameter of the exhaust narrow tube is to be relatively large, a high vacuum pump such as a small molecular turbopump may be used.

排気管4は、ステンレス鋼管からなり、10~100mmの内径を有する。排気管4の内径は、被検査体2の排気容積に応じて選定すればよいが、排気容量が1リットルの場合には20~25mmである。排気管4は一端が被検査体2のチップ管2bに接続され、他端が第1真空ポンプ3aに接続されている。以下、第1真空ポンプ3aにより排気管4を介して被検査体2を排気する場合に、排気管4の排気方向の被検査体側を「上流側」、真空ポンプ側を「下流側」という。排気管4の上流側にはフィルタ8と、フィルタ8の下流側にワーク弁Vwとが設けられ、下流側には遮断弁V0と、遮断弁V0の下流側にリーク弁VLとが設けられている。ワーク弁Vwは、被検査体2の付け替えの際等に閉じることで、排気管4内へ大気等が不用意に進入して排気管4の内面に水や油が付着するのを防止するものである。リーク弁VLは、ロータリポンプである第1真空ポンプ3aの運転を停止する際に開放して、ポンプの作動油が排気管4内に逆流するのを防止するものである。ワーク弁Vwより下流側には枝管4aが設けられている。排気管4の遮断弁V0より上流側には、排気管4、すなわち、被検査体2に清浄ガスとして例えば窒素(N)、炭酸ガス(CO)、アルゴン(Ar)等を導入する清浄ガス導入部9が設けられている。 The exhaust pipe 4 is made of stainless steel pipe and has an inner diameter of 10 to 100 mm. The inner diameter of the exhaust pipe 4 may be selected according to the exhaust volume of the object 2 to be inspected, and is 20 to 25 mm when the exhaust volume is 1 liter. One end of the exhaust pipe 4 is connected to the tip tube 2b of the device under test 2, and the other end is connected to the first vacuum pump 3a. Hereinafter, when the first vacuum pump 3a evacuates the inspected object 2 through the exhaust pipe 4, the inspected object side in the exhaust direction of the exhaust pipe 4 is called the "upstream side", and the vacuum pump side is called the "downstream side". A filter 8 is provided on the upstream side of the exhaust pipe 4, a work valve Vw is provided on the downstream side of the filter 8, a shutoff valve V0 is provided on the downstream side, and a leak valve VL is provided on the downstream side of the shutoff valve V0. there is The work valve Vw is closed when the inspected object 2 is replaced, etc., to prevent water or oil from adhering to the inner surface of the exhaust pipe 4 due to inadvertent entry of air into the exhaust pipe 4. is. The leak valve VL is opened when the operation of the first vacuum pump 3a, which is a rotary pump, is stopped to prevent the working oil of the pump from flowing back into the exhaust pipe 4. FIG. A branch pipe 4a is provided downstream of the work valve Vw. A cleaning gas such as nitrogen (N 2 ), carbon dioxide (CO 2 ), argon (Ar), or the like is introduced into the exhaust pipe 4 , that is, the object 2 to be inspected, upstream of the shutoff valve V 0 of the exhaust pipe 4 . A gas introduction section 9 is provided.

第1排気細管5aと、第2排気細管5bは、ステンレス鋼管または銅管からなり、排気管4よりも細く、1~6mmの内径を有する。実施例では、第1排気細管5aは、内径3mm、長さ50cmで、第2排気細管5bは、内径1mm、長さ1mであるが、これに限るものではない。第1排気細管5aと第2排気細管5bは、並列に設けられている。すなわち、第1排気細管5aの一端は排気管4の枝管4aに第1開閉弁V1を介して接続され、他端は集合管4bを介して第2真空ポンプ3bに接続されている。また、第2排気細管5bの一端は排気管4の枝管4aに第2開閉弁V2を介して接続され、他端は集合管4bを介して第2真空ポンプ3bに接続されている。枝管4aを設けずに、第1排気細管5aと第2排気細管5bをそれぞれ第1開閉弁V1、第2開閉弁V2を介して、排気管4に直接接続してもよい。 The first exhaust narrow pipe 5a and the second exhaust narrow pipe 5b are made of stainless steel pipe or copper pipe, are thinner than the exhaust pipe 4, and have an inner diameter of 1 to 6 mm. In the embodiment, the first exhaust narrow tube 5a has an inner diameter of 3 mm and a length of 50 cm, and the second exhaust narrow tube 5b has an inner diameter of 1 mm and a length of 1 m, but the present invention is not limited to this. The first exhaust narrow tube 5a and the second exhaust narrow tube 5b are provided in parallel. That is, one end of the first exhaust narrow pipe 5a is connected to the branch pipe 4a of the exhaust pipe 4 via the first on-off valve V1, and the other end is connected to the second vacuum pump 3b via the collecting pipe 4b. One end of the second exhaust narrow pipe 5b is connected to the branch pipe 4a of the exhaust pipe 4 via the second on-off valve V2, and the other end is connected to the second vacuum pump 3b via the collecting pipe 4b. The first exhaust narrow pipe 5a and the second exhaust narrow pipe 5b may be directly connected to the exhaust pipe 4 via the first on-off valve V1 and the second on-off valve V2, respectively, without providing the branch pipe 4a.

真空計6は、ピラニ真空計、熱電対真空計が採用できるが、ピラニ真空計が好ましい。ピラニ真空計は、気体分子の衝突により熱を奪われた白金細線の抵抗値の変化から圧力を求めるものである。真空計6のセンサ部6aはフィルタ8より下流側で枝管4aの近傍に接続されている。真空計6の本体6bは、排気管4内、すなわち、被検査体2の圧力(真空度)を検出して表示するとともに、後述する制御部7に検出圧力のデジタル値を出力する。集合管4bにも、真空計6と同様に、センサ部11aと本体11bからなる真空計11が設けられている。真空計11は、第1排気細管5a、第2排気細管5bの下流側の圧力を検出する。なお、真空計6と真空計11は、センサ部6とセンサ部11の2つのセンサ部を設け、本体部6bと本体部11bを共通にして切り替えて制御部7と通信するようにしてもよい。 A Pirani vacuum gauge or a thermocouple vacuum gauge can be used as the vacuum gauge 6, but the Pirani vacuum gauge is preferable. The Pirani vacuum gauge obtains the pressure from changes in the resistance value of a platinum thin wire that loses heat due to the collision of gas molecules. A sensor portion 6a of the vacuum gauge 6 is connected downstream of the filter 8 in the vicinity of the branch pipe 4a. The main body 6b of the vacuum gauge 6 detects and displays the pressure (degree of vacuum) in the exhaust pipe 4, that is, in the inspection object 2, and outputs a digital value of the detected pressure to the control unit 7, which will be described later. Like the vacuum gauge 6, the collecting pipe 4b is also provided with a vacuum gauge 11 comprising a sensor portion 11a and a main body 11b. A vacuum gauge 11 detects the pressure downstream of the first exhaust narrow tube 5a and the second exhaust narrow tube 5b. It should be noted that the vacuum gauge 6 and the vacuum gauge 11 may be provided with two sensor portions, the sensor portion 6 and the sensor portion 11, and the body portion 6b and the body portion 11b may be shared and switched to communicate with the control portion 7. .

制御部7は、シーケンス制御により、真空計6から出力される検出圧力に基づいて、遮断弁V0、第1開閉弁V1、第2開閉弁V2を開閉制御するとともに、被検査体2のリークの有無を判断して、表示部10にリークの有無を表示する。 The control unit 7 controls opening and closing of the shut-off valve V0, the first opening/closing valve V1, and the second opening/closing valve V2 based on the detected pressure output from the vacuum gauge 6 by sequence control, and controls the leakage of the inspection object 2. The presence or absence of leakage is determined and the presence or absence of leakage is displayed on the display unit 10 .

ここで、排気細管5の径Dと長さLの選定方法について説明する。排気中に管内を気体が流れるときに排気抵抗が生じるが、管の流れやすさ示すために、排気抵抗の逆数をとってこれをコンダクタンスという。コンダクタンスをC[m/s]、配管両端の圧力をP[Pa],P[Pa]とすると、流量Q[Pa・m/s]は、次式で表される。
Q=C(P-P
Here, a method for selecting the diameter D and the length L of the exhaust narrow pipe 5 will be described. Exhaust resistance is generated when the gas flows through the pipe during evacuation. To indicate how easily the pipe flows, the reciprocal of the exhaust resistance is called conductance. Assuming that the conductance is C [m 3 /s] and the pressures at both ends of the pipe are P 1 [Pa] and P 0 [Pa], the flow rate Q [Pa·m 3 /s] is expressed by the following equation.
Q=C(P 1 -P 0 )

配管の気体の流れを粘性流領域とし、P=(P+P)/2[Pa]、配管の径(内径)をD[m]、配管の長さをL[m]とすると、細くて長い配管のコンダクタンスC[m/s]は、次式で表される(千田裕彦、「粘性流領域における真空排気の理論計算とその応用」、2010年1月・SEIテクニカルレビュー・第176号、2頁参照)。
C=1349DP/L
Assuming that the gas flow in the pipe is a viscous flow region, P = (P 1 + P 0 )/2 [Pa], the diameter (inner diameter) of the pipe is D [m], and the length of the pipe is L [m]. The conductance C [m / s] of a long pipe is expressed by the following equation ( Hirohiko Senda, "Theoretical calculation of evacuation in the viscous flow region and its application", January 2010, SEI Technical Review, No. 176 No., page 2).
C= 1349D4P /L

流量Qを被検査体2の許容できる漏れ量とし、排気細管5の両端の圧力P,Pを状況に応じて仮定し、排気細管5の径Dを固定すると、前記2式から、排気細管5の長さLを決定できる。また、排気細管5の長さLを固定すると、排気細管5の径Dを決定できる。排気細管5の径D及び配管の長さLが固定している場合には、許容漏れ量Qを決定できる。 Assuming that the flow rate Q is the permissible leak amount of the inspected object 2, the pressures P 1 and P 0 at both ends of the exhaust tube 5 are assumed according to the situation, and the diameter D of the exhaust tube 5 is fixed, from the above equation 2, the exhaust The length L of tubule 5 can be determined. Further, if the length L of the exhaust narrow tube 5 is fixed, the diameter D of the exhaust narrow tube 5 can be determined. When the diameter D of the exhaust narrow pipe 5 and the length L of the pipe are fixed, the allowable leak amount Q can be determined.

例えば、排気細管5の両端の圧力P,Pを、それぞれ、10Pa,1Paと仮定し、排気細管5として、内径1mm、長さ50cmを使用すると、
P=(10+1)/2=5.5[Pa]
D=1.0×10-3[m]
L=0.5[m]
であるから、コンダクタンスC及び流量Qは、次の通りになる。
C=1349×(1.0×10-3)×5.5/0.5
=1.48×10-8[m/s]
Q=1.48×10-8×(10-1)
=1.34×10-7[Pa・m/s]
For example, assuming that the pressures P 1 and P 0 at both ends of the exhaust tube 5 are 10 Pa and 1 Pa, respectively, and the exhaust tube 5 has an inner diameter of 1 mm and a length of 50 cm,
P=(10+1)/2=5.5 [Pa]
D=1.0×10 −3 [m]
L = 0.5 [m]
So the conductance C and flow rate Q are:
C=1349×(1.0×10 −3 ) 4 ×5.5/0.5
= 1.48 × 10 -8 [m 3 /s]
Q=1.48× 10-8 ×(10-1)
= 1.34 × 10 -7 [Pa·m 3 /s]

この場合、流量Q=1.34×10-7[Pa・m/s]を基準にして、リークの有無を検査できる。すなわち、本発明において、排気細管5の流量Qを超える漏れ量があれば、排気細管5の被検査体2側の圧力Pの上昇(真空度の低下)がみられ、被検査体2にリーク(漏れ)があると判断できる。逆に、流量Q以下の漏れ量があれば、排気細管5を通って排気されるので、排気細管5の被検査体2側の圧力Pの上昇(真空度の低下)がなく、被検査体2にリーク(漏れ)が無いと判断できる。 In this case, the presence or absence of leakage can be inspected based on the flow rate Q=1.34×10 −7 [Pa·m 3 /s]. That is, in the present invention, if the amount of leakage exceeds the flow rate Q of the narrow exhaust pipe 5, the pressure P1 on the side of the inspected object 2 in the narrow exhaust pipe 5 rises (the degree of vacuum decreases), and the inspected object 2 It can be determined that there is a leak. Conversely, if there is a leak amount equal to or less than the flow rate Q, it will be exhausted through the narrow exhaust pipe 5, so there will be no rise in the pressure P1 (lower degree of vacuum) on the side of the inspected object 2 in the narrow exhaust pipe 5, and there will be no increase in the degree of vacuum. It can be determined that there is no leak in the body 2.

表1は、排気細管の下流側の圧力Pが1Paのとき、排気細管の長さL、内径D、排気細管の上流側の圧力Pを変化させたときの、排気細管の流量Qを計算したものである。排気細管の流量Qは、排気細管の長さLを長く、内径Dを小さくするほど、小さくなり、-7乗台、-8乗台のリーク検出が可能となることを示している。 Table 1 shows the flow rate Q of the exhaust tubule when the pressure P0 on the downstream side of the exhaust tubule is 1 Pa, the length L of the exhaust tubule, the inner diameter D, and the pressure P1 on the upstream side of the exhaust tubule are changed. It is calculated. The flow rate Q of the exhaust narrow tube becomes smaller as the length L of the exhaust narrow tube becomes longer and the inner diameter D becomes smaller, indicating that leak detection on the order of -7 and -8 is possible.

Figure 0007162952000002
Figure 0007162952000002

本実施形態のリーク検査装置は、Heリーク標準を用いた定期点検を行い、精度を担保する必要がある。細くて長い配管のコンダクタンスC[m/s]と流量Q[Pa・m/s]を表す上記算式は、気体分子を窒素(N)とした場合であるので、NをHeに換算するピラニ補正を行って、表1と同一条件で排気細管の流量Qを計算すると、表2に示す通りとなる。表2から、Heリーク標準を用いて、-7乗台のリーク検出が可能となることを示している。つまり、Heリーク標準による定期点検を行うことで、高価なHeガスを検査ガスとして用いることなくHeリークディテクタと同等の尺度で漏れ検査を行うことができる。 The leak inspection device of this embodiment needs to be periodically inspected using a He leak standard to ensure accuracy. Since the above formula representing the conductance C [m 3 /s] and the flow rate Q [Pa m 3 /s] of a thin and long pipe is a case where the gas molecule is nitrogen (N 2 ), N 2 is replaced by He When the Pirani correction for conversion is performed and the flow rate Q of the exhaust narrow pipe is calculated under the same conditions as in Table 1, the results are as shown in Table 2. Table 2 shows that leak detection in the -7 order is possible using the He leak standard. In other words, by performing periodic inspections based on the He leak standard, it is possible to perform leak inspections on a scale equivalent to that of a He leak detector without using expensive He gas as the inspection gas.

Figure 0007162952000003
Figure 0007162952000003

排気細管5として、複数の排気細管5a、5bが並列に接続されている場合、合成コンダクタンスCは、次式で表され、複数の排気細管を組み合わせることで、合成コンダクタンスを大きくすることができる。
C=C1+C2
When a plurality of exhaust capillaries 5a and 5b are connected in parallel as the exhaust capillaries 5, the combined conductance C is expressed by the following equation, and the combined conductance can be increased by combining a plurality of exhaust capillaries.
C=C1+C2

次に、前記実施形態のエアリーク検査装置1の動作を図2A、2B、2Cのフローチャート、図3、4の圧力変化図に基づき説明する。 Next, the operation of the air leak inspection device 1 of the embodiment will be described based on the flow charts of FIGS. 2A, 2B and 2C and the pressure change diagrams of FIGS.

まず、図2Aに示すように、被検査体2のエアリーク検査の前に、準備工程を行う。
図2Aにおいて、ステップ001で遮断弁V0、第1開閉弁V1及び第2開閉弁V2を開き、ワーク弁Vw及びリーク弁VLを閉じて、ステップ002で第1真空ポンプ3a、第2真空ポンプ3bを駆動する。これにより、排気管4内の空気は、排気管4を通って第1真空ポンプ3aから外部に排気され、第1排気細管5a、第2排気細管5b内の空気は、枝管4a及び排気管4を通って第1真空ポンプ3aから外部に排気されるとともに、集合管4bを通って第2真空ポンプ3bから外部に排気される。
First, as shown in FIG. 2A, a preparatory step is performed before the air leak inspection of the object 2 to be inspected.
In FIG. 2A, at step 001, the shut-off valve V0, the first on-off valve V1 and the second on-off valve V2 are opened, the work valve Vw and the leak valve VL are closed, and at step 002 the first vacuum pump 3a and the second vacuum pump 3b are opened. to drive. As a result, the air in the exhaust pipe 4 is exhausted to the outside from the first vacuum pump 3a through the exhaust pipe 4, and the air in the first exhaust narrow pipe 5a and the second exhaust narrow pipe 5b is discharged to the branch pipe 4a and the exhaust pipe. 4 to the outside from the first vacuum pump 3a and through the collection pipe 4b to the outside from the second vacuum pump 3b.

図3に従来と本発明の排気時間の差を示す。従来は、一つの真空ポンプで系内全体の空気を排気していたので、排気細管の下流側が1Paになるには系全体の圧力が1Paになるまで待たざるを得ず、tj時間を要していた。また、検査毎に、排気細管と排気管の両方を排気していたので、図3中1点鎖線で示すように、検査毎に排気時間が長くなっていた。
これに対し、本発明では、第1真空ポンプ3aにより、第1排気細管5aと第2排気細管5bの上流側の空気を排気し、第2真空ポンプ3bにより、第1排気細管5aと第2排気細管5bを含むそれらの下流側の空気を排気するので、図3中実線で示すように、従来のtjより短いtp時間で、第1排気細管5aと第2排気細管5bの上流側が2Paに達する。また、第1排気細管5aと第2排気細管5bを含む下流側は、上流側より内容積がはるかに小さいので、図3中破線で示すように、高真空ポンプである第2真空ポンプ3bにより、第1真空ポンプ3aの排気時間tp1よりも短い時間tp0で、第1排気細管5aと第2排気細管5bの下流側が1Paに達する。このため、第1排気細管5aと第2排気細管5bの上流側が2Paに達したtp1時点から、検査工程で直ちに検査を開始することができる。検査工程では、被検査体及び排気管の排気を毎回行うが、排気細管は排気しないので、tp1に相当する時間が短くなるだけである。
FIG. 3 shows the difference in exhaust time between the conventional system and the present invention. Conventionally, one vacuum pump was used to evacuate the air from the entire system, so it was necessary to wait until the pressure of the entire system reached 1 Pa in order for the downstream side of the exhaust narrow tube to reach 1 Pa, which required tj time. . Moreover, since both the narrow exhaust tube and the exhaust pipe are evacuated for each inspection, the exhaust time is lengthened for each inspection, as indicated by the dashed line in FIG.
In contrast, in the present invention, the first vacuum pump 3a evacuates the air on the upstream side of the first exhaust narrow tube 5a and the second exhaust narrow tube 5b, and the second vacuum pump 3b evacuates the first exhaust narrow tube 5a and the second exhaust narrow tube 5b. Since the air on the downstream side including the exhaust narrow pipe 5b is exhausted, as shown by the solid line in FIG. reach. Further, since the inner volume of the downstream side including the first exhaust narrow tube 5a and the second exhaust narrow tube 5b is much smaller than that of the upstream side, as indicated by the broken line in FIG. , at a time tp0 shorter than the exhaust time tp1 of the first vacuum pump 3a, the downstream side of the first exhaust capillary 5a and the second exhaust capillary 5b reaches 1 Pa. Therefore, from time tp1 when the upstream side of the first exhaust narrow pipe 5a and the second exhaust narrow pipe 5b reaches 2 Pa, the inspection can be started immediately in the inspection process. In the inspection process, the object to be inspected and the exhaust pipe are evacuated each time, but the narrow exhaust pipe is not evacuated, so the time corresponding to tp1 is shortened.

また、検査工程で被検査体を取り付けることで、第1排気細管5aと第2排気細管5bの上流側(第1開閉弁V1と第2開閉弁V2は閉じられているので、それらの弁部より上流側)の圧力は急激に上昇するが、第1排気細管5aと第2排気細管5bの下流側は1Paを維持したままである。したがって、検査工程では、第1排気細管5aと第2排気細管5bの上流側の圧力上昇分だけ排気すればよいため、検査工程に要する時間を短縮することができる。 In addition, by attaching the object to be inspected in the inspection process, the upstream side of the first exhaust narrow pipe 5a and the second exhaust narrow pipe 5b (the first on-off valve V1 and the second on-off valve V2 are closed, so the valve portions thereof The pressure on the upstream side) rises sharply, but the pressure on the downstream side of the first exhaust narrow pipe 5a and the second exhaust narrow pipe 5b remains at 1 Pa. Therefore, in the inspection process, it is sufficient to evacuate by the amount of the pressure increase on the upstream side of the first exhaust narrow tube 5a and the second exhaust narrow tube 5b, so the time required for the inspection process can be shortened.

複数の被検査体について検査が連続して複数回行われる場合には、検査が終了した時点で第1開閉弁V1及び第2開閉弁V2を閉じて、第1排気細管5aと第2排気細管5b内を排気状態に維持しておくことで、次の検査を行う毎に第1排気細管5aと第2排気細管5b内を排気する必要がなく、排気管4内を排気するだけでよいので、検査全体の検査時間を大幅に短縮することができる。 When a plurality of inspection objects are continuously inspected a plurality of times, the first on-off valve V1 and the second on-off valve V2 are closed when the inspection is completed, and the first exhaust capillary 5a and the second exhaust capillary are closed. By keeping the inside of 5b in an exhausted state, it is not necessary to evacuate the inside of the first exhaust narrow pipe 5a and the second exhaust narrow pipe 5b each time the next inspection is performed, and it is only necessary to evacuate the inside of the exhaust pipe 4. , the inspection time for the entire inspection can be greatly reduced.

ステップ003で、真空ポンプ3を駆動してからt01秒(例えば、10秒)が経過したか否かを判断し、経過していなければ第1真空ポンプ3aと第2真空ポンプ3bによる排気を継続する。t01秒が経過していれば、ステップ104で、真空計6の圧力P1を読み取る。ステップ005で圧力P1が2Pa以下であるか否かを判断する。圧力P1が2Paを超える場合、装置内のリーク又は第2真空ポンプ3b等の異常のために排気が不十分になっていると考えられ、ステップ006で装置リーク有り(リークレベル:L0)と判断し、準備工程を終える。また、ステップ005で圧力P1が2Pa以下である場合、装置内が漏れなく、排気されていると判断する。さらに、ステップ007で、第1排気細管5aと第2排気細管5bの下流側に設けた真空計11の圧力P0を読み取り、ステップ008で、圧力P0が1Pa以下であるか否かを判断する。圧力P0が1Paを越える場合、第2真空ポンプ3bが不調であると判断し、ステップ009でアラーム等で報知する。また、ステップ008で圧力P0が1Pa以下である場合、第2真空ポンプ3bにより正常に排気できていると判断し、ステップ010で真空ポンプ3を駆動してからt02秒(例えば、20秒)が経過した時点で準備工程を終える。 In step 003, it is determined whether or not t01 seconds (for example, 10 seconds) have elapsed since the vacuum pump 3 was driven. If not, the evacuation by the first vacuum pump 3a and the second vacuum pump 3b is continued. do. If t01 seconds have elapsed, the pressure P1 of the vacuum gauge 6 is read at step 104 . At step 005, it is determined whether the pressure P1 is 2 Pa or less. If the pressure P1 exceeds 2 Pa, it is considered that the exhaust is insufficient due to a leak in the apparatus or an abnormality in the second vacuum pump 3b or the like, and it is determined that there is a leak in the apparatus (leak level: L0) in step 006. and complete the preparation process. Further, when the pressure P1 is 2 Pa or less in step 005, it is determined that the inside of the apparatus is exhausted without leakage. Further, at step 007, the pressure P0 of the vacuum gauge 11 provided downstream of the first exhaust narrow tube 5a and the second exhaust narrow tube 5b is read, and at step 008, it is determined whether or not the pressure P0 is 1 Pa or less. If the pressure P0 exceeds 1 Pa, it is determined that the second vacuum pump 3b is malfunctioning, and in step 009, an alarm or the like is issued. Further, when the pressure P0 is 1 Pa or less in step 008, it is determined that the second vacuum pump 3b is normally evacuating, and t02 seconds (for example, 20 seconds) have elapsed since the vacuum pump 3 was driven in step 010. The preparation process is finished when the time has passed.

次に、図2Bに示すように、被検査体2のエアリーク検査の検査工程を行う。
図2Bにおいて、ステップ101で、第1開閉弁V1及び第2開閉弁V2を閉じ、ステップ102で被検査体2を取り付けた後、ステップ103でワーク弁Vwを開く。このt0時点では、前述の準備工程で第1真空ポンプ3aと第2真空ポンプ3bの排気により排気管4と排気細管5a、5b内は既に2Paまで排気されているので、直ちに被検査体2のリーク検査を行うことができる。排気管4と排気細管5a、5b内は、引き続き第1真空ポンプ3aと第2真空ポンプ3bにより排気されるので、図4に示すように、真空計6が検出する圧力は低下してゆく。ステップ104で、ワークバルブVwを開いてからt03秒(例えば、30秒)が経過したか否かを判断し、経過していなければ第1真空ポンプ3aと第2真空ポンプ3bによる排気を継続する。t03秒が経過していれば、ステップ105で、真空計6の圧力P1を読み取る。ステップ106で圧力P1が所定の第1閾値Pth1以下であるか否かを判断する。第1閾値Pth1は、本実施形態では、1.5Paである。図4中2点鎖線xで示すように圧力P1が第1閾値Pth1を超える場合、被検査体2のリーク(漏れ)のために排気が不十分になっていると考えられ、ステップ107でリーク有り(リークレベル:L1)と判断し、当該被検査体2の検査を終了し、次の被検査体の検査に移行する。圧力P1が第1閾値Pth1以下である場合、大きな漏れがなく排気が十分に行われていることになるので、ステップ108以降において、排気細管5aと5bの微小流量によるリークテストを行う。
Next, as shown in FIG. 2B, an inspection process for air leak inspection of the object 2 to be inspected is performed.
In FIG. 2B, at step 101, the first on-off valve V1 and the second on-off valve V2 are closed. At time t0, the inside of the exhaust pipe 4 and the narrow exhaust pipes 5a and 5b has already been evacuated to 2 Pa by the evacuation of the first vacuum pump 3a and the second vacuum pump 3b in the preparation process described above. A leak test can be performed. Since the insides of the exhaust pipe 4 and the narrow exhaust pipes 5a and 5b are continuously evacuated by the first vacuum pump 3a and the second vacuum pump 3b, the pressure detected by the vacuum gauge 6 decreases as shown in FIG. In step 104, it is determined whether or not t03 seconds (for example, 30 seconds) have passed since the work valve Vw was opened. If not, the evacuation by the first vacuum pump 3a and the second vacuum pump 3b is continued. . If t03 seconds have elapsed, at step 105, the pressure P1 of the vacuum gauge 6 is read. At step 106, it is determined whether or not the pressure P1 is equal to or less than a predetermined first threshold value Pth1. The first threshold Pth1 is 1.5 Pa in this embodiment. If the pressure P1 exceeds the first threshold value Pth1 as indicated by the two-dot chain line x in FIG. It is determined that there is a leak (leakage level: L1), the inspection of the subject 2 is terminated, and the next subject is inspected. If the pressure P1 is equal to or less than the first threshold value Pth1, it means that there is no large leakage and the exhaust is being sufficiently performed. Therefore, from step 108 onward, a leak test is performed for the exhaust tubes 5a and 5b with a small flow rate.

ステップ108で、第2開閉弁V2を閉じたまま第1開閉弁V1を開き、ステップ109で遮断弁V0を閉じる。t1時点で遮断弁V0を閉じると、被検査体2の内部の断熱膨張により冷却されるが、その後周囲の空気により加熱されて被検査体2の空間2aの水分や油分が蒸発するので、図4に示すように、しばらくの間(ta)、真空計6の検出圧力が上昇する。 At step 108, the first on-off valve V1 is opened while the second on-off valve V2 remains closed, and at step 109, the cut-off valve V0 is closed. When the shut-off valve V0 is closed at time t1, the inside of the object 2 to be inspected is cooled by the adiabatic expansion, but is then heated by the surrounding air to evaporate water and oil in the space 2a of the object 2 to be inspected. 4, the pressure detected by the vacuum gauge 6 rises for a while (ta).

遮断弁V0の遮断により排気管4による排気は停止するが、第1開閉弁V1は開いているので、第2真空ポンプ3bと排気細管5aによる排気は継続する。しかし、排気細管5aのコンダクタンスは排気管4のコンダクタンスより小さいので、流量が制限される。圧力P1に到達し、遮断弁V0を閉じた時点で、被検査体2に全くリークが無ければ、第1排気細管5aに流れが無く、図4中2点鎖線yで示すように、真空計6が検出する真空度はP1+αを維持する。被検査体2にリークがあり、その漏れ量が第1排気細管5aの許容流量以下であれば、その漏れ量は第1排気細管5aを通って第2真空ポンプ3bから排気されるので、真空計6が検出する圧力の変化は小さい。また、被検査体2にリークがあり、その漏れ量が第1排気細管5aの許容流量以上であれば、その漏れ量は第1排気細管5aを通過しないため、被検査体2及び排気管4内の圧力の変化が大きくなる結果、図4中2点鎖線zで示すように真空計6が検出する圧力は上昇する。 Although the evacuation by the exhaust pipe 4 is stopped by shutting off the shut-off valve V0, since the first on-off valve V1 is open, the evacuation by the second vacuum pump 3b and the exhaust narrow pipe 5a is continued. However, since the conductance of the exhaust narrow tube 5a is smaller than the conductance of the exhaust tube 4, the flow rate is limited. When the pressure P1 is reached and the shut-off valve V0 is closed, if there is no leak in the test object 2, there is no flow in the first exhaust tubule 5a, and as indicated by the chain double-dashed line y in FIG. The degree of vacuum detected by 6 maintains P1+α. If there is a leak in the object to be inspected 2 and the amount of leakage is equal to or less than the allowable flow rate of the first exhaust narrow tube 5a, the leak amount passes through the first exhaust narrow tube 5a and is exhausted from the second vacuum pump 3b. The change in pressure detected by the total 6 is small. Also, if there is a leak in the inspected object 2 and the amount of leakage is equal to or greater than the allowable flow rate of the first exhaust narrow pipe 5a, the leak does not pass through the first exhaust narrow pipe 5a. As a result, the pressure detected by the vacuum gauge 6 rises as indicated by the chain double-dashed line z in FIG.

そこで、ステップ110で、遮断弁V0を閉じてからt04秒が経過したか否かを判断し、経過していなければそのまま待機し、t04秒が経過していれば、ステップ111で、真空計6の圧力P2を読み取る。ステップ112で圧力P2が所定の第2閾値Pth2以下であるか否かを判断する。図2中2点鎖線zで示すように、圧力P2が第2閾値Pth2を超える場合、被検査体2のリーク(漏れ)のために圧力が増加し、真空度が悪くなっていると考えられ、ステップ113でリーク有り(リークレベル:L2)と判断する。圧力P2が第2閾値Pth2以下である場合、ステップ114以降の排気細管5bの微小流量によるリークテストに移行する。 Therefore, in step 110, it is determined whether or not t04 seconds have passed since the shutoff valve V0 was closed. read the pressure P2 of At step 112, it is determined whether or not the pressure P2 is equal to or less than a predetermined second threshold value Pth2. As indicated by the chain double-dashed line z in FIG. 2, when the pressure P2 exceeds the second threshold value Pth2, it is considered that the pressure increases due to leakage of the test object 2 and the degree of vacuum deteriorates. , step 113 determines that there is a leak (leak level: L2). If the pressure P2 is equal to or less than the second threshold value Pth2, the process proceeds to step 114 and subsequent steps for leak testing of the exhaust tubule 5b using a minute flow rate.

ステップ114で、第1開閉弁V1を閉じ、第2開閉弁V2を開く。ステップ115で、第1開閉弁V1を閉じてからt05秒が経過したか否かを判断し、経過していなければそのまま待機し、t05秒が経過していれば、ステップ116、真空計6の圧力P3を読み取る。ステップ117で圧力P3が所定の第3閾値Pth3以下であるか否かを判断する。圧力P3が第3閾値Pth3を超える場合、被検査体2のリーク(漏れ)のために圧力が増加し、真空度が悪くなっていると考えられ、ステップ118でリーク有り(リークレベル:L2)と判断する。圧力P3が第3閾値Pth3以下である場合、ステップ119で被検査体2のリーク(漏れ)が許容以下であるとし、リーク無と判断し、ステップ120で、第1開閉弁V1と第2開閉弁V2を閉じて、当該被検査体1の検査を終了し、次の被検査体の検査に移行する。 At step 114, the first on-off valve V1 is closed and the second on-off valve V2 is opened. At step 115, it is determined whether or not t05 seconds have passed since the first on-off valve V1 was closed. Read the pressure P3. At step 117, it is determined whether or not the pressure P3 is equal to or less than a predetermined third threshold value Pth3. If the pressure P3 exceeds the third threshold value Pth3, it is considered that the pressure has increased due to the leak (leakage) of the object to be inspected 2 and the degree of vacuum has deteriorated. I judge. If the pressure P3 is equal to or less than the third threshold value Pth3, it is determined in step 119 that the leak (leakage) of the inspected object 2 is below the allowable level, and it is determined that there is no leak. The valve V2 is closed to end the inspection of the subject 1 and proceed to the inspection of the next subject.

ステップ113でリーク有り(リークレベル:L2)と判断し、またステップ118で、リーク有り(リークレベル:L3)と判断すると、ステップ113-1、ステップ118-1で、それぞれ図2Cに示す細管排気工程を行い、次の被検査体の検査に移行する。これは、リーク有りとなった原因がワーク弁Vwを開いたときに被検査体2内のエアーが進入したと考えられるので、排気細管5a、5b内を排気して、次の被検査体の検査に影響がないように備えるためである。 If it is determined that there is a leak (leak level: L2) in step 113, and if it is determined that there is a leak (leak level: L3) in step 118, steps 113-1 and 118-1 are performed to exhaust the narrow tube shown in FIG. 2C. After the process is performed, the next object to be inspected is inspected. This is because it is considered that the leak was caused by the entry of air into the inspected object 2 when the work valve Vw was opened. This is to prepare so as not to affect the inspection.

図2Cに示すように、細管排気工程では、ステップ201で、遮断弁V0、第1開閉弁V1及び第2開閉弁V2を開き、ワーク弁Vw及びリーク弁VLを閉じる。これにより、第1真空ポンプ3a、第2真空ポンプ3bにより、第1排気細管5a、第2排気細管5b及び排気管4内の空気は枝管4a及び排気管4を通って第1真空ポンプ3aから外部に排気され、第1排気細管5a、第2排気細管5b内の空気は集合管4bを通って第2真空ポンプ3bから外部に排気される。 As shown in FIG. 2C, in the narrow tube exhaust process, in step 201, the shutoff valve V0, the first on-off valve V1 and the second on-off valve V2 are opened, and the work valve Vw and the leak valve VL are closed. As a result, the air in the first exhaust narrow pipe 5a, the second exhaust narrow pipe 5b, and the exhaust pipe 4 passes through the branch pipe 4a and the exhaust pipe 4 by the first vacuum pump 3a and the second vacuum pump 3b, and the first vacuum pump 3a The air in the first exhaust narrow tube 5a and the second exhaust narrow tube 5b is exhausted outside from the second vacuum pump 3b through the collecting pipe 4b.

ステップ202で、ステップ201の各弁を開閉してからt01秒(例えば、10秒)が経過したか否かを判断し、経過していなければ第1真空ポンプ3aと第2真空ポンプ3bによる細管排気を継続する。t01秒が経過していれば、ステップ203で、真空計6の圧力P1を読み取る。ステップ204で圧力P1が2Pa以下であるか否かを判断する。圧力P1が2Paを超える場合、装置内のリーク又は第2真空ポンプ3b等の異常のために排気が不十分になっていると考えられ、ステップ205で装置リーク有り(リークレベル:L0)と判断し、細管排気工程を終える。また、ステップ206で圧力P1が2Pa以下である場合、装置内が漏れなく、排気されていると判断し、ステップ206で、ステップ204のP1が2Paに都達してからt02秒(例えば、20秒)が経過すると、ステップ207で第1開閉弁V1及び第2開閉弁V2を閉じて、細管排気工程を終える。 In step 202, it is determined whether or not t01 seconds (for example, 10 seconds) have passed since the opening and closing of each valve in step 201. Continue to exhaust. If t01 seconds have elapsed, the pressure P1 of the vacuum gauge 6 is read in step 203 . At step 204, it is determined whether the pressure P1 is 2 Pa or less. If the pressure P1 exceeds 2 Pa, it is considered that the exhaust is insufficient due to a leak in the device or an abnormality in the second vacuum pump 3b or the like, and it is determined in step 205 that there is a leak in the device (leak level: L0). to complete the narrow tube exhaust process. Further, when the pressure P1 is 2 Pa or less in step 206, it is determined that the inside of the apparatus is exhausted without leakage. ) has passed, the first on-off valve V1 and the second on-off valve V2 are closed in step 207, and the narrow tube exhaust process is completed.

最初の被検査体についてのリーク検査(1回目)に続き、次の被検査体についてリーク検査(2回目以降)を行う。最初の被検査体についてのリーク検査が終了した時点で、第1開閉弁V1と第2開閉弁V2を閉じ、第1真空ポンプ3aと第2真空ポンプ3bは駆動したままとする。また、ワーク弁Vwを閉じたままの状態で、最初の被検査体を次の検査体に取り換える。これにより、次の被検査体の検査のスタート時点では、排気管4内は、大気圧又はそれに近い圧力となるが、大気暴露はごく短時間で済む。また、第1排気細管5aと第2排気細管5b内は、1Paを維持している。仮に、第1開閉弁V1と第2開閉弁V2を開いていると、被検査体の交換時に排気管4だけでなく第1排気細管5aと第2排気細管5b内にも大気が進入し、次の被検査体の排気に多大な時間を有する。本実施形態では、前の被検査体の検査の終了時に、第1開閉弁V1と第2開閉弁V2を閉じて、第1排気細管5aと第2排気細管5b内を1Paに維持しているので、次の被検査体の検査スタート時には、遮断弁V0を開いて、第1真空ポンプ3aにより被検査体及び排気管4内を排気するだけでよく、大幅に時間を短縮することができる。被検査体及び排気管4内を排気した後の工程は、図2Bのフローチャートに示す同様のステップを繰り返す。 Following the leak test (first time) on the first object to be inspected, the leak test (second and subsequent times) is performed on the next object to be inspected. When the leak test for the first object to be inspected is completed, the first on-off valve V1 and the second on-off valve V2 are closed, and the first vacuum pump 3a and the second vacuum pump 3b remain driven. Also, the first object to be inspected is replaced with the next object to be inspected while the work valve Vw remains closed. As a result, when the inspection of the next object to be inspected starts, the inside of the exhaust pipe 4 will be at or near the atmospheric pressure, but the exposure to the atmosphere will be very short. Further, 1 Pa is maintained in the first exhaust narrow tube 5a and the second exhaust narrow tube 5b. If the first on-off valve V1 and the second on-off valve V2 are open, the air enters not only the exhaust pipe 4 but also the first exhaust narrow pipe 5a and the second exhaust narrow pipe 5b when exchanging the inspection object. It takes a lot of time to evacuate the next inspected object. In this embodiment, at the end of the inspection of the previous object to be inspected, the first on-off valve V1 and the second on-off valve V2 are closed to maintain the insides of the first exhaust narrow pipe 5a and the second exhaust narrow pipe 5b at 1 Pa. Therefore, when starting the inspection of the next object to be inspected, it is only necessary to open the shut-off valve V0 and evacuate the object to be inspected and the inside of the exhaust pipe 4 by the first vacuum pump 3a, thereby greatly shortening the time. After the inspection object and the exhaust pipe 4 are evacuated, the same steps as shown in the flowchart of FIG. 2B are repeated.

仮に、従来のように加圧又は減圧して一定時間後の圧力変化で判定する場合、排気管の遮断弁を閉じた後、本発明に比べて非常に長い時間をかけても同レベルの精度は得られない。更に問題をこじらせるのが断熱膨張又は断熱圧縮の現象であり、リークが無くても圧力が影響を受けるので、短時間で正確な判定は困難であった。しかし、本発明では、第1排気細管5aと第2排気細管5bにより許容リーク以下のときは漏れ量が第1排気細管5aと第2排気細管5bから排気されるので、真空計6の検出圧力は上昇せず、リークなしと判断される。したがって、許容されるリークがあるものでも不良品と判断されていた従来のリーク検査装置に比べて、本発明のリーク検査装置は、許容リーク以下のものを良品と判断することができるという点で、検査精度が高い。 If, as in the conventional method, pressure is increased or decompressed and the pressure change is determined after a certain period of time, the same level of accuracy can be achieved even after a very long period of time after closing the shutoff valve of the exhaust pipe compared to the present invention. is not obtained. Further complicating the problem is the phenomenon of adiabatic expansion or adiabatic compression, which affects the pressure even if there is no leak, making it difficult to make an accurate judgment in a short time. However, in the present invention, when the leak amount is less than the allowable leak from the first exhaust narrow tube 5a and the second exhaust narrow tube 5b, the leak amount is exhausted from the first exhaust narrow tube 5a and the second exhaust narrow tube 5b. does not rise and it is determined that there is no leak. Therefore, compared to the conventional leak inspection apparatus in which even a product with an allowable leak is judged as a defective product, the leak inspection apparatus of the present invention can judge a product with an allowable leak or less as a non-defective product. , inspection accuracy is high.

被検査体2の空間2aに水や油が付着している場合は、図4中点線で示すように、第1真空ポンプ3aにより、一旦、被検査体2を100Pa以下に排気した後、清浄ガス導入部9を作動させて、排気管4を介して被検査体2に、100,000~110,000Paまで窒素(N)、炭酸ガス(CO)、アルゴン(Ar)等の清浄ガスを導入することができる。清浄ガスの導入により、被検査体2は断熱圧縮により加熱されて、水、油が蒸発し、排出される結果、圧力P1に到達した後の断熱膨張の影響による圧力の上昇を少なくすることができる。 If water or oil adheres to the space 2a of the object to be inspected 2, as indicated by the dotted line in FIG. By activating the gas introduction part 9, clean gas such as nitrogen (N 2 ), carbon dioxide (CO 2 ), argon (Ar), etc., is supplied to the inspection object 2 through the exhaust pipe 4 up to 100,000 to 110,000 Pa. can be introduced. By introducing the clean gas, the test object 2 is heated by adiabatic compression, and water and oil are evaporated and discharged. As a result, it is possible to reduce the pressure rise due to the influence of adiabatic expansion after reaching the pressure P1. can.

本実施形態では、第1真空ポンプ3aによる被検査体2及び排気管4内の排気は、従来のように系全体を1つの真空ポンプで所定の真空度まで排気するのに比べて、短時間で済む。また、第2真空ポンプ3bによる排気細管5の排気は、排気細管5の内容積が被検査体2及び排気管4の内容積より小さいので、第1真空ポンプ3aによる被検査体2及び排気管4内の排気に比べ小型で比較的安価な真空ポンプで済む。したがって、遮断弁V0を閉じ、開閉弁V1,V2を開いた時点では、既に排気細管5の下流側は上流側より低い圧力なっているので、排気細管5の上流側と下流側にリーク検査に必要な圧力差を発生させるまでに要する排気時間が速くなり、検査時間を短縮することができる。 In this embodiment, the first vacuum pump 3a evacuates the test object 2 and the exhaust pipe 4 in a short time compared to conventionally evacuating the entire system to a predetermined degree of vacuum with one vacuum pump. is enough. In addition, since the internal volume of the exhaust narrow tube 5 is smaller than the internal volume of the inspected object 2 and the exhaust pipe 4, the evacuation of the exhaust narrow pipe 5 by the second vacuum pump 3b is performed by the first vacuum pump 3a. Compared to the evacuation in 4, a small and relatively inexpensive vacuum pump is sufficient. Therefore, when the shut-off valve V0 is closed and the on-off valves V1 and V2 are opened, the pressure on the downstream side of the exhaust pipe 5 is already lower than that on the upstream side. The exhaust time required to generate the required pressure difference is shortened, and the inspection time can be shortened.

また、第2真空ポンプ3bの到達可能圧力は、第1真空ポンプ3aの到達可能圧力と同等又はそれ以下であり、被検査体2及び排気管4より内容積が小さい排気細管5内を排気するので、第1真空ポンプ3aの到達可能圧力より低い圧力まで排気できる高真空ポンプであっても、第1真空ポンプ3aよりも小型で比較的安価なポンプを採用できる。 In addition, the reachable pressure of the second vacuum pump 3b is equal to or lower than the reachable pressure of the first vacuum pump 3a, and the inside of the exhaust tube 5, which has a smaller internal volume than the test object 2 and the exhaust tube 4, is evacuated. Therefore, even a high-vacuum pump that can evacuate to a pressure lower than the reachable pressure of the first vacuum pump 3a can employ a pump that is smaller and relatively inexpensive than the first vacuum pump 3a.

排気細管5a、5bに大気が入らないように封止することで、排気細管5a、5b自体の劣化、及び第2真空ポンプ3bの性能低下に伴うメンテナンス周期を伸ばすことができる。 By sealing the exhaust tubes 5a and 5b so that the atmosphere does not enter, the maintenance cycle due to the deterioration of the exhaust tubes 5a and 5b themselves and the deterioration of the performance of the second vacuum pump 3b can be extended.

本発明は、以上に実施形態に限定されず、特許請求の範囲に記載された発明の範囲内で変更することができきる。 The invention is not limited to the embodiments described above, but can be varied within the scope of the invention described in the claims.

例えば、前記実施形態では、排気細管5として、第1排気細管5aと第2排気細管5bとを設けたが、1本でも、3本でもよい。この場合、コンダクタンスが異なる複数の排気細管のいずれか又は幾つかを組み合わせて選択することで、複数のリークレベルの判定が可能になる。また、コンダクタンスが良い排気細管でスクリーニングすることで、前の検査で他の排気細管にリークガスが進入したときでも、次の検査の待機中に第2真空ポンプによる排気細管内の真空度の回復時間を短縮することができる。 For example, in the above-described embodiment, the first exhaust narrow tube 5a and the second exhaust narrow tube 5b are provided as the exhaust narrow tube 5, but one or three exhaust narrow tubes may be provided. In this case, by selecting one or a combination of a plurality of exhaust tubules with different conductances, it is possible to determine a plurality of leak levels. In addition, by screening with an exhaust tube with good conductance, even if leak gas enters another exhaust tube during the previous inspection, the recovery time of the degree of vacuum in the exhaust tube by the second vacuum pump while waiting for the next inspection is reduced. can be shortened.

また、前記実施形態では、排気細管5の微小流量と同等以下のリークを合格と判定するべく、排気細管5のコンダクタンスおよび検査圧力P1、P0を設定したが、信頼性が確保できる範囲であれば、時間短縮化のために排気細管5の微小流量を超えるリークを合格とするべく、それらを設定することができる。信頼性が確保できるとは、その合否判定ラインよりも、所定のHeリーク標準の点検での流量が明確に有意差があり、大きいことを指す。所定のHeリーク標準とは、単体のリーク標準に限らず、複数個の複合値でもよく、個々の検査ラインの許容リーク量に近くて超えない値が望ましい。 In the above-described embodiment, the conductance of the exhaust tube 5 and the inspection pressures P1 and P0 are set so that a leak equal to or less than the minute flow rate of the exhaust tube 5 is determined to be acceptable. , they can be set to accept leaks exceeding the minute flow rate of the exhaust tubule 5 in order to save time. Reliability can be ensured means that the flow rate in the predetermined He leak standard inspection clearly has a significant difference and is larger than the pass/fail judgment line. The predetermined He leak standard is not limited to a single leak standard, but may be a plurality of composite values, preferably a value close to and not exceeding the allowable leak amount of each inspection line.

1…エアリーク検査装置
2…被検査体
2a…空間
2b…チップ管
3a…第1真空ポンプ
3b…第2真空ポンプ
4…排気管
4a…枝管
4b…集合管
5…排気細管
5a…第1排気細管
5b…第2排気細管
6…真空計
7…制御部
8…フィルタ
9…清浄ガス導入部
10…表示部
V0…遮断弁
V…開閉弁
V1…第1開閉弁
V2…第2開閉弁
Vw…ワーク弁

DESCRIPTION OF SYMBOLS 1... Air leak inspection apparatus 2... Object to be inspected 2a... Space 2b... Tip tube 3a... First vacuum pump 3b... Second vacuum pump 4... Exhaust pipe 4a... Branch pipe 4b... Collective pipe 5... Exhaust narrow pipe 5a... First exhaust Thin tube 5b Second exhaust thin tube 6 Vacuum gauge 7 Control unit 8 Filter 9 Clean gas introduction unit 10 Display unit V0 Shutoff valve V Open/close valve V1 First open/close valve V2 Second open/close valve Vw work valve

Claims (9)

被検査体に接続される排気管と、
前記排気管から開閉弁を介して分岐し、前記排気管より細い径を有する排気細管と、
前記排気管に接続され、前記被検査体内の圧力を検出する真空計と、
前記排気管に遮断弁を介して接続された第1真空ポンプと、
前記排気細管に接続された第2真空ポンプとを備え、
前記開閉弁を閉じ、前記遮断弁を開いて、前記第1真空ポンプにより前記排気管を介して前記被検査体及び前記排気管内を排気するとともに、前記第2真空ポンプにより前記排気細管内を排気して、
前記開閉弁を開き、前記遮断弁を閉じたとき、前記真空計の検出圧力が所定の閾値を越えるとリーク有りと判定する検査工程を行う制御部を備えることを特徴とするエアリーク検査装置。
an exhaust pipe connected to an object to be inspected;
an exhaust narrow pipe branched from the exhaust pipe via an on-off valve and having a diameter smaller than that of the exhaust pipe;
a vacuum gauge that is connected to the exhaust pipe and detects the pressure inside the test subject;
a first vacuum pump connected to the exhaust pipe via a shutoff valve;
A second vacuum pump connected to the exhaust capillary,
The on-off valve is closed and the shut-off valve is opened to evacuate the inspected object and the inside of the exhaust pipe through the exhaust pipe by the first vacuum pump, and evacuate the inside of the exhaust narrow pipe by the second vacuum pump. do,
An air leak inspection apparatus, comprising: a control unit that performs an inspection step of determining that there is a leak when the pressure detected by the vacuum gauge exceeds a predetermined threshold value when the on-off valve is opened and the cutoff valve is closed.
前記開閉弁は、前記排気細管の排気方向の上流側に設けられていることを特徴とする請求項1に記載のエアリーク検査装置。 2. The air leak inspection device according to claim 1, wherein the on-off valve is provided on the upstream side of the exhaust narrow pipe in the exhaust direction. 前記第2真空ポンプの到達可能圧力は、前記第1真空ポンプの到達可能圧力と同等又はそれ以下であることを特徴とする請求項1に記載のエアリーク検査装置。 2. The air leak inspection apparatus according to claim 1, wherein the reachable pressure of said second vacuum pump is equal to or lower than the reachable pressure of said first vacuum pump. 前記排気細管は、コンダクタンスが異なる複数の排気細管が並列に接続されていることを特徴とする請求項1に記載のエアリーク検査装置。 2. The air leak inspection device according to claim 1, wherein the exhaust narrow pipes are connected in parallel with a plurality of exhaust narrow pipes having different conductances. 前記制御部は、前記検査工程の前に、前記遮断弁及び前記開閉弁を開いて、前記第1真空ポンプにより前記排気細管及び前記排気管内を排気するとともに、前記第2真空ポンプにより前記排気細管内を排気する準備工程を行うことを特徴とする請求項1に記載のエアリーク検査装置。 Before the inspection step, the control unit opens the shut-off valve and the on-off valve, evacuates the exhaust tube and the inside of the exhaust tube by the first vacuum pump, and evacuates the exhaust tube by the second vacuum pump. 2. The air leak inspection device according to claim 1, wherein a preparatory step of evacuating the inside is performed. 前記制御部は、前記検査工程でリーク有と判定したとき、前記遮断弁及び前記開閉弁を開いて、前記第1真空ポンプにより前記排気細管及び前記排気管内を排気するとともに、前記第2真空ポンプにより前記排気細管内を排気する細管排気工程を行うことを特徴とする請求項1に記載のエアリーク検査装置。 When it is determined that there is a leak in the inspection step, the control unit opens the shut-off valve and the on-off valve, evacuates the narrow exhaust pipe and the exhaust pipe by the first vacuum pump, and the second vacuum pump. 2. The air leak inspection device according to claim 1, wherein a narrow tube evacuation process is performed to evacuate the inside of said exhaust narrow tube. 被検査体に接続される排気管と、
前記排気管から開閉弁を介して分岐し、前記排気管より細い径を有する排気細管と、
前記排気管に接続され、前記被検査体内の圧力を検出する真空計と、
前記排気管に遮断弁を介して接続された第1真空ポンプと、
前記排気細管に接続された第2真空ポンプとを備え、
前記開閉弁を閉じ、前記遮断弁を開いて、前記第1真空ポンプにより前記排気管を介して前記被検査体及び前記排気管内を排気するとともに、前記第2真空ポンプにより前記排気細管内を排気する排気工程と、
前記排気工程の後、前記開閉弁を開き、前記遮断弁を閉じたとき、前記真空計の検出圧力が所定の閾値を越えるとリーク有りと判定する検査工程とを有することを特徴とするエアリーク検査方法。
an exhaust pipe connected to an object to be inspected;
an exhaust narrow pipe branched from the exhaust pipe via an on-off valve and having a diameter smaller than that of the exhaust pipe;
a vacuum gauge that is connected to the exhaust pipe and detects the pressure inside the test subject;
a first vacuum pump connected to the exhaust pipe via a shutoff valve;
A second vacuum pump connected to the exhaust capillary,
The on-off valve is closed and the shut-off valve is opened to evacuate the inspected object and the inside of the exhaust pipe through the exhaust pipe by the first vacuum pump, and evacuate the inside of the exhaust narrow pipe by the second vacuum pump. an exhaust process to
an inspection step of determining that there is a leak when the pressure detected by the vacuum gauge exceeds a predetermined threshold value when the on-off valve is opened after the exhaust step and the shutoff valve is closed after the exhaust step. Method.
前記検査工程の前に、前記遮断弁及び前記開閉弁を開いて、前記第1真空ポンプにより前記排気細管及び前記排気管内を排気するとともに、前記第2真空ポンプにより前記排気細管内を排気する準備工程を有することを特徴とする請求項7に記載のエアリーク検査方法。 Before the inspection step, the shut-off valve and the on-off valve are opened to evacuate the exhaust tube and the inside of the exhaust tube by the first vacuum pump, and prepare to evacuate the inside of the exhaust tube by the second vacuum pump. 8. The air leak inspection method according to claim 7, further comprising steps. 前記検査工程でリーク有と判定したとき、前記遮断弁及び前記開閉弁を開いて、前記第1真空ポンプにより前記排気細管及び前記排気管内を排気するとともに、前記第2真空ポンプにより前記排気細管内を排気する細管排気工程を有することを特徴とする請求項7に記載のエアリーク検査方法。




When it is determined that there is a leak in the inspection step, the shutoff valve and the on-off valve are opened to evacuate the narrow exhaust tube and the inside of the exhaust tube by the first vacuum pump, and the inside of the narrow exhaust tube by the second vacuum pump. 8. The air leak inspection method according to claim 7, further comprising a narrow tube evacuation step of evacuating the air leak.




JP2022122388A 2022-07-30 2022-07-30 Air leak inspection device and method Active JP7162952B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022122388A JP7162952B1 (en) 2022-07-30 2022-07-30 Air leak inspection device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022122388A JP7162952B1 (en) 2022-07-30 2022-07-30 Air leak inspection device and method

Publications (2)

Publication Number Publication Date
JP7162952B1 true JP7162952B1 (en) 2022-10-31
JP2024019390A JP2024019390A (en) 2024-02-09

Family

ID=83845921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022122388A Active JP7162952B1 (en) 2022-07-30 2022-07-30 Air leak inspection device and method

Country Status (1)

Country Link
JP (1) JP7162952B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304644A (en) 1999-04-16 2000-11-02 Izumi Food Machinery:Kk Leak inspection device for mold for cold confectionery manufacturing facility
JP2001235387A (en) 2000-02-24 2001-08-31 Ogawa Giken Kk Leak inspecting device
JP2001330534A (en) 2000-03-16 2001-11-30 Tokyo Electron Ltd Method of leak check for decompression treatment device and decompression treatment device
JP2005077310A (en) 2003-09-02 2005-03-24 Nagano Keiki Co Ltd Gas measuring device and self-diagnosis method therefor
JP6228285B1 (en) 2016-11-15 2017-11-08 藤山 守 Air leak inspection apparatus and method
JP7058428B1 (en) 2021-06-07 2022-04-22 株式会社Shinsei Air leak inspection method and equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2655315B2 (en) * 1994-06-29 1997-09-17 日本真空技術株式会社 Leak detection device using compound molecular pump

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304644A (en) 1999-04-16 2000-11-02 Izumi Food Machinery:Kk Leak inspection device for mold for cold confectionery manufacturing facility
JP2001235387A (en) 2000-02-24 2001-08-31 Ogawa Giken Kk Leak inspecting device
JP2001330534A (en) 2000-03-16 2001-11-30 Tokyo Electron Ltd Method of leak check for decompression treatment device and decompression treatment device
JP2005077310A (en) 2003-09-02 2005-03-24 Nagano Keiki Co Ltd Gas measuring device and self-diagnosis method therefor
JP6228285B1 (en) 2016-11-15 2017-11-08 藤山 守 Air leak inspection apparatus and method
JP7058428B1 (en) 2021-06-07 2022-04-22 株式会社Shinsei Air leak inspection method and equipment

Also Published As

Publication number Publication date
JP2024019390A (en) 2024-02-09

Similar Documents

Publication Publication Date Title
JP6228285B1 (en) Air leak inspection apparatus and method
JP2655315B2 (en) Leak detection device using compound molecular pump
JP4431144B2 (en) Method and apparatus for detecting large-scale leaks in sealed products
JPS6015537A (en) Detector for crosscurrent leakage with cooling trap
JP2003517598A (en) Method for inspecting leaks and locating leaks and apparatus suitable for performing the method
JP3698108B2 (en) Airtight leak inspection method and apparatus
CN107543664A (en) More sealing system leakage rate measurement method and apparatus
JP2018533741A (en) Leak detection using oxygen
JP2014522976A (en) Leak detection device and method for inspecting an object for airtightness using the leak detection device
JP7162952B1 (en) Air leak inspection device and method
JP2014134513A (en) Leak test method and device
JP2023554280A (en) Gas leak detection device and gas leak detection method for detecting gas leaks in test specimens
JP2005164525A (en) System and method for measuring sealing performance of object
JPH11304628A (en) Inspection machine for airtightness of thermosensitive control part in thermostatic expansion valve
JP7058428B1 (en) Air leak inspection method and equipment
JP4026579B2 (en) Airtight leak inspection method and apparatus
JP3568667B2 (en) Leak inspection device
JP2005114611A (en) Gas tightness leak inspection method and device
CN208860545U (en) A kind of leak-testing apparatus
JP2011069834A (en) Helium leak detector
JPH1048087A (en) Helium leak detector
JP2007198865A (en) Helium leak detector
JP4002148B2 (en) Heat pipe leak inspection method and inspection apparatus therefor
JP3348489B2 (en) Leak test method
JPH11326108A (en) Helium leak detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220803

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221012

R150 Certificate of patent or registration of utility model

Ref document number: 7162952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150