JP7159123B2 - Remote work support device and remote work system - Google Patents

Remote work support device and remote work system Download PDF

Info

Publication number
JP7159123B2
JP7159123B2 JP2019125017A JP2019125017A JP7159123B2 JP 7159123 B2 JP7159123 B2 JP 7159123B2 JP 2019125017 A JP2019125017 A JP 2019125017A JP 2019125017 A JP2019125017 A JP 2019125017A JP 7159123 B2 JP7159123 B2 JP 7159123B2
Authority
JP
Japan
Prior art keywords
fluid
pipe
remote
remote work
support device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019125017A
Other languages
Japanese (ja)
Other versions
JP2021012050A (en
Inventor
秀行 一藁
孝明 小西
隆浩 長井
亮介 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2019125017A priority Critical patent/JP7159123B2/en
Publication of JP2021012050A publication Critical patent/JP2021012050A/en
Application granted granted Critical
Publication of JP7159123B2 publication Critical patent/JP7159123B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

本発明は、遠隔作業装置の移動を支援する遠隔作業支援装置及び遠隔作業システムに関する。 The present invention relates to a remote work support device and a remote work system that assist movement of a remote work device.

原子力発電所では、原子炉圧力容器内や炉内構造物の、点検、保守、補修作業などを
放射線環境下で実施しなければならない。放射線環境下でのこれらの作業は、作業員の放射線被ばくを伴い、作業員の健康を防護するため、被ばく線量を低減する必要がある。
作業員の被ばく線量を低減するためには、耐放射線性を有するロボットなどの遠隔作業装置を用いて、作業員が放射線環境下に立ち入らずに、点検作業や補修作業などを遠隔で行っている。一般に電子機器は放射線環境下では短時間で故障してしまうため、放射線環境下で動作する装置には、電子機器の搭載をなるべく避ける必要がある。そのため、遠隔作業装置には電子機器である無線通信機器やセンサを搭載せず、有線の遠隔作業装置としてセンサや制御装置などを作業環境から遠隔に配置している。
In a nuclear power plant, inspection, maintenance, repair work, etc. of the reactor pressure vessel and internal structures must be carried out in a radiation environment. These operations in a radiation environment involve radiation exposure of workers, and in order to protect the health of workers, it is necessary to reduce the exposure dose.
In order to reduce the radiation exposure dose of workers, remote working devices such as radiation-resistant robots are used to perform inspection and repair work remotely without the workers entering the radiation environment. . In general, electronic devices fail in a short period of time in a radiation environment, so it is necessary to avoid installing electronic devices in devices operating in a radiation environment as much as possible. For this reason, the remote working device is not equipped with a wireless communication device or a sensor, which is an electronic device, and a sensor, a control device, and the like are placed remotely from the working environment as a wired remote working device.

図10に放射線環境下での一般的な遠隔作業の俯瞰図を示す。有線の遠隔作業装置には、遠隔作業装置に電源を供給するケーブル、装置の制御などに用いられるケーブル、装置の駆動源として用いられる流体配管などが接続されている。そのため、遠隔作業装置が移動する場合、これらのケーブルおよび配管などの線状部材の移動が必要である。現行では、遠隔作業装置が線状部材を牽引しながら移動している。このとき、線状部材はその自重や接地面との摩擦によって負荷となるため、遠隔作業装置に大きな牽引力が必要とされる。大きな牽引力を遠隔作業装置に持たせるために、装置が大きく、重くなることで移動が阻害されてしまう。また、線状部材を移動させるときに、線状部材が捻れてしまい、遠隔作業装置の移動が阻害されてしまうこともある。このような場合に、線状部材自体を駆動させ遠隔作業装置の移動を支援する方法として、流体を噴射し、反力を利用した移動式流体噴射装置が特許文献1に記載されている。 FIG. 10 shows a bird's-eye view of general remote work in a radiation environment. A cable for supplying power to the remote working device, a cable for controlling the device, a fluid pipe for driving the device, and the like are connected to the wired remote working device. Therefore, when the remote work device moves, it is necessary to move these linear members such as cables and pipes. Currently, a remote working device moves while pulling a linear member. At this time, since the linear member becomes a load due to its own weight and friction with the ground surface, a large traction force is required for the remote working device. In order to provide a remote work device with a large traction force, the device becomes large and heavy, which hinders movement. Further, when moving the linear member, the linear member may be twisted, which may hinder the movement of the remote working device. In such a case, Japanese Patent Laid-Open No. 2002-100000 discloses a mobile fluid ejection device that ejects a fluid and utilizes a reaction force as a method of driving the linear member itself and assisting the movement of the remote work device.

特開2017-164069号公報JP 2017-164069 A

しかしながら、特許文献1では、捻れなく線状部材を駆動させるために、流体噴射時の噴射口部の圧力を制御する必要がある。従って、線状部材にセンサやアクチュエータが必要となり、放射線環境下での使用が困難となる虞がある。 However, in Patent Document 1, in order to drive the linear member without twisting, it is necessary to control the pressure at the ejection port during ejection of the fluid. Therefore, the linear member requires sensors and actuators, which may make it difficult to use in a radiation environment.

そこで、本発明は、線状部材にセンサを搭載せず、圧力制御不要で捻れを防ぎつつ、放射線環境下で使用可能な遠隔作業支援装置及び遠隔作業システムを提供する。 Therefore, the present invention provides a remote work support device and a remote work system that can be used in a radiation environment without mounting a sensor on a linear member, without requiring pressure control, and preventing twisting.

上記課題を解決するため、本発明に係る遠隔作業支援装置は、遠隔作業装置の遠隔作業支援装置であって、前記遠隔作業装置及び遠隔作業装置を制御する制御機器に接続され、前記遠隔作業装置に駆動力及び制御信号を与える線状部材と、流体機器に接続された流体配管とを内部に備える可撓性の配管を有し、前記配管は接地面側が面形状であって、前記流体配管及び配管は接地面に対し流体を噴射可能な流体噴射口を有し、接地面に対して流体を噴射することを特徴とする。 In order to solve the above-described problems, a remote work support device according to the present invention is a remote work support device for a remote work device, which is connected to the remote work device and a control device for controlling the remote work device. and a flexible pipe internally provided with a fluid pipe connected to a fluid device, the pipe having a surface shape on the ground surface side, and the pipe has a fluid injection port capable of injecting fluid onto the ground surface, and the fluid is injected onto the ground surface.

また、本発明に係る遠隔作業システムは、少なくともマニピュレータ及び移動機構を備える遠隔作業装置と、前記遠隔作業装置及び遠隔作業装置を制御する制御機器に接続され、前記遠隔作業装置に駆動力及び制御信号を与える線状部材と、流体機器に接続された流体配管とを内部に備える可撓性の配管を有し、前記配管は接地面側が面形状であって、前記流体配管及び配管は接地面に対し流体を噴射可能な流体噴射口を有し、接地面に対して流体を噴射する遠隔作業支援装置と、を有することを特徴とする。 Further, a remote work system according to the present invention is connected to a remote work device having at least a manipulator and a moving mechanism, and a control device for controlling the remote work device and the remote work device, and provides a driving force and a control signal to the remote work device. and a fluid pipe connected to a fluid device. and a remote work support device that has a fluid injection port capable of injecting a fluid to the ground surface and that injects the fluid onto the ground surface.

本発明によれば、線状部材にセンサを搭載せず、圧力制御不要で捻れを防ぎつつ、放射線環境下で使用可能な遠隔作業支援装置及び遠隔作業システムを提供することが可能となる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, it is possible to provide a remote work support device and a remote work system that can be used in a radiation environment without mounting a sensor on a linear member, without requiring pressure control, and preventing twisting.
Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.

本発明の一実施例に係る遠隔作業システムの概略構成図である。1 is a schematic configuration diagram of a remote work system according to an embodiment of the present invention; FIG. 図1に示す配管の断面図及び接地面側を示す図である。It is a figure which shows sectional drawing of piping shown in FIG. 1, and a ground plane side. 流体噴射口の大きさを変更した場合の配管の接地面側を示す図である。It is a figure which shows the ground surface side of piping when the size of a fluid ejection port is changed. 流体噴射により配管が回転しているときの配管の断面図である。FIG. 4 is a cross-sectional view of the pipe when the pipe is rotated by fluid injection; クッションを有する配管の断面図及び接地面側を示す図である。It is a figure which shows sectional drawing of piping which has a cushion, and a ground plane side. 本実施例に係る配管を未適用時及び適用時の動摩擦力を比較した図である。It is the figure which compared the dynamic friction force at the time of not applying the piping which concerns on a present Example, and the time of application. 本発明の他の実施例に係る遠隔作業システムの概略構成図である。FIG. 5 is a schematic configuration diagram of a remote work system according to another embodiment of the present invention; 図7に示す配管の断面図である。FIG. 8 is a cross-sectional view of the piping shown in FIG. 7; 遠隔作業装置が曲がる際、壁面角部に配管が拘束される例、及び、流体噴射により拘束解除する例の俯瞰図である。FIG. 10 is a bird's-eye view of an example in which a pipe is constrained by a corner of a wall surface when the remote work device is bent, and an example in which the constraint is released by jetting fluid. 放射線環境下での一般的な遠隔作業の俯瞰図である。1 is a bird's-eye view of general remote work in a radiation environment;

以下、図面を用いて本発明の実施例について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施例に係る遠隔作業システムの概略構成図である。図1に示すように、遠隔作業システム100は、遠隔作業装置1及び遠隔作業支援装置2より構成される。 FIG. 1 is a schematic configuration diagram of a remote work system according to one embodiment of the present invention. As shown in FIG. 1, a remote work system 100 is composed of a remote work device 1 and a remote work support device 2 .

遠隔作業装置1は、物体のハンドリングが可能なマニピュレータ3、クローラなどの移動機構4、制御機器5、制御機器5とマニピュレータ3や移動機構4とを接続するケーブル6より構成される。ここで、ケーブル6は油圧配管等の他の線状部材に置き換えても良い。遠隔作業装置1は、制御機器5に入力されたマニピュレータ3や移動機構4の操作指令を、ケーブル6を通して伝達することによって、遠隔での移動や、物体切断などの作業を行うものである。ここで、遠隔作業装置1の構成は問わず、カメラを有し遠隔での環境調査などに用いるものとしても良い。 The remote work device 1 includes a manipulator 3 capable of handling an object, a moving mechanism 4 such as a crawler, a control device 5 , and a cable 6 connecting the control device 5 to the manipulator 3 and the moving mechanism 4 . Here, the cables 6 may be replaced with other linear members such as hydraulic piping. The remote working device 1 performs operations such as remote movement and cutting of objects by transmitting operation commands for the manipulator 3 and the moving mechanism 4 input to the control device 5 through the cable 6 . Here, regardless of the configuration of the remote working device 1, the device may have a camera and be used for remote environmental investigation.

遠隔作業支援装置2は、流体を配管10に流すためのポンプなどの流体機器7、流体配管8を流れる流体を接地面に対して噴射可能な流体噴射口9、流体機器7と接続された流体配管8及びケーブル6を内部に備える配管10より構成される。遠隔作業支援装置2は、接地面に対して流体噴射口9から流体噴射し、遠隔作業装置1の移動時に配管10が受ける垂直抗力及び摩擦力を低減することで、遠隔作業装置1の移動を支援するものである。 The remote work support device 2 includes a fluid device 7 such as a pump for causing fluid to flow through the pipe 10, a fluid injection port 9 capable of injecting the fluid flowing through the fluid pipe 8 onto a ground surface, and a fluid connected to the fluid device 7. It is composed of a pipe 8 and a pipe 10 having a cable 6 therein. The remote work support device 2 ejects the fluid from the fluid ejection port 9 onto the ground surface to reduce the normal force and frictional force applied to the pipe 10 when the remote work device 1 moves, thereby reducing the movement of the remote work device 1. It supports.

図2に図1に示す配管10の断面図及び配管10の接地面側を示す。図2の右図に示すように、流体噴射口9は、流体配管8に沿って複数備えられている。流体噴射口9の個数及び配置は図2の右図に限らず、不規則に並んでいても良い。また、流体配管8において、配管長が長くなるにつれて圧力損失が大きくなる。そのため、流体機器7から遠い噴射口9での圧力は、流体機器7に近い流体噴射口9での圧力に比べ小さくなってしまう。そこで、図3に示すように流体機器7からの距離に応じて、流体噴射口9の大きさを異なるものとすることで、各流体噴射口9における圧力を均一にできる。なお図3に示す例では、流体機器7から遠ざかるに従い流体噴射口9の開口径を大きくしている。但しこれに限られるものではなく、流体噴射口9より噴射される流体の粘性によっては、流体機器7から遠ざかるに従い流体噴射口9の開口径を小さくするのが好適な場合もある。換言すれば、流体機器7からの距離に比例し流体噴射口9の開口径を定めれば良い。 FIG. 2 shows a cross-sectional view of the pipe 10 shown in FIG. 1 and the ground plane side of the pipe 10 . As shown in the right diagram of FIG. 2 , a plurality of fluid ejection ports 9 are provided along the fluid pipe 8 . The number and arrangement of the fluid ejection ports 9 are not limited to those shown on the right side of FIG. 2, and they may be arranged irregularly. Moreover, in the fluid pipe 8, the pressure loss increases as the pipe length increases. Therefore, the pressure at the ejection port 9 farther from the fluid device 7 becomes smaller than the pressure at the fluid ejection port 9 closer to the fluid device 7 . Therefore, by making the sizes of the fluid ejection ports 9 different according to the distance from the fluid device 7 as shown in FIG. 3, the pressure at each fluid ejection port 9 can be made uniform. In the example shown in FIG. 3, the opening diameter of the fluid ejection port 9 increases as the distance from the fluid device 7 increases. However, it is not limited to this, and depending on the viscosity of the fluid ejected from the fluid ejection port 9, it may be preferable to decrease the opening diameter of the fluid ejection port 9 as the distance from the fluid device 7 increases. In other words, the opening diameter of the fluid ejection port 9 should be determined in proportion to the distance from the fluid device 7 .

配管10は、流体噴射時に浮力を受けやすく、配管の捻れを防ぐため図2の左図及び右図に示すように配管10の接地面側を面形状とする。ここで、面形状は次のように定義する。図4は流体噴射口9から接地面に対して流体噴射したときに、配管が回転した様子を表した図である。目標として回転角をθ以下(θ<90°)とすることを考えると、そのための条件式は、
h/w<1/tanθ-αpA/(mgsinθ)
で与えられる。ここで、hは配管接地面からの配管重心高さ、wは配管幅、αは圧力損失を表す係数、pは元圧、Aは配管が浮力を受ける面積、mは配管質量を表す。本実施例における面形状は、接地面から重心位置までの高さhと配管幅wが上記の条件式を満たすようなものとして定義する。また、この条件を満たしていれば、接地面は平滑である必要はなく、波状でも凹凸のある形状などでもよい。
The pipe 10 is likely to receive buoyancy when the fluid is injected, and in order to prevent twisting of the pipe, the ground surface side of the pipe 10 has a surface shape as shown in the left and right drawings of FIG. Here, the surface shape is defined as follows. FIG. 4 is a diagram showing how the pipe rotates when the fluid is ejected from the fluid ejection port 9 to the ground surface. Considering that the target rotation angle is θ or less (θ<90°), the conditional expression for that is:
h/w<1/tan θ−αpA/(mg sin θ)
is given by Here, h is the height of the center of gravity of the pipe from the ground surface of the pipe, w is the width of the pipe, α is a coefficient representing pressure loss, p is the original pressure, A is the area of the pipe receiving buoyancy, and m is the mass of the pipe. The surface shape in this embodiment is defined such that the height h from the contact surface to the position of the center of gravity and the pipe width w satisfy the above conditional expressions. Further, as long as this condition is satisfied, the contact surface does not have to be smooth, and may be wavy or uneven.

配管10は、図5の左図及び右図に示すように接地面に対し、流体噴射口9の周囲にクッション11を有する構成としても良い。クッション11は流体噴射口9毎に設けられていてもよい。接地面が粗い場合において、接地面との接地を補助し浮力を受けやすくなる効果がある。ここで、クッション11は、例えば、ゴム材、または、ビニールなどの管状体の内部をエアで充填したもの等が用いられる。 The piping 10 may be configured to have a cushion 11 around the fluid injection port 9 with respect to the ground surface as shown in the left and right diagrams of FIG. A cushion 11 may be provided for each fluid ejection port 9 . When the ground surface is rough, it has the effect of assisting the ground contact with the ground surface and making it easier to receive buoyancy. Here, the cushion 11 is made of, for example, a rubber material or a tubular body such as vinyl whose interior is filled with air.

流体を配管10に流すためのポンプなどの流体機器7によって印加される圧力は、配管10の長さ、幅、質量等から設計される。ここで、配管10の接地面とクッション11によって形成される空間からの流体漏れは小さく、上記空間における圧力はほぼ等しいものとする。また、本実施例に係る配管10の適用前後で動摩擦係数は変わらないものとする。例えば、使用流体を空気とし、配管10の長さl=50m、配管10の質量m=200kg、配管10の幅w=10cm、クッション11の幅wa=1.5cmとして、クッション11を備えた図5の場合を考える。動摩擦係数をμ、配管10が浮力を受ける面積をAとすると、配管10が受ける動摩擦力は図6の右図に示すようにμ(mg-pA)となる。一方で、本実施例に係る配管10未適用の場合、配管10が受ける動摩擦力は図6の左図に示すようにμmgとなる。従って、本実施例に係る配管10の適用前後の動摩擦力比は、(mg-pA)/(mg)となる。ここで、動摩擦力比を0.11として89%の動摩擦力低減を目標としたとき、印加圧力p=0.5kPaと決まる。 The pressure applied by the fluid device 7 such as a pump for causing the fluid to flow through the pipe 10 is designed from the length, width, mass, etc. of the pipe 10 . Here, it is assumed that the fluid leakage from the space formed by the ground contact surface of the pipe 10 and the cushion 11 is small and the pressure in the space is substantially equal. Further, it is assumed that the coefficient of dynamic friction does not change before and after the application of the pipe 10 according to the present embodiment. For example, the fluid used is air, the length l of the pipe 10 is 50 m, the mass m of the pipe 10 is 200 kg, the width w of the pipe 10 is 10 cm, the width w a of the cushion 11 is 1.5 cm, and the cushion 11 is provided. Consider the case of FIG. If μ is the coefficient of dynamic friction and A is the area of the pipe 10 that receives the buoyancy, the dynamic friction force that the pipe 10 receives is μ (mg-pA) as shown in the right diagram of FIG. On the other hand, when the pipe 10 according to the present embodiment is not applied, the dynamic frictional force received by the pipe 10 is μmg as shown in the left diagram of FIG. 6 . Therefore, the dynamic friction force ratio before and after application of the pipe 10 according to the present embodiment is (mg-pA)/(mg). Here, when the dynamic friction force ratio is set to 0.11 and the target is to reduce the dynamic friction force by 89%, the applied pressure p is determined to be 0.5 kPa.

次に、遠隔作業支援装置2によって遠隔作業装置1の移動を支援するときの流れについて説明する。遠隔作業装置1が静止している状態から、別の位置に移動することを考える。まず、流体配管8に接続された流体機器7を起動し、流体配管8に圧力を印加し、水や空気などの流体を流す。流体が流体配管8を流れ、流体噴射口9から流体を接地面に噴射することで、配管10と接地面との間に圧力層が生じ、配管10に浮力が与えられる。配管10に与えられる浮力によって、配管10が接地面から受ける垂直抗力が低減する。垂直抗力を低減することによって、配管10の移動時に接地面との間に生じる動摩擦力が低減される。動摩擦力が低減されている流体噴射中に、遠隔作業装置1の制御機器5からケーブル6を介して遠隔作業装置1に制御指令を送り、遠隔作業装置1を移動させる。
なお、例えば、クローラの駆動に同期して予め定めた流体圧となるようポンプ等の流体機器7を駆動する。ここで、流体機器7は、リアルタイムでの制御は不要である。すなわち、予め定めた流体圧(一定)となるようにすれば良い。
Next, the flow of supporting the movement of the remote work device 1 by the remote work support device 2 will be described. Consider moving the remote work device 1 from a stationary state to another position. First, the fluid device 7 connected to the fluid pipe 8 is activated, pressure is applied to the fluid pipe 8, and fluid such as water or air is allowed to flow. A pressure layer is generated between the pipe 10 and the ground surface by the fluid flowing through the fluid pipe 8 and ejecting the fluid from the fluid injection port 9 to the ground surface, giving the pipe 10 buoyancy. The buoyancy imparted to the pipe 10 reduces the normal force that the pipe 10 receives from the ground plane. By reducing the normal force, the dynamic frictional force generated between the pipe 10 and the ground surface during movement is reduced. A control command is sent from the control device 5 of the remote working device 1 to the remote working device 1 via the cable 6 to move the remote working device 1 during the injection of the fluid with the reduced dynamic friction force.
In addition, for example, the fluid device 7 such as a pump is driven so as to achieve a predetermined fluid pressure in synchronization with the drive of the crawler. Here, the fluid device 7 does not require real-time control. That is, the fluid pressure should be set to a predetermined value (constant).

以上の通り、本実施例によれば、線状部材にセンサを搭載せず、圧力制御不要で捻れを防ぎつつ、放射線環境下で使用可能な遠隔作業支援装置及び遠隔作業システムを提供することが可能となる。
また、遠隔作業装置1にかかる負荷である動摩擦力を低減することで、本実施例に係る配管10の未適用時に比べ、小さな牽引力で遠隔作業装置1の移動が達成される。
As described above, according to this embodiment, it is possible to provide a remote work support device and a remote work system that can be used in a radiation environment without mounting a sensor on a linear member, without requiring pressure control, and preventing twisting. It becomes possible.
Further, by reducing the dynamic frictional force that is the load applied to the remote working device 1, the remote working device 1 can be moved with a smaller traction force than when the pipe 10 according to the present embodiment is not applied.

図7は、本発明の他の実施例に係る遠隔作業システムの概略構成図である。本実施例では、遠隔作業システム100aを構成する配管10の側面に備えられた流体配管12及び側面に備えられた流体噴射口13を更に備える点が実施例1と異なる。その他の構成は、上述の実施例1と同様であり、以下では、実施例1と同一の構成要素に同一符号を付し、実施例1と重複する説明を省略する。 FIG. 7 is a schematic configuration diagram of a remote work system according to another embodiment of the present invention. This embodiment differs from the first embodiment in that a fluid pipe 12 provided on the side of the pipe 10 constituting the remote work system 100a and a fluid ejection port 13 provided on the side are further provided. The rest of the configuration is the same as that of the above-described first embodiment, and hereinafter, the same constituent elements as those of the first embodiment are denoted by the same reference numerals, and redundant descriptions of the first embodiment will be omitted.

本実施例では、配管10は、図7に示すように側面に備えられた流体配管12及び流体噴射口13を有し、配管10の側面に流体噴射可能としている。
次に、遠隔作業支援装置2aによって遠隔作業装置1の移動を支援するときの流れについて説明する。図9に示すように、遠隔作業装置1が曲がる際に、配管10が壁面角部に接触し、摩擦力によって拘束され遠隔作業装置1が移動できない場合を考える。このとき、配管10を水平方向へ移動させることで壁面から離し、遠隔作業装置1の移動を可能とする。まず、実施例1と同様の手順で、配管10が受ける垂直抗力を低減することによって、配管10の移動時に接地面との間に生じる動摩擦力が低減される。動摩擦力が低減されている流体噴射中に、流体機器7により側面に備えられた流体配管12に圧力を印加し、各流体噴射口13から配管10の側方に流体噴射することで、配管10の水平方向への移動を可能とする。配管10を水平方向へ移動して壁面から離し、遠隔作業装置1の制御機器7からケーブル6を介して遠隔作業装置1に制御指令を送り、遠隔作業装置1を移動させる。ここで、接地面と配管10の間に生じる動摩擦力が水平方向への移動を妨げない大きさであれば、接地面への流体噴射を必要としない。なお、クローラの駆動に同期して予め定めた流体圧となるようポンプ等の流体機器7を駆動することで、配管10の面形状の接地面側の各流体噴射口9から流体が噴射され、配管10の引っ掛かりを検知した場合、流体配管12及び流体噴射口13から流体を噴射する。ここで、配管10の引っ掛かりを検知する方法としては、例えば、クローラを駆動するモータの回転数或いは回転角をリニアエンコーダで検出すること等で実現できる。
In this embodiment, the pipe 10 has a fluid pipe 12 and a fluid injection port 13 provided on the side surface as shown in FIG.
Next, the flow of supporting the movement of the remote work device 1 by the remote work support device 2a will be described. As shown in FIG. 9, when the remote working device 1 bends, the pipe 10 contacts the corner of the wall surface and is restrained by frictional force, so that the remote working device 1 cannot move. At this time, by moving the pipe 10 in the horizontal direction, the pipe 10 is separated from the wall surface, and the remote working device 1 can be moved. First, by reducing the normal force applied to the pipe 10 in the same manner as in the first embodiment, the dynamic friction force generated between the pipe 10 and the ground surface during movement is reduced. By applying pressure to the fluid pipe 12 provided on the side surface by the fluid device 7 during the injection of the fluid whose dynamic friction force is reduced, and by injecting the fluid to the side of the pipe 10 from each fluid injection port 13, the pipe 10 allows horizontal movement of The pipe 10 is horizontally moved away from the wall surface, and a control command is sent from the control device 7 of the remote working device 1 to the remote working device 1 via the cable 6 to move the remote working device 1 . Here, if the dynamic friction force generated between the ground contact surface and the pipe 10 is of a magnitude that does not hinder the movement in the horizontal direction, there is no need to jet the fluid to the contact contact surface. By driving a fluid device 7 such as a pump so as to achieve a predetermined fluid pressure in synchronization with driving of the crawler, fluid is ejected from each fluid ejection port 9 on the ground surface side of the surface shape of the pipe 10, When the hooking of the pipe 10 is detected, the fluid is jetted from the fluid pipe 12 and the fluid jet port 13 . Here, as a method of detecting that the pipe 10 is caught, for example, it can be realized by detecting the rotation speed or the rotation angle of the motor that drives the crawler with a linear encoder.

以上の通り本実施例によれば、実施例1の効果に加え、壁面との接触摩擦による拘束を解除し、遠隔作業装置1の移動が可能となる。 As described above, according to the present embodiment, in addition to the effects of the first embodiment, the restriction due to contact friction with the wall surface is released, and the remote work device 1 can be moved.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。 In addition, the present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. In addition, it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.

1…遠隔作業装置
2,2a…遠隔作業支援装置
3…マニピュレータ
4…移動機構
5…制御機器
6…ケーブル
7…流体機器
8…流体配管
9…流体噴射口
10…配管
11…クッション
12…側面に備えられた流体配管
13…側面に備えられた流体噴射口
100,100a…遠隔作業システム
REFERENCE SIGNS LIST 1 remote work device 2, 2a remote work support device 3 manipulator 4 movement mechanism 5 control device 6 cable 7 fluid device 8 fluid pipe 9 fluid injection port 10 pipe 11 cushion 12 side surface Equipped fluid piping 13... Fluid injection ports 100, 100a provided on the side... Remote work system

Claims (8)

遠隔作業装置の遠隔作業支援装置であって、
前記遠隔作業装置及び遠隔作業装置を制御する制御機器に接続され、前記遠隔作業装置に駆動力及び制御信号を与える線状部材と、流体機器に接続された流体配管とを内部に備える可撓性の配管を有し、前記配管は接地面側が面形状であって、
前記流体配管及び配管は接地面に対し流体を噴射可能な流体噴射口を有し、接地面に対して流体を噴射することを特徴とする遠隔作業支援装置。
A remote work support device for a remote work device,
A flexible device internally comprising a linear member connected to the remote working device and a control device for controlling the remote working device and applying a driving force and a control signal to the remote working device, and a fluid pipe connected to a fluid device. and the pipe has a surface shape on the ground surface side,
The remote work support device, wherein the fluid pipe and the pipe have a fluid injection port capable of injecting the fluid onto the ground surface, and the fluid is injected onto the ground surface.
請求項1に記載の遠隔作業支援装置において、
前記流体噴射口は前記流体配管及び配管に複数設けられ、前記流体噴射口の開口径は前記流体機器からの距離に比例することを特徴とする遠隔作業支援装置。
The remote work support device according to claim 1,
A remote work support device, wherein a plurality of the fluid injection ports are provided in the fluid pipe and the pipe, and an opening diameter of the fluid injection port is proportional to a distance from the fluid device.
請求項2に記載の遠隔作業支援装置において、
前記流体噴射口の周囲にクッションを有することを特徴とする遠隔作業支援装置。
In the remote work support device according to claim 2,
A remote work support device, comprising a cushion around the fluid injection port.
請求項1に記載の遠隔作業支援装置において、
前記配管は、更に側面に備えられた流体配管及び流体噴射口を有することを特徴とする遠隔作業支援装置。
The remote work support device according to claim 1,
A remote work support device, wherein the piping further has a fluid piping and a fluid injection port provided on a side surface.
少なくともマニピュレータ及び移動機構を備える遠隔作業装置と、
前記遠隔作業装置及び遠隔作業装置を制御する制御機器に接続され、前記遠隔作業装置に駆動力及び制御信号を与える線状部材と、流体機器に接続された流体配管とを内部に備える可撓性の配管を有し、前記配管は接地面側が面形状であって、前記流体配管及び配管は接地面に対し流体を噴射可能な流体噴射口を有し、接地面に対して流体を噴射する遠隔作業支援装置と、を有することを特徴とする遠隔作業システム。
a remote working device comprising at least a manipulator and a moving mechanism;
A flexible device internally comprising a linear member connected to the remote working device and a control device for controlling the remote working device and applying a driving force and a control signal to the remote working device, and a fluid pipe connected to a fluid device. The pipe has a surface shape on the ground surface side, the fluid pipe and the pipe have a fluid injection port capable of injecting fluid to the ground surface, and a remote for injecting fluid to the ground surface A remote work system comprising: a work support device;
請求項5に記載の遠隔作業システムにおいて、
前記流体噴射口は前記流体配管及び配管に複数設けられ、前記流体噴射口の開口径は前記流体機器からの距離に比例することを特徴とする遠隔作業システム。
In the remote work system according to claim 5,
A remote work system according to claim 1, wherein a plurality of said fluid ejection ports are provided in said fluid pipe and said pipe, and an opening diameter of said fluid ejection port is proportional to a distance from said fluid device.
請求項6に記載の遠隔作業システムにおいて、
前記流体噴射口の周囲にクッションを有することを特徴とする遠隔作業システム。
In the remote work system according to claim 6,
A remote work system, comprising a cushion around the fluid ejection port.
請求項5に記載の遠隔作業システムにおいて、
前記配管は、更に側面に備えられた流体配管及び流体噴射口を有することを特徴とする遠隔作業システム。
In the remote work system according to claim 5,
The remote work system, wherein the piping further has a fluid piping and a fluid injection port provided on a side surface.
JP2019125017A 2019-07-04 2019-07-04 Remote work support device and remote work system Active JP7159123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019125017A JP7159123B2 (en) 2019-07-04 2019-07-04 Remote work support device and remote work system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019125017A JP7159123B2 (en) 2019-07-04 2019-07-04 Remote work support device and remote work system

Publications (2)

Publication Number Publication Date
JP2021012050A JP2021012050A (en) 2021-02-04
JP7159123B2 true JP7159123B2 (en) 2022-10-24

Family

ID=74226398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019125017A Active JP7159123B2 (en) 2019-07-04 2019-07-04 Remote work support device and remote work system

Country Status (1)

Country Link
JP (1) JP7159123B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016073013A (en) 2014-09-26 2016-05-09 日立Geニュークリア・エナジー株式会社 Investigation system
JP2017164069A (en) 2016-03-14 2017-09-21 国立大学法人東北大学 Mobile fluid spray apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016073013A (en) 2014-09-26 2016-05-09 日立Geニュークリア・エナジー株式会社 Investigation system
JP2017164069A (en) 2016-03-14 2017-09-21 国立大学法人東北大学 Mobile fluid spray apparatus

Also Published As

Publication number Publication date
JP2021012050A (en) 2021-02-04

Similar Documents

Publication Publication Date Title
KR102265363B1 (en) Reusable buoyancy module for buoyancy control in underwater vehicles
EP2723947B1 (en) Centre system
CN102464213B (en) Mooring system for a vessel, floating body and quay wall including the same
CN108312159B (en) Multifunctional robot system and application thereof
KR101416141B1 (en) Work support platform and method of underwater robot
EP3516280A1 (en) Coordinated water environment mobile robots
KR101516204B1 (en) A winch for cable and a launching system of robot for working on ship
WO2001062585A1 (en) Mooring device
CN106625700B (en) Large-scale water intaking tunnel monitoring robot that crawls
JP7159123B2 (en) Remote work support device and remote work system
WO2015044898A1 (en) Two body motion compensation system for marine applications
CN105129453A (en) Discharging device of bulk machine
US20180304462A1 (en) Multifunctional robot system and method
CN102490700B (en) Engineering machine as well as control device and control method of supporting leg of engineering machine
JP6242646B2 (en) Piping work device and work method
EP3392124B1 (en) Multifunctional robot system and method
CN212929185U (en) Pneumatic type self-adaptation pipeline mechanism of crawling
JP2010228871A (en) Quay crane
Bach et al. High tractive power wall-climbing robot
JP6590146B2 (en) Steering device, sailing body
ES2629129B1 (en) Fiber placement head and fiber placement installation as well as procedure for the production of a fiber composite component
IT9067246A1 (en) ROCK DRILLING APPARATUS
US11746926B2 (en) Method for laying and/or recovering a flexible line in a body of water and associated system
JP6152768B2 (en) Submarine pipeline laying method
CN102502407B (en) Control device and system for synchronizing luffing mechanism with lifting mechanism, and engineering machinery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221012

R150 Certificate of patent or registration of utility model

Ref document number: 7159123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150