JP7152561B2 - A Method for Realizing Super Lubrication on a Macroscopic Scale by Forming a Pair System with a Hydrogen-Containing Carbon Film and Molybdenum Disulfide - Google Patents

A Method for Realizing Super Lubrication on a Macroscopic Scale by Forming a Pair System with a Hydrogen-Containing Carbon Film and Molybdenum Disulfide Download PDF

Info

Publication number
JP7152561B2
JP7152561B2 JP2021100443A JP2021100443A JP7152561B2 JP 7152561 B2 JP7152561 B2 JP 7152561B2 JP 2021100443 A JP2021100443 A JP 2021100443A JP 2021100443 A JP2021100443 A JP 2021100443A JP 7152561 B2 JP7152561 B2 JP 7152561B2
Authority
JP
Japan
Prior art keywords
hydrogen
molybdenum disulfide
carbon film
containing carbon
pair system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021100443A
Other languages
Japanese (ja)
Other versions
JP2022029418A (en
Inventor
俊彦 ▲張▼
倩 ▲賈▼
斌 ▲張▼
元烈 于
▲凱▼雄 高
振国 ▲頼▼
Original Assignee
中国科学院蘭州化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院蘭州化学物理研究所 filed Critical 中国科学院蘭州化学物理研究所
Publication of JP2022029418A publication Critical patent/JP2022029418A/en
Application granted granted Critical
Publication of JP7152561B2 publication Critical patent/JP7152561B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3457Sputtering using other particles than noble gas ions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Lubricants (AREA)

Description

本発明は水素含有炭素膜と二硫化モリブデンでペアシステムを形成することにより巨視的スケールにおける超潤滑を実現する方法を提供し、膜堆積と表面保護の分野に属する。 The present invention provides a method for achieving superlubrication on a macroscopic scale by forming a pair system with a hydrogen-containing carbon film and molybdenum disulfide, and belongs to the field of film deposition and surface protection.

機械的摩耗による経済的損失はGDPの5%~7%と高く、それによる損失は数兆元にのぼる。高性能潤滑材技術を使用すれば、自動車の摩擦損失を18%削減することが期待される。現代の航空宇宙機は、15年ひいては30年の動作寿命が要求されており、可動部品の耐摩耗性に対する要求は高まりつつある。ただし、航空宇宙部品の可動部品の性能は依然として改善する必要があり、これは航空宇宙機全体の長期的かつ安定的な作動にとって非常に重要である。 The economic loss due to mechanical wear is as high as 5% to 7% of GDP, and the resulting loss amounts to several trillion yuan. The use of high performance lubricant technology is expected to reduce automotive friction losses by 18%. Modern aerospace vehicles are required to operate for 15 or even 30 years, and the demands on the wear resistance of moving parts are increasing. However, the performance of moving parts in aerospace components still needs to be improved, which is very important for the long-term and stable operation of the entire aerospace vehicle.

アモルファスカーボンフィルムは、摩耗減少と耐摩耗の特性があり、航空宇宙への用途の可能性があり、ベアリングやその他の航空宇宙機のトランスミッションコンポーネントでの使用が期待されている。しかし、従来のアモルファスカーボンフィルムは、単一の環境(N2と真空)のみで、超潤滑と低摩耗を実現し、高い耐摩耗性を備えているが、空気中では0.04に達し、寿命は短くなる。 Amorphous carbon films, with wear-reducing and wear-resistant properties, have potential aerospace applications and are expected to be used in bearings and other aerospace transmission components. However, the conventional amorphous carbon film achieves super lubrication and low wear only in a single environment (N2 and vacuum), and has high wear resistance, but in air it reaches 0.04 and the life becomes shorter.

本発明の目的は、アモルファスカーボンフィルムの空気中における耐摩耗性が低いという問題を解決することであり、大気中の炭素膜の適用問題を解決するために、水素含有炭素膜と二硫化モリブデンでペアシステムを形成することにより巨視的スケールにおける超潤滑を実現する方法を提供する。 The purpose of the present invention is to solve the problem that the wear resistance of amorphous carbon films in air is low. We provide a method to achieve superlubrication on a macroscopic scale by forming a pair system.

本発明は、水素含有炭素膜と二硫化モリブデン膜の特性により、水素含有炭素膜と二硫化モリブデンでペアシステムを形成し、摩擦界面の調整及び制御により、大気中の炭素膜の巨視的スケールにおける超潤滑を実現する。 According to the characteristics of the hydrogen-containing carbon film and molybdenum disulfide film, the present invention forms a pair system with the hydrogen-containing carbon film and molybdenum disulfide film, and adjusts and controls the friction interface to achieve the macroscopic scale of the carbon film in the atmosphere. Achieve super lubrication.

前記水素含有炭素膜は、マイクロ波表面波プラズマの化学気相成長法によって調製されることができ、水素含有炭素膜の水素含有量が20~26%、厚さが700~900nmである。 The hydrogen-containing carbon film can be prepared by microwave surface wave plasma chemical vapor deposition, and the hydrogen content of the hydrogen-containing carbon film is 20-26% and the thickness is 700-900 nm.

前記二硫化モリブデンは高出力バイポーラマイクロインパルス反応マグネトロンスパッタリングによって調製される。二硫化モリブデン膜の厚さが500~700nmである。 Said molybdenum disulfide is prepared by high power bipolar micro-impulse reactive magnetron sputtering. The thickness of the molybdenum disulfide film is 500-700 nm.

二硫化モリブデン膜は、大気中の摩擦係数が比較的に大きく(0.05)、耐摩耗性に劣るほか、従来の二硫化モリブデン膜は、鋼表面への結合力が低く、摩擦時に脱落しやすい。水素含有炭素膜と二硫化モリブデン膜を相互にマッチングペアさせて、摩擦時に、摩擦剪断力の作用下で無秩序な二硫化モリブデンは摩擦方向に沿って秩序的に配置されるようになって、炭素膜基板の表面に、少ない数の層を持つ二硫化モリブデンの秩序的な構造がその場で形成されて、炭素膜の巨視的スケールにおける超潤滑を実現する。図1は、MoS摩擦ペアがスライドした後の膜摩耗痕の断面の高解像度写真である。摩擦中に、摩擦剪断力の作用下で無秩序な二硫化モリブデンは摩擦方向に沿って秩序的に配置されるようになって、少ない数の層を持つ秩序的な構造を形成し、摩擦界面の調整及び制御により、大気中の炭素膜の巨視的スケールにおける超潤滑を実現した。実験では、酸素が豊富な環境での当該システムの摩擦係数と耐摩耗性がより優れていることが示された。 The molybdenum disulfide film has a relatively large coefficient of friction in the atmosphere (0.05) and is inferior in wear resistance. Cheap. By matching the hydrogen-containing carbon film and the molybdenum disulfide film to each other, during friction, under the action of frictional shear force, the disordered molybdenum disulfide film is arranged in an orderly manner along the friction direction, and the carbon An ordered structure of molybdenum disulfide with a small number of layers is formed in situ on the surface of the film substrate to achieve macroscopic-scale superlubrication of the carbon film. FIG. 1 is a high-resolution photograph of a cross-section of a film wear scar after sliding MoS2 friction pairs . During friction, the disordered molybdenum disulfide becomes arranged in an ordered manner along the friction direction under the action of frictional shear force, forming an ordered structure with a small number of layers, and the friction interface. Through tuning and control, we have achieved superlubrication on a macroscopic scale in atmospheric carbon films. Experiments have shown that the system has better coefficient of friction and wear resistance in an oxygen-rich environment.

摩擦マッチングペアとして、水素含有炭素膜を堆積した鋼ブロックと二硫化モリブデン膜を堆積した金属球を使用し、サンプルをCSM摩擦摩耗試験機に固定した後、実験パラメータを負荷9N、周波数5Hz、振幅5mm、摩擦時間30分間に設定し、室温で摩擦を行う。乾燥された空気を導入して、空気の湿度を徐々に5%以下に下げてから、実験を開始する。得られた摩擦係数は、急速に0.005程度まで減少した。摩擦と摩耗が大幅に減少し、乾燥された大気中の炭素膜の耐用時間が向上された。即ち、酸素が豊富な環境で当該システムの摩擦係数と耐摩耗性は、より優れている。 A steel block deposited with a hydrogen-containing carbon film and a metal ball deposited with a molybdenum disulfide film were used as friction matching pairs. 5 mm, friction time 30 minutes, friction at room temperature. Dry air is introduced to gradually reduce the humidity of the air to 5% or less before starting the experiment. The resulting coefficient of friction decreased rapidly to around 0.005. Friction and wear are greatly reduced, and the service life of carbon films in dry air is improved. That is, the friction coefficient and wear resistance of the system are better in an oxygen-rich environment.

利点は、高出力マイクロパルス技術を使用して、二硫化モリブデン膜の構造を秩序的になるように制御することにより、摩擦係数が0.05レベルである2つの摩擦膜材料は、相互カプリングした後に、摩擦係数が0.005に減少することである。 The advantage is that by using high-power micropulse technology to control the structure of the molybdenum disulfide film to be ordered, the two friction film materials with friction coefficients at the level of 0.05 are mutually coupled. Later, the coefficient of friction is reduced to 0.005.

MoS摩擦ペアがスライドした後の膜摩耗痕の断面の高解像度写真。A high-resolution photograph of the cross-section of the film wear scar after sliding MoS2 friction pairs .

本発明の巨視的スケールにおける超潤滑を実現するための方法は、特定の実施形態を通じて以下にさらに説明される。 The method for achieving superlubrication at the macroscopic scale of the present invention is further described below through specific embodiments.

(1)水素含有炭素膜の調製
a.基板材料(高研磨軸受鋼、金型鋼、歯車鋼など)をアルコールで予め20分間超音波処理し、洗浄し、窒素で乾燥させ、コーティング真空チャンバーに入れてコーティングの準備をした;
b.真空チャンバーを10-4Paに排気した後、プラズマ化学気相成長装置で800Vの電圧と2.5Paの圧力で、アルゴンガスを通過させてシリコンウェーハの表面に20分間衝撃を与え、シリコンウェーハ表面の不純物を除去した;
c.水素含有炭素膜の調製:双極対称パルスを使用してプラズマを励起し、パルス電圧が800V、デューティ比が55%、周波数が20-40KHz、メタン、水素、アルゴンの流量比が1:1:1、圧力が5Paに維持され、プレート間の距離が25mmであり、堆積時間が90分間であり、1.1ミクロンの厚さの水素含有炭素膜が得られた。水素含有炭素膜の摩擦係数は0.018である;
(2)二硫化モリブデン膜の調製
a.直径6mmのGCr15、またはステンレス鋼球を使用して、アルコール中で10分間超音波洗浄した。
b.プラズマ化学気相成長/マグネトロンスパッタリング装置で、プラズマ気相成長法を使用して、事前に処理されたステンレス鋼表面に遷移層を形成し、次に遷移層に高出力マイクロパルスマグネトロンスパッタリングを使用して、二硫化モリブデン層を調製した。具体的には、マイクロパルスは非対称モードを使用し、負のパルス電圧が650V、パルス幅が600マイクロ秒、マイクロパルス列波のデューティ比が30%、パルス列波内周波数が15KHz、デューティ比が4%調整可能である。負のパルス電圧は300Vで、他のパラメータは同じで変化しない。まず、アルゴンとメタンの比率を1:2で30分間堆積し;メタンをオフにして、1時間堆積し、鋼球の表面に厚さ800ミクロンの二硫化モリブデン膜が得られた。二硫化モリブデン膜の摩擦係数は0.05である;
(3)炭素膜を堆積した鋼ブロックと二硫化モリブデン膜を堆積した金属球を摩擦マッチングペアとして使用した。CSM摩擦摩耗試験機に、サンプルを固定した後、実験パラメータが負荷9N、周波数5Hz、振幅5mm、摩擦時間30分間、および室温での摩擦を設定した。乾燥された空気を導入して、空気の湿度を徐々に5%以下に下げてから、実験を開始した。得られた摩擦係数は、急速に約0.005まで減少した。
(1) Preparation of hydrogen-containing carbon film a. Substrate materials (highly polished bearing steel, mold steel, gear steel, etc.) were pre-sonicated with alcohol for 20 minutes, cleaned, dried with nitrogen and placed in a coating vacuum chamber ready for coating;
b. After the vacuum chamber was evacuated to 10 −4 Pa, the surface of the silicon wafer was impacted for 20 minutes by passing argon gas at a voltage of 800 V and a pressure of 2.5 Pa in a plasma chemical vapor deposition apparatus to give a shock to the surface of the silicon wafer. of impurities;
c. Preparation of hydrogen-containing carbon films: Bipolar symmetrical pulses are used to excite plasma, pulse voltage is 800V, duty ratio is 55%, frequency is 20-40KHz, flow ratio of methane, hydrogen and argon is 1:1:1. , the pressure was maintained at 5 Pa, the distance between the plates was 25 mm, the deposition time was 90 minutes, and a hydrogen-containing carbon film with a thickness of 1.1 microns was obtained. The coefficient of friction of the hydrogen-containing carbon film is 0.018;
(2) Preparation of molybdenum disulfide film a. A 6 mm diameter GCr15, or stainless steel ball was used and ultrasonically cleaned in alcohol for 10 minutes.
b. A plasma-enhanced chemical vapor deposition/magnetron sputtering apparatus uses plasma vapor deposition to form a transition layer on a pretreated stainless steel surface, and then uses high-power micropulse magnetron sputtering on the transition layer. to prepare a molybdenum disulfide layer. Specifically, the micropulse uses an asymmetric mode, the negative pulse voltage is 650 V, the pulse width is 600 microseconds, the duty ratio of the micropulse train wave is 30%, the frequency in the pulse train wave is 15 KHz, and the duty ratio is 4%. Adjustable. The negative pulse voltage is 300V and the other parameters remain the same. First, a 1:2 ratio of argon to methane was deposited for 30 minutes; the methane was turned off and deposition was performed for 1 hour, resulting in an 800 micron thick molybdenum disulfide film on the surface of the steel ball. The friction coefficient of molybdenum disulfide film is 0.05;
(3) A steel block deposited with a carbon film and a metal ball deposited with a molybdenum disulfide film were used as friction matching pairs. After fixing the sample in the CSM friction wear tester, the experimental parameters were set to load 9 N, frequency 5 Hz, amplitude 5 mm, friction time 30 minutes, and friction at room temperature. Dry air was introduced to gradually reduce the humidity of the air to below 5% before the experiment was started. The resulting coefficient of friction decreased rapidly to about 0.005.

Claims (5)

水素含有炭素膜と二硫化モリブデン堆積薄膜でペアシステム形成され摩擦時に摩擦剪断力および摩擦熱の作用下で無秩序な二硫化モリブデンは秩序な二次元構造を形成し、界面の調整及び制御により、大気中の炭素膜の巨視的スケールにおける超潤滑を実現するとこを特徴とする水素含有炭素膜と二硫化モリブデンでペアシステムを形成することにより巨視的スケールにおける超潤滑を実現する方法。 A pair system is formed by the hydrogen-containing carbon film and the molybdenum disulfide deposited thin film , and the disordered molybdenum disulfide forms an ordered two-dimensional structure under the action of frictional shear force and frictional heat during friction. A method for realizing super lubrication on a macroscopic scale by forming a pair system with a hydrogen-containing carbon film and molybdenum disulfide, characterized by realizing super lubrication on a macroscopic scale of a carbon film in the atmosphere. 前記水素含有炭素膜は、マイクロ波表面波プラズマの化学気相成長法によって調製されることを特徴とする請求項1に記載の水素含有炭素膜と二硫化モリブデンでペアシステムを形成することにより巨視的スケールにおける超潤滑を実現する方法。 The hydrogen-containing carbon film and molybdenum disulfide according to claim 1, wherein the hydrogen-containing carbon film is prepared by microwave surface wave plasma chemical vapor deposition. How to achieve super lubrication on a large scale. 前記水素含有炭素膜は、水素含有量が20~26%、厚さが700~900nmであることを特徴とする請求項1又は2に記載の水素含有炭素膜と二硫化モリブデンでペアシステムを形成することにより巨視的スケールにおける超潤滑を実現する方法。 The hydrogen-containing carbon film and molybdenum disulfide form a pair system according to claim 1 or 2, wherein the hydrogen-containing carbon film has a hydrogen content of 20 to 26% and a thickness of 700 to 900 nm. A method to achieve superlubrication on a macroscopic scale by 前記二硫化モリブデン堆積薄膜が高出力バイポーラマイクロインパルス反応マグネトロンスパッタリングによって調製されることを特徴とする請求項1に記載の水素含有炭素膜と二硫化モリブデンでペアシステムを形成することにより巨視的スケールにおける超潤滑を実現する方法。 2. The molybdenum disulfide deposited thin film is prepared by high power bipolar micro-impulse reactive magnetron sputtering. How to achieve super lubrication. 前記二硫化モリブデン堆積薄膜は厚さが500~700nmであることを特徴とする請求項1のいずれか1項に記載の水素含有炭素膜と二硫化モリブデンでペアシステムを形成することにより巨視的スケールにおける超潤滑を実現する方法。 By forming a pair system with a hydrogen-containing carbon film and molybdenum disulfide according to any one of claims 1 to 4, wherein the molybdenum disulfide deposited thin film has a thickness of 500 to 700 nm. A method for achieving superlubrication on a macroscopic scale.
JP2021100443A 2020-08-04 2021-06-16 A Method for Realizing Super Lubrication on a Macroscopic Scale by Forming a Pair System with a Hydrogen-Containing Carbon Film and Molybdenum Disulfide Active JP7152561B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010774368.9A CN111876753A (en) 2020-08-04 2020-08-04 Method for realizing ultra-smooth macroscopic view by forming auxiliary system by hydrogen-containing carbon film and molybdenum disulfide
CN202010774368.9 2020-08-04

Publications (2)

Publication Number Publication Date
JP2022029418A JP2022029418A (en) 2022-02-17
JP7152561B2 true JP7152561B2 (en) 2022-10-12

Family

ID=73210481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021100443A Active JP7152561B2 (en) 2020-08-04 2021-06-16 A Method for Realizing Super Lubrication on a Macroscopic Scale by Forming a Pair System with a Hydrogen-Containing Carbon Film and Molybdenum Disulfide

Country Status (2)

Country Link
JP (1) JP7152561B2 (en)
CN (1) CN111876753A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112981361B (en) * 2021-02-20 2022-11-25 京东方科技集团股份有限公司 Friction pair system and flexible display device
CN113215525B (en) * 2021-05-18 2022-06-14 中国科学院兰州化学物理研究所 Rubber surface ultra-low friction multilayer composite carbon-based lubricating coating and construction method thereof
CN115261791B (en) * 2022-08-31 2024-02-23 中国科学院兰州化学物理研究所 Super-lubrication friction pair matching method capable of tolerating humidity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007099947A (en) 2005-10-05 2007-04-19 Toyota Motor Corp Sliding structure and sliding method
CN202301032U (en) 2011-08-24 2012-07-04 安徽美芝精密制造有限公司 Rotary compressor
US20180223208A1 (en) 2017-02-09 2018-08-09 Uchicago Argonne, Llc Low friction wear resistant graphene films
CN111455386A (en) 2020-05-19 2020-07-28 中国科学院兰州化学物理研究所 Ultra-smooth tungsten disulfide/hydrogen-containing carbon film and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003322152A (en) * 2001-06-05 2003-11-14 Daido Metal Co Ltd Sliding member
EP2159454B1 (en) * 2008-08-26 2016-12-21 Perkins Engines Company Limited Idler gear and hub with coating
US8895488B2 (en) * 2010-11-30 2014-11-25 Honda Motor Co., Ltd Sliding structural members
JP2016164307A (en) * 2015-02-27 2016-09-08 キヤノン株式会社 Sliding member, sliding device having the same, and electrophotographic-type image forming apparatus having the same
CN109970467B (en) * 2019-04-25 2020-09-04 清华大学 Ultra-smooth two-dimensional composite material and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007099947A (en) 2005-10-05 2007-04-19 Toyota Motor Corp Sliding structure and sliding method
CN202301032U (en) 2011-08-24 2012-07-04 安徽美芝精密制造有限公司 Rotary compressor
US20180223208A1 (en) 2017-02-09 2018-08-09 Uchicago Argonne, Llc Low friction wear resistant graphene films
CN111455386A (en) 2020-05-19 2020-07-28 中国科学院兰州化学物理研究所 Ultra-smooth tungsten disulfide/hydrogen-containing carbon film and preparation method thereof

Also Published As

Publication number Publication date
CN111876753A (en) 2020-11-03
JP2022029418A (en) 2022-02-17

Similar Documents

Publication Publication Date Title
JP7152561B2 (en) A Method for Realizing Super Lubrication on a Macroscopic Scale by Forming a Pair System with a Hydrogen-Containing Carbon Film and Molybdenum Disulfide
Huang et al. Graphite-like carbon films by high power impulse magnetron sputtering
WO2021143256A1 (en) Molybdenum disulfide/tungsten disulfide multilayer tantalum-doped thin film, preparation method therefor, and use thereof
Trava-Airoldi et al. A comparison of DLC film properties obtained by rf PACVD, IBAD, and enhanced pulsed-DC PACVD
Mohagheghpour et al. Correlation study of structural, optical and electrical properties of amorphous carbon thin films prepared by ion beam sputtering deposition technique
CN112063984B (en) Fluorinated amorphous carbon film and preparation method and application thereof
CN111455315B (en) Preparation of fullerene/amorphous hydrocarbon composite film and application of fullerene/amorphous hydrocarbon composite film in vacuum low-temperature environment
JP5099693B2 (en) Amorphous carbon film and method for forming the same
Srisang et al. Characterization of SiC in DLC/a-Si films prepared by pulsed filtered cathodic arc using Raman spectroscopy and XPS
CN111485212B (en) Preparation method of molybdenum disulfide-carbon multilayer film with sub-10-nanometer bionic structure
CN111647861A (en) Tetrahedral amorphous carbon film and preparation method and application thereof
CN111304616A (en) Preparation method of Ti and C doped molybdenum disulfide based nano composite film
CN101921983B (en) Method for preparing W-S-C composite membrane
JP2003247060A (en) Method of producing amorphous carbon film and amorphous carbon-coated sliding parts
CN108950517B (en) Wear-resistant lubricating coating on surface of aluminum alloy substrate and preparation method thereof
CN110777341B (en) DLC/CNx/MeN/CNx nano multilayer film and preparation method thereof
CN115110030B (en) Cerium doped high-entropy alloy nitride coating and preparation method thereof
CN110735107A (en) Ion surface etching method before preparation of diamond-like coating
JP3034241B1 (en) Method of forming high hardness and high adhesion DLC film
CN114351088B (en) Solid self-lubricating coating and preparation method thereof
CN111378928B (en) Nanocrystalline MoS2Solid lubricating film and preparation method and application thereof
Hosseini et al. Single and dual-mode plasma enhanced chemical vapor deposition of fluorinated diamond-like carbon films
KR100195605B1 (en) Method for preparation for diamond-like carbon and driving apparatus for magnetic recording tape
CN113564525B (en) Preparation of graphene target and application of graphene target in magnetron sputtering deposition of low-friction carbon film
Ko et al. Development of highly conductive and corrosion-resistant cr-diamond-like carbon films

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220929

R150 Certificate of patent or registration of utility model

Ref document number: 7152561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150