JP7160114B2 - Terminal device, wireless communication device, wireless communication system and wireless communication method - Google Patents

Terminal device, wireless communication device, wireless communication system and wireless communication method Download PDF

Info

Publication number
JP7160114B2
JP7160114B2 JP2020559620A JP2020559620A JP7160114B2 JP 7160114 B2 JP7160114 B2 JP 7160114B2 JP 2020559620 A JP2020559620 A JP 2020559620A JP 2020559620 A JP2020559620 A JP 2020559620A JP 7160114 B2 JP7160114 B2 JP 7160114B2
Authority
JP
Japan
Prior art keywords
information
terminal
cell list
security
terminal device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020559620A
Other languages
Japanese (ja)
Other versions
JPWO2020121455A1 (en
Inventor
陽平 工口
高義 大出
義博 河▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JPWO2020121455A1 publication Critical patent/JPWO2020121455A1/en
Application granted granted Critical
Publication of JP7160114B2 publication Critical patent/JP7160114B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

本発明は、端末装置、無線通信装置、無線通信システム及び無線通信方法に関する。 The present invention relates to a terminal device, a radio communication device, a radio communication system, and a radio communication method.

LTE(Long Term Evolution)において、端末装置(User Equipment:UE)と基地局(evolved Node-B:eNB)との間で、信号の完全性保証及び暗号化が行われる。端末装置とeNBとの間の無線通信において、C(Control)-Plane信号及びU(User)-Plane信号それぞれの完全性保証及び暗号化に使用する鍵は、UE及びeNBのそれぞれで管理される。 In LTE (Long Term Evolution), signal integrity assurance and encryption are performed between a terminal device (User Equipment: UE) and a base station (evolved Node-B: eNB). In wireless communication between the terminal device and the eNB, the keys used for integrity assurance and encryption of the C (Control)-Plane signal and the U (User)-Plane signal are managed by the UE and the eNB respectively. .

ここで、信号の完全性保証及び暗号化のためのセキュリティアルゴリズムは、UE及びeNBの両方で使用可能なアルゴリズムが使用される。以下では、セキュリティアルゴリズムを単にアルゴリズムと言う場合がある。LTEで使用されるアルゴリズムにはSNOW 3G、ASE(Advanced Encryption Standard)、ZUCなどがある。 Here, the security algorithm for signal integrity assurance and ciphering uses an algorithm that can be used by both the UE and the eNB. In the following, security algorithms may be simply referred to as algorithms. Algorithms used in LTE include SNOW 3G, ASE (Advanced Encryption Standard), ZUC, and the like.

LETにおけるUEとeNBとの間のセキュリティに関する処理は、以下のように実行される。初回接続時に、UEは、自装置が使用可能なアルゴリズムをUE Security CapabilityとしてMME(Mobility Management Entity)へ送信する。MMEは、取得したUE Security CapabilityをeNBへ送信する。 Security-related processing between UE and eNB in LET is performed as follows. When connecting for the first time, the UE transmits an algorithm that can be used by the own device to the MME (Mobility Management Entity) as UE Security Capability. The MME sends the obtained UE Security Capability to the eNB.

また、X2ハンドオーバにより接続する基地局を切替える場合、セキュリティに関する処理は以下のように実行される。ここでは、第1eNB及び第2eNBという2つのeNBが存在する場合で説明する。第1eNBに接続中のUEが在圏エリアを移動して、第2eNBと接続する場合、UEは使用可能な1つ又は複数のアルゴリズムをUE Security Capabilityとして第2eNBに送信する。UE Security Capabilityを受信した第2eNBは、アルゴリズムを選択してUEと無線接続を確立する。この時、UEが使用可能なアルゴリズムに第2eNBが対応していない場合、第2eNBは、UEとの接続の確立に失敗する。 When switching the base station to be connected by X2 handover, security-related processing is executed as follows. Here, a case where there are two eNBs, a first eNB and a second eNB, will be described. When the UE connected to the first eNB moves within the serving area and connects to the second eNB, the UE transmits one or more available algorithms to the second eNB as UE Security Capabilities. The second eNB that has received the UE Security Capability selects an algorithm and establishes radio connection with the UE. At this time, if the second eNB does not support an algorithm that the UE can use, the second eNB fails to establish a connection with the UE.

また、5G(Generation)と呼ばれる第5世代移動通信システムでは、超高信頼性低遅延通信であるURLLC(Ultra-Reliable and Low Latency Communications)などを活用した、LET以上に多種多様なサービスが提供されることが想定される。加えて、より安全性の高いサービスを実現するために、信号の完全性保証及び暗号化に使用するアルゴリズムについてもサービス毎に異なることが想定される。さらには、サービスの多様化によって、新たなアルゴリズムが追加される可能性もある。例えば、各gNBが特定のサービスに使用され、gNB毎に使用可能なアルゴリズムが異なる運用が想定される。 In addition, in the 5th generation mobile communication system called 5G (Generation), a wider variety of services than LET are provided, utilizing ultra-reliable and low-delay communication such as URLLC (Ultra-Reliable and Low Latency Communications). It is assumed that In addition, in order to realize services with higher security, it is assumed that the algorithms used for signal integrity assurance and encryption also differ for each service. Furthermore, new algorithms may be added due to the diversification of services. For example, it is assumed that each gNB is used for a specific service and that different algorithms are available for each gNB.

5Gにおいて、RRC(Radio Resource Control)の状態としてRRC_inactiveという状態がある。これは、セキュリティなどのAS(Access Stratum)情報を含むASコンテキストと上位回線を保持しつつ、基地局と端末装置と間の無線回線(Wireless Channel)が切断されている状態であり、無線回線については従来のRRC_idleと同等の状態である。ただし、この場合の端末装置は、基地局がASコンテキストを保持することで、RRC_idel(待ち受け状態)からRRC_connection(接続状態)へ移行する場合と異なり、上位回線設定を実施せずにRRC-inactive(無線回線断かつ上位回線接続状態)からRRC_connectionへ移行することができる。すなわち、RRC_inactiveを用いることで、手順及び信号数を削減でき、ユーザデータの伝送を開始するまでの時間を短くすることができる。さらには、低消費電力化も可能である。なお、RRC_inactiveでは、従来のトラッキングエリア(TA:Tracking Area)よりも狭いRAN(Radio Access Network)エリアにおける位置登録が実施される。なお、トラッキングエリア及びRANエリアを位置登録エリアと呼ぶことがある。 In 5G, there is a state called RRC_inactive as a state of RRC (Radio Resource Control). This is a state in which the wireless channel between the base station and the terminal device is disconnected while the AS context including AS (Access Stratum) information such as security and the upper line are maintained. is equivalent to conventional RRC_idle. However, unlike the case where the base station maintains the AS context and shifts from RRC_idel (waiting state) to RRC_connection (connection state), the terminal device in this case is RRC-inactive ( wireless line disconnected and upper line connected state) to RRC_connection. That is, by using RRC_inactive, it is possible to reduce the number of procedures and signals, and shorten the time until transmission of user data is started. Furthermore, low power consumption is also possible. Note that, in RRC_inactive, location registration is performed in a RAN (Radio Access Network) area that is narrower than a conventional tracking area (TA: Tracking Area). Note that the tracking area and the RAN area are sometimes called a location registration area.

ここで、位置登録エリアの更新には、TAU(Tracking Area Update)とRAU(RAN Area Update)という2つの更新手順が存在する。TAUは、着呼(着信)に際して端末装置の在圏エリアを基地局に把握させるために、端末が、周期的(定期的)に在圏エリアをネットワークに報告する処理にあたる。また、RAUは、RRC_inactiveの状態で、端末装置が、TAよりも狭いRANエリアで、周期的に位置登録を実施する処理にあたる。上述したように、端末装置は、RRC-inactiveからRRC_connectionへ移行する際に、RAを利用する。 Here, there are two update procedures for updating the location registration area: TAU (Tracking Area Update) and RAU (RAN Area Update). The TAU is a process in which a terminal periodically (regularly) reports the area within which the terminal device is located to the network in order to let the base station know the area within which the terminal is located when a call is received. Also, in the RRC_inactive state, the RAU performs processing for the terminal device to perform location registration periodically in a RAN area narrower than the TA. As described above, the terminal device uses RA when transitioning from RRC-inactive to RRC_connection.

なお、無線通信のセキュリティに関する技術として、移動元基地局が、端末装置から受信したセキュリティ能力の情報を基に、移動先基地局との通信の可否を判定して、移動先基地局との通信に用いるセキュリティ鍵の情報を端末装置へ送信する従来技術がある。また、端末装置が別ネットワークへのハンドオーバ時にネットワークから対応セキュリティアルゴリズムのリストの配信を受けて、セキュリティアルゴリズムを選択する従来技術がある。 As a technology related to wireless communication security, the source base station determines whether or not communication with the destination base station is possible based on security capability information received from the terminal device. There is a conventional technique for transmitting information of a security key to be used for a terminal device. There is also a conventional technique in which a terminal receives a list of compatible security algorithms delivered from a network when handing over to another network and selects a security algorithm.

国際公開第2018/079692号WO2018/079692 特表2012-531792号公報Japanese Patent Publication No. 2012-531792

3GPP TS 23.501 V15.3.0(2018-09)3GPP TS 23.501 V15.3.0 (2018-09) 3GPP TS 36.211 V15.2.0(2018-06)3GPP TS 36.211 V15.2.0 (2018-06) 3GPP TS 36.212 V15.2.1(2018-07)3GPP TS 36.212 V15.2.1 (2018-07) 3GPP TS 36.213 V15.2.0(2018-06)3GPP TS 36.213 V15.2.0 (2018-06) 3GPP TS 36.300 V15.2.0(2018-06)3GPP TS 36.300 V15.2.0 (2018-06) 3GPP TS 36.321 V15.2.0(2018-07)3GPP TS 36.321 V15.2.0 (2018-07) 3GPP TS 36.322 V15.1.0(2018-07)3GPP TS 36.322 V15.1.0 (2018-07) 3GPP TS 36.323 V15.0.0(2018-07)3GPP TS 36.323 V15.0.0 (2018-07) 3GPP TS 36.331 V15.2.2(2018-06)3GPP TS 36.331 V15.2.2 (2018-06) 3GPP TS 36.413 V15.2.0(2018-06)3GPP TS 36.413 V15.2.0 (2018-06) 3GPP TS 36.423 V15.2.0(2018-06)3GPP TS 36.423 V15.2.0 (2018-06) 3GPP TS 36.425 V15.0.0(2018-06)3GPP TS 36.425 V15.0.0 (2018-06) 3GPP TS 37.340 V15.2.0(2018-06)3GPP TS 37.340 V15.2.0 (2018-06) 3GPP TS 38.201 V15.0.0(2017-12)3GPP TS 38.201 V15.0.0 (2017-12) 3GPP TS 38.202 V15.2.0(2018-06)3GPP TS 38.202 V15.2.0 (2018-06) 3GPP TS 38.211 V15.2.0(2018-06)3GPP TS 38.211 V15.2.0 (2018-06) 3GPP TS 38.212 V15.2.0(2018-06)3GPP TS 38.212 V15.2.0 (2018-06) 3GPP TS 38.213 V15.2.0(2018-06)3GPP TS 38.213 V15.2.0 (2018-06) 3GPP TS 38.214 V15.2.0(2018-06)3GPP TS 38.214 V15.2.0 (2018-06) 3GPP TS 38.215 V15.2.0(2018-06)3GPP TS 38.215 V15.2.0 (2018-06) 3GPP TS 38.300 V15.2.0(2018-06)3GPP TS 38.300 V15.2.0 (2018-06) 3GPP TS 38.321 V15.2.0(2018-06)3GPP TS 38.321 V15.2.0 (2018-06) 3GPP TS 38.322 V15.2.0(2018-06)3GPP TS 38.322 V15.2.0 (2018-06) 3GPP TS 38.323 V15.2.0(2018-06)3GPP TS 38.323 V15.2.0 (2018-06) 3GPP TS 38.331 V15.2.1(2018-06)3GPP TS 38.331 V15.2.1 (2018-06) 3GPP TS 38.401 V15.2.0(2018-06)3GPP TS 38.401 V15.2.0 (2018-06) 3GPP TS 38.410 V15.0.0(2018-06)3GPP TS 38.410 V15.0.0 (2018-06) 3GPP TS 38.413 V15.0.0(2018-06)3GPP TS 38.413 V15.0.0 (2018-06) 3GPP TS 38.420 V15.0.0(2018-06)3GPP TS 38.420 V15.0.0 (2018-06) 3GPP TS 38.423 V15.0.0(2018-06)3GPP TS 38.423 V15.0.0 (2018-06) 3GPP TS 38.470 V15.2.0(2018-06)3GPP TS 38.470 V15.2.0 (2018-06) 3GPP TS 38.473 V15.2.1(2018-07)3GPP TS 38.473 V15.2.1 (2018-07) 3GPP TR 38.801 V14.0.0(2017-03)3GPP TR 38.801 V14.0.0 (2017-03) 3GPP TR 38.802 V14.2.0(2017-09)3GPP TR 38.802 V14.2.0 (2017-09) 3GPP TR 38.803 V14.2.0(2017-09)3GPP TR 38.803 V14.2.0 (2017-09) 3GPP TR 38.804 V14.0.0(2017-03)3GPP TR 38.804 V14.0.0 (2017-03) 3GPP TR 38.900 V15.0.0(2018-06)3GPP TR 38.900 V15.0.0 (2018-06) 3GPP TR 38.912 V15.0.0(2018-06)3GPP TR 38.912 V15.0.0 (2018-06) 3GPP TR 38.913 V15.0.0(2018-06)3GPP TR 38.913 V15.0.0 (2018-06)

しかしながら、ある基地局(gNB)に接続中の端末(UE)が、RRC_inactiveの状態となった後に、UEが在圏移動した(エリア間で移動した)場合、移動先で接続するgNBと移動前に接続していたgNBとで使用可能なアルゴリズムが異なることが考えられる。この場合、RRC_inactiveの状態からRRC_connectedへの遷移が失敗するおそれがある。RRC_connectedへの遷移に失敗すると、端末装置は、RLF(Radio Link Failure)となる。この場合、RLFとなるまでの時間、RLF発生からgNB再選択及び選択したgNBに接続するまでの時間とを加算した時間分の通信断が発生し、結果として端末装置に対する伝送速度が低下してしまうおそれがある。そのため、RRC_inactiveを利用することによる再接続時間短縮や伝送速度向上の効果が小さくなってしまう。 However, when a terminal (UE) connected to a certain base station (gNB) is in the RRC_inactive state and then moves in the area (moves between areas), the gNB connected at the destination and before the movement It is conceivable that the algorithms that can be used by the gNB that was connected to are different. In this case, the transition from the state of RRC_inactive to RRC_connected may fail. If the transition to RRC_connected fails, the terminal device becomes RLF (Radio Link Failure). In this case, a communication interruption for the time added to the time until RLF occurs, the time from RLF generation to gNB reselection and connection to the selected gNB occurs, and as a result the transmission speed for the terminal device is reduced. There is a risk that it will be lost. Therefore, the effect of shortening the reconnection time and improving the transmission speed by using RRC_inactive is reduced.

また、移動元基地局が、端末装置から受信したセキュリティ能力の情報を基に移動先基地局との通信に用いるセキュリティ鍵の情報を端末装置へ送信する従来技術では、RRC_inactiveの状態の端末に情報を伝えることは困難である。そのため、この従来技術を用いても、伝送速度を向上させることは困難である。また、配信された対応セキュリティアルゴリズムのリストを基にセキュリティアルゴリズムを選択する従来技術では、セキュアな情報を通知することになりRRC_inactiveの状態の端末に情報を伝えることは困難である。そのため、この従来技術を用いて伝送速度を向上させることは困難である。 Further, in the conventional technology in which the source base station transmits to the terminal device information on the security key used for communication with the destination base station based on the security capability information received from the terminal device, the information is difficult to convey. Therefore, even with this conventional technique, it is difficult to improve the transmission speed. In addition, in the conventional technology that selects a security algorithm based on a distributed list of compatible security algorithms, it is difficult to transmit information to a terminal in the RRC_inactive state because of the notification of secure information. Therefore, it is difficult to improve the transmission speed using this conventional technique.

開示の技術は、上記に鑑みてなされたものであって、伝送速度を向上させる端末装置、無線通信装置、無線通信システム及び無線通信方法を提供することを目的とする。 The disclosed technology has been made in view of the above, and aims to provide a terminal device, a wireless communication device, a wireless communication system, and a wireless communication method that improve transmission speed.

本願の開示する端末装置、無線通信装置、無線通信システム及び無線通信方法の一つの態様において、受信部は、複数の基地局のそれぞれが有するセル毎のセキュリティに関する情報が登録された端末個別セルリストAMF(Access and Mobility Management Function)から受信する。選択部は、前記第1の情報を基に前記複数の基地局の中から接続する基地局を選択する。送信部は、選択した前記基地局に対して無線接続を再開するための第2の情報を送信する。 In one aspect of the terminal device, the wireless communication device, the wireless communication system, and the wireless communication method disclosed in the present application, the receiving unit includes a terminal-specific cell list in which security information for each cell possessed by each of a plurality of base stations is registered. is received from the AMF (Access and Mobility Management Function) . The selection unit selects a base station to be connected from among the plurality of base stations based on the first information. The transmitting unit transmits second information for resuming wireless connection to the selected base station.

本願の開示する端末装置、無線通信装置、無線通信システム及び無線通信方法の一つの態様によれば、伝送速度を向上させることができるという効果を奏する。 According to one aspect of the terminal device, the wireless communication device, the wireless communication system, and the wireless communication method disclosed in the present application, it is possible to improve the transmission speed.

図1は、無線通信システムのシステム構成図である。FIG. 1 is a system configuration diagram of a wireless communication system. 図2は、UEのブロック図である。FIG. 2 is a block diagram of a UE. 図3は、端末個別セルリストの一例を表す図である。FIG. 3 is a diagram showing an example of a terminal-specific cell list. 図4は、gNBのブロック図である。FIG. 4 is a block diagram of a gNB. 図5は、AMFのブロック図である。FIG. 5 is a block diagram of the AMF. 図6は、端末個別セルリストのフォーマットの一例を示す図である。FIG. 6 is a diagram showing an example of the format of the terminal-specific cell list. 図7は、UEが使用可能なセキュリティアルゴリズムにページングを受信したgNBが対応している場合の再接続処理のシーケンス図である。FIG. 7 is a sequence diagram of the reconnection process when the gNB that received the paging supports security algorithms that the UE can use. 図8は、UEが使用可能暗セキュリティアルゴリズムにページングを受信したgNBが対応していない場合の再接続処理のシーケンス図である。FIG. 8 is a sequence diagram of the reconnection process when the gNB receiving the page does not support the dark security algorithms that the UE can use. 図9は、UEが使用可能なセキュリティアルゴリズムにTAUの送信先のgNBが対応している場合の再接続処理のシーケンス図である。FIG. 9 is a sequence diagram of reconnection processing when the gNB to which the TAU is transmitted supports security algorithms that the UE can use. 図10は、UEが使用可能暗セキュリティアルゴリズムにTAUの送信先のgNBが対応していない場合の再接続処理のシーケンス図である。FIG. 10 is a sequence diagram of reconnection processing when the gNB to which the TAU is transmitted does not support the dark security algorithm that the UE can use. 図11は、ネットワークの構築からUEがRRC_inactiveになるまでの処理のシーケンス図である。FIG. 11 is a sequence diagram of processing from network construction to UE becoming RRC_inactive. 図12は、AMFのハードウェア構成図である。FIG. 12 is a hardware configuration diagram of AMF. 図13は、実施例2に係る無線通信システムにおけるセルリスト送信停止処理のフローチャートである。FIG. 13 is a flowchart of cell list transmission stop processing in the wireless communication system according to the second embodiment. 図14は、端末個別セルリストに登録される情報のカスタマイズ処理の一例のフローチャートである。FIG. 14 is a flowchart of an example of customization processing for information registered in the terminal-specific cell list.

以下に、本願の開示する端末装置、無線通信装置、無線通信システム及び無線通信方法の実施例を図面に基づいて詳細に説明する。なお、以下の実施例により本願の開示する端末装置、無線通信装置、無線通信システム及び無線通信方法が限定されるものではない。また、本明細書における課題及び実施例は一例であり、本願の権利範囲を限定するものではない。特に、記載の表現が異なっていたとしても技術的に同等であれば、異なる表現であっても本願の技術を適用可能であり、権利範囲を限定するものではない。そして、各実施の形態は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。 Embodiments of a terminal device, a wireless communication device, a wireless communication system, and a wireless communication method disclosed in the present application will be described below in detail with reference to the drawings. Note that the terminal device, wireless communication device, wireless communication system, and wireless communication method disclosed in the present application are not limited to the following embodiments. Also, the problems and examples in this specification are examples, and do not limit the scope of rights of the present application. In particular, even if the expressions in the description are different, as long as they are technically equivalent, the technology of the present application can be applied even if the expressions are different, and the scope of rights is not limited. Further, each embodiment can be appropriately combined within a range in which the processing contents are not inconsistent.

また、本明細書で使用している用語や記載した技術的内容は、3GPPなど通信に関する規格として仕様書や寄書に記載された用語や技術的内容が適宜用いられてもよい。 In addition, terms and technical contents used in this specification may appropriately use terms and technical contents described in specifications and publications as communication standards such as 3GPP.

図1は、無線通信システムのシステム構成図である。無線通信システム100は、UE1、AMF(Access and Mobility Management Function)2、gNB3、SMF(Session Management Function)4及びUPF(User Plane Function)5を含む。ここで、gNB3は、複数存在する。 FIG. 1 is a system configuration diagram of a wireless communication system. The radio communication system 100 includes UE 1 , AMF (Access and Mobility Management Function) 2 , gNB 3 , SMF (Session Management Function) 4 and UPF (User Plane Function) 5 . Here, there are multiple gNB3s.

UE1は、端末装置であり、gNB3との間で無線通信によるデータ伝送を行う。例えば、UE1は、gNB3を介して、AMF2からトラッキングエリアの情報を取得する。次に、UE1は、トラッキングエリアに含まれるセルの中から接続するセルを選択し、そのセルを形成するgNB3に接続する。その後、UE1は、接続したgNB3を介して他のUE1と通信を行う。このUE1が通信可能な状態が、RRC_connectedと呼ばれる状態である。また、UE1は、周期的にTAUを実行してトラッキングエリアを更新する。 UE1 is a terminal device, and performs data transmission by wireless communication with gNB3. For example, UE1 obtains tracking area information from AMF2 via gNB3. Next, UE1 selects a cell to connect from among the cells included in the tracking area, and connects to gNB3 that forms that cell. After that, UE1 communicates with other UE1 through the connected gNB3. The state in which this UE1 can communicate is a state called RRC_connected. Also, the UE1 periodically performs TAU to update the tracking area.

また、UE1は、Inactive Timerやデータ通信頻度が所定の条件を満たした場合に、RRC_connectedからRRC_inactiveに状態が遷移する。RRC_inactiveに遷移した場合、UE1とgNB3との間の無線層の接続は切れるが、上位層は接続したままとなる。また、最後に接続したgNB3及びAMF2は、UE1のASコンテキストを保持する。ASコンテキストには、セキュリティアルゴリズムを含むセキュリティ等のAS情報が含まれる。 Moreover, UE1 changes a state from RRC_connected to RRC_inactive, when Inactive Timer and data communication frequency satisfy|fill a predetermined condition. When transitioning to RRC_inactive, the radio layer connection between UE1 and gNB3 is broken, but the upper layers remain connected. In addition, gNB3 and AMF2, which were connected last, hold the AS context of UE1. The AS context contains AS information such as security, including security algorithms.

UE1は、位置登録情報(位置情報と記載しても良い)を送信し位置登録エリアであるRANエリアをgNB3を介してAMF2から受信する。UE1は、周期的にRAUを実行してRANエリアの更新を行う。UE1は、AMF2から送信されたRANエリアやトラッキングエリアの情報をgNB3を介して取得する。 The UE1 transmits location registration information (which may be referred to as location information) and receives a RAN area, which is a location registration area, from the AMF2 via the gNB3. The UE1 periodically executes RAU to update the RAN area. UE1 acquires the information of the RAN area and tracking area transmitted from AMF2 via gNB3.

そして、RRC_inactiveからRRC_connectedに遷移する場合、UE1は、RANエリアに含まれるgNB3との間でランダムアクセス、無線同期の確立及びRRCコンフィグなどを実行して無線層を再接続することで通信を確立する。この、RRC_inactiveからRRC_connectedに遷移する際の接続処理については後で詳細に説明する。 Then, when transitioning from RRC_inactive to RRC_connected, UE1 establishes communication by reconnecting the radio layer by performing random access, establishment of radio synchronization, RRC configuration, etc. with gNB3 included in the RAN area. . The connection processing when transitioning from RRC_inactive to RRC_connected will be described later in detail.

AMF2は、C(control)-Planeにおけるモビリティ管理を実行する無線通信置である。AMF2は、UE1の位置登録情報の登録や制御を実行する。例えば、AMF2は、TAUによりUE1から送信された位置情報を用いてUE1のトラッキングエリアを更新する。また、AMF2は、RAUによりUE1から送信された位置登録情報を用いてUE1のRANエリアを更新する。 AMF2 is a wireless communication device that performs mobility management in the C (control)-Plane. The AMF 2 performs registration and control of location registration information of the UE 1 . For example, AMF2 updates the tracking area of UE1 using the location information sent from UE1 by TAU. Also, the AMF 2 updates the RAN area of the UE1 using the location registration information transmitted from the UE1 by the RAU.

また、AMF2は、発着信の制御を行う。また、AMF2は、UE1及びgNB3のセキュリティ情報を管理する。さらに、AMF2は、UE1からTAUを受信した場合、UE1の位置情報に応じたトラッキングエリアの情報をgNB3を介してUE1へ送信する。また、AMF2は、UE1からRAUを受信した場合、UE1の位置登録情報に応じたRANエリアの情報をgNB3を介してUE1へ送信する。 Also, the AMF 2 controls outgoing and incoming calls. In addition, AMF2 manages security information of UE1 and gNB3. Furthermore, when the TAU is received from UE1, AMF2 transmits tracking area information corresponding to the location information of UE1 to UE1 via gNB3. Further, when the AMF 2 receives the RAU from the UE 1, the AMF 2 transmits the RAN area information according to the location registration information of the UE 1 to the UE 1 via the gNB 3.

gNB3は、5G無線を提供する無線基地局である。gNB3は、UE1との間で無線通信よるデータ転送を実行する。また、gNB3は、AMF2から送信されたRANエリアやトラッキングエリアの情報をUE1へ送信する。 gNB3 is a radio base station that provides 5G radio. gNB3 performs data transfer by wireless communication with UE1. Moreover, gNB3 transmits the information of the RAN area and tracking area transmitted from AMF2 to UE1.

SMF4は、C-Planeにおけるセッション管理を実行する通信制御装置である。SMF4は、無線通信におけるセッションの設定及び解放の制御を行う。 SMF4 is a communication control device that executes session management in the C-Plane. The SMF 4 controls session setup and release in wireless communication.

UPF5は、U(User)-Planeにおける通信制御を行う。UPF5は、無線通信ネットワークとデータネットワークとの間のデータパケットを処理する。 The UPF 5 performs communication control on the U (User)-Plane. UPF 5 processes data packets between the wireless communication network and the data network.

次に、UE1、gNB3及びAMF2のそれぞれの機能について詳細に説明する。図2は、UEのブロック図である。 Next, the respective functions of UE1, gNB3 and AMF2 are described in detail. FIG. 2 is a block diagram of a UE.

図2に示すように、UE1は、RRC処理部11、PDCP(Packet Data Convergence Protocol)処理部12、RLC(Radio Link Control)処理部13、MAC(Media Access Control)処理部14及びPHY(Physical)処理部15を有する。さらに、UE1は、通信制御部16を有する。本実施例では、ページング時(呼び出し時又は着信通知時)及びトラッキングエリアの更新時に各gNB3が使用可能なセキュリティアルゴリズムを把握するための端末個別セルリストがUE1に送られる場合で説明する。ただし、トラッキングエリアの更新時の代わりにRANエリアの更新時に端末個別セルリストがUE1に送られてもよい。 As shown in FIG. 2, the UE 1 includes an RRC processing unit 11, a PDCP (Packet Data Convergence Protocol) processing unit 12, an RLC (Radio Link Control) processing unit 13, a MAC (Media Access Control) processing unit 14 and a PHY (Physical) It has a processing unit 15 . Furthermore, UE1 has a communication control unit 16 . In this embodiment, a case where a terminal-specific cell list for grasping the security algorithms that each gNB3 can use is sent to the UE1 at the time of paging (when calling or when notifying an incoming call) and when updating the tracking area will be described. However, the terminal-specific cell list may be sent to UE1 when updating the RAN area instead of when updating the tracking area.

RRC処理部11は、システム報知情報配信、ページング配信、NAS(Non Access Stratum)メッセージ配信、RRCコネクション管理、無線セキュリティ設定及びハンドオーバ制御などのRRC層における処理を実行する。また、RRC処理部11は、周期的に位置登録要求をAMF2へ送信する。位置登録要求は、例えば、トラッキングエリアの更新であるTAUや、RANエリアの更新であるRAUである。さらに、RRC処理部11は、セル選択制御部111及びセキュリティ情報管理部112を有する。 The RRC processing unit 11 executes processing in the RRC layer such as system notification information distribution, paging distribution, NAS (Non Access Stratum) message distribution, RRC connection management, wireless security setting, and handover control. Also, the RRC processing unit 11 periodically transmits a location registration request to the AMF 2 . The location registration request is, for example, a TAU for updating the tracking area or an RAU for updating the RAN area. Furthermore, the RRC processing unit 11 has a cell selection control unit 111 and a security information management unit 112 .

セル選択制御部111は、ページング時又はTAU時にトラッキングエリアを表すトラッキングエリアコードを取得する。そしてセル選択制御部111は、トラッキングエリアコードに含まれるシステム情報(又はシステム制御情報)であるSIB(System Information Block)の中から端末個別セルリストを取得する。 The cell selection control unit 111 acquires a tracking area code representing a tracking area during paging or TAU. Cell selection control section 111 then acquires a terminal-specific cell list from SIB (System Information Block), which is system information (or system control information) included in the tracking area code.

図3は、端末個別セルリストの一例を表す図である。端末個別セルリスト201は、セキュリティアルゴリズムとしてアルゴリズムAが使用可能なgNB3が登録されたリストである。例えば、セル選択制御部111は、端末個別セルリスト201からアルゴリズムAが使用可能なgNB3を特定できる。ここでは、セル選択制御部111は、セルID#3を有するgNB3はアルゴリズムAが使用可能であることが端末個別セルリスト201から確認できる。また、端末個別セルリスト202は、セキュリティアルゴリズムとしてアルゴリズムBが使用可能なgNB3が登録されたリストである。例えば、セル選択制御部111は、端末個別セルリスト202からアルゴリズムBが使用可能なgNB3を特定できる。ここでは、セル選択制御部111は、セルID#1又は#2を有するgNB3はアルゴリズムBが使用可能であることが端末個別セルリスト202から確認できる。また、端末個別セルリスト203は、セキュリティアルゴリズムとしてアルゴリズムA又はBが使用可能なgNB3が登録されたリストである。例えば、セル選択制御部111は、端末個別セルリスト203からアルゴリズムA又はBが使用可能なgNB3を特定できる。ここでは、セル選択制御部111は、セルID#1~#3を有するgNB3はアルゴリズムA又はBが使用可能であることが端末個別セルリスト203から確認できる。以下では、端末個別セルリスト200という。 FIG. 3 is a diagram showing an example of a terminal-specific cell list. The terminal-specific cell list 201 is a list in which gNB3 that can use algorithm A as a security algorithm is registered. For example, cell selection control section 111 can identify gNB 3 that can use algorithm A from terminal-specific cell list 201 . Here, cell selection control section 111 can confirm from terminal-specific cell list 201 that algorithm A can be used by gNB3 having cell ID #3. Also, the terminal-specific cell list 202 is a list in which gNB3 that can use algorithm B as a security algorithm is registered. For example, cell selection control section 111 can identify gNB 3 that can use algorithm B from terminal-specific cell list 202 . Here, cell selection control section 111 can confirm from terminal-specific cell list 202 that algorithm B can be used by gNB 3 having cell ID #1 or #2. Also, the terminal-specific cell list 203 is a list in which gNBs 3 that can use algorithm A or B as security algorithms are registered. For example, cell selection control section 111 can identify gNB 3 that can use algorithm A or B from terminal-specific cell list 203 . Here, cell selection control section 111 can confirm from terminal-specific cell list 203 that algorithm A or B can be used by gNB3 having cell IDs #1 to #3. Hereinafter, it is referred to as a terminal-specific cell list 200. FIG.

次に、セル選択制御部111は、端末個別セルリスト200に登録されたgNB3の無線回線品質の計測をPHY処理部15に指示する。その後、セル選択制御部111は、端末個別セルリスト200に登録された各gNB3の無線回線品質の測定結果を取得する。そして、セル選択制御部111は、最も無線回線品質の良いセルを選択するなど、各gNB3の無線回線品質を用いて接続するgNB3の選択を行う。その後、セル選択制御部111は、選択したgNB3の情報及び端末個別セルリスト200をセキュリティ情報管理部112へ出力する。このセル選択制御部111が、「選択部」の一例にあたる。そして、端末個別セルリスト200が、「第1の情報」の一例にあたる。 Next, the cell selection control unit 111 instructs the PHY processing unit 15 to measure the radio channel quality of gNB 3 registered in the terminal-specific cell list 200 . After that, the cell selection control unit 111 acquires the radio channel quality measurement result of each gNB 3 registered in the terminal-specific cell list 200 . Then, the cell selection control unit 111 selects the gNB 3 to be connected using the radio channel quality of each gNB 3, such as selecting the cell with the best radio channel quality. After that, the cell selection control section 111 outputs information on the selected gNB 3 and the terminal-specific cell list 200 to the security information management section 112 . This cell selection control unit 111 corresponds to an example of a “selection unit”. The terminal-specific cell list 200 corresponds to an example of "first information".

セキュリティ情報管理部112は、UE1が使用可能なセキュリティアルゴリズムの情報を含むセキュリティ情報を保持する。セキュリティ情報管理部112は、RRC処理部11が接続するgNB3へ送信するUE capability(端末性能情報)の中にセキュリティアルゴリズムの情報を登録する。また、セキュリティ情報管理部112は、データ通信用のセキュリティ鍵及びアルゴリズムを含むASコンテキストを作成する。そして、セキュリティ情報管理部112は、接続確立時に、PDCP処理部12、RLC処理部13、MAC処理部14、PHY処理部15及び通信制御部16を介して、ASコンテキストをAMF2へ送信する。なお、端末性能情報は、無線回線品質などの外的な要因によって変わるものではなく、端末それ自体の能力である。 The security information management unit 112 holds security information including information on security algorithms that the UE 1 can use. The security information management unit 112 registers security algorithm information in UE capability (terminal performance information) transmitted to the gNB 3 to which the RRC processing unit 11 connects. Also, the security information management unit 112 creates an AS context including security keys and algorithms for data communication. Then, the security information management unit 112 transmits the AS context to the AMF 2 via the PDCP processing unit 12, the RLC processing unit 13, the MAC processing unit 14, the PHY processing unit 15 and the communication control unit 16 when the connection is established. Note that the terminal performance information does not change depending on external factors such as wireless channel quality, but is the performance of the terminal itself.

また、セキュリティ情報管理部112は、接続先として選択されたgNB3の情報及び端末個別セルリスト200の入力をセル選択制御部111から受ける。そして、セキュリティ情報管理部112は、端末個別セルリスト200を用いて接続先として選択されたgNB3がUE1との通信に用いることができるセキュリティアルゴリズムを特定する。次に、セキュリティ情報管理部112は、接続先として選択されたgNB3との通信に用いるセキュリティアルゴリズムを決定する。その後、セキュリティ情報管理部112は、接続先として選択されたgNB3との通信に用いるセキュリティアルゴリズムをPDCP処理部12に通知する。 Also, the security information management unit 112 receives information on the gNB 3 selected as the connection destination and an input of the terminal-specific cell list 200 from the cell selection control unit 111 . Then, the security information management unit 112 uses the terminal-specific cell list 200 to specify a security algorithm that the gNB3 selected as the connection destination can use for communication with the UE1. Next, the security information management unit 112 determines a security algorithm to be used for communication with the gNB 3 selected as the connection destination. After that, the security information management unit 112 notifies the PDCP processing unit 12 of the security algorithm used for communication with the gNB 3 selected as the connection destination.

また、RRC処理部11は、セル選択制御部111により接続先として選択されたgNB3へ通信の再開要求であるRRC Resume Requestを送信する。その後、RRC処理部11は、RRC Resumeを接続先のgNB3から受信して無線層の接続を確立し、gNB3との間の通信接続を確立する。このRRC処理部11が、「無線接続管理部」の一例にあたる。また、Resume Requestが、「第2の情報」の一例にあたる。 Also, the RRC processing unit 11 transmits an RRC Resume Request, which is a communication restart request, to the gNB 3 selected as a connection destination by the cell selection control unit 111 . After that, the RRC processing unit 11 receives RRC Resume from the connection destination gNB 3 , establishes a connection in the radio layer, and establishes a communication connection with the gNB 3 . This RRC processing unit 11 corresponds to an example of a “radio connection management unit”. Also, Resume Request corresponds to an example of "second information".

PDCP処理部12は、IP(Internet Protocol)パケットヘッダ圧縮、解凍、暗号化などのPDCP層における処理を実行する。PDCP処理部12は、セキュリティ制御部121を有する。 The PDCP processing unit 12 executes processing in the PDCP layer such as IP (Internet Protocol) packet header compression, decompression, and encryption. The PDCP processing unit 12 has a security control unit 121 .

セキュリティ制御部121は、シグナリングの完全性保証及び暗号化、並びに、暗号の解除を行う。セキュリティ制御部121は、セキュリティ情報管理部112から通知された通信に用いるセキュリティアルゴリズムの情報を取得する。そして、セキュリティ制御部121は、指定されたセキュリティアルゴリズムを用いて送信するデータを暗号化し且つ完全性保証を行う。また、セキュリティ制御部121は、RLC処理部13から入力されたデータに対して、指定されたセキュリティアルゴリズムを用いて暗号化を解除する。 The security control unit 121 performs signaling integrity assurance, encryption, and decryption. The security control unit 121 acquires the information of the security algorithm used for communication notified from the security information management unit 112 . Then, the security control unit 121 encrypts the data to be transmitted using the designated security algorithm and performs integrity assurance. Security control unit 121 also decrypts data input from RLC processing unit 13 using a designated security algorithm.

RLC処理部13は、再送制御,重複検出及び順序整列などのRLC層における処理を実行する。 The RLC processing unit 13 performs processing in the RLC layer such as retransmission control, duplicate detection and reordering.

MAC処理部14は、無線リソース割り当て、データマッピング及び再送制御などのMAC層における処理を実行する。例えば、MAC処理部14は、RLC処理部13から入力されたデータに対して無線リソースの割り当て及びデータマッピングなどを行いPHY処理部15へ出力する。 The MAC processing unit 14 executes MAC layer processing such as radio resource allocation, data mapping, and retransmission control. For example, the MAC processing unit 14 performs radio resource allocation and data mapping on the data input from the RLC processing unit 13 and outputs the data to the PHY processing unit 15 .

PHY処理部15は、変調及び復調、符号化及び復号化、アンテナ多重化、並びに、品質測定などのPHY層における処理を実行する。例えば、PHY処理部15は、通信制御部16から入力された信号に復調処理や復号化処理を施してMAC処理部14へ出力する。また、PHY処理部15は、MAC処理部14から入力された信号に変調処理や符号化処理を施して通信制御部16へ出力する。 The PHY processing unit 15 performs processing in the PHY layer such as modulation and demodulation, encoding and decoding, antenna multiplexing, and quality measurement. For example, the PHY processing unit 15 performs demodulation processing and decoding processing on the signal input from the communication control unit 16 and outputs the processed signal to the MAC processing unit 14 . Also, the PHY processing unit 15 performs modulation processing and coding processing on the signal input from the MAC processing unit 14 and outputs the result to the communication control unit 16 .

通信制御部16は、PHYベースバンド信号と無線信号との変換などを行う。通信制御部16は、接続先のgNB3に対して無線信号を送信する。また、通信制御部16は、接続先のgNB3から無線信号を受信する。この通信制御部16が、「受信部」の一例にあたる。また、通信制御部16に送信部(送信機)、受信部(受信機)又は通信部(通信機)を含んでもよい。 The communication control unit 16 performs conversion between a PHY baseband signal and a radio signal. The communication control unit 16 transmits a radio signal to the connection destination gNB 3 . Also, the communication control unit 16 receives a radio signal from the gNB 3 to which it is connected. This communication control unit 16 corresponds to an example of a "receiving unit". Further, the communication control unit 16 may include a transmission unit (transmitter), a reception unit (receiver), or a communication unit (communication device).

次に、図4を参照して、gNB3について説明する。図4は、gNBのブロック図である。gNB3は、RRC処理部31、PDCP処理部32、RLC処理部33、MAC処理部34、PHY処理部35、通信制御部36及びSDAP(Service Discovery Adaptation Profile)処理部37を有する。 Next, gNB3 will be described with reference to FIG. FIG. 4 is a block diagram of a gNB. The gNB 3 has an RRC processing unit 31 , a PDCP processing unit 32 , an RLC processing unit 33 , a MAC processing unit 34 , a PHY processing unit 35 , a communication control unit 36 and an SDAP (Service Discovery Adaptation Profile) processing unit 37 .

RRC処理部31は、RRCコネクション管理、無線セキュリティ設定及びハンドオーバ制御などのRRC層における処理を実行する。RRC処理部31は、セキュリティ情報管理部311を有する。このRRC処理部31が、「接続制御部」の一例にあたる。 The RRC processing unit 31 executes processing in the RRC layer such as RRC connection management, wireless security setting and handover control. The RRC processing unit 31 has a security information management unit 311 . This RRC processing unit 31 corresponds to an example of a "connection control unit".

セキュリティ情報管理部112は、gNB3が使用可能なセキュリティアルゴリズムの情報を含むセキュリティ情報を保持する。また、セキュリティ情報管理部112は、UE1がgNB3に接続した場合、接続するUE1のASコンテキストをAMF2から受信する。そして、セキュリティ情報管理部112は、接続したUE1がRRC_connectedの状態にある場合又はRRC_inactiveに遷移した場合、UE1のASコンテキストを保持する。すなわち、セキュリティ情報管理部112は、UE1が使用可能なセキュリティアルゴリズムの情報を含むセキュリティ情報を保持する。さらに、セキュリティ情報管理部311は、UE1のASコンテキストに含まれるセキュリティアルゴリズムの情報を含むセキュリティ情報をセキュリティ制御部321へ通知する。 The security information management unit 112 holds security information including information on security algorithms that the gNB 3 can use. Also, when UE1 connects to gNB3, security information management unit 112 receives the AS context of connecting UE1 from AMF2. Then, when the connected UE1 is in the RRC_connected state or transitions to RRC_inactive, the security information management unit 112 holds the AS context of the UE1. That is, the security information management unit 112 holds security information including information on security algorithms that the UE 1 can use. Furthermore, the security information management unit 311 notifies the security control unit 321 of security information including security algorithm information included in the AS context of the UE1.

また、RRC処理部31は、RRC_inactiveの状態にあるUE1により自装置であるgNB3が通信の再開における接続先として選択された場合、RRC Resume RequestをUE1から受信する。そして、RRC処理部31は、UE1のASコンテキストの取得要求であるRetrive AS Context Reqestを、アンカーgNBなどのそのUE1のASコンテキストを保持するgNB3へ送信する。その後、RRC処理部31は、取得要求を送信したgNB3からRetrive AS Context Responseを受信する。そして、RRC処理部31は、自装置であるgNB3が形成するセルをUE1のアンカーセル又はサービングセルとして設定する。その後、RRC処理部31は、RRC ResumeをUE1へ送信する。その後、RRC処理部31は、UE1との間で無線層の接続を確立し、UE1との間の通信接続を確立する。 Further, the RRC processing unit 31 receives an RRC Resume Request from the UE1 when the UE1 in the RRC_inactive state selects the gNB3, which is the own device, as a connection destination in resuming communication. Then, the RRC processing unit 31 transmits a Retrieve AS Context Request, which is a request to acquire the AS context of the UE1, to the gNB3 that holds the AS context of the UE1, such as the anchor gNB. After that, the RRC processing unit 31 receives a Retrieve AS Context Response from the gNB 3 that transmitted the retrieval request. Then, the RRC processing unit 31 sets the cell formed by the gNB3, which is the own device, as the anchor cell or serving cell of the UE1. After that, the RRC processing unit 31 transmits RRC Resume to the UE1. After that, the RRC processing unit 31 establishes a radio layer connection with the UE1 and establishes a communication connection with the UE1.

PDCP処理部32は、IPパケットヘッダ圧縮、解凍、暗号化などのPDCP層における処理を実行する。PDCP処理部32は、セキュリティ制御部321を有する。また、PDCP処理部32は、他のgNB3及びAMF2などから送信されたIPパケットの入力をSDAP処理部37から受ける。また、PDCP処理部32は、他のgNB3及びAMF2などへ送信するIPパケットをSDAP処理部37へ出力する。 The PDCP processing unit 32 performs processing in the PDCP layer such as IP packet header compression, decompression and encryption. The PDCP processor 32 has a security controller 321 . Further, the PDCP processing unit 32 receives input of IP packets transmitted from other gNB 3 and AMF 2 from the SDAP processing unit 37 . Also, the PDCP processing unit 32 outputs IP packets to be transmitted to other gNBs 3 and AMF 2 to the SDAP processing unit 37 .

セキュリティ制御部321は、シグナリングの完全性保証及び暗号化、並びに、暗号の解除を行う。セキュリティ制御部321は、セキュリティ情報管理部311から通知された通信に用いるセキュリティアルゴリズムの情報を取得する。そして、セキュリティ制御部321は、指定されたセキュリティアルゴリズムを用いてUE1へ送信するデータを暗号化し且つ完全性保証を行う。また、セキュリティ制御部221は、RLC処理部33から入力されたUE1からの送信データに対して、指定されたセキュリティアルゴリズムを用いて暗号化を解除する。 The security control unit 321 performs signaling integrity assurance, encryption, and decryption. The security control unit 321 acquires the information of the security algorithm used for communication notified from the security information management unit 311 . Then, the security control unit 321 encrypts the data to be transmitted to the UE1 using the designated security algorithm and performs integrity assurance. Also, the security control unit 221 decrypts the transmission data from the UE 1 input from the RLC processing unit 33 using the designated security algorithm.

RLC処理部33は、再送制御,重複検出及び順序整列などのRLC層における処理を実行する。 The RLC processing unit 33 performs processing in the RLC layer such as retransmission control, duplicate detection and reordering.

MAC処理部34は、無線リソース割り当て、データマッピング及び再送制御などのMAC層における処理を実行する。例えば、MAC処理部34は、RLC処理部33から入力されたデータに対して無線リソースの割り当て及びデータマッピングなどを行いPHY処理部35へ出力する。 The MAC processing unit 34 executes processing in the MAC layer such as radio resource allocation, data mapping and retransmission control. For example, the MAC processing unit 34 performs radio resource allocation and data mapping on the data input from the RLC processing unit 33 and outputs the data to the PHY processing unit 35 .

PHY処理部35は、変調及び復調、符号化及び復号化、並びに、アンテナ多重化などのPHY層における処理を実行する。例えば、PHY処理部35は、通信制御部16から入力された信号に復調処理や復号化処理を施してMAC処理部34へ出力する。また、PHY処理部35は、MAC処理部34から入力された信号に変調処理や符号化処理を施して通信制御部36へ出力する。 The PHY processing unit 35 performs processing in the PHY layer such as modulation/demodulation, encoding/decoding, and antenna multiplexing. For example, the PHY processing unit 35 performs demodulation processing and decoding processing on the signal input from the communication control unit 16 and outputs the processed signal to the MAC processing unit 34 . Also, the PHY processing unit 35 performs modulation processing and coding processing on the signal input from the MAC processing unit 34 and outputs the result to the communication control unit 36 .

通信制御部36は、PHYベースバンド信号と無線信号との変換などを行う。通信制御部36は、接続先のUE1に対して無線信号を送信する。また、通信制御部16は、接続先のUE1から無線信号を受信する。 The communication control unit 36 performs conversion between PHY baseband signals and radio signals. The communication control unit 36 transmits a radio signal to the UE1 of the connection destination. Also, the communication control unit 16 receives a radio signal from the UE 1 to which it is connected.

SDAP処理部37は。ユーザデータのQoS(Quality Of Service)の管理を行う。例えば、SDAP処理部37は、コアネットワーク6から受信したIPパケットの入力をPDCP処理部32から受ける。そして、SDAP処理部37は、取得したIPパケットをQoSに対応する無線ベアラにマッピングし、PDCP処理部32へ出力する。また、SDAP処理部37は、PDCP処理部32から取得したIPパケットをQoSに対応する無線ベアラにマッピングしてコアネットワーク6へ送出する。 The SDAP processing unit 37; It manages QoS (Quality Of Service) of user data. For example, the SDAP processing unit 37 receives IP packets received from the core network 6 from the PDCP processing unit 32 . Then, the SDAP processing unit 37 maps the obtained IP packet to a radio bearer corresponding to QoS and outputs it to the PDCP processing unit 32 . Further, the SDAP processing unit 37 maps the IP packet acquired from the PDCP processing unit 32 to a radio bearer corresponding to QoS, and outputs the mapped IP packet to the core network 6 .

次に、図5を参照して、AMF2について説明する。図5は、AMFのブロック図である。図5に示すように、AMF2は、通信制御部21、モビリティ制御部22、パス制御部23、基地局管理部24、セルリスト管理部25及びセキュリティ管理部26を有する。 Next, AMF2 will be described with reference to FIG. FIG. 5 is a block diagram of the AMF. As shown in FIG. 5, the AMF 2 has a communication control section 21, a mobility control section 22, a path control section 23, a base station control section 24, a cell list control section 25 and a security control section .

通信制御部21は、gNB3とデータの送受信を行う。通信制御部21は、gNB3とモビリティ制御部22、パス制御部23及び基地局管理部24との間の通信を仲介する。例えば、通信制御部21は、パス制御部23から送信されたページングにセルリスト管理部25から取得したページングの宛先のUE1の端末個別セルリスト200を付加して、gNB3へ送出する。この通信制御部21が、「情報受信部」の一例にあたる。 The communication control unit 21 transmits and receives data to and from the gNB3. The communication control unit 21 mediates communication between the gNB 3 and the mobility control unit 22 , the path control unit 23 and the base station management unit 24 . For example, the communication control unit 21 adds the terminal-specific cell list 200 of the paging destination UE 1 acquired from the cell list management unit 25 to the paging transmitted from the path control unit 23 and transmits the paging to the gNB 3 . This communication control unit 21 corresponds to an example of an "information receiving unit".

パス制御部23は、発着信の制御を行う。例えば、パス制御部23は、UE1のトラッキングエリア及びRANエリアの情報をモビリティ制御部22から受信する。また、パス制御部23は、gNB3からのページング要求を受信する。次に、パス制御部23は、ページングの宛先のUE1への通信経路をトラッキングエリア又はRANエリアを用いて決定する。そして、パス制御部23は、決定した通信経路のgNB3へページングを送信する。また、パス制御部23は、ページングを行う際にセルリスト管理部25にページングの実行を通知する。の際、パス制御部23は、UE1が在圏するトラッキングエリアの情報をセルリスト管理部25に通知する。 The path control unit 23 controls incoming and outgoing calls. For example, the path control unit 23 receives information on the tracking area and RAN area of the UE1 from the mobility control unit 22 . Also, the path control unit 23 receives a paging request from the gNB3. Next, the path control unit 23 determines a communication route to the paging destination UE 1 using the tracking area or the RAN area. Then, the path control unit 23 transmits paging to the gNB 3 on the determined communication path. Further, the path control unit 23 notifies the cell list management unit 25 of execution of paging when performing paging. At this time, the path control unit 23 notifies the cell list management unit 25 of information on the tracking area in which the UE1 is located.

基地局管理部24は、TA又はRA単位でセル情報を含む基地局情報を管理する。基地局管理部24は、ネットワーク構築時に、各gNB3に対してセル情報の通知要求であるCell Information Requestを送信する。このCell Information Requestには、各gNB3が使用可能なセキュリティアルゴリズムの通知要求も含む。その後、基地局管理部24は、セル情報を各gNB3から受信する。そして、基地局管理部24は、各gNB3が使用可能なセキュリティアルゴリズムをセキュリティ管理部26へ通知する。 The base station management unit 24 manages base station information including cell information in TA or RA units. The base station management unit 24 transmits a Cell Information Request, which is a notification request for cell information, to each gNB 3 when constructing the network. This Cell Information Request also includes a notification request for security algorithms that each gNB 3 can use. Thereafter, the base station management unit 24 receives cell information from each gNB3. Then, the base station management unit 24 notifies the security management unit 26 of the security algorithms that each gNB 3 can use.

また、基地局管理部24は、取得したセル情報からトラッキングエリア及びRANエリアを設定する。そして、基地局管理部24は、セル情報とともにトラッキングエリア及びRANエリアの情報をモビリティ制御部22へ出力する。また、基地局管理部24は、トラッキングエリアの情報をセルリスト管理部25へ出力する。 Also, the base station management unit 24 sets the tracking area and the RAN area from the acquired cell information. Then, the base station management unit 24 outputs the tracking area and RAN area information to the mobility control unit 22 together with the cell information. Also, the base station management unit 24 outputs tracking area information to the cell list management unit 25 .

モビリティ制御部22は、UE1の位置情報の登録及び制御を実行する。具体的には、モビリティ制御部22は、セル情報とともにトラッキングエリア及びRANエリアの情報を基地局管理部24から受信する。また、モビリティ制御部22は、UE1の在圏エリアの報告を定期的に受信する。そして、モビリティ制御部22は、UE1のトラッキングエリアを特定する。また、UE1がRRC_inactiveの場合、モビリティ制御部22は、RANエリアを特定する。モビリティ制御部22は、UE1のトラッキングエリア及びRANエリアをパス制御部23へ通知する。また、モビリティ制御部22は、トラッキングエリアの更新をセルリスト管理部25に通知する。この際、モビリティ制御部22は、UE1が在圏するトラッキングエリアの情報をセルリスト管理部25に通知する。 The mobility control unit 22 performs registration and control of location information of the UE1. Specifically, the mobility control unit 22 receives tracking area and RAN area information from the base station management unit 24 together with the cell information. Also, the mobility control unit 22 periodically receives a report of the area in which UE1 is located. Then, the mobility control unit 22 identifies the tracking area of the UE1. Also, when the UE1 is RRC_inactive, the mobility control unit 22 identifies the RAN area. Mobility control unit 22 notifies path control unit 23 of the tracking area and RAN area of UE1. Also, the mobility control unit 22 notifies the cell list management unit 25 of the update of the tracking area. At this time, the mobility control unit 22 notifies the cell list management unit 25 of information on the tracking area in which the UE1 is located.

セキュリティ管理部26は、各UE1から送信された性能情報を受信する。ここで、性能情報には、各UE1が使用可能なセキュリティアルゴリズムの情報も含まれる。これを基に、セキュリティ管理部26は、各UE1のASコンテキスト情報を生成する。また、セキュリティ管理部26は、各gNB3が使用可能なセキュリティアルゴリズムの情報を基地局管理部24から受信する。そして、セキュリティ管理部26は、各UE1及び各gNB3のそれぞれについて使用可能なセキュリティアルゴリズムの情報を記憶する。 The security management unit 26 receives the performance information transmitted from each UE1. Here, the performance information also includes information on security algorithms that each UE 1 can use. Based on this, the security management unit 26 generates AS context information for each UE1. The security management unit 26 also receives information on security algorithms that can be used by each gNB 3 from the base station management unit 24 . The security management unit 26 then stores information on security algorithms that can be used for each UE 1 and each gNB 3 .

さらに、セキュリティ管理部26は、gNB3との間で接続を確立するUE1の性能情報を基に各UEASコンテキスト情報を生成する。そして、セキュリティ管理部26は、そのUE1との間で接続を確立するgNB3へASコンテキスト情報を送信して、ASコンテキストの設定を行う。 Furthermore, the security management unit 26 generates each piece of UEAS context information based on the performance information of the UE1 establishing connection with the gNB3. The security management unit 26 then transmits the AS context information to the gNB 3 that establishes connection with the UE 1, and sets the AS context.

セルリスト管理部25は、トラッキングエリアの情報の入力を基地局管理部24から受ける。また、セルリスト管理部25は、各gNB3のセキュリティアルゴリズムの情報をセキュリティ管理部26から取得する。そして、セルリスト管理部25は、トラッキングエリア毎に、セキュリティアルゴリズムのパターン毎に端末個別セルリスト200を生成する。本実施例では、端末個別セルリスト200は、各セキュリティアルゴリズムについて使用することが可能なgNB3、又はセキュリティアルゴリズムを使用できることで回線設定が可能なgNB3を示すホワイトセルリストを生成する。 The cell list management unit 25 receives an input of tracking area information from the base station management unit 24 . Also, the cell list management unit 25 acquires information on the security algorithm of each gNB 3 from the security management unit 26 . Then, the cell list management unit 25 generates a terminal-specific cell list 200 for each security algorithm pattern for each tracking area. In this embodiment, the terminal-specific cell list 200 generates a white cell list indicating gNBs 3 that can be used for each security algorithm, or gNBs 3 that can use the security algorithms to enable line setup.

ここで、端末個別セルリスト200は、5Gの通信で使用されるアルゴリズムの数によってパターン化される。そのため、端末個別セルリスト200の作成処理は、AMF2やgNB3の処理を大きく圧迫するものではない。例えば、セキュリティアルゴリズムの数が5の場合、各セキュリティアルゴリズムについてUE1が使用可能か否かの2パターンとなるので、UE1が使用可能なセキュリティアルゴリズムのパターンは2^5-1=31通りとなる。すなわち、セキュリティアルゴリズムの数が5であれば、AMF2が作成する端末個別セルリスト200のパターンは31通りとなる。なお、UE1は少なくとも1つのセキュリティアルゴリズムに対応するため31通りとなる。仮にいずれのセキュリティアルゴリズムにも対応しない場合があるならば32通りとなる。 Here, the terminal-specific cell list 200 is patterned according to the number of algorithms used in 5G communication. Therefore, the process of creating the terminal-specific cell list 200 does not significantly impose the processes of the AMF 2 and gNB 3 . For example, if the number of security algorithms is 5, each security algorithm has two patterns of whether or not UE1 can use it, so there are 2^5-1=31 patterns of security algorithms that UE1 can use. That is, if the number of security algorithms is 5, there are 31 patterns for the terminal-specific cell list 200 created by the AMF 2 . In addition, since UE1 corresponds to at least one security algorithm, there are 31 types. If there is a case that does not correspond to any security algorithm, there are 32 ways.

その後、セルリスト管理部25は、パス制御部23からページングの実行の通知を受けた場合、もしくは、モビリティ制御部22からトラッキングエリアの更新の通知を受けた場合、以下の処理を実行する。セルリスト管理部25は、ページング、トラッキングエリア又は位置登録エリアの更新の対象となるUE1が使用可能なセキュリティアルゴリズムの情報をセキュリティ管理部26から取得する。そして、セルリスト管理部25は、そのUE1が在圏するトラッキングエリア(位置登録エリア)における、そのUE1が使用可能なセキュリティアルゴリズムに応じたパターンの端末個別セルリスト200を選択し、UE1へ送信する。このセルリスト管理部25が、「情報管理部」の一例にあたる。 Thereafter, when the cell list management unit 25 receives a paging execution notification from the path control unit 23 or receives a tracking area update notification from the mobility control unit 22, the cell list management unit 25 executes the following processing. The cell list management unit 25 acquires from the security management unit 26 information on security algorithms that can be used by the UE 1 whose paging, tracking area, or location registration area is to be updated. Then, the cell list management unit 25 selects a terminal-specific cell list 200 having a pattern corresponding to a security algorithm that can be used by the UE1 in the tracking area (location registration area) where the UE1 is located, and transmits the terminal-specific cell list 200 to the UE1. . The cell list management unit 25 corresponds to an example of an "information management unit".

ここで、本実施例では、セルリスト管理部25は、端末個別セルリスト200としてホワイトセルリストを用いた。ただし、セルリスト管理部25は、端末個別セルリスト200として各セキュリティアルゴリズムについて対応していないgNB3、又はセキュリティアルゴリズムが対応しないことで回線設定が困難なgNB3が登録されたブラックセルリストを用いてもよい。ブラックセルリストを用いた場合、UE1は、取得した端末個別セルリスト200に登録されたgNB3を除いたgNB3に対して無線回線品質測定を行い接続可能なgNB3を検出する。特に、トラッキングエリア又はRANエリア内で特定のアルゴリズムについて使用可能とするgNB3の数が少ない場合、ブラックセルリストを用いた方がより情報量を少なくすることができる。 Here, in this embodiment, the cell list management unit 25 uses a white cell list as the terminal-specific cell list 200 . However, the cell list management unit 25 may use a black cell list in which gNB 3 that does not support each security algorithm or gNB 3 that is difficult to set up because the security algorithm does not support is registered as the terminal individual cell list 200. good. When using the black cell list, UE 1 detects gNB 3 to which gNB 3 is connectable by performing radio channel quality measurement on gNB 3 excluding gNB 3 registered in acquired terminal-specific cell list 200 . In particular, if the number of gNB3s to be enabled for a particular algorithm in the tracking area or RAN area is small, the black cell list can provide less information.

そこで、セルリスト管理部25は、送信する端末個別セルリスト200をホワイトセルリストにするかブラックセルリストにするかを、情報量に応じて決定してもよい。この場合、UE1は受信した端末個別セルリスト200がホワイトセルリストかブラックセルリストかを判定することになる。そこで、セルリスト管理部25は、図6に示すような、1ビットの識別フラグ212をセルID情報211に付加した端末個別セルリスト200を使用することが好ましい。図6は、端末個別セルリストのフォーマットの一例を示す図である。UE1は、受信した端末個別セルリスト200の識別フラグ212を確認することで、セルID情報211がホワイトセルリストかブラックセルリストかを判定することができる。 Therefore, the cell list management unit 25 may determine whether the terminal-specific cell list 200 to be transmitted should be a white cell list or a black cell list, depending on the amount of information. In this case, the UE 1 determines whether the received terminal-specific cell list 200 is a white cell list or a black cell list. Therefore, the cell list management unit 25 preferably uses a terminal-specific cell list 200 in which a 1-bit identification flag 212 is added to the cell ID information 211 as shown in FIG. FIG. 6 is a diagram showing an example of the format of the terminal-specific cell list. By checking the identification flag 212 of the received terminal-specific cell list 200, the UE 1 can determine whether the cell ID information 211 is a white cell list or a black cell list.

また、セルリスト管理部25は、端末個別セルリスト200を、ページングとともに送信するもしくUE1が移動した際のTAU信号の送信に使用されるgNB3へ送信する。ここで、ページングやTAU信号の送信に使用されるgNB3は、UE1が使用するセキュリティアルゴリズムに対応していないことが考えられる。そのため、本実施例では、ページング及びTAU信号の送信については、暗号化されていない又は共通的なセキュリティアルゴリズムが使用される。共通的なアルゴリズムとは、ネットワーク上で予め使用が決められたセキュリティアルゴリズムである。 Also, the cell list management unit 25 transmits the terminal-specific cell list 200 to the gNB 3 which is used for transmission of the TAU signal when the UE 1 moves or transmits the terminal-specific cell list 200 together with the paging. Here, it is conceivable that gNB3, which is used for paging and transmission of TAU signals, does not support the security algorithm used by UE1. Therefore, in this embodiment, unencrypted or common security algorithms are used for transmission of paging and TAU signals. A common algorithm is a security algorithm that is predetermined for use on the network.

そのため、本実施例では、端末個別セルリスト200は、暗号化されずもしくは解読が容易な暗号化を用いて送信される。この点、端末個別セルリスト200は、セルの識別情報が記載されていればよい。また、UE1が選択するセルは、端末個別セルリスト200の中で最も回線品質が高いものであり、第三者が容易に特定できるものではない。これらのことから、端末個別セルリスト200は、セキュアな情報を含まないといえる。そこで、セルリスト管理部25による端末個別セルリスト200の送信で、暗号化せずに送信しても問題はない。 Therefore, in this embodiment, the terminal-specific cell list 200 is transmitted either unencrypted or using encryption that is easy to decipher. In this respect, the terminal-specific cell list 200 only needs to include cell identification information. Also, the cell selected by UE1 has the highest line quality in the terminal-specific cell list 200, and cannot be easily identified by a third party. From these, it can be said that the terminal-specific cell list 200 does not contain secure information. Therefore, there is no problem even if the terminal-specific cell list 200 is transmitted by the cell list management unit 25 without being encrypted.

また、一般的に、C-plane信号とU-plane信号とで使用するセキュリティアルゴリズムが同じである可能性がある。しかし、使用するセキュリティアルゴリズムがC-plane信号とU-plane信号とで同じであると、TAU信号などのC-plane信号を暗号化しない又は共通的なアルゴリズムを用いる場合、U-plane信号が第三者に漏洩するおそれがある。そこで、本実施例では、C-plane信号とU-plane信号とのそれぞれで使用するセキュリティアルゴリズムを異ならせることが好ましい。 Also, in general, the same security algorithm may be used for C-plane and U-plane signals. However, if the security algorithm to be used is the same for the C-plane signal and the U-plane signal, and the C-plane signal such as the TAU signal is not encrypted or a common algorithm is used, the U-plane signal is the first. There is a risk of leakage to third parties. Therefore, in this embodiment, it is preferable to use different security algorithms for the C-plane signal and the U-plane signal.

次に、図7及び図8を参照して、ページング時に端末個別セルリスト200を送信する場合の再接続処理の流れを説明する。図7は、UEが使用可能なセキュリティアルゴリズムにページングを受信したgNBが対応している場合の再接続処理のシーケンス図である。また、図8は、UEが使用可能なセキュリティアルゴリズムにページングを受信したgNBが対応していない場合の再接続処理のシーケンス図である。ここでは、動作主体をUE1、gNB3A~3C及びAMF2として説明する。gNB3Cは、C-plane接続における中継装置となるアンカーgNBである。そして、gNB3AとgNB3Bとのトラッキングエリア(位置登録エリア)は同一であるが、gNB3Cのトラッキングエリア(位置登録エリア)は異なる。また、本実施例では、gNB3A~3CのいずれもAMF2を使用するが、これも異なってもよい。 Next, with reference to FIGS. 7 and 8, the flow of reconnection processing when transmitting the terminal-specific cell list 200 during paging will be described. FIG. 7 is a sequence diagram of the reconnection process when the gNB that received the paging supports security algorithms that the UE can use. Also, FIG. 8 is a sequence diagram of the reconnection process when the gNB that received the paging does not support the security algorithm that the UE can use. Here, UE1, gNB3A-3C, and AMF2 are assumed to be operating entities. gNB3C is an anchor gNB serving as a relay device in the C-plane connection. The tracking areas (location registration areas) of gNB3A and gNB3B are the same, but the tracking areas (location registration areas) of gNB3C are different. Also, in this example, gNBs 3A-3C all use AMF2, but this may also be different.

まず、図7を参照して、UE1が使用可能なセキュリティアルゴリズムにページングを受信したgNB3Aが対応している場合の再接続処理を説明する。gNB3A~3Cは、それぞれのセル情報をAMF2に送信する。そして、AMF2は、gNB3A~3Cの各セル情報を取得する(ステップS101)。 First, with reference to FIG. 7, reconnection processing when gNB3A that receives paging corresponds to a security algorithm that can be used by UE1 will be described. gNBs 3A-3C send their respective cell information to AMF2. Then, AMF 2 obtains cell information of gNBs 3A to 3C (step S101).

次に、UE1は、電源オン等によりランダムアクセスが開始され、gNB3A~3C及びAMF2が配置されたネットワークにアタッチされる。その後、所定条件を満たすことで、UE1は、RRC_inactiveの状態に遷移する(ステップS102)。 Next, UE1 starts random access by power-on or the like, and is attached to the network in which gNBs 3A to 3C and AMF 2 are arranged. After that, by satisfying a predetermined condition, the UE 1 transitions to the state of RRC_inactive (step S102).

その後、UE1は、TAU又はRAUの処理を実行し、トラッキングエリア、RANエリア又は位置登録エリアの更新を行う(ステップS103)。 After that, the UE 1 executes TAU or RAU processing and updates the tracking area, RAN area, or location registration area (step S103).

その後、AMF2は、UE1を宛先とする下り信号を受信する(ステップS104)。 Thereafter, AMF2 receives a downlink signal addressed to UE1 (step S104).

次に、AMF2は、UE1のUEコンテキストを確認する(ステップS105)。 Next, AMF2 confirms the UE context of UE1 (step S105).

そして、AMF2は、UE1が対応するセキュリティアルゴリズムを基に端末個別セルリスト200を作成する(ステップS106)。 Then, the AMF 2 creates the terminal-specific cell list 200 based on the security algorithm supported by the UE 1 (step S106).

次に、AMF2は、gNB3C及び3Aを介してUE1にページング及び端末個別セルリスト200を送信する(ステップS107)。 Next, AMF2 transmits paging and terminal-specific cell list 200 to UE1 via gNB3C and 3A (step S107).

UE1は、ページングを受信する(ステップS108)。さらに、UE1は、ページングとともに端末個別セルリスト200を受信する。 UE1 receives the paging (step S108). Furthermore, UE1 receives the terminal-specific cell list 200 together with paging.

次に、UE1は、参照信号(Reference Signal:RS)をgNB3A及び3Bから受信する(ステップS109及びS110)。 Next, UE1 receives reference signals (RS) from gNBs 3A and 3B (steps S109 and S110).

また、UE1は、gNB3A及び3Bから同期信号を受信してgNB3A及び3BのセルIDを特定する。次に、UE1は、端末個別セルリスト200を参照し、特定したセルIDを用いてgNB3A及び3BがUE1が使用可能なセキュリティアルゴリズムに対応する基地局であることを確認する。そして、UE1は、gNB3A及び3Bの参照信号を用いて無線回線品質測定を実行する(ステップS111)。 Also, UE1 receives synchronization signals from gNBs 3A and 3B and identifies the cell IDs of gNBs 3A and 3B. Next, UE1 refers to terminal-specific cell list 200 and uses the specified cell ID to confirm that gNBs 3A and 3B are base stations that support security algorithms that UE1 can use. UE1 then performs radio channel quality measurement using the reference signals of gNBs 3A and 3B (step S111).

次に、UE1は、無線回線品質測定の結果からgNB3Aが形成するセルと接続セルとして選択する(ステップS112)。 Next, the UE1 selects the cell formed by the gNB3A and the connection cell from the result of radio channel quality measurement (step S112).

そして、UE1は、RRCの再接続要求であるRRC Resume RequestをgNB3Aに送信する(ステップS113)。 Then, UE1 transmits RRC Resume Request, which is an RRC reconnection request, to gNB3A (step S113).

gNB3Aは、RRC Resume Requestを受信して、UE1のUEコンテキスト情報の送信要求であるRetrieve UE Context RequestをgNB3Cへ送信する(ステップS114)。 The gNB3A receives the RRC Resume Request and transmits a Retrieve UE Context Request, which is a transmission request for the UE context information of the UE1, to the gNB3C (step S114).

gNB3Cは、Retrieve UE Context Requestを受信して、UE1のコンテキスト情報を送信するRetrieve UE Context ResponseをgNB3Aへ送信する(ステップS115)。 The gNB3C receives the Retrieve UE Context Request and transmits a Retrieve UE Context Response transmitting the context information of the UE1 to the gNB3A (step S115).

gNB3Aは、Retrieve UE Context Responseを受信してUE1のUEコンテキストを取得する。そして、gNB3Aは、UE1のアンカーセル又はサービングセルに自己か形成するセルを設定する(ステップS116)。 gNB3A receives the Retrieve UE Context Response and acquires the UE context of UE1. Then, gNB3A sets the cell to be formed by itself as the anchor cell or serving cell of UE1 (step S116).

そして、gNB3Aは、RRC ResumeをUE1へ送信して、無線接続を確立させて、UE1との間の通信接続を確立する(ステップS117)。 The gNB 3A then transmits RRC Resume to the UE 1, establishes a radio connection, and establishes a communication connection with the UE 1 (step S117).

その後、UE1とgNB3Aとは、確立した通信接続を用いてユーザデータの伝送を行う(ステップS118)。 After that, UE1 and gNB3A transmit user data using the established communication connection (step S118).

次に、図8を参照して、UE1が使用可能なセキュリティアルゴリズムにページングを受信したgNB3Aが対応していない場合の再接続処理を説明する。gNB3A~3Cは、それぞれのセル情報をAMF2に送信する。そして、AMF2は、gNB3A~3Cの各セル情報を取得する(ステップS201)。 Next, with reference to FIG. 8, the reconnection process when the gNB3A that received the paging does not support the security algorithm that the UE1 can use will be described. gNBs 3A-3C send their respective cell information to AMF2. Then, AMF 2 obtains cell information of gNBs 3A to 3C (step S201).

次に、UE1は、電源オン等によりランダムアクセスが開始され、gNB3A~3C及びAMF2が配置されたネットワークにアタッチされる。その後、所定条件を満たすことで、UE1は、RRC_inactiveの状態に遷移する(ステップS202)。 Next, UE1 starts random access by power-on or the like, and is attached to the network in which gNBs 3A to 3C and AMF 2 are arranged. After that, by satisfying a predetermined condition, the UE 1 transitions to the state of RRC_inactive (step S202).

その後、UE1は、TAU又はRAUの処理を実行し、トラッキングエリア、RANエリア又は位置登録エリアの更新を行う(ステップS203)。 After that, the UE 1 executes TAU or RAU processing and updates the tracking area, RAN area, or location registration area (step S203).

その後、AMF2は、UE1を宛先とする下り信号を受信する(ステップS204)。 Thereafter, AMF2 receives a downlink signal addressed to UE1 (step S204).

次に、AMF2は、UE1のUEコンテキストを確認する(ステップS205)。 Next, AMF2 checks the UE context of UE1 (step S205).

そして、AMF2は、UE1が対応するセキュリティアルゴリズムを基に端末個別セルリスト200を作成する(ステップS206)。 Then, the AMF 2 creates the terminal-specific cell list 200 based on the security algorithm supported by the UE 1 (step S206).

次に、AMF2は、gNB3C及び3Aを介してUE1にページング及び端末個別セルリスト200を送信する(ステップS207)。 Next, AMF2 transmits paging and terminal-specific cell list 200 to UE1 via gNB3C and 3A (step S207).

UE1は、ページングを受信する(ステップS208)。さらに、UE1は、ページングとともに端末個別セルリスト200を受信する。 UE1 receives the paging (step S208). Furthermore, UE1 receives the terminal-specific cell list 200 together with paging.

次に、UE1は、参照信号をgNB3A及び3Bから受信する(ステップS209及びS210)。 UE1 then receives reference signals from gNBs 3A and 3B (steps S209 and S210).

また、UE1は、gNB3A及び3Bから同期信号を受信してgNB3A及び3BのセルIDを特定する。次に、UE1は、端末個別セルリスト200を参照し、特定したセルIDを用いてgNB3BはUE1が使用可能なセキュリティアルゴリズムに対応する基地局であり、gNB3Aは対応していないことを確認する。そして、UE1は、gNB3Bの参照信号を用いて無線回線品質測定を実行する。この場合、UE1は、gNB3Bの参照信号の無線回線品質測定は行わない(ステップS211)。 Also, UE1 receives synchronization signals from gNBs 3A and 3B and identifies the cell IDs of gNBs 3A and 3B. Next, UE1 refers to terminal-specific cell list 200 and uses the specified cell ID to confirm that gNB3B is a base station that supports security algorithms that UE1 can use, and that gNB3A does not. UE1 then performs radio channel quality measurement using the reference signal of gNB3B. In this case, UE1 does not measure the radio channel quality of the reference signal of gNB3B (step S211).

次に、UE1は、無線回線品質測定の結果からgNB3Bが形成するセルと接続セルとして選択する(ステップS212)。 Next, the UE1 selects the cell formed by the gNB3B and the connected cell from the result of radio channel quality measurement (step S212).

そして、UE1は、RRCの再接続要求であるRRC Resume RequestをgNB3Bに送信する(ステップS213)。 The UE 1 then transmits an RRC Resume Request, which is an RRC reconnection request, to the gNB 3B (step S213).

gNB3Bは、RRC Resume Requestを受信して、UE1のUEコンテキスト情報の送信要求であるRetrieve UE Context RequestをgNB3Cへ送信する(ステップS214)。 The gNB3B receives the RRC Resume Request and transmits a Retrieve UE Context Request, which is a transmission request for the UE context information of the UE1, to the gNB3C (step S214).

gNB3Cは、Retrieve UE Context Requestを受信して、UE1のコンテキスト情報を送信するRetrieve UE Context ResponseをgNB3Bへ送信する(ステップS215)。 The gNB3C receives the Retrieve UE Context Request and transmits a Retrieve UE Context Response transmitting the context information of the UE1 to the gNB3B (step S215).

gNB3Bは、Retrieve UE Context Responseを受信してUE1のUEコンテキストを取得する。そして、gNB3Bは、UE1のアンカーセル又はサービングセルに自己か形成するセルを設定する(ステップS216)。 gNB3B receives the Retrieve UE Context Response and acquires the UE context of UE1. The gNB 3B then sets the cell to be formed by itself as the anchor cell or serving cell of the UE 1 (step S216).

そして、gNB3Bは、RRC ResumeをUE1へ送信して、無線接続を確立させて、UE1との間の通信接続を確立する(ステップS217)。 The gNB 3B then transmits RRC Resume to the UE 1 to establish a radio connection and establish a communication connection with the UE 1 (step S217).

その後、UE1とgNB3Bとは、確立した通信接続を用いてユーザデータの伝送を行う(ステップS218)。 After that, UE1 and gNB3B transmit user data using the established communication connection (step S218).

次に、図9及び図10を参照して、TAU時に端末個別セルリスト200を送信する場合の再接続処理の流れを説明する。図9は、UEが使用可能なセキュリティアルゴリズムにTAU(位置登録エリア更新)の送信先のgNBが対応している場合の再接続処理のシーケンス図である。また、図10は、UEが使用可能暗セキュリティアルゴリズムにTAUの送信先のgNBが対応していない場合の再接続処理のシーケンス図である。 Next, with reference to FIGS. 9 and 10, the flow of reconnection processing when transmitting the terminal-specific cell list 200 at TAU will be described. FIG. 9 is a sequence diagram of reconnection processing when a gNB to which a TAU (location registration area update) is transmitted supports a security algorithm that can be used by the UE. Also, FIG. 10 is a sequence diagram of the reconnection process when the gNB to which the TAU is transmitted does not support the dark security algorithm that the UE can use.

まず、図9を参照して、UE1が使用可能なセキュリティアルゴリズムにTAUの送信先のgNB3Aが対応している場合の再接続処理を説明する。gNB3A~3Cは、それぞれのセル情報をAMF2に送信する。そして、AMF2は、gNB3A~3Cの各セル情報を取得する(ステップS301)。 First, with reference to FIG. 9, reconnection processing when the gNB 3A, which is the transmission destination of the TAU, supports a security algorithm that can be used by the UE 1 will be described. gNBs 3A-3C send their respective cell information to AMF2. Then, AMF 2 obtains cell information of gNBs 3A to 3C (step S301).

次に、UE1は、電源オン等によりランダムアクセスが開始され、gNB3A~3C及びAMF2が配置されたネットワークにアタッチされる。その後、所定条件を満たすことで、UE1は、RRC_inactiveの状態に遷移する(ステップS302)。 Next, UE1 starts random access by power-on or the like, and is attached to the network in which gNBs 3A to 3C and AMF 2 are arranged. After that, by satisfying a predetermined condition, the UE 1 transitions to the state of RRC_inactive (step S302).

その後、UE1は、トラッキングエリアを跨ぐ移動を実行する(ステップS303)。 After that, the UE1 moves across the tracking area (step S303).

そして、UE1は、セキュリティアルゴリズムを考慮せずにC-plane信号を送受信するgNB3Aを選択する(ステップS304)。 Then, UE1 selects gNB3A that transmits/receives the C-plane signal without considering the security algorithm (step S304).

次に、UE1は、選択したgNB3Aを介してAMF2へTAUを送信する(ステップS305)。 Next, UE1 transmits TAU to AMF2 via selected gNB3A (step S305).

AMF2は、TAUをUE1から受信する。そして、AMF2は、UE1のトラッキングエリアを更新する。また、AMF2は、UEコンテキストを確認する(ステップS306)。 AMF2 receives the TAU from UE1. AMF2 then updates the tracking area of UE1. Also, the AMF 2 checks the UE context (step S306).

そして、AMF2は、UE1が対応するセキュリティアルゴリズムを基に端末個別セルリスト200を作成する(ステップS307)。 Then, AMF 2 creates terminal-specific cell list 200 based on the security algorithm supported by UE 1 (step S307).

次に、AMF2は、gNB3C及び3Aを介してUE1にトラッキングエリア(位置登録エリア)の更新完了通知であるTracking Area Update Accept及び端末個別セルリスト200を送信する(ステップS308)。 Next, AMF 2 transmits Tracking Area Update Accept, which is a tracking area (location registration area) update completion notification, and terminal-specific cell list 200 to UE 1 via gNB 3C and 3A (step S308).

UE1は、Tracking Area Update Accept及び端末個別セルリスト200をAMF2から受信する。次に、UE1は、参照信号をgNB3A及び3Bから受信する(ステップS309及びS310)。 The UE1 receives the Tracking Area Update Accept and the terminal-specific cell list 200 from the AMF2. UE1 then receives reference signals from gNBs 3A and 3B (steps S309 and S310).

また、UE1は、gNB3A及び3Bから同期信号を受信してgNB3A及び3BのセルIDを特定する。次に、UE1は、端末個別セルリスト200を参照し、特定したセルIDを用いてgNB3A及び3BがUE1が使用可能なセキュリティアルゴリズムに対応する基地局であることを確認する。そして、UE1は、gNB3A及び3Bの参照信号を用いて無線回線品質測定を実行する(ステップS311)。 Also, UE1 receives synchronization signals from gNBs 3A and 3B and identifies the cell IDs of gNBs 3A and 3B. Next, UE1 refers to terminal-specific cell list 200 and uses the specified cell ID to confirm that gNBs 3A and 3B are base stations that support security algorithms that UE1 can use. UE1 then performs radio channel quality measurement using the reference signals of gNBs 3A and 3B (step S311).

次に、UE1は、無線回線品質測定の結果からgNB3Aが形成するセルと接続セルとして選択する(ステップS312)。 Next, the UE1 selects the cell formed by the gNB3A and the connection cell from the result of radio channel quality measurement (step S312).

そして、UE1は、RRCの再接続要求であるRRC Resume RequestをgNB3Aに送信する(ステップS313)。 Then, UE1 transmits RRC Resume Request, which is an RRC reconnection request, to gNB3A (step S313).

gNB3Aは、RRC Resume Requestを受信して、UE1のUEコンテキスト情報の送信要求であるRetrieve UE Context RequestをgNB3Cへ送信する(ステップS314)。 The gNB3A receives the RRC Resume Request and transmits a Retrieve UE Context Request, which is a transmission request for the UE context information of the UE1, to the gNB3C (step S314).

gNB3Cは、Retrieve UE Context Requestを受信して、UE1のコンテキスト情報を送信するRetrieve UE Context ResponseをgNB3Aへ送信する(ステップS315)。 The gNB3C receives the Retrieve UE Context Request and transmits a Retrieve UE Context Response transmitting the context information of the UE1 to the gNB3A (step S315).

gNB3Aは、Retrieve UE Context Responseを受信してUE1のUEコンテキストを取得する。そして、gNB3Aは、UE1のアンカーセル又はサービングセルに自己か形成するセルを設定する(ステップS316)。 gNB3A receives the Retrieve UE Context Response and acquires the UE context of UE1. Then, gNB3A sets the cell to be formed by itself as the anchor cell or serving cell of UE1 (step S316).

そして、gNB3Aは、RRC ResumeをUE1へ送信して、無線接続を確立させて、UE1との間の通信接続を確立する(ステップS317)。 The gNB 3A then transmits RRC Resume to the UE 1, establishes a radio connection, and establishes a communication connection with the UE 1 (step S317).

その後、UE1とgNB3Aとは、確立した通信接続を用いてユーザデータの伝送を行う(ステップS318)。 After that, UE1 and gNB3A transmit user data using the established communication connection (step S318).

次に、図10を参照して、UE1が使用可能なセキュリティアルゴリズムにTAUの送信先のgNB3Aが対応していない場合の再接続処理を説明する。gNB3A~3Cは、それぞれのセル情報をAMF2に送信する。そして、AMF2は、gNB3A~3Cの各セル情報を取得する(ステップS401)。 Next, with reference to FIG. 10, reconnection processing when the gNB 3A as the transmission destination of the TAU does not support a security algorithm that can be used by the UE 1 will be described. gNBs 3A-3C send their respective cell information to AMF2. Then, AMF 2 obtains cell information of gNBs 3A to 3C (step S401).

次に、UE1は、電源オン等によりランダムアクセスが開始され、gNB3A~3C及びAMF2が配置されたネットワークにアタッチされる。その後、所定条件を満たすことで、UE1は、RRC_inactiveの状態に遷移する(ステップS402)。 Next, UE1 starts random access by power-on or the like, and is attached to the network in which gNBs 3A to 3C and AMF 2 are arranged. After that, by satisfying a predetermined condition, the UE 1 transitions to the state of RRC_inactive (step S402).

その後、UE1は、トラッキングエリアを跨ぐ移動(又は異なるトラッキングエリアへの移動)を実行する(ステップS403)。 After that, the UE1 moves across tracking areas (or moves to a different tracking area) (step S403).

そして、UE1は、セキュリティアルゴリズムを考慮せずにC-plane信号を送受信するgNB3Aを選択する(ステップS404)。 Then, UE1 selects gNB3A that transmits/receives the C-plane signal without considering the security algorithm (step S404).

次に、UE1は、選択したgNB3Aを介してAMF2へTAUを送信する(ステップS405)。 Next, UE1 transmits TAU to AMF2 via selected gNB3A (step S405).

AMF2は、TAUをUE1から受信する。そして、AMF2は、UE1のトラッキングエリアを更新する。また、AMF2は、UEコンテキストを確認する(ステップS406)。 AMF2 receives the TAU from UE1. AMF2 then updates the tracking area of UE1. Also, the AMF 2 checks the UE context (step S406).

そして、AMF2は、UE1が対応するセキュリティアルゴリズムを基に端末個別セルリスト200を作成する(ステップS407)。 Then, AMF 2 creates terminal-specific cell list 200 based on the security algorithm supported by UE 1 (step S407).

次に、AMF2は、gNB3C及び3Aを介してUE1にトラッキングエリアの更新完了通知であるTracking Area Update Accept及び端末個別セルリスト200を送信する(ステップS408)。 Next, AMF 2 transmits Tracking Area Update Accept, which is a tracking area update completion notification, and terminal-specific cell list 200 to UE 1 via gNB 3C and 3A (step S408).

次に、UE1は、参照信号をgNB3A及び3Bから受信する(ステップS409及びS410)。 UE1 then receives reference signals from gNBs 3A and 3B (steps S409 and S410).

また、UE1は、gNB3A及び3Bから同期信号を受信してgNB3A及び3BのセルIDを特定する。次に、UE1は、端末個別セルリスト200を参照し、特定したセルIDを用いてgNB3BはUE1が使用可能なセキュリティアルゴリズムに対応する基地局であり、gNB3Aは対応していないことを確認する。そして、UE1は、gNB3Bの参照信号を用いて無線回線品質測定を実行する。この場合、UE1は、gNB3Bの参照信号の無線回線品質測定は行わない(ステップS411)。 Also, UE1 receives synchronization signals from gNBs 3A and 3B and identifies the cell IDs of gNBs 3A and 3B. Next, UE1 refers to terminal-specific cell list 200 and uses the specified cell ID to confirm that gNB3B is a base station that supports security algorithms that UE1 can use, and that gNB3A does not. UE1 then performs radio channel quality measurement using the reference signal of gNB3B. In this case, UE1 does not measure the radio channel quality of the reference signal of gNB3B (step S411).

次に、UE1は、無線回線品質測定の結果からgNB3Bが形成するセルと接続セルとして選択する(ステップS412)。 Next, UE1 selects a cell formed by gNB3B and a connection cell from the result of radio channel quality measurement (step S412).

そして、UE1は、RRCの再接続要求であるRRC Resume RequestをgNB3Bに送信する(ステップS413)。 The UE 1 then transmits an RRC Resume Request, which is an RRC reconnection request, to the gNB 3B (step S413).

gNB3Bは、RRC Resume Requestを受信して、UE1のUEコンテキスト情報の送信要求であるRetrieve UE Context RequestをgNB3Cへ送信する(ステップS414)。 The gNB3B receives the RRC Resume Request and transmits a Retrieve UE Context Request, which is a transmission request for the UE context information of the UE1, to the gNB3C (step S414).

gNB3Cは、Retrieve UE Context Requestを受信して、UE1のコンテキスト情報を送信するRetrieve UE Context ResponseをgNB3Bへ送信する(ステップS415)。 The gNB3C receives the Retrieve UE Context Request and transmits a Retrieve UE Context Response transmitting the context information of the UE1 to the gNB3B (step S415).

gNB3Bは、Retrieve UE Context Responseを受信してUE1のUEコンテキストを取得する。そして、gNB3Bは、自身が形成するセルをUE1のアンカーセル又はサービングセルに設定する(ステップS416)。 gNB3B receives the Retrieve UE Context Response and acquires the UE context of UE1. Then, gNB3B sets the cell it forms as the anchor cell or serving cell of UE1 (step S416).

そして、gNB3Bは、RRC ResumeをUE1へ送信して、無線接続を確立させて、UE1との間の通信接続を確立する(ステップS417)。 The gNB 3B then transmits RRC Resume to the UE 1, establishes a radio connection, and establishes a communication connection with the UE 1 (step S417).

その後、UE1とgNB3Bとは、確立した通信接続を用いてユーザデータの伝送を行う(ステップS418)。 After that, UE1 and gNB3B transmit user data using the established communication connection (step S418).

ここで、図11を参照して、ネットワークの構築からUE1がRRC_inactiveになるまでの処理を詳細に説明する。図11は、ネットワークの構築からUEがRRC_inactiveになるまでの処理のシーケンス図である。 Here, with reference to FIG. 11, the process from network construction to UE1 becoming RRC_inactive will be described in detail. FIG. 11 is a sequence diagram of processing from network construction to UE becoming RRC_inactive.

AMF2は、セル情報の通知要求であるCall Information RequestをgNB3A~3Cへ送信する(ステップS501)。ここで、Call Information Requestには、gNB3A~3Cのそれぞれが使用可能なセキュリティアルゴリズムの通知要求も含まれる。 AMF 2 transmits a Call Information Request, which is a notification request for cell information, to gNBs 3A-3C (step S501). Here, the Call Information Request also includes a notification request for security algorithms that can be used by each of the gNBs 3A to 3C.

そして、gNB3A~3Cは、各々が使用可能なセキュリティアルゴリズムの情報を含むセル情報をAMF2へ送信する(ステップS502)。 The gNBs 3A to 3C then transmit cell information including information on security algorithms that can be used by each to the AMF 2 (step S502).

次に、AMF2は、パターン毎の端末個別セルリスト200を作成する(ステップS503)。 Next, the AMF 2 creates a terminal-specific cell list 200 for each pattern (step S503).

次に、UE1は、gNB3A~3Cに対してランダムアクセスを実行する。そして、UE1は、UEコンテキストを送信してgNB3A~3CにUE1のUEコンテキストを設定する(ステップS504)。 UE1 then performs random access to gNBs 3A-3C. UE1 then transmits the UE context and sets the UE context of UE1 in gNBs 3A-3C (step S504).

次に、UE1は、UE1のセキュリティアルゴリズムを含むUE性能情報をAMF2へ送信する(ステップS505)。 Next, UE1 transmits UE performance information including the security algorithm of UE1 to AMF2 (step S505).

その後、UE1は、位置登録周期にしたがった位置登録タイミングが到来するとTAU又は位置情報をAMFへ送信する(ステップS506)。 After that, when the location registration timing according to the location registration period arrives, the UE1 transmits the TAU or the location information to the AMF (step S506).

gNB3Cは、ページング通知をPaging occationによりUE1へ送信する(ステップS507)。 gNB3C transmits a paging notification to UE1 by Paging occasion (step S507).

その後、AMF2は、UE1のUE性能情報を基に各UEASコンテキスト情報を生成する。そして、セキュリティ管理部26は、gNB3A~3Bの内の接続する基地局へASコンテキスト情報を送信して、ASコンテキストの設定を行う(ステップS508)。 After that, AMF2 generates each UEAS context information based on the UE performance information of UE1. The security management unit 26 then transmits the AS context information to the connected base station among the gNBs 3A to 3B to set the AS context (step S508).

UE1は、RRC_connectedへ移行する(ステップS509)。 UE1 transitions to RRC_connected (step S509).

その後、UE1とgNB3A~3Bの内の接続する基地局とは、特定の条件が満たされると、無線回線開放及びUEコンテキストの解放を行う(ステップS510)。 After that, UE1 and the base station to be connected among gNB3A-3B perform radio channel release and UE context release when a specific condition is satisfied (step S510).

そして、UE1は、RRC_inactiveへ遷移する(ステップS511)。 Then, UE1 transitions to RRC_inactive (step S511).

次に、AMF2のハードウェア構成について説明する。図12は、AMFのハードウェア構成図である。図12に示すように、AMF2は、CPU(Central Processing Unit)291、メモリ292、ハードディスク293及び通信インタフェース294を有する。CPU291は、メモリ292、ハードディスク293及び通信インタフェース294とバスで接続される。CPU291は、バスを介して、メモリ292、ハードディスク293及び通信インタフェース294と通信を行う。 Next, the hardware configuration of AMF2 will be described. FIG. 12 is a hardware configuration diagram of AMF. As shown in FIG. 12 , the AMF 2 has a CPU (Central Processing Unit) 291 , memory 292 , hard disk 293 and communication interface 294 . The CPU 291 is connected to a memory 292, a hard disk 293 and a communication interface 294 via a bus. CPU 291 communicates with memory 292, hard disk 293 and communication interface 294 via a bus.

通信インタフェース294は、通信制御部21とgNB3との間の通信におけるインタフェースである。 The communication interface 294 is an interface for communication between the communication control unit 21 and the gNB3.

ハードディスク293は、図5に例示した通信制御部21、モビリティ制御部22、パス制御部23、基地局管理部24、セルリスト管理部25及びセキュリティ管理部26の機能を実現するプログラムを含む各種プログラムを格納する。 The hard disk 293 stores various programs including programs for realizing the functions of the communication control unit 21, the mobility control unit 22, the path control unit 23, the base station control unit 24, the cell list control unit 25, and the security control unit 26 illustrated in FIG. to store

CPU291は、ハードディスク293から各種プログラムを読み出し、メモリ292へ展開して実行することで、通信制御部21、モビリティ制御部22、パス制御部23、基地局管理部24、セルリスト管理部25及びセキュリティ管理部26の機能を実現する。 The CPU 291 reads out various programs from the hard disk 293, develops them in the memory 292, and executes them, thereby controlling the communication control unit 21, the mobility control unit 22, the path control unit 23, the base station management unit 24, the cell list management unit 25, and the security program. It implements the functions of the management unit 26 .

ここで、以上の説明では、UE1は、TAUを行った際に端末個別セルリスト200をAMF2から取得する場合で説明したが、この端末個別セルリスト200の取得タイミングは他のタイミングでもよい。例えば、UE1がRAUを行う際に端末個別セルリスト200をAMF2から取得する構成でもよい。RAUのタイミングで端末個別セルリスト200を取得する場合であっても、取得のタイミングが異なるだけで、UE1、gNB3及びAMF2は上述した各処理と同様の処理を行う。 Here, in the above description, the case where UE 1 acquires terminal-specific cell list 200 from AMF 2 when performing TAU has been described, but this terminal-individual cell list 200 may be acquired at another timing. For example, the configuration may be such that the terminal-specific cell list 200 is acquired from the AMF 2 when the UE 1 performs RAU. Even when the terminal-specific cell list 200 is acquired at the timing of RAU, the UE1, gNB3 and AMF2 perform the same processing as the above-described processes only with different acquisition timings.

以上に説明したように、本実施例に係るUEは、接続可能なgNBが使用可能なセキュリティアルゴリズムを判定する情報を取得する。そして、UEは、RRC_inactiveの状態でgNBへ再接続を行う際に、使用可能なセキュリティアルゴリズムが自装置と一致するgNBの中から選択したgNBと接続を確立する。これにより、RRC_inactiveの状態からの再接続時にセキュリティアルゴリズムの不一致による接続の失敗を回避してRLFの発生を低減することができる。したがって、RLFの発生までの時間及びRLFの発生からgNB再選択までの時間分の通信断の発生を低減でき、伝送速度を向上させることができる。また、RRC_inactiveを利用する利点を十分に生かすことが可能となる。 As described above, the UE according to this embodiment acquires information for determining the security algorithms available to the gNBs to which it can connect. Then, when the UE reconnects to the gNB in the RRC_inactive state, the UE establishes a connection with a gNB selected from gNBs whose available security algorithms match those of the UE itself. As a result, it is possible to avoid connection failure due to security algorithm mismatch at the time of reconnection from the RRC_inactive state, and reduce the occurrence of RLF. Therefore, it is possible to reduce the occurrence of communication interruptions for the time until the occurrence of RLF and the time from the occurrence of RLF to gNB reselection, and improve the transmission speed. In addition, it is possible to make full use of the advantage of using RRC_inactive.

次に、実施例2について説明する。本実施例に係るUE1、gNB3及びAMF2も、それぞれ図2,4及び5で表される。本実施例に係るUE1は、所定の場合にAMF2からの端末個別セルリスト200の送信を停止させることが実施例1と異なる。以下の説明では、実施例1と同様の各部の動作については説明を省略する。 Next, Example 2 will be described. UE1, gNB3 and AMF2 according to this embodiment are also represented in FIGS. 2, 4 and 5, respectively. The UE 1 according to this embodiment differs from the first embodiment in that the transmission of the terminal-specific cell list 200 from the AMF 2 is stopped in a predetermined case. In the following description, the description of the operation of each unit similar to that of the first embodiment will be omitted.

UE1のセキュリティ制御部121は、提供を受けるサービスの変更などにより使用するセキュリティアルゴリズムを変更する場合、セキュリティ情報管理部112から使用するセキュリティアルゴリズムの情報を取得する。そして、セキュリティ制御部121は、使用するセキュリティアルゴリズムを変更する場合、gNB3介してセルリスト送信停止要求をAMF2に送信する。 The security control unit 121 of the UE 1 acquires information on the security algorithm to be used from the security information management unit 112 when changing the security algorithm to be used due to a change in the service provided. Then, when changing the security algorithm to be used, the security control unit 121 transmits a cell list transmission stop request to the AMF 2 via the gNB 3 .

AMF2のセルリスト管理部25は、UE1からセルリスト送信停止要求を受信する。その後、セルリスト管理部25は、TAU時の端末個別セルリスト200のUE1への送信を停止する。 The cell list management unit 25 of AMF2 receives the cell list transmission stop request from UE1. After that, the cell list management unit 25 stops transmitting the terminal-specific cell list 200 to the UE1 at the time of TAU.

図13は、実施例2に係る無線通信システムにおけるセルリスト送信停止処理のフローチャートである。 FIG. 13 is a flowchart of cell list transmission stop processing in the wireless communication system according to the second embodiment.

UE1は、利用者からの指示などにより利用サービスを変更する(ステップS601)。 The UE 1 changes the service to be used according to an instruction from the user (step S601).

次に、UE1は、使用するセキュリティアルゴリズムを変更する(ステップS602)。 Next, UE1 changes the security algorithm to be used (step S602).

次に、UE1は、セルリスト送信停止要求をgNB3を介して、AMF2へ送信する(ステップS603)。 Next, UE1 transmits a cell list transmission stop request to AMF2 via gNB3 (step S603).

AMF2は、セルリスト送信停止要求を受信する。そして、AMF2は、セルリスト送信停止要求の受信応答であるACKをUE1へ送信する(ステップS604)。この後、AMF2は、端末個別セルリスト200のUE1への送信を停止する。 AMF2 receives the cell list transmission stop request. AMF 2 then transmits ACK, which is a reception response to the cell list transmission stop request, to UE 1 (step S604). After this, AMF 2 stops transmitting terminal-specific cell list 200 to UE 1 .

以上に説明したように、本実施例に係るUEは、利用するサービスが変更された場合に、個別端末セルリストの受信を停止する。これにより、不要な通信を減らすことができるとともに、不一致となるセキュリティアルゴリズムの確認処理を省くことができ、伝送速度を向上させることができる。 As explained above, the UE according to the present embodiment stops receiving the individual terminal cell list when the service to be used is changed. As a result, it is possible to reduce unnecessary communications, and it is possible to omit the confirmation process of the security algorithm that causes a mismatch, so that the transmission speed can be improved.

(変形例)
さらに、以上の各実施例では端末個別セルリスト200に、UE1が使用可能なセキュリティアルゴリズムに対応するgNB3の識別情報が登録されたが、これ以外にも他の情報が端末個別セルリスト200に登録されてもよい。例えば、UE1側からの要求で端末個別セルリスト200に登録される情報がカスタマイズされてもよい。
(Modification)
Furthermore, in each of the above embodiments, identification information of gNB3 corresponding to a security algorithm that can be used by UE1 is registered in the terminal-specific cell list 200, but in addition to this, other information is registered in the terminal-specific cell list 200. may be For example, information registered in the terminal-specific cell list 200 may be customized upon request from the UE1 side.

例えば、UE1のセキュリティ制御部121が、利用者からの指示を受けて、端末個別セルリスト200に追加登録させる情報をAMF2に通知する。 For example, the security control unit 121 of the UE 1 receives an instruction from the user and notifies the AMF 2 of information to be additionally registered in the terminal-specific cell list 200 .

AMF2のセルリスト管理部25は、UE1から送信された端末個別セルリスト200に追加登録させる情報を取得する。そして、セルリスト管理部25は、端末個別セルリスト200の作成の際に指定された情報をUE1が使用可能なセキュリティアルゴリズムに対応するgNB3の識別情報に加えて登録する。 The cell list management unit 25 of the AMF 2 acquires information to be additionally registered in the terminal-specific cell list 200 transmitted from the UE1. Then, the cell list management unit 25 registers the information specified when the terminal-specific cell list 200 is created in addition to the identification information of the gNB 3 corresponding to the security algorithms that the UE 1 can use.

図14は、端末個別セルリストに登録される情報のカスタマイズ処理の一例のフローチャートである。ここでは、対応するセキュリティアルゴリズムの情報を追加登録する場合を例に説明する。 FIG. 14 is a flowchart of an example of customization processing for information registered in the terminal-specific cell list. Here, a case of additionally registering information on a corresponding security algorithm will be described as an example.

UE1は、セキュリティアルゴリズムの情報を追加するセルリストのカスタマイズ要求をgNB3を介してAMF2へ送信する(ステップS611)。 UE1 transmits a cell list customization request for adding security algorithm information to AMF2 via gNB3 (step S611).

AMF2は、セルリストのカスタマイズ要求を受信する。そして、AMF2は、セルリストのカスタマイズ要求の受信応答であるACKをUE1へ送信する(ステップS612)。この簿、AMF2は、gNB3の識別情報に加えて各gNB3が対応するセキュリティアルゴリズムの情報を端末個別セルリスト200に登録してUE1へ送信する。 AMF2 receives the cell list customization request. The AMF 2 then transmits ACK, which is a reception response to the cell list customization request, to the UE 1 (step S612). In addition to the identification information of gNB3, AMF2 registers the information of the security algorithm which each gNB3 corresponds to the terminal individual cell list 200, and transmits it to UE1.

1 UE
2 AMF
3 gNB
4 SMF
5 UPF
11 RRC処理部
12 PDCP処理部
13 RLC処理部
14 MAC処理部
15 PHY処理部
16 通信制御部
21 通信制御部
22 モビリティ制御部
23 パス制御部
24 基地局管理部
25 セルリスト管理部
26 セキュリティ管理部
31 RRC処理部
32 PDCP処理部
33 RLC処理部
34 MAC処理部
35 PHY処理部
36 通信制御部
111 セル選択制御部
112 セキュリティ情報管理部
121 セキュリティ制御部
100 無線通信システム
200~203 端末個別セルリスト
311 セキュリティ情報管理部
321 セキュリティ制御部
1 UE
2 AMF
3 gNBs
4 SMFs
5 UPF
11 RRC processing unit 12 PDCP processing unit 13 RLC processing unit 14 MAC processing unit 15 PHY processing unit 16 Communication control unit 21 Communication control unit 22 Mobility control unit 23 Path control unit 24 Base station management unit 25 Cell list management unit 26 Security management unit 31 RRC processing unit 32 PDCP processing unit 33 RLC processing unit 34 MAC processing unit 35 PHY processing unit 36 Communication control unit 111 Cell selection control unit 112 Security information management unit 121 Security control unit 100 Wireless communication system 200 to 203 Terminal-specific cell list 311 Security information management unit 321 Security control unit

Claims (7)

複数の基地局のそれぞれが有するセル毎のセキュリティに関する情報が登録された端末個別セルリストAMF(Access and Mobility Management Function)から受信する受信部と、
前記端末個別セルリストを基に前記基地局から接続する基地局を選択する選択部と、
選択した前記基地局に対して無線接続を再開するための第2の情報を送信する無線接続管理部と
を備えたことを特徴とする端末装置。
a receiving unit that receives from an AMF (Access and Mobility Management Function) a terminal-specific cell list in which information about security for each cell possessed by each of a plurality of base stations is registered ;
a selection unit that selects a base station to be connected from the base station based on the terminal-specific cell list ;
and a wireless connection manager that transmits second information for resuming wireless connection to the selected base station.
前記端末個別セルリストは、前記端末装置が対応可能なセキュリティアルゴリズムに対応可能な基地局を選択するための情報であることを特徴とする請求項1に記載の端末装置。 2. The terminal device according to claim 1, wherein the terminal-specific cell list is information for selecting a base station compatible with a security algorithm compatible with the terminal device. 前記受信部は、着信時に前記端末個別セルリストを前記AMFから受信することを特徴とする請求項1に記載の端末装置。 2. The terminal device according to claim 1, wherein the receiving unit receives the terminal-specific cell list from the AMF when receiving an incoming call. 前記無線接続管理部は、位置登録情報の更新を前記AMFへ要求し、
前記受信部は、前記無線接続管理部による位置登録情報の更新の要求への応答として前記端末個別セルリストを受信することを特徴とする請求項1に記載の端末装置。
The wireless connection management unit requests the AMF to update the location registration information,
2. The terminal apparatus according to claim 1, wherein said receiving unit receives said terminal-specific cell list as a response to a request for update of location registration information by said wireless connection managing unit.
端末装置から前記端末装置のセキュリティ情報を受信する情報受信部と、
前記セキュリティ情報に含まれるセキュリティアルゴリズムに対応可能なセルを有する基地局を示す端末個別セルリストを生成し、生成した前記端末個別セルリストを前記端末装置へ送信する情報管理部と
を備えたことを特徴とする無線通信装置。
an information receiving unit that receives security information of the terminal device from the terminal device;
an information management unit that generates a terminal-individual cell list indicating base stations having cells compatible with the security algorithm included in the security information, and transmits the generated terminal- individual cell list to the terminal device; A wireless communication device characterized by:
端末装置、AMF及び複数の基地局を有する無線通信システムであって、
前記端末装置は、
前記端末装置のセキュリティ情報に含まれるセキュリティアルゴリズムに対応可能なセルを有する前記基地局を示す端末個別セルリストを前記AMFから受信する受信部と、
前記端末個別セルリストを基に前記基地局の中から接続する基地局を選択する選択部と、
選択した前記基地局に対して無線接続を再開するための第2の情報を送信する無線接続管理部とを備え、
前記AMFは、
前記端末装置のセキュリティ情報を受信し、前記端末個別セルリストを生成し、生成した前記端末個別セルリストを前記端末装置へ送信する情報管理部とを備え、
前記基地局は、
前記第2の情報を前記端末装置から受信し、前記端末装置との接続を確立する接続制御部を備えた
ことを特徴とする無線通信システム。
A wireless communication system comprising a terminal device, an AMF and a plurality of base stations,
The terminal device
a receiving unit that receives from the AMF a terminal-specific cell list indicating the base station that has cells that can support a security algorithm included in the security information of the terminal device;
a selection unit that selects a base station to be connected from among the base stations based on the terminal-specific cell list ;
a wireless connection management unit that transmits second information for resuming wireless connection to the selected base station;
The AMF is
an information management unit that receives security information of the terminal device, generates the terminal-specific cell list, and transmits the generated terminal-specific cell list to the terminal device;
The base station
A wireless communication system comprising a connection control unit that receives the second information from the terminal device and establishes a connection with the terminal device.
端末装置、AMF及び複数の基地局における無線通信方法であって、
前記端末装置に、前記端末装置のセキュリティ情報を前記AMFに対して送信させ、
前記AMFに、前記端末装置から取得した前記端末装置のセキュリティ情報に含まれるセキュリティアルゴリズムに対応可能なセルを有する前記基地局を示す端末個別セルリストを生成させ、前記端末装置に対して送信させ、
前記端末装置に、前記AMFから通信された前記端末個別セルリストを受信させ、前記端末個別セルリストを基に前記基地局から接続する接続基地局を選択させ、前記接続基地局に対して無線接続を再開するための第2の情報を送信させ、
前記接続基地局に、前記第2の情報を取得させ、前記端末装置のセキュリティ情報に応じて前記端末装置との接続を確立させる
ことを特徴とする無線通信方法。
A wireless communication method in a terminal device, an AMF and a plurality of base stations, comprising:
causing the terminal device to transmit security information of the terminal device to the AMF ;
causing the AMF to generate a terminal-specific cell list indicating the base stations having cells compatible with the security algorithm included in the security information of the terminal device acquired from the terminal device, and to transmit the list to the terminal device;
causing the terminal device to receive the terminal-individual cell list communicated from the AMF , select a connecting base station to be connected from the base station based on the terminal- individual cell list , and wirelessly connect to the connecting base station. cause the second information to be sent to resume the
A wireless communication method, comprising causing the connecting base station to acquire the second information and establishing a connection with the terminal device according to security information of the terminal device.
JP2020559620A 2018-12-12 2018-12-12 Terminal device, wireless communication device, wireless communication system and wireless communication method Active JP7160114B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/045771 WO2020121455A1 (en) 2018-12-12 2018-12-12 Terminal device, wireless communication device, wireless communication system, and wireless communication method

Publications (2)

Publication Number Publication Date
JPWO2020121455A1 JPWO2020121455A1 (en) 2021-09-27
JP7160114B2 true JP7160114B2 (en) 2022-10-25

Family

ID=71076041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020559620A Active JP7160114B2 (en) 2018-12-12 2018-12-12 Terminal device, wireless communication device, wireless communication system and wireless communication method

Country Status (2)

Country Link
JP (1) JP7160114B2 (en)
WO (1) WO2020121455A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090007246A1 (en) 2007-06-28 2009-01-01 Motorola, Inc. Security based network access selection
JP2018504834A (en) 2014-12-31 2018-02-15 華為技術有限公司Huawei Technologies Co.,Ltd. Wireless communication method, apparatus, and system
WO2018110274A1 (en) 2016-12-16 2018-06-21 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Terminal and communication method
WO2018128021A1 (en) 2017-01-05 2018-07-12 日本電気株式会社 Wireless terminal, base station, methods therefor, and non-temporary computer-readable medium
WO2020082247A1 (en) 2018-10-23 2020-04-30 Oppo广东移动通信有限公司 Processing method for security algorithm, device and terminal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090007246A1 (en) 2007-06-28 2009-01-01 Motorola, Inc. Security based network access selection
JP2018504834A (en) 2014-12-31 2018-02-15 華為技術有限公司Huawei Technologies Co.,Ltd. Wireless communication method, apparatus, and system
WO2018110274A1 (en) 2016-12-16 2018-06-21 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Terminal and communication method
WO2018128021A1 (en) 2017-01-05 2018-07-12 日本電気株式会社 Wireless terminal, base station, methods therefor, and non-temporary computer-readable medium
WO2020082247A1 (en) 2018-10-23 2020-04-30 Oppo广东移动通信有限公司 Processing method for security algorithm, device and terminal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3GPP TR 33.860 V13.1.0,2016年06月,pages 14-16

Also Published As

Publication number Publication date
JPWO2020121455A1 (en) 2021-09-27
WO2020121455A1 (en) 2020-06-18

Similar Documents

Publication Publication Date Title
JP5787971B2 (en) Method for updating UE capability information in a mobile telecommunications network
US11658817B2 (en) Security key usage across handover that keeps the same wireless termination
CN105557006B (en) User equipment in communication system and method for communication by same
US8787317B2 (en) Wireless handover optimization
KR101078615B1 (en) Encryption in a wireless telecommunications
US20080285538A1 (en) Communication system, user device therof and synchronization method thereof
JP6147848B2 (en) Communication control method and processor
JP2016220225A (en) Base station, user terminal, and processor
JP2019135859A (en) Base station and user terminal
JP6283359B2 (en) Mobile communication system and user terminal
JP2019510432A (en) Communication method, network side device, and user terminal
EP3346761B1 (en) Device and method for handling a packet flow in inter-system mobility
WO2014023269A1 (en) Switching control method and apparatus
CN109804707A (en) For providing multiple internuncial technologies of radio access network to terminal installation
CN101540981A (en) Method and system for performing safety ability negotiation during emergent call
CN113841443B (en) Data transmission method and device
US20210360471A1 (en) Schemes and methods of integrity protection in mobile communication
JP4980251B2 (en) COMMUNICATION SYSTEM, USER DEVICE THEREOF, AND SYNCING METHOD THEREOF
JP7160114B2 (en) Terminal device, wireless communication device, wireless communication system and wireless communication method
WO2022151086A1 (en) Integrated access and backhaul communication method and apparatus
JPWO2014034389A1 (en) Mobile communication system, user terminal, and communication control method
CN113557699A (en) Communication device, infrastructure equipment, core network equipment and method
WO2014111049A1 (en) Cell optimization method and device
CN109792602B (en) Method, device and system for supporting data transmission
EP4211912A1 (en) Source and target network nodes and methods therein for preventing agents from illegitimately identifying the source network node when resuming a wireless terminal in a target network node in a wireless communications network

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220926

R150 Certificate of patent or registration of utility model

Ref document number: 7160114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150