JP7161218B2 - SAMPLE OBSERVATION METHOD, SAMPLE OBSERVATION DEVICE, AND MICROSCOPE - Google Patents

SAMPLE OBSERVATION METHOD, SAMPLE OBSERVATION DEVICE, AND MICROSCOPE Download PDF

Info

Publication number
JP7161218B2
JP7161218B2 JP2019537702A JP2019537702A JP7161218B2 JP 7161218 B2 JP7161218 B2 JP 7161218B2 JP 2019537702 A JP2019537702 A JP 2019537702A JP 2019537702 A JP2019537702 A JP 2019537702A JP 7161218 B2 JP7161218 B2 JP 7161218B2
Authority
JP
Japan
Prior art keywords
light
illumination
sample
light intensity
observation point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019537702A
Other languages
Japanese (ja)
Other versions
JPWO2019039581A1 (en
Inventor
美保子 島野
竜馬 備瀬
銀強 鄭
いまり 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inter University Research Institute Corp Research Organization of Information and Systems
Original Assignee
Inter University Research Institute Corp Research Organization of Information and Systems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inter University Research Institute Corp Research Organization of Information and Systems filed Critical Inter University Research Institute Corp Research Organization of Information and Systems
Publication of JPWO2019039581A1 publication Critical patent/JPWO2019039581A1/en
Application granted granted Critical
Publication of JP7161218B2 publication Critical patent/JP7161218B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microscoopes, Condenser (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本開示は、焦点調節可能な光学系を有する顕微鏡における試料観察方法及びその装置とそれを搭載する顕微鏡に関する。 TECHNICAL FIELD The present disclosure relates to a sample observation method in a microscope having an adjustable focus optical system, an apparatus therefor, and a microscope equipped with the same.

透過型光学顕微鏡は、生物医学、食品安全、および他の多くの用途に広く使用されている。顕微鏡で標本を観察する場合、光は画像センサに達する前に標本中の小さな粒子に当たり方向を変える。その結果、画像センサは、異なる経路を通る散乱光線の合計を捕捉することになる。この光の散乱は、観察される画像を不明瞭にする。図1(b)は、マイクロメータ(図1(a))の上に散乱物を乗せたときの透過型電子顕微鏡の観察画像である。このように光の散乱は画像を不鮮明にする。 Transmission light microscopy is widely used in biomedical, food safety, and many other applications. When viewing a specimen with a microscope, light hits small particles in the specimen and is redirected before reaching the image sensor. As a result, the image sensor will capture the sum of the scattered rays through different paths. This light scattering obscures the viewed image. FIG. 1(b) is an observation image of a transmission electron microscope when the scattered matter is placed on the micrometer (FIG. 1(a)). Light scattering thus blurs the image.

散乱による画像の不明瞭化は、生物医学的画像形成において大きな課題となっている。例えば、生体組織の空間スペクトル解析において、吸収係数は特定点で正確に測定できなければならない。しかし、測定された信号は、特定点と異なる点からの散乱光を含み、その散乱光は組織内の異なる点の情報を含む。生体組織の特定点で正確に測定するには、特定からの直接的な光と他の点からの散乱光を分離することが不可欠である。 Image obscuring due to scattering is a major challenge in biomedical imaging. For example, in spatio-spectral analysis of biological tissue, the absorption coefficient must be able to be measured accurately at specific points. However, the measured signal contains scattered light from different points than the specific point, and the scattered light contains information for different points within the tissue. For accurate measurements at specific points in living tissue, it is essential to separate direct light from specific points and scattered light from other points.

コンピュテーショナルフォトグラフィ(Computational Photography)法の分野では、試料での反射光から大域成分である相互反射等の光を除去し、鏡面反射光や拡散反射光の直接成分を抽出する方法がいくつか提案されている。例えば、非特許文献1では、高周波照明の使用を開示している。高周波照明は、高周波空間パターンを同一箇所に照射することで直接成分と大域成分とを分離することができる(例えば、非特許文献3~8を参照。)。
一方、非特許文献2では、非特許文献1の反射型の手法とは異なり、半透明物体等の透過観察における成分の分離(観測点を透過する観測点単一散乱光である直接成分と他点で散乱した他点単一散乱光や多重散乱光である大域成分との分離)を行う透過型の手法が紹介されている。この手法は、平行光の高周波照明を利用して透過光を観測しようとしている。このため、非特許文献2では特殊なレンズ(テレセントリックレンズ)を使って高周波照明を平行光とし、この平行光を観測するように構成されている。
In the field of computational photography, there are several methods of extracting the direct components of specular reflection and diffuse reflection by removing light such as interreflection, which is a global component, from the reflected light from the sample. Proposed. For example, Non-Patent Document 1 discloses the use of high frequency illumination. High-frequency illumination can separate the direct component and the global component by irradiating the same location with a high-frequency spatial pattern (see, for example, Non-Patent Documents 3 to 8).
On the other hand, in Non-Patent Document 2, unlike the reflection-type technique of Non-Patent Document 1, separation of components in transmissive observation of a translucent object (a direct component that is a single scattered light from an observation point and other A transmissive method that separates the multi-point single-scattered light and multiple-scattered light from a global component has been introduced. This technique attempts to observe transmitted light using high-frequency illumination of parallel light. Therefore, in Non-Patent Document 2, a special lens (telecentric lens) is used to convert the high-frequency illumination into parallel light, and the parallel light is observed.

Nayar, S.K., Krishnan, G., Grossberg, M.D., Raskar, R.: Fast Separation of Direct and Global Components of a Scene Using High Frequency Illumination. ACM Transactions on Graphics 25(3), pp. 935-944 (2006)Nayar, S.; K. , Krishnan, G.; , Grossberg, M.; D. , Raskar, R. : Fast Separation of Direct and Global Components of a Scene Using High Frequency Illumination. ACM Transactions on Graphics 25(3), pp. 935-944 (2006) Tanaka, K., Mukaigawa, Y., Kubo, H., Matsushita, Y., Yagi, Y.: Descattering of Transmissive Observation using Parallel High-frequency Illumination. In: IEEE Con-ference on Computational Photography, (2013)Tanaka, K.; , Mukaigawa, Y.; , Kubo, H.; , Matsushita, Y.; , Yagi, Y.; : Descattering of Transmissive Observation using Parallel High-frequency Illumination. In: IEEE Conference on Computational Photography, (2013) Lamond, B., Peers, P., Debevec, P.: Fast Image-based Separation of Diffuse and Specular Reections. In ACM SIGGRAPH sketches, 2007.Lamond, B. , Peers, P.S. , Debevec, P.S. : Fast Image-based Separation of Diffuse and Specular Reflections. In ACM SIGGRAPH sketches, 2007. Gupta, M., Tian, Y., Narasimhan, S.G., Zhang, L.: A Combined Theory of Defocused Illumination and Global Light Transport. International Journal of Computer Vision 98(2), pp. 146-167 (2012)Gupta, M.; , Tian, Y.; , Narasimhan, S.; G. , Zhang, L.; : A Combined Theory of Defocused Illumination and Global Light Transport. International Journal of Computer Vision 98(2), pp. 146-167 (2012) Achar, S., Narasimhan, S.G.: Multi Focus Structured Light for Recovering Scene Shape and Global Illumination. European Conference on Computer Vision (2014)Achar, S.; , Narasimhan, S.; G. : Multi Focus Structured Light for Recovering Scene Shape and Global Illumination. European Conference on Computer Vision (2014) Reinhard, E., Khan, E. A., Akyuz, A. O., Johnson, G.: Color Imaging: Fundamentals and Applications. CRC Press (2008)Reinhard, E. , Khan, E. A. , Akyuz, A.; O.D. , Johnson, G.; : Color Imaging: Fundamentals and Applications. CRC Press (2008) Mukaigawa, Y., Yagi, Y., Raskar, R.: Analysis of Light Transport in Scattering Media. In: IEEE Conference on Computer Vision and Pattern Recognition, pp.153{160 (2010)Mukaigawa, Y.; , Yagi, Y.; , Raskar, R. : Analysis of Light Transport in Scattering Media. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 153 {160 (2010) Tanaka, K., Mukaigawa, Y., Kubo, H., Mtsushita, Y., Yagi, Y.: Recovering Inner Slices of Translucent Objects by Multi-frequency Illumination. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5464-5472. (2015)Tanaka, K.; , Mukaigawa, Y.; , Kubo, H.; , Mtsushita, Y.; , Yagi, Y.; : Recovering Inner Slices of Translucent Objects by Multi-frequency Illumination. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5464-5472. (2015) Salomatina, E., Jiang, B., Novak, J., Yaroslavsky, A. N.: Optical Properties of Normal and Cancerous Human Skin in the Visible and Near-infrared Spectral Range. Journal of Biomedical Optics 11(6) (2006)Salomatina, E. , Jiang, B. , Novak, J.; , Yaroslavsky, A.; N. : Optical Properties of Normal and Cancerous Human Skin in the Visible and Near-infrared Spectral Range. Journal of Biomedical Optics 11(6) (2006)

しかし、焦点調節可能な光学系を設けた顕微鏡の場合、試料の厚み方向の情報が加わるため、非特許文献1のような反射型の手法や非特許文献2のような平行光の高周波照明を利用する透過型の手法では、試料で反射した光や試料を透過した光を直接成分と大域成分とに分離することができず、画像の鮮明化や空間スペクトル解析が困難という課題があった。そこで、本発明は、上記課題を解決すべく、焦点調節可能な光学系を有する(平行光ではない)場合であっても、試料の画像の鮮明化や空間スペクトル解析を可能とする試料観察方法、試料観察装置、及び顕微鏡を提供することを目的とする。 However, in the case of a microscope with a focus-adjustable optical system, information in the thickness direction of the sample is added. The transmission-type method used cannot separate the light reflected by the sample and the light transmitted through the sample into direct components and global components, which makes it difficult to sharpen images and perform spatial spectrum analysis. Therefore, in order to solve the above problems, the present invention is a sample observation method that enables sharpening of the image of the sample and spatial spectrum analysis even if it has an optical system that can adjust the focus (not parallel light). , a sample observation device, and a microscope.

上記目的を達成するために、本発明に係る試料観察方法及び試料観察装置は、カメラ側のあるピクセルにおいて観測される、
照明の明部に観測点を位置させたときの、合焦での観測点からの観測点単一散乱光による直接成分(A)、非合焦点からの他点単一散乱光による大域成分(B)、及び多重散乱光による大域成分(C)から、
照明の暗部に観測点を位置させたときの、大域成分(B)及び大域成分(C)を除去することで、
明部と暗部のパターン照明として使用できる合焦状態と前記パターン照明が均一になる非合焦状態との間の差異を利用して直接成分(A)を取り出すこととした。
In order to achieve the above object, a sample observation method and a sample observation device according to the present invention are observed at a certain pixel on the camera side,
When the observation point is positioned in the bright part of the illumination, the direct component (A) by the observation point single scattered light from the observation point in focus, the global component (A) by the multi-point single scattered light from the defocused point B), and from the global component (C) due to multiple scattered light,
By removing the global component (B) and the global component (C) when the observation point is positioned in the dark part of the illumination,
The direct component (A) is taken out by using the difference between the focused state that can be used as pattern illumination for bright and dark areas and the non-focused state that makes the pattern illumination uniform.

具体的には、本発明に係る試料観察方法は、
Z方向において光センサ及び照明の焦点を試料内の観測点を含むXY平面に合わせるフォーカス手順と、
前記フォーカス手順を行った後、前記照明の光を前記観測点に照射したときの第1光強度と前記観測点以外に照射したときの第2光強度とを前記光センサで取得する光強度取得手順と、
前記第1光強度に含まれる、前記観測点での単一散乱光による直接成分(A)、前記観測点以外での単一散乱光による大域成分(B)、及び前記試料内での多重散乱光による大域成分(C)と、前記第2光強度に含まれる、大域成分(B)及び大域成分(C)と、を利用し、前記第1光強度から直接成分(A)と大域成分(B)及び大域成分(C)とを分離する演算を行う演算手順と、
を行う。
Specifically, the sample observation method according to the present invention includes:
a focusing procedure that focuses the photosensor and illumination in the Z direction to the XY plane containing the observation point within the sample;
After performing the focusing procedure, light intensity acquisition for acquiring, with the optical sensor, a first light intensity when the light of the illumination is applied to the observation point and a second light intensity when the light is applied to a point other than the observation point. a procedure;
Direct component (A) due to single scattered light at the observation point, global component (B) due to single scattered light at locations other than the observation point, and multiple scattering within the sample, which are included in the first light intensity Using the global component (C) by light and the global component (B) and the global component (C) contained in the second light intensity, the direct component (A) and the global component ( B) and an operation procedure for separating the global component (C);
I do.

具体的には、本発明に係る試料観察装置は、
Z方向において光センサ及び照明の焦点を試料内の観測点を含むXY平面に合わせるフォーカス機構と、
前記フォーカス機構で前記光センサと前記照明の双方の焦点を前記観測点に合わせた状態で、前記照明の光を前記観測点に照射したときの第1光強度と前記観測点以外に照射したときの第2光強度とを前記光センサで取得する光強度取得手段と、
前記第1光強度に含まれる、前記観測点での単一散乱光による直接成分(A)、前記観測点以外での単一散乱光による大域成分(B)、及び前記試料内での多重散乱光による大域成分(C)と、前記第2光強度に含まれる、大域成分(B)及び大域成分(C)と、を利用し、前記第1光強度から直接成分(A)と大域成分(B)及び大域成分(C)とを分離する演算を行う演算器と、
を備える。
Specifically, the sample observation device according to the present invention includes:
a focusing mechanism that focuses the optical sensor and illumination in the Z direction onto an XY plane containing an observation point within the sample;
In a state where both the optical sensor and the illumination are focused on the observation point by the focusing mechanism, a first light intensity when the observation point is illuminated with the light of the illumination, and when the illumination is applied to a point other than the observation point. a light intensity acquisition means for acquiring the second light intensity of with the optical sensor;
Direct component (A) due to single scattered light at the observation point, global component (B) due to single scattered light at locations other than the observation point, and multiple scattering within the sample, which are included in the first light intensity Using the global component (C) by light and the global component (B) and the global component (C) contained in the second light intensity, the direct component (A) and the global component ( B) and a computing unit that separates the global component (C);
Prepare.

本試料観察装置が透過型(光が試料を透過するタイプ)である場合、光の経路の方向をZ方向とする。そして、前記フォーカス機構は、前記フォーカス手順で、Z方向において光センサと試料との間にある光センサ側レンズの焦点を前記試料内の観測点を含むXY平面に合わせ、Z方向において前記試料に対して前記光センサの反対側の照明と前記試料との間にある照明側レンズの焦点を前記観測点を含むXY平面に合わせる。
本試料観察装置が反射型(光が試料で反射するタイプ)である場合、試料の厚み方向をZ方向とする。そして、前記フォーカス機構は、前記フォーカス手順で、Z方向において光センサと試料との間にある光センサ側レンズの焦点を前記試料内の観測点を含むXY平面に合わせ、Z方向において前記試料に対して前記光センサの反対側の照明と前記試料との間にある照明側レンズの焦点を前記観測点を含むXY平面に合わせる。なお、光センサ側レンズと照明側レンズが1つの共通のレンズであってもよい。
If this sample observation device is of a transmissive type (a type in which light passes through the sample), the direction of the light path is the Z direction. In the focusing procedure, the focusing mechanism adjusts the focal point of the optical sensor-side lens between the optical sensor and the sample in the Z direction to the XY plane including the observation point in the sample, and adjusts the focus to the sample in the Z direction. On the other hand, the illumination-side lens between the illumination on the opposite side of the optical sensor and the sample is focused on the XY plane including the observation point.
When this sample observation device is of a reflective type (a type in which light is reflected by the sample), the thickness direction of the sample is defined as the Z direction. In the focusing procedure, the focusing mechanism adjusts the focal point of the optical sensor-side lens between the optical sensor and the sample in the Z direction to the XY plane including the observation point in the sample, and adjusts the focus to the sample in the Z direction. On the other hand, the illumination-side lens between the illumination on the opposite side of the optical sensor and the sample is focused on the XY plane including the observation point. Note that the photosensor-side lens and the illumination-side lens may be one common lens.

半透明の物体を顕微鏡で観測する場合、直接成分(A)に大域成分(B)と(C)が重なっておりそれらを分離する必要がある。高周波照明とカメラ(光センサ)の少なくとも一方の焦点が合っていない平面(非合焦平面)では画像がぼやけて光強度が均質になる。一方、照明とカメラ(光センサ)の焦点が合う平面(合焦平面)では照明の明部と暗部のパターンが明確となり、観測点へ光を照射あるいは非照射とすることができる。カメラは、観測点へ光を照射したときの直接成分(A)、大域成分(B)及び大域成分(C)を観測し、観測点へ光を照射しないときの大域成分(B)及び大域成分(C)を観測する。本発明は、観測点へ光を照射したときの観測結果と観測点へ光を照射しないときの観測結果との違い(差分)を利用して直接成分(A)を取り出している(非合焦平面では光強度が均一なので、観測点へ光を照射したときの大域成分(B)及び(C)と観測点へ光を照射しないときの大域成分(B)及び(C)とは同じ情報となる。)。 When observing a translucent object with a microscope, global components (B) and (C) are superimposed on the direct component (A) and must be separated. A plane in which the high-frequency illumination and/or the camera (light sensor) are out of focus (defocused plane) results in blurry images and homogenous light intensity. On the other hand, on the plane (focus plane) where the illumination and the camera (optical sensor) are focused, the pattern of the bright and dark parts of the illumination becomes clear, and the observation point can be illuminated or not illuminated. The camera observes the direct component (A), the global component (B) and the global component (C) when the observation point is irradiated with light, and the global component (B) and the global component when the observation point is not irradiated with light. Observe (C). The present invention utilizes the difference (difference) between the observation result when the observation point is irradiated with light and the observation result when the observation point is not irradiated with light to extract the direct component (A) (out of focus Since the light intensity is uniform on the plane, the global components (B) and (C) when the observation point is irradiated with light and the global components (B) and (C) when the observation point is not irradiated with light have the same information. Become.).

前記演算器は、前記第1光強度から前記第2光強度を減算して直接成分(A)を計算し、前記観測点の画像を取得する演算を行うことを特徴とする。 The calculator subtracts the second light intensity from the first light intensity to calculate a direct component (A), and performs an operation to obtain an image of the observation point.

前記演算器は、前記第1光強度から前記第2光強度を減算して直接成分(A)を計算し、該直接成分(A)と前記照明の波長毎の光強度とから前記観測点の吸収係数を取得する演算を行うことを特徴とする。 The calculator subtracts the second light intensity from the first light intensity to calculate a direct component (A), and calculates the direct component (A) and the light intensity of each wavelength of the illumination from the observation point. It is characterized by performing an operation for obtaining an absorption coefficient.

前記試料観察装置を顕微鏡に組み込むことで透過光から大域成分を除去して直接成分を取り出すことができるようになる。すなわち、本発明に係る顕微鏡は、前記試料観察装置、前記照明、前記光センサ、前記フォーカス機構を備える顕微鏡であることを特徴とする。 By incorporating the sample observation device into a microscope, it becomes possible to remove the global component from the transmitted light and extract the component directly. That is, a microscope according to the present invention is a microscope including the sample observation device, the illumination, the optical sensor, and the focusing mechanism.

従って、本発明は、焦点調節可能な光学系を有する場合であっても、試料の画像の鮮明化や空間スペクトル解析を可能とする試料観察方法、試料観察装置、及び顕微鏡を提供することができる。 Therefore, the present invention can provide a sample observation method, a sample observation apparatus, and a microscope that enable sharpening of an image of a sample and spatial spectrum analysis even when the optical system has an adjustable focus. .

本発明に係る試料観察装置は、前記試料内において前記観測点を含むXY平面をZ方向に移動させ、前記観測点を含むXY平面のZ方向の位置毎に、前記フォーカス機構に前記光センサ及び前記照明の焦点を前記観測点に合わさせ、前記光強度取得手段に前記第1光強度及び前記第2光強度を取得させ、前記演算器に前記演算をさせる制御器をさらに備えることを特徴とする。本試料観察装置は、センサ側レンズと照明側レンズの双方の焦点をZ方向へ順次移動させることで、Z方向についての連続的な演算結果に基づいて、3次元画像の作成や空間的スペクトル解析が可能になる。 In the sample observation apparatus according to the present invention, the XY plane including the observation point is moved in the Z direction within the sample, and the optical sensor and the It further comprises a controller that focuses the illumination on the observation point, causes the light intensity acquisition means to acquire the first light intensity and the second light intensity, and causes the calculator to perform the calculation. do. By sequentially moving the focal points of both the sensor-side lens and the illumination-side lens in the Z direction, this sample observation device creates three-dimensional images and performs spatial spectrum analysis based on continuous calculation results in the Z direction. becomes possible.

前記照明は、光を透過させる明部と光を遮断する暗部とが任意の比率で組み合わさるフォトマスクで形成された高周波照明であり、前記光強度取得手段は、前記光センサと前記照明の焦点を維持したまま前記試料を任意に移動させる、もしくは前記フォトマスクを任意に移動させる駆動機構であってもよい。 The illumination is a high-frequency illumination formed of a photomask in which a bright portion that transmits light and a dark portion that blocks light are combined at an arbitrary ratio, and the light intensity acquisition means includes the optical sensor and the focal point of the illumination. It may be a drive mechanism that arbitrarily moves the sample or arbitrarily moves the photomask while maintaining .

前記照明は、光源を発光させる明部と光源を消灯させる暗部とを任意の比率で組み合わせたパターンの照明であり、前記光強度取得手段は、前記比率を維持したまま前記明部と前記暗部を任意に移動させる光源制御部であってもよい。 The illumination has a pattern in which a bright portion that causes the light source to emit light and a dark portion that extinguishes the light source are combined at an arbitrary ratio, and the light intensity acquisition means obtains the light portion and the dark portion while maintaining the ratio. It may be a light source control unit that is moved arbitrarily.

本発明は、焦点調節可能な光学系を有する場合であっても、試料の画像の鮮明化や空間スペクトル解析を可能とする試料観察方法、試料観察装置、及び顕微鏡を提供することができる。 INDUSTRIAL APPLICABILITY The present invention can provide a sample observation method, a sample observation apparatus, and a microscope that enable sharpening of an image of a sample and spatial spectrum analysis even when the optical system has an adjustable focus.

本発明の課題を説明するための画像である。It is an image for explaining the subject of the present invention. 透過光と散乱光を説明する図である。It is a figure explaining transmitted light and scattered light. 本発明に係る観察方法を説明する図である。It is a figure explaining the observation method concerning this invention. 本発明に係る観察方法を説明する図である。It is a figure explaining the observation method concerning this invention. 本発明に係る顕微鏡で取得した画像を説明する図である。It is a figure explaining the image acquired with the microscope which concerns on this invention. 本発明に係る顕微鏡と従来手法で行う吸収係数を測定する実験を説明する図である。It is a figure explaining the experiment which measures an absorption coefficient performed with the microscope which concerns on this invention, and a conventional method. 本発明に係る顕微鏡と従来手法で行う吸収係数を測定する実験結果を説明する図である。It is a figure explaining the experimental result which measures an absorption coefficient performed with the microscope which concerns on this invention, and a conventional method. 本発明に係る顕微鏡を説明する図である。It is a figure explaining the microscope concerning this invention.

添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。特に、以下の実施形態では透過型の顕微鏡で説明を行うが、反射型の顕微鏡を用いても照明とカメラが試料に対して同じ側にあるだけで同様の結果を得られる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。 Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In particular, in the following embodiments, a transmission microscope will be described, but similar results can be obtained using a reflection microscope as long as the illumination and the camera are on the same side of the sample. In addition, in this specification and the drawings, constituent elements having the same reference numerals are the same as each other.

[1]透過光と散乱光の重畳
前述のように、透過光顕微鏡で観察される不明瞭な画像の理由の一つは、測定された光が、所望の観測点を通過した光に異なる点からの散乱光が重なり、試料内の異なる点で光吸収されているためである。本セクションでは、透過型顕微鏡で試料を通過するこれらの光を調べ、どのような光が重なり合ってカメラ(イメージセンサ)に到達するかを説明する。
[1] Superimposition of transmitted light and scattered light As described above, one of the reasons for unclear images observed with a transmitted light microscope is that the measured light differs from the light that has passed through the desired observation point. This is because the scattered light from the is superimposed and absorbed at different points in the sample. In this section, we examine these lights as they pass through the sample in a transmission microscope and describe how they overlap to reach the camera (image sensor).

重なり合うすべての光を説明するために、透過型顕微鏡で観測点における光強度を測定する場合を考える。光センサに到達する光は、観測点のみで散乱する観測点単一散乱光(直接透過光)、観測点とは異なる深さにある他点で一度だけ散乱した他点単一散乱光、および多重散乱光の3種類が考えられる。図2は各光の経路の説明図であり、観測点は白丸である。図2(b)の黒実線矢印は、観測点でのみ散乱された後、散乱されずに光センサに到達する観測点単一散乱光(直接透過光)である。この光が観察対象の直接成分である。図2(c)の破線矢印は、試料内で観測点と異なる深さに位置する観測点以外の点で1回だけ散乱した他点単一散乱光と、試料内で複数回散乱した多重散乱光であり、大域成分である。大域成分の散乱光は観測点単一散乱光(直接透過光)と重なり、同じ光センサに到達する(図2(a))。大域成分は、光センサにおいて直接成分の比率を低下させ画像を不明瞭にする。したがって、光センサに到達するこれらの重なり合う光を直接成分と大域成分に分離する必要がある。 To account for all the overlapping light, consider measuring the light intensity at the observation point with a transmission microscope. The light that reaches the optical sensor consists of observation point single-scattered light (directly transmitted light) that is scattered only at the observation point, multi-point single-scattered light that is scattered only once at another point at a different depth from the observation point, and Three types of multiply scattered light are considered. FIG. 2 is an explanatory diagram of the path of each light, and the observation points are indicated by white circles. The solid black arrow in FIG. 2(b) is observation point single scattered light (directly transmitted light) that reaches the optical sensor without being scattered after being scattered only at the observation point. This light is the direct component of the observed object. The dashed arrows in FIG. 2(c) indicate the single scattered light scattered only once at a point other than the observation point located at a different depth from the observation point within the sample, and the multiple scattered light scattered multiple times within the sample. It is light, and it is a global component. The scattered light of the global component overlaps with the single scattered light from the observation point (directly transmitted light) and reaches the same optical sensor (FIG. 2(a)). The global component reduces the proportion of the direct component at the photosensor and obscures the image. Therefore, there is a need to separate these overlapping lights reaching the light sensor into direct and global components.

[2]直接成分と大域成分の分離
図3(a)は、直接成分と大域成分を分離する本実施形態の透過型顕微鏡を説明する図である。本実施形態の透過型顕微鏡は、照明13、光センサ15、光センサ側レンズ12、及び照明側レンズ14を備える顕微鏡であって、透過型試料観察装置100が組み込まれることで試料50内の観測点Kのみで散乱する単一散乱光を観察可能となることを特徴とする。図8は、本実施形態の透過型顕微鏡の説明にあたり、X,Y及びZの方向、試料50内の観測点K、並びに観測点Kを含むXY平面(スライス)を説明する図である。
[2] Separation of Direct Component and Global Component FIG. 3A is a diagram for explaining the transmission microscope of this embodiment that separates the direct component and the global component. The transmission microscope of the present embodiment is a microscope that includes an illumination 13, an optical sensor 15, an optical sensor-side lens 12, and an illumination-side lens 14. By incorporating the transmission-type sample observation device 100, the inside of the sample 50 can be observed. It is characterized by being able to observe single scattered light that scatters only at the point K. FIG. 8 is a diagram for explaining the X, Y, and Z directions, an observation point K within the sample 50, and an XY plane (slice) including the observation point K, in order to explain the transmission microscope of this embodiment.

ここで、透過型試料観察装置100は、
試料50の厚みより薄い焦点深度を有し、光センサ15と試料50との間にある光センサ側レンズ12の焦点を試料50内の観測点Kに合わせる工程、及び試料50の厚みより薄い焦点深度を有し、試料50に対して光センサ15の反対側の照明13と試料50との間にある照明側レンズ14の焦点を観測点Kに合わせる工程の少なくとも一方を行うフォーカス機構18と、
照明13の光を観測点Kに照射したときの第1光強度と観測点K以外に照射したときの第2光強度とを光センサ15で取得する光強度取得手段19と、
前記第1光強度から前記第2光強度を減算した光強度を観測点Kの透過光の成分とする演算器17と、
を備える。
Here, the transmission type sample observation device 100
A step of focusing the optical sensor side lens 12 between the optical sensor 15 and the sample 50 to the observation point K in the sample 50 having a depth of focus thinner than the thickness of the sample 50, and a focus thinner than the thickness of the sample 50 a focusing mechanism 18 that has a depth and performs at least one of a step of focusing an illumination-side lens 14 between the illumination 13 on the opposite side of the optical sensor 15 with respect to the sample 50 and the sample 50 to the observation point K;
light intensity acquisition means 19 for acquiring, with a photosensor 15, a first light intensity when the light of the illumination 13 is applied to the observation point K and a second light intensity when the light is applied to a point other than the observation point K;
A computing unit 17 that uses the light intensity obtained by subtracting the second light intensity from the first light intensity as a component of the transmitted light of the observation point K;
Prepare.

演算器17は、後述する図3(b)と(c)それぞれの状態での透過画像(光センサ15による画像)を得るように、フォーカス機構18及び光強度取得手段19を制御する。
フォーカス機構18は、演算器17の演算に基づいて焦点調節を行うものであり、例えばステッピングモータによるピント調整機構等を用いて実現することができる。また、操作者が手でピント調節つまみ等の所定の操作部を操作することによりピント調節してもよい。また、フォーカス機構18は、光軸方向(Z方向)にセンサ側レンズ12と照明側レンズ14の双方の焦点を移動させることができる。この機能により、スライスをZ方向に移動させる、すなわち、試料50内の任意の深さにある観測点Kに焦点を合わせることができる。
The calculator 17 controls the focus mechanism 18 and the light intensity acquisition means 19 so as to obtain transmission images (images obtained by the optical sensor 15) in the respective states of FIGS. 3B and 3C, which will be described later.
The focus mechanism 18 performs focus adjustment based on the calculation of the calculator 17, and can be realized by using a focus adjustment mechanism using a stepping motor, for example. Alternatively, the operator may manually operate a predetermined operation unit such as a focus adjustment knob to adjust the focus. Further, the focus mechanism 18 can move the focal points of both the sensor-side lens 12 and the illumination-side lens 14 in the optical axis direction (Z direction). This function allows the slice to be moved in the Z direction, ie to focus on an observation point K at any depth within the sample 50 .

光強度取得手段19の駆動機構は、演算器17の演算に基づいて後述する図3(b)と(c)の状態を入れ替えるよう移動させるものであり、例えばステッピングモータによる移動テーブル又はフォトマスクの駆動機構であってもよい。また、操作者が、試料50を移動させるための操作部、又はフォトマスクを移動させるための操作部を操作することにより、図3(b)と(c)の状態を入れ替えてもよい。 The drive mechanism of the light intensity acquisition means 19 is for moving so as to switch the states of FIGS. It may be a drive mechanism. Alternatively, the states of FIGS. 3B and 3C may be exchanged by the operator operating the operating section for moving the sample 50 or the operating section for moving the photomask.

本実施形態の場合、照明13は、光を透過させる明部と光を遮断する暗部とが任意の比率で組み合わさるフォトマスクで形成された高周波照明である。また、光強度取得手段は、光センサ15と照明13の焦点を維持したまま試料50をX方向やY方向に任意に移動させる、もしくはフォトマスクを任意に移動(明部と暗部をX方向やY方向に任意の移動)させる駆動機構である。 In the case of this embodiment, the illumination 13 is a high-frequency illumination formed of a photomask in which bright portions that transmit light and dark portions that block light are combined at an arbitrary ratio. In addition, the light intensity acquisition means arbitrarily moves the sample 50 in the X direction or the Y direction while maintaining the focus of the optical sensor 15 and the illumination 13, or arbitrarily moves the photomask (the light part and the dark part are changed in the X direction or the Y direction). It is a driving mechanism for arbitrary movement in the Y direction.

本実施形態の透過型顕微鏡は、高周波照明の明部と暗部を利用し、さらに光センサ15と高周波照明13の合焦状態と非合焦状態との間の光情報の違いを利用し、直接成分と大域成分を分離する。ここで、高周波照明の像が形成される面に平行な試料内の面(XY平面)を「スライス」と呼ぶ(図8参照)。例えば、試料50の厚みが10μmで、焦点の合っているスライスの厚みは3μmとする(試料やレンズ性能により数値は変わる)。図4は、焦点が合っているスライスと焦点が合っていないスライスを説明する図である。光センサも高周波照明も焦点が合っていないスライスがαとγであり、焦点が合っているスライスがβである。光センサの焦点が合っている場合、その画像は図4(a)のようになり、光センサの焦点が合っていない場合、その画像は図4(b)のようになる。一方、高周波照明の焦点が合っている場合、その画像は図4(c)のようになり、高周波照明のフォーカスが合っていない場合、その画像は図4(d)のようになる。つまり、光センサと高周波照明のいずれか一方の焦点が合っていない場合、パターンがぼやけた画像(図4(b)(d))となる。このようにパターンがぼやけたスライスでは、光強度が均一になると仮定する。つまり、光センサ側と高周波照明側の両方の焦点が合っている状態で直接成分が含まれるとみなし、光センサ側と高周波照明側のいずれか一方の焦点が合っていない状態では大域成分のみとみなす。 The transmission microscope of this embodiment utilizes the bright and dark portions of the high-frequency illumination, and further utilizes the difference in optical information between the focused and unfocused states of the optical sensor 15 and the high-frequency illumination 13 to directly Separate the component and the global component. Here, a plane (XY plane) in the sample parallel to the plane on which an image of high-frequency illumination is formed is called a "slice" (see FIG. 8). For example, assume that the thickness of the sample 50 is 10 μm and the thickness of the in-focus slice is 3 μm (the numerical value varies depending on the sample and lens performance). FIG. 4 is a diagram illustrating in-focus and out-of-focus slices. The slices where neither the photosensor nor the RF illumination are in focus are α and γ, and the slice in focus is β. If the photosensor is in focus, the image looks like FIG. 4(a), and if the photosensor is out of focus, the image looks like FIG. 4(b). On the other hand, if the high frequency illumination is in focus, the image will look like FIG. 4(c), and if the high frequency illumination is out of focus, the image will look like FIG. 4(d). That is, if either the optical sensor or the high-frequency illumination is out of focus, an image with a blurred pattern (FIGS. 4(b) and 4(d)) is obtained. It is assumed that the light intensity is uniform in such a pattern-blurred slice. In other words, it is assumed that the direct component is included when both the optical sensor side and the high-frequency illumination side are in focus, and only the global component is included when either the optical sensor side or the high-frequency illumination side is out of focus. I reckon.

まず、高周波照明のパターンが無く、カメラと照明の両方に焦点が合っている場合と、カメラと照明のいずれかの焦点が合っておらず光強度が一様である場合とを考える。観測点Kに対応する光センサ15のピクセルpで捕捉された光強度L[p]は、直接成分D[p]と大域成分G[p]との和である。
(式1)
L[p]=D[p]+G[p]
First, consider the case where there is no high frequency illumination pattern and both the camera and the illumination are in focus, and the case where either the camera or the illumination is out of focus and the light intensity is uniform. The light intensity L[p] captured at pixel p of photosensor 15 corresponding to observation point K is the sum of the direct component D[p] and the global component G[p].
(Formula 1)
L[p]=D[p]+G[p]

図3(b)と図3(c)は、光を透過する明部と光を遮断する暗部が市松模様状であるフォトマスクを介する高周波照明13を用いて試料50に照射したときの様子を模式的に示した図である。なお、説明明瞭化のため、図3(b)と図3(c)では、透過型試料観察装置100の記載を省略している。 FIGS. 3(b) and 3(c) show the state when the sample 50 is irradiated using the high-frequency illumination 13 through a photomask having a checkerboard pattern of light-transmitting bright portions and light-blocking dark portions. It is a figure shown typically. For clarity of explanation, the illustration of the transmission type sample observation apparatus 100 is omitted in FIGS. 3(b) and 3(c).

[分離演算の説明]
ここで、演算器17が行う演算内容について説明する。
観測点Kが含まれるターゲットスライスに、光センサ15と高周波照明13の焦点が合っている。図3(b)は、光強度取得手段19でフォトマスク又は試料50を動かして観察点Xに光を照射した(フォトマスクの明部を位置させる)ときの模式図である。観察点Xに光が照射すると、光センサ15は観察点Xからの直接的な光(直接成分(A))と他の部分からの光(非合焦での観測点以外からの他点単一散乱光の成分である大域成分(B)及び多重散乱光の成分である大域成分(C))の双方を含む情報を取得する。一方、図3(c)は、フォトマスク又は試料50を動かして観察点Xに光を照射しない(フォトマスクの暗部を位置させる)ときの模式図である。観察点Xに光が照射しないと観察点Xからの直接的な光(直接成分(A))がなく、光センサ15は他の部分からの光(大域成分(B)と(C))のみの情報を取得する。
なお、「合焦での観測点以外からの他点単一散乱光による成分(D)」はカメラの光学系で異なるピクセルに結像されるため、成分(D)は検討中のピクセルにおいて考慮不要である。
[Description of Separation Operation]
Here, the content of calculation performed by the calculator 17 will be described.
The target slice containing the observation point K is focused by the optical sensor 15 and the high frequency illumination 13 . FIG. 3B is a schematic diagram when the photomask or the sample 50 is moved by the light intensity acquisition means 19 to irradiate the observation point X with light (position the bright portion of the photomask). When the observation point X is irradiated with light, the optical sensor 15 detects the direct light from the observation point X (direct component (A)) and the light from other parts (out-of-focus observation points other than the other points). Information including both a global component (B) that is a component of single scattered light and a global component (C) that is a component of multiple scattered light is acquired. On the other hand, FIG. 3C is a schematic diagram when the photomask or the sample 50 is moved so that the observation point X is not irradiated with light (the dark portion of the photomask is positioned). If the observation point X is not irradiated with light, there is no direct light from the observation point X (direct component (A)), and the optical sensor 15 detects only light from other parts (global components (B) and (C)). Get information about
In addition, "component (D) due to multipoint single scattered light from other than the observation point in focus" is imaged on different pixels in the optical system of the camera, so component (D) is considered in the pixel under consideration. No need.

前述のように焦点が合っていないスライス(図4(d))において照明光が均一であると仮定すると、フォトマスクの明部と暗部の比率が1:1である場合、焦点が合っていないスライス(α、γ)内の光強度は、焦点が合っているスライスβの明部の光強度の半分の光強度となる。つまり、スライスβ以外の部分からの多重散乱光や単一散乱光の光強度は観測点Kで反射あるいは透過した光の強度の半分となる。 Assuming that the illumination light is uniform in the out-of-focus slice (Fig. 4(d)) as described above, the out-of-focus The light intensity within the slice (α, γ) is half the light intensity of the bright portion of the focused slice β. That is, the light intensity of the multiple scattered light and single scattered light from portions other than the slice β is half the intensity of the light reflected or transmitted at the observation point K. FIG.

このことを利用して、観測点Kに光を照射している場合の観測点Kに対応する光センサのピクセルpにおける輝度L[p]と、観測点Kに光を照射していない場合の輝度L[p]とを以下のように算出することができる。

Figure 0007161218000001
Figure 0007161218000002
ここで、S[p、x]は点x=[x、y、z]における単一散乱光の光強度である。M[p、x]は最後の散乱点がxである多重散乱光の光強度である。Using this, the luminance L + [p] at the pixel p of the photosensor corresponding to the observation point K when the observation point K is irradiated with light, and the luminance L + [p] when the observation point K is not irradiated with light can be calculated as follows.
Figure 0007161218000001
Figure 0007161218000002
where S[p,x] is the light intensity of the single scattered light at the point x=[x,y,z] t . M[p, x] is the light intensity of the multiply scattered light whose last scattering point is x.

焦点深度dは範囲を有するのでピクセルpは点xの集合に対応する。Ω(p、d)はピクセルpと焦点深度dに対応する領域であり、Ψ(p)は試料50内のピクセルpに対応するすべての点xを示すとする。 A pixel p corresponds to a set of points x since the depth of focus d has a range. Let Ω(p,d) be the area corresponding to pixel p and depth of focus d, and let Ψ(p) denote all points x in sample 50 corresponding to pixel p.

図3(b)に示すように、式(2)の第1項は、ターゲットスライス(β;z=d)における観測点Kを照射した直接透過光である。第2項は焦点から外れた異なるスライス(α、γ)での単一散乱光であり、第3項は大域成分における散乱光の多重である。従って、ターゲットスライスからの光D[p]および他のスライスからの光G[p]は、次式で表される。

Figure 0007161218000003
As shown in FIG. 3(b), the first term in equation (2) is the direct transmitted light that illuminated observation point K in the target slice (β; z=d). The second term is the single scattered light at different out-of-focus slices (α, γ) and the third term is the multiple scattered light in the global component. Therefore, the light D[p] from the target slice and the light G[p] from the other slices are expressed as follows.
Figure 0007161218000003

光センサ15の全てのピクセルで直接成分および大域成分を得るためには、高周波照明パターンを動かし、それぞれのピクセルで光強度が最大のLmaxと最小のLminを取得する。L=Lmaxであり、L=Lminであるので式(4)を用いて各ピクセルのD[p]とG[p]を求めれば、試料50の透過光と散乱光を分離することができる。
なお、高周波照明パターンの動かし方は、例えば、高周波照明の明部と暗部をそれぞれ含むように予め設定した移動経路で動かす方法がある。また、高周波パターンフィルタの動かし方として、高周波パターンフィルタをXYZ軸電動ステージ上でXY方向にランダムに移動させる方法でもよい。この方法の場合、明部ですべての点を捕捉するために十分量の当該ターゲットスライスの観察画像を取得する必要がある。
以上、演算器17の演算について説明した。
To obtain the direct and global components at all pixels of the photosensor 15, the high frequency illumination pattern is moved to obtain the maximum L max and minimum L min light intensity at each pixel. Since L + =L max and L =L min , D[p] and G[p] of each pixel can be obtained using equation (4) to separate the transmitted light from the sample 50 and the scattered light. be able to.
As for the method of moving the high-frequency illumination pattern, for example, there is a method of moving along a moving path that is set in advance so as to include both bright and dark areas of the high-frequency illumination. As a method of moving the high-frequency pattern filter, a method of randomly moving the high-frequency pattern filter in the XY directions on the XYZ-axis electric stage may be used. For this method, it is necessary to acquire a sufficient amount of observation images of the target slice to capture all points in the bright area.
The calculation of the calculator 17 has been described above.

なお、高周波照明を形成するフォトマスクの明部と暗部との大きさに注意する必要がある。フォトマスクの明部が大きい場合、観察点で散乱された直接透過光が、同一の照明領域内で数回散乱することになる。本実施形態の透過型顕微鏡では、このような同一の照明領域内で数回散乱してしまった光も、直接成分であると判断することになる。同一の照明領域内で散乱回数は、試料の特性および高周波照明の周波数に依存するので、試料の特性に応じて高周波照明の周波数を適宜調整する必要がある。 Note that it is necessary to pay attention to the sizes of the bright and dark portions of the photomask that forms the high-frequency illumination. If the bright area of the photomask is large, the directly transmitted light scattered at the observation point will be scattered several times within the same illumination area. In the transmission microscope of this embodiment, such light that has been scattered several times within the same illumination area is also determined to be a direct component. Since the number of scattering times within the same illumination area depends on the characteristics of the sample and the frequency of the high-frequency illumination, it is necessary to appropriately adjust the frequency of the high-frequency illumination according to the characteristics of the sample.

例えば、上記実施形態では高周波照明のパターンを明部と暗部が1:1の市松模様で説明したが、試料の特性によって明部と暗部が1:1ではないパターンの高周波照明を利用してもよいし、明部と暗部とが規則的に配列されていない不規則パターンの照明を利用してもよい。この場合、明部と暗部の比率に応じて式(2)の第2項と第3項の係数、及び式(3)の各項の係数を変更する。具体的には、高周波照明のパターンを明部と暗部が明部と暗部が1:1の市松模様の場合、式(2)と式(3)の各係数が“1/2”であるが、明部と暗部の比率に応じ当該係数を変更する(ただし、係数の合計は1である。)。例えば、
明部の割合=a、
暗部の割合=1-a、
b:明部の透過率を1とするときの暗部の透過率(0.0≦b<1)
とすると、上述した式(2)、式(3)、式(4)は、それぞれ式(2a)、式(3a)、式(4a)となる。

Figure 0007161218000004
Figure 0007161218000005
Figure 0007161218000006
式(2a)、式(3a)、式(4a)において、a=1/2、b=0の場合が式(2)、式(3)、式(4)となる。For example, in the above embodiment, the pattern of the high-frequency illumination was described as a checkered pattern in which the bright and dark portions are 1:1. Alternatively, irregular pattern illumination in which bright portions and dark portions are not regularly arranged may be used. In this case, the coefficients of the second and third terms of Equation (2) and the coefficients of each term of Equation (3) are changed according to the ratio of the bright portion and the dark portion. Specifically, when the pattern of high-frequency illumination is a checkerboard pattern in which the ratio of bright and dark parts is 1:1, each coefficient of formulas (2) and (3) is "1/2". , the coefficient is changed according to the ratio of the bright portion and the dark portion (the sum of the coefficients is 1). for example,
Ratio of light area = a,
dark area ratio = 1 - a,
b: the transmittance of the dark area when the transmittance of the bright area is 1 (0.0≦b<1)
Then, the above equations (2), (3), and (4) become equations (2a), (3a), and (4a), respectively.
Figure 0007161218000004
Figure 0007161218000005
Figure 0007161218000006
In formulas (2a), (3a), and (4a), formulas (2), (3), and (4) are obtained when a=1/2 and b=0.

また、上記実施形態では高周波照明をフォトマスクで構成することを説明したが、フォトマスクを使用せずに複数のLED等の微小光源を配列して高周波照明を構成してもよい。すなわち、前記照明は、光源を発光させる明部と光源を消灯させる暗部とを任意の比率で組み合わせたパターンの照明であり、前記光強度取得手段は、前記比率を維持したまま前記明部と前記暗部を任意に移動させる光源制御部であることを特徴とする。
もちろん、LEDは、高周波照明だけでなく不規則パターンの照明も実現することができる。
In the above embodiment, the high-frequency illumination is configured using a photomask, but the high-frequency illumination may be configured by arranging a plurality of minute light sources such as LEDs without using a photomask. That is, the illumination has a pattern in which a bright portion that causes the light source to emit light and a dark portion that extinguishes the light source are combined at an arbitrary ratio, and the light intensity acquisition means maintains the ratio while maintaining the ratio between the bright portion and the dark portion. It is characterized by being a light source control unit that arbitrarily moves a dark portion.
Of course, LEDs can provide irregular pattern illumination as well as high frequency illumination.

(実施例1)
図5(a)は、本実施例の高周波照明を用いた透過顕微鏡システムを説明する写真である。本透過顕微鏡システムは、顕微鏡、光源、高周波パターンフィルタ(フォトマスク)、カメラ(光センサ)及びXYZ軸電動ステージからなる。顕微鏡はオリンパスBX53、光源にはハロゲンランプ、XYZ軸電動ステージには駿河精機KXT04015-LCを用いた。高周波パターンフィルタとして、図3及び図4に示すように、照明領域(明部)と非照明領域(暗部)の比が1:1である様々な市松模様(高周波照明)のフォトマスクを用意した。具体的に、パターンの大きさは1×1μmから16×16μmまでを用意した。パターンの大きさは、例えば生体中の部位などにより、検体中に散乱体がどのくらい含まれるかに応じて決定される。イルミネーションレンズはフィルタの上に設置され、照明のフォーカス位置を変えることができる。
(Example 1)
FIG. 5(a) is a photograph for explaining a transmission microscope system using high-frequency illumination of this embodiment. This transmission microscope system consists of a microscope, a light source, a high-frequency pattern filter (photomask), a camera (optical sensor), and an XYZ axis motorized stage. An Olympus BX53 microscope was used, a halogen lamp was used as the light source, and a Suruga Seiki KXT04015-LC was used as the XYZ axis motorized stage. As high-frequency pattern filters, photomasks with various checkered patterns (high-frequency illumination) having a ratio of 1:1 between the illuminated area (bright area) and the non-illuminated area (dark area) were prepared as shown in FIGS. . Specifically, pattern sizes ranging from 1×1 μm to 16×16 μm were prepared. The size of the pattern is determined according to the amount of scatterers contained in the sample, such as the site in the living body. The illumination lens is placed on top of the filter and can change the focus position of the illumination.

まず、試料の深さ方向(Z方向)について、ある深さのターゲットスライスに、光センサ15と高周波照明13の焦点を合わせる。どちらの焦点を先に合わせてもよいが、両方の焦点を合わせる必要がある。例えば、顕微鏡の資料ステージを動かして、試料50を観察できるように光センサ15の焦点を所望のターゲットスライスに合わせておく。その後、高周波照明13の焦点を当該ターゲットスライスに合わせる。その焦点合わせには、照明側レンズ14をZ方向に移動させ、且つXYZ軸電動ステージで高周波照明パターンフィルタ13をZ方向に移動させ調整する。 First, with respect to the depth direction (Z direction) of the sample, the optical sensor 15 and the high frequency illumination 13 are focused on a target slice at a certain depth. Either can be focused first, but both must be focused. For example, the specimen stage of the microscope is moved to focus the optical sensor 15 on the desired target slice so that the specimen 50 can be viewed. The high frequency illumination 13 is then focused on the target slice. For the focusing, the illumination-side lens 14 is moved in the Z direction, and the high-frequency illumination pattern filter 13 is moved in the Z direction by the XYZ-axis motorized stage for adjustment.

そして、明部ですべての点を捕捉するために、高周波パターンフィルタ13をXYZ軸電動ステージ上で動かし、当該ターゲットスライスの観察画像を取得する。高周波パターンフィルタの動かし方は上述の通りである。図5(b)は高周波パターンが人間の皮膚に照射されたときの画像、図5(c)は直接成分D[p]の画像、図5(d)は大域成分G[p]の画像である。そして、前述の「分離演算の説明」のように観察画像を処理し、カメラの各光センサ(ピクセル)における直接成分D[p]と大域成分G[p]を取得する。ここまでの作業で、現在のターゲットスライスに対して透過光と散乱光を分離することができる。 Then, in order to capture all points in the bright area, the high-frequency pattern filter 13 is moved on the XYZ-axis motorized stage to obtain an observation image of the target slice. The method of moving the high frequency pattern filter is as described above. FIG. 5(b) is an image when a high-frequency pattern is irradiated on human skin, FIG. 5(c) is an image of the direct component D[p], and FIG. 5(d) is an image of the global component G[p]. be. Then, the observation image is processed as in the above-mentioned "Description of Separation Operation" to obtain the direct component D[p] and the global component G[p] at each optical sensor (pixel) of the camera. So far, we can separate the transmitted and scattered light for the current target slice.

次に、高周波パターンフィルタ13をXYZ軸電動ステージをZ軸方向に移動することにより、上記とは別の深さのターゲットスライスに、光センサ15と高周波照明13の焦点を合わせる。そして、当該ターゲットスライスにおいて、高周波パターンフィルタ13をXYZ軸電動ステージで同様に動かして観察画像を取得する。上記と同様に「分離演算の説明」のように観察画像を処理し、当該ターゲットスライスに対して透過光と散乱光を分離することができる。 Next, by moving the high-frequency pattern filter 13 in the XYZ motorized stage in the Z-axis direction, the optical sensor 15 and the high-frequency illumination 13 are focused on a target slice at a different depth. Then, in the target slice, the high-frequency pattern filter 13 is similarly moved by the XYZ-axis motorized stage to obtain an observation image. In the same manner as described above, the observed image can be processed as described in "Description of Separation Operation" to separate transmitted light and scattered light for the target slice.

(本実施例の効果)
非特許文献1~8に記載される手法では、光路上の重なりも含む、全ての深さ情報の重ね合わせで観測され、それらから特定の深さ(ターゲットスライス)の透過光と散乱光の情報あるいは深さ方向(Z方向)に対する透過光と散乱光の情報を取得することが困難である。一方、本透過顕微鏡システムは、特定の深さ(ターゲットスライス)の透過光と散乱光の情報を取得することができ、さらにターゲットスライスをZ方向に順次移動させて上記の処理を繰り返すことで、複数の深さのターゲットスライスに対する透過光と散乱光を分離して情報を得ることができる。本透過顕微鏡システムは、Z方向の移動をあるステップ幅で連続的に行い、連続的に深さごとのターゲットスライスにおける透過光と散乱光の情報を取得できることから、分離された透過光と散乱光の3次元情報、あるいは3次元画像情報を観察することができる。前記3次元情報は、直接成分や大域成分の3次元波長情報、それらより演算して抽出される各種情報ないし作成される画像、およびそれらより解析される結果を含む。
(Effect of this embodiment)
In the methods described in Non-Patent Documents 1 to 8, all depth information, including overlap on the optical path, is observed by superimposition, and information on transmitted light and scattered light at a specific depth (target slice) from them Alternatively, it is difficult to obtain information on transmitted light and scattered light in the depth direction (Z direction). On the other hand, this transmission microscope system can acquire information on transmitted light and scattered light at a specific depth (target slice). Information can be obtained by separating transmitted and scattered light for target slices at multiple depths. This transmission microscope system continuously moves in the Z direction with a certain step width, and can continuously acquire information on the transmitted light and the scattered light in the target slice for each depth. 3D information or 3D image information can be observed. The three-dimensional information includes three-dimensional wavelength information of direct components and global components, various kinds of information extracted by calculations therefrom or images created therefrom, and results analyzed therefrom.

(実施例2)
本実施例の説明の前に、本実施例を適用しようとする生命科学研究の分野における課題を説明する。
生命科学研究は、生体組織の非接触ないし非侵襲イメージングによる構造や機能解析が非常に期待されている。最近では、共焦点顕微鏡やライトシート顕微鏡等に代表されるように、蛍光の波長情報を手掛かりとする形態可視化が広く利用されている(Nat. Methods 8, pp.757-760, 2011)。しかし、このような共焦点顕微鏡等における蛍光色素染色による観察では、生細胞は褪色や励起光によるダメージを受けることが課題となっている。このため、染色を行わない生体組織等の顕微鏡観察が強く望まれている。しかし、一般に生体組織は散乱体を多く含んでいるため、透過光と散乱光の重ね合わせの情報が観測されており、正しく観測したい透過光が散乱の影響により不鮮明になっている。そのため、癌検出等のバイオメディカルイメージングにおいて、顕微鏡による生体組織観察の際、散乱光の影響により、吸収スペクトル等の組成情報の正しい計測が容易ではない。また、従来技術では、顕微鏡観察画像から吸収と散乱のスペクトルを分離することは困難なため、吸収と散乱を一括して減衰項とする方法がとられていた。従って、従来技術は、染色による生細胞へのダメージを軽減する代わりに、染色の波長情報が無い状態で、顕微鏡観察画像から透過光と散乱光の分離を行い、各生体組織における吸収や散乱の2次元分布情報を抽出している。
(Example 2)
Before describing this embodiment, problems in the field of life science research to which this embodiment is to be applied will be described.
In life science research, structural and functional analysis by non-contact or non-invasive imaging of living tissue is highly expected. Recently, as typified by confocal microscopes and light sheet microscopes, morphological visualization using fluorescence wavelength information as a clue has been widely used (Nat. Methods 8, pp.757-760, 2011). However, observation by fluorescent dye staining with such a confocal microscope or the like poses a problem that viable cells undergo discoloration or damage due to excitation light. For this reason, there is a strong demand for microscopic observation of living tissue without staining. However, since living tissue generally contains many scattering bodies, the information obtained by superimposing transmitted light and scattered light is observed, and the transmitted light, which is to be accurately observed, becomes unclear due to the influence of scattering. Therefore, in biomedical imaging such as cancer detection, correct measurement of composition information such as absorption spectrum is not easy due to the influence of scattered light when observing living tissue with a microscope. In the prior art, since it is difficult to separate the absorption and scattering spectra from the microscopic observation image, a method has been adopted in which the absorption and scattering are collectively used as attenuation terms. Therefore, in the prior art, instead of reducing the damage to living cells due to staining, the transmitted light and scattered light are separated from the microscopic observation image in the absence of staining wavelength information, and the absorption and scattering in each biological tissue are separated. Two-dimensional distribution information is extracted.

一方、本発明に係る透過顕微鏡システムは、前述のように顕微鏡観察画像から透過光と散乱光を分離することができる。このため、後述する演算を行うことで試料の吸収係数や散乱係数を得ることができる。従って、本発明に係る透過顕微鏡システムは、試料の染色を不要とすることができ、波長情報がある状態で試料の吸収や散乱の情報を取得することができる。しかも、本発明に係る透過顕微鏡システムは、前述のように試料のZ方向にも情報を取得することができるため、試料の吸収係数や散乱係数を3次元的に取得することができる。 On the other hand, the transmission microscope system according to the present invention can separate the transmitted light and the scattered light from the microscope observation image as described above. Therefore, the absorption coefficient and the scattering coefficient of the sample can be obtained by performing calculations described later. Therefore, the transmission microscope system according to the present invention can eliminate the need for dyeing the sample, and can acquire information on the absorption and scattering of the sample in the presence of wavelength information. Moreover, since the transmission microscope system according to the present invention can also acquire information in the Z direction of the sample as described above, it is possible to three-dimensionally acquire the absorption coefficient and scattering coefficient of the sample.

以下、本実施形態の透過顕微鏡システムについて説明する。
本実施例では、空間マルチスペクトル吸収分析について従来方法と本実施例の透過顕微鏡システムを利用した方法とを説明する。図6(a)は、比較データを取得するための従来方法による分析を説明する図である。既知試料23として、赤色色素(1mg/mL)とイントラリピッド希釈液(0.4%)の混合液をアンプルに封入し、積分球21の中心に配置した。そして、波長を変えながら光24を試料23に照射し、試料から周囲に放射される散乱光を積分球21で受光し、分光光度計22で各波長における試料23の吸収係数の解析を行った。なお、光24を白色光(多波長光)とし、分光光度計22で波長別に一括解析を行ってもよい。
なお、既知試料23の真値として、イントラリピッドを含まない赤色色素(1mg/mL)のみの溶液で吸光度を測定している。
ここで、図6(a)のような積分球を利用した吸収係数の分析には、試料23としてある程度まとまった分量の検体が必要という課題があった。
The transmission microscope system of this embodiment will be described below.
In this embodiment, a conventional method and a method using the transmission microscope system of this embodiment will be described for spatial multispectral absorption analysis. FIG. 6(a) is a diagram illustrating analysis by a conventional method for obtaining comparison data. As the known sample 23 , a mixture of a red dye (1 mg/mL) and an intralipid diluent (0.4%) was sealed in an ampoule and placed at the center of the integrating sphere 21 . Then, the sample 23 was irradiated with the light 24 while changing the wavelength, the scattered light emitted from the sample to the surroundings was received by the integrating sphere 21, and the absorption coefficient of the sample 23 at each wavelength was analyzed by the spectrophotometer 22. . Note that the light 24 may be white light (multi-wavelength light), and the spectrophotometer 22 may perform collective analysis for each wavelength.
As the true value of the known sample 23, the absorbance was measured with a solution containing only a red dye (1 mg/mL) containing no intralipid.
Here, the analysis of the absorption coefficient using the integrating sphere as shown in FIG.

一方、図6(b)は本実施例の透過顕微鏡システムを利用して試料50の吸収係数を分析する方法を説明する図である。光源13の波長を変化させつつ、試料50のうち分析したい領域に明部と暗部が配置されるように前述のように高周波パターンフィルタをXYZ軸電動ステージ上で動かした。そして、演算器17で各波長における直接成分D[p]を取得し、光源13の光強度から当該領域の吸収係数を取得する。なお、光源13の光を白色光(多波長光)とし、演算器17で波長別に一括解析を行ってもよい。
以下は、吸収係数αの算出例である。
直接成分をI、大域成分をI、入射光の強度をI、光センサ側レンズの焦点深度と照明側レンズの焦点深度の少ない方をXとすると、透過光の強度I
(式1b)
=Iexp(-αX
である。
また、
(式2b)
=I+I
なので、観測点の吸収係数αは、
(式3b)
α=max(0,-log(I/I)/X
である。
On the other hand, FIG. 6B is a diagram for explaining a method of analyzing the absorption coefficient of the sample 50 using the transmission microscope system of this embodiment. While changing the wavelength of the light source 13, the high-frequency pattern filter was moved on the XYZ-axis motorized stage as described above so that the regions of the sample 50 to be analyzed were arranged with bright portions and dark portions. Then, the calculator 17 obtains the direct component D[p] at each wavelength, and obtains the absorption coefficient of the region from the light intensity of the light source 13 . Note that the light from the light source 13 may be white light (multi-wavelength light), and the computing unit 17 may perform collective analysis for each wavelength.
The following is an example of calculation of the absorption coefficient α.
Assuming that the direct component is I d , the global component is I s , the intensity of the incident light is I i , and the lesser of the depth of focus of the photosensor side lens and the depth of focus of the illumination side lens is X f , the transmitted light intensity I o is (Formula 1b)
I o =I i exp(−αX f )
is.
again,
(Formula 2b)
I o =I d +I s
Therefore, the absorption coefficient α at the observation point is
(Formula 3b)
α=max(0,−log(I o /I i )/X f )
is.

図7は、図6(a)の従来手法で取得した吸収係数(破線)と図6(b)の本実施例の透過顕微鏡システムで取得した吸収係数(実線)とを波長毎に比較した図である。図7が示すように、本実施例の透過顕微鏡システムで取得した吸収係数は図6(a)の従来手法で取得した吸収係数と同様のスペクトル形状が得られており、従来手法を本実施例の透過顕微鏡システムに置き換え可能であることがわかる。
さらに、本実施例の透過顕微鏡システムは、積分球を利用する従来手法より少ない量の検体で吸収係数の分析が可能である。
FIG. 7 is a diagram comparing the absorption coefficient (dashed line) obtained by the conventional method in FIG. 6(a) and the absorption coefficient (solid line) obtained by the transmission microscope system of the present embodiment in FIG. 6(b) for each wavelength. is. As shown in FIG. 7, the absorption coefficient obtained by the transmission microscope system of this embodiment has a spectrum shape similar to that obtained by the conventional method in FIG. It can be seen that it can be replaced with the transmission microscope system of
Furthermore, the transmission microscope system of this embodiment can analyze the absorption coefficient with a smaller amount of sample than the conventional method using an integrating sphere.

また、本実施例の透過顕微鏡システムは、吸収係数と同様、散乱係数も求めることができる。以下は、散乱係数βの算出例である。
直接成分Iは試料の厚さXを用いて
(式4b)
= I-I = I exp{-( α+β)*X
と表すことができる。従って、観測点の散乱係数βは
(式5b)
β = max(0,(-log(I/I)/X -α)
直接成分Iでなく大域成分Iを用いる場合、
β = max(0,{-log(I-I)/I}/X -α)
である。
Further, the transmission microscope system of this embodiment can obtain the scattering coefficient as well as the absorption coefficient. The following is an example of calculating the scattering coefficient β.
The direct component I d using the sample thickness X s (equation 4b)
I d = I o −I s = I i exp {−(α+β)*X s }
It can be expressed as. Therefore, the scattering coefficient β at the observation point is (equation 5b)
β = max(0, (−log(I d /I i )/X s −α)
When using the global component I s instead of the direct component I d ,
β = max(0, {−log(I o −I s )/I i }/X s −α)
is.

(本実施例の効果)
本実施例の透過顕微鏡システムは、染色による生細胞へのダメージ回避のみでなく、染色処理の削減による解析時間を大幅に短縮することもできる。その結果、生体組織内および組織間の相互作用、生体組織の3次元的動態、生化学反応など、生細胞の新機能の発見や未だ明らかにされていない生体内のメカニズムの解明に貢献することが期待される。また、生化学分野に新たな分析装置を提供することで、新分析法の創出、新たな研究分野の開拓にもつながると予想され、医療技術進歩への貢献が期待できる。
(Effect of this embodiment)
The transmission microscope system of this embodiment can not only avoid damage to living cells due to staining, but also greatly shorten the analysis time by reducing the staining process. As a result, we will contribute to the discovery of new functions of living cells, such as interactions within and between living tissues, three-dimensional dynamics of living tissues, and biochemical reactions, as well as to the elucidation of as yet unknown in vivo mechanisms. There is expected. In addition, providing new analytical equipment to the biochemical field is expected to lead to the creation of new analysis methods and the development of new research fields, and is expected to contribute to the advancement of medical technology.

本発明に係る試料観察方法、試料観察装置、及び顕微鏡は、生化学分野だけでなく、ホログラフィ分野においても吸収と散乱によっておこるスペックルの分離にも適用することができる。また、本発明は、食品や物品検査等様々な分野での計測分析技術にも適用することができる。 The sample observation method, sample observation device, and microscope according to the present invention can be applied not only to the biochemistry field but also to the separation of speckles caused by absorption and scattering in the holography field. The present invention can also be applied to measurement and analysis techniques in various fields such as inspection of foods and goods.

なお、上述した本発明の実施形態及び各実施例では透過型顕微鏡を例として説明したが、本発明はこれに限定されず、例えばカメラと照明が試料に対して同じ側に設けられた反射型顕微鏡であっても、半透明の試料を観察する場合には反射光から他点単一散乱光や多重散乱光の大域成分を除去する手法として本発明を同様に適用することができる。 Although a transmission type microscope has been described as an example in the above-described embodiments and examples of the present invention, the present invention is not limited to this. Even with a microscope, when a translucent sample is observed, the present invention can be similarly applied as a technique for removing the multi-point single-scattered light and multi-scattered light from the reflected light.

12:光センサ側レンズ
13:光源、高周波照明
14:照明側レンズ
15:光センサ
17:演算器
18:フォーカス機構
19:光強度取得手段
21:積分球
22:分光光度計
23:試料
24:光
50:試料
100:透過型試料観察装置
12: Optical sensor side lens 13: Light source, high frequency illumination 14: Illumination side lens 15: Optical sensor 17: Calculator 18: Focusing mechanism 19: Light intensity acquisition means 21: Integrating sphere 22: Spectrophotometer 23: Sample 24: Light 50: Sample 100: Transmission type sample observation device

Claims (12)

明部と暗部がある照明、光センサ、及びフォーカス機構を備える顕微鏡で行う試料観察方法であって、
前記フォーカス機構でZ方向において前記光センサ及び前記照明の焦点を試料内の観測点を含むXY平面に合わせるフォーカス手順と、
前記フォーカス手順を行った後、前記照明の光が前記観測点に照射する前記明部のときの第1光強度と前記観測点以外に照射している前記暗部のときの第2光強度とを前記光センサで取得する光強度取得手順と、
前記顕微鏡に接続された演算器で、前記第1光強度と前記第2光強度との差分に前記明部と前記暗部との透過率比に応じた係数を乗じて前記観測点での単一散乱光による直接成分(A)とし、前記明部と前記暗部の透過率を考慮した前記第1光強度と前記第2光強度との差分に前記明部と前記暗部との透過率比と面積比に応じた係数を乗じて前記観測点以外の非合焦点での単一散乱光(B)及び前記試料内での多重散乱光(C)による大域成分とする演算を行う演算手順と、
を行う試料観察方法。
A sample observation method performed by a microscope equipped with illumination having a bright part and a dark part, an optical sensor, and a focusing mechanism,
a focusing procedure in which the focusing mechanism focuses the optical sensor and the illumination in the Z direction on an XY plane including an observation point in the sample;
After performing the focusing procedure, the first light intensity when the light of the illumination is the bright part irradiating the observation point and the second light intensity when the dark part is the light irradiating the observation point other than the observation point a light intensity acquisition procedure acquired by the optical sensor;
A computing unit connected to the microscope multiplies the difference between the first light intensity and the second light intensity by a coefficient corresponding to the transmittance ratio between the bright portion and the dark portion to obtain a single The difference between the first light intensity and the second light intensity considering the transmittance of the bright portion and the dark portion as the direct component (A) due to the scattered light, and the transmittance ratio and area of the bright portion and the dark portion A calculation procedure for calculating a global component of single scattered light (B) at an out-of-focus point other than the observation point and multiple scattered light (C) within the sample by multiplying a coefficient according to the ratio;
sample observation method.
前記試料内において前記観測点を含むXY平面をZ方向に移動させて、前記フォーカス手順、前記光強度取得手順及び前記演算手順を繰り返す繰り返し手順をさらに行うことを特徴とする請求項1に記載の試料観察方法。 2. The method according to claim 1, further comprising: moving the XY plane including the observation point in the sample in the Z direction to repeat the focusing procedure, the light intensity obtaining procedure, and the computing procedure. Sample observation method. 前記照明が、光を透過させる前記明部と光を遮断する前記暗部とが任意の面積比率で組み合わさるフォトマスクで形成された高周波照明であることを特徴とする請求項1又は2に記載の試料観察方法。 3. The illumination according to claim 1, wherein the illumination is a high-frequency illumination formed of a photomask in which the bright portions that transmit light and the dark portions that block light are combined in an arbitrary area ratio. Sample observation method. 前記照明が、光源を発光させる前記明部と光源を消灯させる前記暗部とを任意の面積比率で組み合わせたパターンの照明であることを特徴とする請求項1又は2に記載の試料観察方法。 3. A sample observation method according to claim 1, wherein said illumination is a pattern of illumination in which said bright portion for causing a light source to emit light and said dark portion for extinguishing said light source are combined in an arbitrary area ratio. 前記演算手順で演算した直接成分(A)を前記観測点の画像とすることを特徴とする請求項1から4のいずれかに記載の試料観察方法。 5. A sample observation method according to claim 1, wherein the direct component (A) calculated in said calculation procedure is used as the image of said observation point. 前記演算手順で演算した直接成分(A)と前記照明の波長毎の光強度とから前記観測点の吸収係数を取得することを特徴とする請求項1から4のいずれかに記載の試料観察方法。 5. The sample observation method according to claim 1, wherein the absorption coefficient at the observation point is obtained from the direct component (A) calculated in the calculation procedure and the light intensity of each wavelength of the illumination. . 明部と暗部がある照明、光センサ、及びフォーカス機構を備える顕微鏡と、前記顕微鏡に接続される演算器と、前記顕微鏡に接続される光強度取得手段と、を備える試料観察装置であって、
前記フォーカス機構は、Z方向において前記光センサ及び前記照明の焦点を試料内の観測点を含むXY平面に合わせ、
前記光強度取得手段は、前記フォーカス機構で前記光センサと前記照明の双方の焦点を前記観測点に合わせた状態で、前記照明の光が前記観測点に照射する前記明部のときの第1光強度と前記観測点以外に照射している前記暗部のときの第2光強度とを前記光センサで取得し、
前記演算器は、前記第1光強度と前記第2光強度との差分に前記明部と前記暗部との透過率比に応じた係数を乗じて前記観測点での単一散乱光による直接成分(A)とし、前記明部と前記暗部の透過率を考慮した前記第1光強度と前記第2光強度との差分に前記明部と前記暗部との透過率比と面積比に応じた係数を乗じて前記観測点以外の非合焦点での単一散乱光(B)及び前記試料内での多重散乱光(C)による大域成分とする演算を行う
ことを特徴とする試料観察装置。
A sample observation apparatus comprising: a microscope comprising illumination having a bright portion and a dark portion, an optical sensor, and a focusing mechanism; a calculator connected to the microscope; and a light intensity acquisition means connected to the microscope,
The focusing mechanism focuses the optical sensor and the illumination in the Z direction on an XY plane containing an observation point in the sample,
The light intensity acquisition means is configured to obtain a first light intensity when the light of the illumination irradiates the observation point in the bright part in a state in which the focus of both the optical sensor and the illumination is adjusted to the observation point by the focusing mechanism. Acquiring the light intensity and the second light intensity at the time of the dark area irradiated to a point other than the observation point with the optical sensor;
The arithmetic unit multiplies the difference between the first light intensity and the second light intensity by a coefficient corresponding to the transmittance ratio between the bright portion and the dark portion to obtain a direct component due to single scattered light at the observation point. (A), and a coefficient corresponding to the transmittance ratio and area ratio of the bright portion and the dark portion to the difference between the first light intensity and the second light intensity considering the transmittance of the bright portion and the dark portion multiplied by to obtain a global component of single scattered light (B) at an out-of-focus point other than the observation point and multiple scattered light (C) within the sample.
前記試料内において前記観測点を含むXY平面をZ方向に移動させ、前記観測点を含むXY平面のZ方向の位置毎に、前記フォーカス機構に前記光センサ及び前記照明の焦点を前記観測点に合わさせ、前記光強度取得手段に前記第1光強度及び前記第2光強度を取得させ、前記演算器に前記演算をさせる制御器をさらに備えることを特徴とする請求項7に記載の試料観察装置。 An XY plane including the observation point is moved in the Z direction within the sample, and the focusing mechanism causes the optical sensor and the illumination to focus on the observation point for each position in the Z direction of the XY plane including the observation point. 8. The sample observation according to claim 7, further comprising a controller for causing said light intensity obtaining means to obtain said first light intensity and said second light intensity, and for causing said calculator to perform said calculation. Device. 前記照明は、光を透過させる前記明部と光を遮断する前記暗部とが任意の面積比率で組み合わさるフォトマスクで形成された高周波照明であり、
前記光強度取得手段は、前記光センサと前記照明の焦点を維持したまま前記試料を任意に移動させる、もしくは前記フォトマスクを任意に移動させる駆動機構である
ことを特徴とする請求項7又は8に記載の試料観察装置。
The illumination is high-frequency illumination formed of a photomask in which the bright portion that transmits light and the dark portion that blocks light are combined at an arbitrary area ratio,
9. The light intensity acquisition means is a driving mechanism for arbitrarily moving the sample or arbitrarily moving the photomask while maintaining the focus of the light sensor and the illumination. The sample observation device according to .
前記照明は、光源を発光させる前記明部と光源を消灯させる前記暗部とを任意の面積比率で組み合わせたパターンの照明であり、
前記光強度取得手段は、前記比率を維持したまま前記明部と前記暗部を任意に移動させる光源制御部である
ことを特徴とする請求項7又は8に記載の試料観察装置。
The illumination is illumination of a pattern in which the bright portion that emits light from the light source and the dark portion that extinguishes the light source are combined in an arbitrary area ratio,
9. A specimen observation apparatus according to claim 7, wherein said light intensity acquisition means is a light source control section that arbitrarily moves said bright portion and said dark portion while maintaining said ratio.
前記演算器は、前記直接成分(A)を前記観測点の画像とすることを特徴とする請求項7から10のいずれかに記載の試料観察装置。 11. The sample observing apparatus according to claim 7, wherein said calculator uses said direct component (A) as an image of said observation point. 前記演算器は、前記直接成分(A)と前記照明の波長毎の光強度とから前記観測点の吸収係数を取得する演算を行うことを特徴とする請求項7から10のいずれかに記載の試料観察装置。 11. The computing unit according to any one of claims 7 to 10, wherein the computing unit performs computation for acquiring the absorption coefficient of the observation point from the direct component (A) and the light intensity of each wavelength of the illumination. Specimen observation device.
JP2019537702A 2017-08-25 2018-08-24 SAMPLE OBSERVATION METHOD, SAMPLE OBSERVATION DEVICE, AND MICROSCOPE Active JP7161218B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017162635 2017-08-25
JP2017162635 2017-08-25
PCT/JP2018/031302 WO2019039581A1 (en) 2017-08-25 2018-08-24 Sample observation method, sample observation device, and microscope

Publications (2)

Publication Number Publication Date
JPWO2019039581A1 JPWO2019039581A1 (en) 2020-08-20
JP7161218B2 true JP7161218B2 (en) 2022-10-26

Family

ID=65440070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019537702A Active JP7161218B2 (en) 2017-08-25 2018-08-24 SAMPLE OBSERVATION METHOD, SAMPLE OBSERVATION DEVICE, AND MICROSCOPE

Country Status (2)

Country Link
JP (1) JP7161218B2 (en)
WO (1) WO2019039581A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019762A (en) 2008-07-14 2010-01-28 V Technology Co Ltd Method and apparatus for measuring surface profile
JP2018021894A (en) 2016-07-22 2018-02-08 パナソニックIpマネジメント株式会社 Image generation apparatus and image generation method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019762A (en) 2008-07-14 2010-01-28 V Technology Co Ltd Method and apparatus for measuring surface profile
JP2018021894A (en) 2016-07-22 2018-02-08 パナソニックIpマネジメント株式会社 Image generation apparatus and image generation method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
田中 賢一郎 Kenichiro TANAKA,平行高周波照明による透視画像の散乱光除去 Descattering of Transmissive Images Using Parallel High-Frequency Illumination,電子情報通信学会論文誌 (J96-D) 第8号 THE IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS (JAPANESE EDITION),日本,一般社団法人電子情報通信学会 THE INSTITUTE OF ELECTRONICS,INFORMATION AND COMMUNICATION ENGINEERS,第J96-D巻
高谷 剛志,多重重み付け計測による反射・散乱光の分解,情報処理学会 シンポジウム 画像の認識・理解シンポジウム(MIRU) 2011 [online] ,日本,情報処理学会

Also Published As

Publication number Publication date
WO2019039581A1 (en) 2019-02-28
JPWO2019039581A1 (en) 2020-08-20

Similar Documents

Publication Publication Date Title
JP6416887B2 (en) Microscopic observation of tissue samples using structured illumination
US10229310B2 (en) High throughput partial wave spectroscopic microscopy and associated systems and methods
JP5628839B2 (en) Ocular surface disease detection system and ocular surface inspection device
CN112639582B (en) Hyperspectral apparatus and method
JP2010181833A (en) Microscopic observation system
WO2012090416A1 (en) Test device
JP5789786B2 (en) Image measuring apparatus and image measuring method
JP7161218B2 (en) SAMPLE OBSERVATION METHOD, SAMPLE OBSERVATION DEVICE, AND MICROSCOPE
JP2013003386A (en) Image pickup apparatus and virtual slide device
JP2007101476A (en) Method of acquiring raman spectrum
JP4385925B2 (en) Image forming method
JP2016525673A (en) A device for tracking in spectroscopy with a fast imaging modality
JP2013109205A (en) Image detection device
US20110310384A1 (en) Methods and system for confocal light scattering spectroscopic imaging
WO2015133475A1 (en) Microscope device and analysis method
Browning et al. Illuminating the optical properties of an LED-based spectral light source for hyperspectral endoscopy
US10004398B2 (en) Device for determining a condition of an organ and method of operating the same
JP6355961B2 (en) Sample observation equipment
JP2023048189A (en) Sample observation method, sample observation device and microscope
US10866398B2 (en) Method for observing a sample in two spectral bands, and at two magnifications
WO2021039441A1 (en) Biological tissue identification method, biological tissue identification device, and biological tissue identification program
WO2015037055A1 (en) Fluorescent image acquisition device
TWM491159U (en) Dynamic Raman scatter optical analysis device
WO2013029580A1 (en) Fluorescence measurement method

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A5211

Effective date: 20191210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221006

R150 Certificate of patent or registration of utility model

Ref document number: 7161218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150