JP7149307B2 - 電気的に短いアンテナおよび結晶共振器を有するloran装置および関連方法 - Google Patents

電気的に短いアンテナおよび結晶共振器を有するloran装置および関連方法 Download PDF

Info

Publication number
JP7149307B2
JP7149307B2 JP2020067606A JP2020067606A JP7149307B2 JP 7149307 B2 JP7149307 B2 JP 7149307B2 JP 2020067606 A JP2020067606 A JP 2020067606A JP 2020067606 A JP2020067606 A JP 2020067606A JP 7149307 B2 JP7149307 B2 JP 7149307B2
Authority
JP
Japan
Prior art keywords
loran
antenna
antenna element
crystal resonator
electrically short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020067606A
Other languages
English (en)
Other versions
JP2020171012A5 (ja
JP2020171012A (ja
Inventor
フランシス・イー・パルシェ
Original Assignee
イーグル・テクノロジー,エルエルシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーグル・テクノロジー,エルエルシー filed Critical イーグル・テクノロジー,エルエルシー
Publication of JP2020171012A publication Critical patent/JP2020171012A/ja
Publication of JP2020171012A5 publication Critical patent/JP2020171012A5/ja
Application granted granted Critical
Publication of JP7149307B2 publication Critical patent/JP7149307B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/08Systems for determining direction or position line
    • G01S1/20Systems for determining direction or position line using a comparison of transit time of synchronised signals transmitted from non-directional antennas or antenna systems spaced apart, i.e. path-difference systems
    • G01S1/24Systems for determining direction or position line using a comparison of transit time of synchronised signals transmitted from non-directional antennas or antenna systems spaced apart, i.e. path-difference systems the synchronised signals being pulses or equivalent modulations on carrier waves and the transit times being compared by measuring the difference in arrival time of a significant part of the modulations, e.g. LORAN systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/08Systems for determining direction or position line
    • G01S1/20Systems for determining direction or position line using a comparison of transit time of synchronised signals transmitted from non-directional antennas or antenna systems spaced apart, i.e. path-difference systems
    • G01S1/24Systems for determining direction or position line using a comparison of transit time of synchronised signals transmitted from non-directional antennas or antenna systems spaced apart, i.e. path-difference systems the synchronised signals being pulses or equivalent modulations on carrier waves and the transit times being compared by measuring the difference in arrival time of a significant part of the modulations, e.g. LORAN systems
    • G01S1/245Details of receivers cooperating therewith, e.g. determining positive zero crossing of third cycle in LORAN-C
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/02Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using radio waves
    • G01S1/04Details
    • G01S1/045Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0221Receivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/19Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Support Of Aerials (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

[0001] 本開示は、通信システムの分野に関し、より具体的には、無線周波数アンテナおよび関連方法に関する。
[0002] たとえば、超低周波(VLF)、低周波(LF)、中周波(MF)の範囲の無線周波数(RF)通信では、信号送信のために比較的大きな地上アンテナタワーが使用される。このようなアンテナ構成には、高さ数百フィートのタワーが含まれる場合がある。タワーは、その底部が接地し、かつ安定のために多数の支線により地面とつながっている。
[0003] 中波アンテナシステムの一例が、Mendenhallの米国特許第6,873,300号に開示されている。本特許は、地面に対して略垂直に延びる導電性放射マストを含むアンテナシステムを開示している。マストは、動作RF周波数での放射用のRFエネルギーを受ける下端と、上端を有する。N本(複数)の導電性ラジアル線が設けられ、各ワイヤには、内端と外端が含まれる。ラジアル線は、内端で電気的に接続され、垂直マストに近接して配置される。ラジアル線は、長さ全体にわたり地表面より高く設置され、垂直マストから半径方向外向きに伸びている。調節可能インダクタなどの同調装置が、動作周波数で共振を起こすようにラジアル線に接続され、そのインピーダンスを調整する。
[0004] 大規模タワーに基づくアンテナが用いられる別の例として、長距離電波航法(LORAN)システムなどの航法システム用の低周波数送信局がある。LORANは、第二次世界大戦中にアメリカで開発された。精度と有用性を向上した後続の実施形態として、LORANーCおよび後続の強化型LORAN(eLORAN)実施形態などが提供された。より具体的には、eLORANは、90kHz以上110kHz以下の周波数帯域で動作する低周波無線航法システムである。低周波数のeLORAN送信は、地表に沿って進む表面波の一種である地表波として伝播が可能である。eLORAN波伝播のもう1つの重要なメカニズムとして、電離層反射または上空波がある。典型的な低周波アンテナでは、タワー自体がモノポールアンテナとして使用される。タワーの高さが、動作波長に起因して600フィート以上になる場合があるため、多くの上部ワイヤがタワー上部に接続され、共振コンデンサを形成する。これらのワイヤは、トップローディングエレメント(TLE)として知られ、円錐体に近似する場合がある。
[0005] eLORANは、100kHzなどの低周波数で動作し得るため、送信アンテナが物理的に大きくなる。それでもeLORANでは、アンテナの電気的サイズは波長に対して小型である。物理特性上、電気的小型アンテナの固定同調帯域幅は制限される場合がある。参考文献『Physical limitations of omnidirectional antennas』ChuL.J.(1948年12月)、応用物理ジャーナル第19巻:1163~1175で説明されているようなChu Limitが1つの理論であり、これを本明細書で参照する。Chuによる帯域幅限界値の方程式は、Q=1/kr3で表し得る。ここで、Qは帯域幅に関連する無次元数であり、kは波数=2π/λであり、rはアンテナを包囲する球状分析体の半径である。次に、小型アンテナの3dB帯域幅(パーセント)は、200/Qに等しい。Chu Limitを克服するために、フィードバックを伴う「能動負荷インダクタ」を用いる試みがなされているが、このような「能動負荷インダクタ」には半導体装置を必要とし、克服には効率や利得の点で大きな打撃を与える。アンテナの放射帯域幅は、立ち上がり時間が早く急峻なeLORANパルスを送信できるという点で、eLORANにとって非常に重要な問題である。
[0006] アンテナ構造のサイズが波長に対して小さい場合、効率と実現利得は小さくなり得る。半径λ/2πの球体に納まるアンテナは、電気的に小型であると定義され、その指向性は0dBi以上1.76dBi以下でなければならない。効率が100の場合、実現利得は0dBi以上1.76dBi以下でなければならない。ほとんどの電気的小型アンテナは環状体放射パターン形状を有するが、本出願の譲受人に譲渡されたParscheの米国特許第8,164,529号で提供される略球状パターンのような例外もあり得る。
[0007] もちろん、最も小型のアンテナの場合、材料が少なくなるため、実現利得は0dBi以上1.76dBi以下よりもはるかに低くなる。天然の室温絶縁体は、今日の導体よりも優れている。つまり、金属や銅でさえ究極的には実用的小型アンテナの効率に対して根本的な制約となる。超伝導体でさえ解決策とはならない。なぜならアンテナRF電流が、RF電流を表面に放出する磁場を発生させるか、電流を完全に遮断するためである。
[0008] 全地球測位システム(GPS)などの衛星系航法システムの台頭に伴い、eLORANなどの地上系航法システムへの投資またはその開発は、最近までほとんどされてこなかった。衛星航法システムの予備として、このようなシステムへの関心が新たに高まっている。特に、低周波数を用いるeLORAN信号は、比較的高い周波数を用いるGPS信号に比べて電波妨害やスプーフィングの影響を受けにくいためである。したがって、特定の用途において、eLORANアンテナシステムのさらなる開発が望ましい場合がある。
[0009] 上述のように、eLORANシステムの動作周波数と、陸上車両および船舶への一般的な展開を考えると、eLORANアンテナの設計には固有の設計問題が存在する可能性がある。特に、eLORANアンテナの移動用途を考慮すると、移動アンテナは小型で耐久性を備え、かつ共振周波数が安定している必要がある。ところが、eLORANアンテナはその小型さ故に、これらの低周波信号の受信機として本質的に非効率となる。
[0010] 概して、LORAN装置は、ハウジングと、前記ハウジングに含まれる電気的に短いLORANアンテナと、を備えてよい。前記LORAN装置は、前記ハウジングに含まれ、前記電気的に短いLORANアンテナに接続されるLORAN受信機と、前記電気的に短いLORANアンテナが、強制的にLORAN受信信号と共振状態になるように前記電気的に短いLORANアンテナに接続され少なくとも1つのRF結晶共振器と、を有してよい。
[0011] 特に、前記少なくとも1つのRF結晶共振器は、少なくとも1つの水晶振動子を備えてよい。前記電気的に短いLORANアンテナは、電気的に浮遊するアンテナ素子を備えてよい。
[0012] いくつかの実施形態では、前記電気的に短いLORANアンテナは、第1アンテナ素子および第2アンテナ素子を有するダイポールアンテナをさらに備えてもよい。前記第1アンテナ素子は電気的に浮遊してよく、前記第2アンテナ素子は接地板の特性を有してもよい。さらに、前記少なくとも1つのRF結晶共振器は、前記第1アンテナ素子および前記第2アンテナ素子のうち一方と直列に接続される第1結晶共振器と、前記第1アンテナ素子および前記第2アンテナ素子と並列に接続される第2結晶共振器と、を備えてよい。
[0013] 例えば、前記少なくとも1つのRF結晶共振器は、0.25ヘンリー以上0.75ヘンリー以下の範囲のインダクタンスを提供してよい。前記LORAN受信機は、RFアンプと、前記RFアンプに接続されるLORAN受信機電子部品とを備えてよい。前記LORAN装置は、前記ハウジングに含まれ、前記LORAN受信機に接続されるディスプレイをさらに備えてよい。さらに、いくつかの実施形態では、前記LORAN装置は、eLORAN装置を備える。
[0014] 別の態様は、LORAN装置を製造するための方法を対象とする。前記方法は、電気的に短いLORANアンテナをハウジング上に実装することと、LORAN受信機を前記ハウジング内に実装し、前記電気的に短いLORANアンテナに接続することと、少なくとも1つのRF結晶共振器を、前記電気的に短いLORANアンテナが強制的にLORAN受信信号と共振状態になるように、前記電気的に短いLORANアンテナに接続することと、を含んでよい。
本開示に係るLORAN通信システムの概略図である。 本開示に係るLORAN装置の概略図である。 本開示の第1実施形態に係るLORAN装置の回路図である。 本開示の第2実施形態に係るLORAN装置の回路図である。 本開示の第3実施形態に係るLORAN装置の回路図である。 図5のLORAN装置における利得の図である。 図4のLORAN装置における電圧定在波比(VSWR)の図である。 図4のLORAN装置における掃引利得応答の図である。 本開示に係るLORAN装置を製造するための方法のフローチャートである。
[0024] 本発明のいくつかの実施形態が示されている添付図面を参照しながら、以下で本開示を詳説する。しかしながら、本開示は、多くの異なる形態で実現されてもよく、本明細書に記載される実施形態に限定されると解釈されるべきではない。むしろ、これらの実施形態は、本開示が詳細かつ完全な形で、また本開示の範囲を当業者に完全に伝えるように提供されている。全体を通して、同じ番号は同じ要素を指し、100番台の参照番号は、代替の実施形態における同様の要素を示すために使用される。
[0025] まず図1および図2を参照して、本開示に係るLORAN通信システム20について説明する。LORAN通信システム20は例示的に、複数のLORAN送信局21a~21cを含む。理解されるように、複数のLORAN送信局21a~21cは、それぞれ複数のLORANパルスを送信するように構成されている。LORAN通信システム20は、複数のLORAN通信規格、例えば、eLORAN、LORAN-A、LORAN-B、およびLORANーCのうちの1つまたは複数を実装できる。
[0026] LORAN通信システム20は例示的に、複数のLORANパルスを受信するように構成されたLORAN装置22を含み、前記複数のLORANパルスを利用して前記LORAN装置の位置を判定する。特に、当業者によって理解されるように、LORAN装置22は、パルス時間間隔を測定して、前記LORAN装置22の緯度および経度の位置を判定するように構成される。いくつかの実施形態では、前記LORAN装置22は、受信専用装置である。図面上の明確性のため、LORAN装置22は1台だけ示されているが、LORAN通信システム20において、本明細書に開示される教示を、全てでないにしろ、1台以上のLORAN装置に適用してもよいことが理解されよう。
[0027] LORAN装置22は例示的に、ハウジング23と、前記ハウジングに含まれる電気的に短いLORANアンテナ24と、を含む。理解されるように、LORAN通信が低周波数であるという性質上、特にLORANパルスが複数である場合、アンテナの共振アンテナ長が非常に長くなる。LORAN装置22では、電気的に短いLORANアンテナ24のサイズと長さは、それ自体の自己共振に必要な長さをはるかに下回っている。たとえば、100kHzの周波数で共振する半波ダイポール受信アンテナは、長さが約1500メートルで、1/4波モノポールは、高さが約750メートルである。
[0028] いくつかの実施形態では、電気的に短いロランアンテナ24は、モノポールアンテナを備える(図1~図2)。他の実施形態では、電気的に短いLORANアンテナ24は、ダイポールアンテナを備えてよい(図3~図5)。電気的に短いLORANアンテナ24は、ホイップアンテナ、またはパッチアンテナを備えてもよい。
[0029] 図示の実施形態では、電気的に短いLORANアンテナ24は、電気的に浮遊するアンテナ素子を備える。理解されるように、電気的に短いLORANアンテナ24は、周囲の部品から電気的に絶縁されている。
[0030] より具体的には、電気的に浮遊する/周囲から絶縁されたアンテナ素子は、LORAN装置22のハウジング23に含まれて(たとえば、はめ込まれて)おり、このLORAN装置22は、例示的な移動式携帯装置の形状因子を有している。さらに、電気的に浮遊するアンテナ素子は、ハウジング23の最上端に沿って搭載される。もちろん、他の実施形態では、LORAN装置22は、たとえば、携帯型電子機器(PED)、車両プラットフォームなどの電気的に短いアンテナを必要とする他の形状因子を有し得る。
[0031] LORAN装置22は例示的に、ハウジング23に含まれ、電気的に短いLORANアンテナ24に接続されるLORAN受信機25と、電気的に短いLORANアンテナが強制的にLORAN受信信号(すなわち、1以上のLORANパルス)と共振状態になるように、電気的に短いLORANアンテナに接続されるRF結晶共振器26とを含む。いくつかの実施形態では、RF結晶共振器26は、任意の圧電装置と置き換えることができる。
[0032] RF結晶共振器26は、電気的に短いLORANアンテナ24を強制的にLORAN周波数に共振させるために、安定した値の負荷インダクタ(誘導性リアクタンスを提供)として作用するように構成されている。いくつかの実施形態では、RF結晶共振器26は、屈曲モード水晶などの水晶振動子を含み得る。例えば、RF結晶共振器26は、0.25ヘンリー以上0.75ヘンリー以下の範囲のインダクタンスを提供してもよい。一般的な手法では、そのような高い値のインダクタンスをコイルで達成するのは難しい場合がある。
[0033] また、LORAN受信機25は例示的に、RFアンプ27と、前記RFアンプに接続されるLORAN受信機電子部品30とを含む。LORAN装置22は、前記ハウジング23に含まれ、前記LORAN受信機25に接続されるディスプレイ31をさらに含む。いくつかの実施形態では、前記LORAN装置22の位置は、前記ディスプレイ31上に提示されてもよい。
[0034] LORAN装置22は例示的に、前記LORAN受信機電子部品30および前記ディスプレイ31に接続される電源32を備える。例えば、前記電源32は、バッテリー電源を備えてよい。
[0035] 次に、図9および図9内のフローチャート90を簡単に参照し、LORAN装置22の製造方法を説明する。(ブロック91)。前記方法は、電気的に短いLORANアンテナ24をハウジング23上に実装すること(ブロック93)と、LORAN受信機25を前記ハウジング内に実装し、前記電気的に短いLORANアンテナに接続すること(ブロック95)と、RF結晶共振器26を、前記電気的に短いLORANアンテナが強制的にLORAN受信信号と共振状態になるように、前記電気的に短いLORANアンテナに接続することと、を含む。(ブロック97および99)。
[0036] ここでさらに図3を参照し、LORAN装置122の別の実施形態について次に説明する。本実施形態のLORAN装置122では、図1および図2に関してすでに上記で説明した要素は100番台となり、ここでこれ以上説明する必要はないものとする。本実施形態が先の実施形態と異なる点は、本LORAN装置122が、第1アンテナ素子124aおよび第2アンテナ素子124bを有するダイポールアンテナを備える電気的に短いLORANアンテナを含むことである。LORAN装置122は例示的に、RF結晶共振器126およびLORAN受信機125との間に接続される変圧器133を備える。前記変圧器133は、関連受信機および同時にRF結晶共振器126のためにアンテナシステムの抵抗値を効率的な値にする一助を担い、アンテナの導電性構造体を強制的に共振させる。
[0037] ここでさらに図4を参照し、LORAN装置222の別の実施形態について次に説明する。本実施形態のLORAN装置222では、図1および図2に関してすでに上記で説明した要素は200番台となり、ここでこれ以上説明する必要はないものとする。本実施形態が先の実施形態と異なる点は、本LORAN装置222が、第1アンテナ素子224aおよび第2アンテナ素子224bを有するダイポールアンテナを備える、電気的に短いLORANアンテナを含むことである。第1アンテナ素子224aは電気的に浮遊している。破線で示されるように、第2アンテナ素子224bは、接地板の特性を有してもよく、設基準電圧237(例えば、図示されたシャーシグランド)に接続されている。あるいは、第2アンテナ素子224bは、LORAN受信機225に接続される。
[0038] LORAN装置222は例示的に、第1アンテナ素子224aと直列に接続された第1結晶共振器226と、前記第1結晶共振器と並列に接続される第1可変コンデンサ234と、を備える。LORAN装置222は、第1アンテナ素子224aおよび第2アンテナ素子224bと並列に接続された第2結晶共振器235と、前記第2結晶共振器と並列に接続される第2可変コンデンサ236と、を含む。
[0039] 第1可変コンデンサ234および第2可変コンデンサ236は、第1結晶共振器226および第2結晶共振器235とそれぞれ同調し、インダクタンスを調節する。これにより、第1結晶共振器226および第2結晶共振器235の温度ドリフトへの対処が期待される。第2結晶共振器235を追加することにより、LORAN装置222は、アンテナ抵抗を50オーム近くの値まで調整することが可能で、これはRF回路では一般的である。
[0040] いくつかの実施形態では、第1結晶共振器226と第2結晶共振器235は、同一である。他の実施形態では、第1結晶共振器226と第2結晶共振器235は異なる。また、第1可変コンデンサ234と第2可変コンデンサ236の静電容量の比率が、受信経路の抵抗となる(たとえば、50オーム)。また、第1可変コンデンサ234と第2可変コンデンサ236の静電容量の合計が、アンテナ周波数となる。
[0041] ここでさらに図5および図6を参照して、LORAN装置322の別の実施形態を説明する。本実施形態のLORAN装置322では、図1および図2に関してすでに上記で説明した要素は300番台となり、ここでこれ以上説明する必要はないものとする。本実施形態が先の実施形態と異なる点は、本LORAN装置322が、第1アンテナ素子324aおよび第2アンテナ素子324bを有するダイポールアンテナを備える電気的に短いLORANアンテナを含むことである。第1アンテナ素子324aは電気的に浮遊しており、第2アンテナ素子324bはLORAN受信機325に接続されている。
[0042] LORAN装置322は例示的に、第1アンテナ素子324aと直列に接続された第1結晶共振器326と、第1結晶共振器と並列に接続される第1コンデンサ334と、を備える。LORAN装置322は、第1アンテナ素子324aおよび第2アンテナ素子324bと並列に結合された第2結晶共振器335と、第2結晶共振器と並列に結合された第2コンデンサ336と、を含む。
[0043] LORAN装置322は例示的に、第1アンテナ素子324aと直列に接続された第3結晶共振器340と、第3結晶共振器と並列に接続される第3コンデンサ341と、を備える。LORAN装置322は、第1アンテナ素子324aおよび第2アンテナ素子324bと並列に接続される第4結晶共振器342と、第4結晶共振器と並列に接続された第4コンデンサ343と、を含む。
[0044] 言い換えれば、このLORAN装置322は、指定されたリップル振幅に対する制御された周波数応答を可能にするために、結晶共振器の格子回路網を採用している。図表60は、LORAN装置322の利得特性を図示している。利得特性には、4次チェビシェフ周波数応答が含まれる。いくつかの実施形態では、LORAN装置322は、図示された4つの結晶共振器326、335、340、342より多くの結晶共振器を備えてよい。有益なことに、より多くの結晶共振器含めることで、フィルター理論で知られている通り、より高効率かつ広域の帯域幅を得られる可能性がある。
[0045] ここで図7および図8を参照し、図表61および62は、それぞれLORAN装置222の例示的実装例におけるVSWRおよび掃引利得応答を示している。本シミュレーションでは、第1アンテナ素子224aと第2アンテナ素子224bは、それぞれ長さ10インチの18ゲージ(米国ワイヤゲージ規格)導電体ワイヤで構成されている。第1可変コンデンサ234と第2可変コンデンサ236の容量値はそれぞれ7pF以上40pF以下である。第1結晶共振器226と第2結晶共振器235はそれぞれ、69.545MHzの共振器を備えている。明らかなように、本シミュレーションは1.9/1VSWRで23.287288MHzの共振を示している。図表62は、23.290348MHzでの共振(つまり、ピーク利得)を示す。
[0046] 電気的に短いLORANアンテナ24の放射パターンは、半波ダイポールによって提供されるものと同様の、正弦関数(3D環状体形状)である。垂直に保持されたeLORAN受信機の場合、偏光は垂直である。3dBのビーム幅は約85度である。実現利得は、電気的に短いLORANアンテナ24要素サイズと、RF結晶共振器26のQとの関数である。放射効率ηは、η=r/(r+r)で求められる。ここで、r=アンテナの放射抵抗であり、rは水晶振動子の等価直列抵抗または損失抵抗である。短いLORANアンテナ24のアンテナ金属導体の損失は、通常無視できる。小型アンテナの指向性は基本的に0以上1.5以下であり、より一般的には1.5であるため、実現利得Gは、G=10LOG10(1.5η)dBi.3となる。
[0047] eLORANで典型的な100kHzなどの低周波数では、電離層やその他の自然発生源からの電光放射や電子ジャイロ共鳴により、大気ノイズレベルが高くなる。同様に、近隣の電力線導体およびスイッチング電源からの人為的干渉が存在する可能性もある。この現実に対して、世界的なノイズレベルおよび干渉レベルが、スイスのジュネーブにある国際電気通信連合の出版物『Recommendation ITU-R P.372-13(09-2016)Radio Noise』で説明されている。本書の図3「F Versus Frequency」では、これらの大気ノイズおよび人為的干渉レベルが、室温における100kHz受信アンテナでの熱ノイズに対して、75デシベルから140デシベル大きい振幅で変動することを示している。電気的小型アンテナの指向性Dが小さいことを考慮すると(0dBi<D<1.76dBi)、本レポートは、電気的小型アンテナが100kHzでアンテナの熱雑音を克服するために必要な実現利得が、季節および地球上の位置によって、-73dBiから-140dBiの間で変化することを示している。電気的に短いLORANアンテナ24試作品の試験では、すべての試作品において、アメリカの冬の人工干渉のない遠隔地のテスト環境で、100kHz動作周波数で十分に大気ノイズを解決した。言い換えれば、電気的に短いLORANアンテナ24は、サイズに対して非常に優れた感度と利得があるので、意図されるeLORANの目的としてこれ以上の感度が必要とされないところまで十分に感度が高い。
[0048] 次に動作原理について説明する。アンテナ24は波長に対して小型であるため、アンテナ24要素として多くの形状が考えられる。これは、ほとんどの場合、アンテナの放射パターンがアンテナ形状にあまり関係がないことを意味する。アンテナ24の放射パターンは環状となるが、放射パターンが球状に近似するようアンテナ24を並べた形状も考えられる。閉回路を有さないダイポール、モノポール、ウィップ、パッチ、またはその他のアンテナ24要素が考えられるため、電気的に小型アンテナ24要素をRF動作周波数に強制するために必要な負荷リアクタンスは、誘導負荷リアクタンスである。たとえば水晶振動子26などのRF結晶共振器26の動作周波数は、RF結晶共振器26回路インピーダンス曲線の誘導リアクタンス領域にあることが有利であり、この領域は一般的に、水晶の直列および並列共振周波数の間にあり得る。したがって、電気的に短いモノポールアンテナ24の誘導負荷の場合、RF受信周波数はRF結晶共振器24の並列共振周波数のすぐ下であってよい。したがって、RF結晶共振器26とRF受信周波数の共振周波数は、わずかに異なる可能性がある。
[0049] アンテナ24の効率および実現利得について。ダイポール、モノポール、ホイップ、またはパッチアンテナ24素子など、開回路を有する先行技術による電気的小型アンテナ素子は、コイルインダクタを使用することによって頻繁に共振状態に装荷される。ただし、水晶のQ値は100,000に達する可能性があり、銅コイルインダクタのQ値は、たとえば100であってよいため、水晶振動子26の等価直列抵抗または損失抵抗は、銅コイル負荷インダクタの1000分の1になり得る。よって、RF結晶共振器26は、電気的小型アンテナの装荷および強制共振を、従来技術で利用可能な銅コイルよりも、効率的な形で提供する。RF結晶共振器は、銅コイルよりもはるかに小さいことがある。水晶の安定性を考えると、対応するアンテナ同調の安定性は非常に優れている。
[0050] 典型的な手法では、小型ダイポールには、共振を強制するため負荷インダクタが必要となる場合がある。本手法の潜在的な欠点は、負荷インダクタの金属材料によって損失が大きくなることである。さらに、これらの手法によると、利得結果が低くなり、受信機の反応が鈍くなり、および/または製品サイズが過剰になる可能性がある。
[0051] 本明細書に開示されたLORAN装置22、122、222、および322は、LORAN装置を小型形状因子の携帯機器に配置するための手法を提供する。言い換えれば、LORANアンテナが必ず電気的に短い適用条件である。さらに、LORAN装置22、122、222、および322は、LORANアンテナ同調と、より強力な受信性能とを提供することができる。特に、結晶共振器はLORAN信号のインダクタとして用いられ、通常の手法では大型のインダクタを代替することができる。たとえば、必要なインダクタンスのコイルインダクタは、値が1/2ヘンリーまでの範囲であり、費用と大きさの観点から望ましくない。
[0052] 通信システムに関連するその他の特徴は、2018年5月16日に出願された同時係属中の米国特許出願第15/980,857号に開示されており、その内容全体を参照により本明細書に援用する。
[0053] 本開示の多くの修正および他の実施形態は、当業者であれば、前述の説明および関連する図面に提示された教示を利用して想到し得るものである。したがって、本開示は、開示された特定の実施形態に限定されるべきではなく、修正および実施形態は、特許請求の範囲内に含まれるということが意図されることが理解される。

Claims (17)

  1. 長距離電波航法(LORAN)装置であって、
    ハウジングと、
    前記ハウジングに含まれ、第1アンテナ素子および第2アンテナ素子を有するダイポールを備える電気的に短いLORANアンテナと、
    前記ハウジングに含まれ、前記電気的に短いLORANアンテナに接続される、LORAN受信機と、
    前記電気的に短いLORANアンテナが強制的にLORAN受信信号と共振状態になるための、前記第1アンテナ素子および前記第2アンテナ素子のうち一方と直列に接続される第1無線周波数(RF)結晶共振器、並びに前記第1アンテナ素子および前記第2アンテナ素子と並列に接続される第2RF結晶共振器と、
    を備える、LORAN装置。
  2. 前記第1RF結晶共振器および前記第2RF結晶共振器のうち少なくとも1つが水晶振動子を備える、請求項1に記載のLORAN装置。
  3. 前記電気的に短いLORANアンテナが、電気的に浮遊するアンテナ素子を備える、請求項1に記載のLORAN装置。
  4. 前記第1アンテナ素子が電気的に浮遊しており、前記第2アンテナ素子が接地板の特性を有する、請求項1に記載のLORAN装置。
  5. 前記第1RF結晶共振器および前記第2RF結晶共振器のうち少なくとも1つが、0.25ヘンリー以上0.75ヘンリー以下の範囲のインダクタンスを提供する、請求項1に記載のLORAN装置。
  6. 前記LORAN受信機が、RFアンプと、
    前記RFアンプに接続されるLORAN受信機電子部品と、
    を備える、請求項1に記載のLORAN装置。
  7. 前記ハウジングに含まれ、前記LORAN受信機に接続されるディスプレイをさらに備える、請求項1に記載のLORAN装置。
  8. 前記LORAN装置が、強化型LORAN(eLORAN)装置を備える、請求項1に記載のLORAN装置。
  9. 長距離電波航法(LORAN)装置であって、
    ハウジングと、
    前記ハウジングに含まれ、電気的に浮遊する第1アンテナ素子、および接地板の特性を有する第2アンテナ素子を備える、電気的に短いLORANアンテナと、
    前記ハウジングに含まれるLORAN受信機と、
    前記第1アンテナ素子および前記LORAN受信機の間に直列に接続される第1無線周波数(RF)水晶振動子と、
    前記第1アンテナ素子および前記第2アンテナ素子と並列に接続される第2RF水晶振動子と、
    を備える、LORAN装置。
  10. 前記第1RF水晶振動子および前記第2RF水晶振動子のうち少なくとも1つが、0.25ヘンリー以上0.75ヘンリー以下の範囲のインダクタンスを提供する、請求項9に記載のLORAN装置。
  11. 前記LORAN受信機が、
    RFアンプと、
    前記RFアンプに接続されるLORAN受信機電子部品と
    を備え、
    前記ハウジングに含まれ、前記LORAN受信機に接続されるディスプレイをさらに備える、請求項9に記載のLORAN装置。
  12. 前記LORAN装置が、強化型LORAN(eLORAN)装置を備える、請求項9に記載のLORAN装置。
  13. 長距離電波航法(LORAN)装置を製造するための方法であって、
    電気的に短いLORANアンテナをハウジングに取付け、第1アンテナ素子および第2アンテナ素子を有するダイポールを具備させるステップと、
    LORAN受信機を前記ハウジングに取付け、前記電気的に短いLORANアンテナに接続させるステップと、
    前記電気的に短いLORANアンテナが強制的にLORAN受信信号と共振状態になるように、前記第1アンテナ素子および前記第2アンテナ素子のうち一方と直列になる第1無線周波数(RF)結晶共振器と、前記第1アンテナ素子および前記第2アンテナ素子と並列になる第2RF結晶共振器とを接続するステップと、
    を含む、方法。
  14. 前記第1RF結晶共振器および前記第2RF結晶共振器のうち少なくとも1つが水晶振動子を備える、請求項13に記載の方法。
  15. 前記電気的に短いLORANアンテナが、電気的に浮遊するアンテナ素子を備える、請求項13に記載の方法。
  16. 前記第1アンテナ素子が電気的に浮遊しており、前記第2アンテナ素子が接地板の特性を有する、請求項13に記載の方法。
  17. 前記LORAN装置が、強化型LORAN(eLORAN)装置を備える、請求項13に記載の方法。
JP2020067606A 2019-04-03 2020-04-03 電気的に短いアンテナおよび結晶共振器を有するloran装置および関連方法 Active JP7149307B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/374,069 2019-04-03
US16/374,069 US11327141B2 (en) 2019-04-03 2019-04-03 Loran device with electrically short antenna and crystal resonator and related methods

Publications (3)

Publication Number Publication Date
JP2020171012A JP2020171012A (ja) 2020-10-15
JP2020171012A5 JP2020171012A5 (ja) 2022-06-22
JP7149307B2 true JP7149307B2 (ja) 2022-10-06

Family

ID=70154282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020067606A Active JP7149307B2 (ja) 2019-04-03 2020-04-03 電気的に短いアンテナおよび結晶共振器を有するloran装置および関連方法

Country Status (5)

Country Link
US (1) US11327141B2 (ja)
EP (1) EP3719527B1 (ja)
JP (1) JP7149307B2 (ja)
KR (1) KR102460357B1 (ja)
CA (1) CA3077670C (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102424784B1 (ko) * 2021-09-06 2022-07-25 (주)효원엔지니어링 eLORAN 시스템에서 수신 시간 지연을 최소화하는 eLORAN 수신기 시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070286028A1 (en) 2006-06-08 2007-12-13 David Meltzer Radio Watch
US20160191014A1 (en) 2014-12-24 2016-06-30 Rf Micro Devices, Inc. Simplified acoustic rf resonator parallel capacitance compensation
US20180198211A1 (en) 2016-06-30 2018-07-12 Hrl Laboratories, Llc Antenna Loaded with Electromechanical Resonators
US20180226720A1 (en) 2016-06-30 2018-08-09 Hrl Laboratories, Llc Antenna dynamically matched with electromechanical resonators

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2133644A (en) 1928-01-09 1938-10-18 George W Pierce Electrical system
US2812427A (en) 1951-06-27 1957-11-05 Alexander F Passive radio communication system
FR1449055A (fr) 1965-07-02 1966-08-12 Csf Aérien de réception haute fréquence à cadre à ferrite
US3947849A (en) 1974-06-20 1976-03-30 The Johns Hopkins University Loran receiver-navigator
US4019183A (en) 1975-09-17 1977-04-19 Kayot, Inc. Apparatus for Loran simulation
US4166275A (en) 1977-08-18 1979-08-28 Digital Marine Electronics Corporation Loran receiver system
USRE31962E (en) 1977-10-17 1985-07-30 Sanders Associates, Inc. LORAN-C navigation apparatus
US4318105A (en) 1977-10-17 1982-03-02 Sanders Associates, Inc. Loran-C navigation apparatus
US4134117A (en) 1977-10-19 1979-01-09 Texas Instruments Incorporated Loran C receiver
US4300139A (en) 1978-08-28 1981-11-10 Sanders Associates, Inc. Loran-C navigation apparatus
US4325067A (en) 1978-08-28 1982-04-13 Sanders Associates, Inc. Method and apparatus for removing noise in a LORAN-C navigation receiver
US4268830A (en) 1978-08-28 1981-05-19 Sanders Associates, Inc. Self calibration of a LORAN-C navigation receiver
USRE31254E (en) 1978-08-28 1983-05-24 Sanders Associates, Inc. Self calibration of a LORAN-C navigation receiver
JPS59226883A (ja) 1983-06-07 1984-12-20 Nissan Motor Co Ltd ロランc受信機
US4631543A (en) 1983-09-28 1986-12-23 Sanders Associates, Inc. Method and apparatus for reducing the effects of impulse noise in Loran-C receivers
US4804964A (en) 1985-08-09 1989-02-14 Nissan Motor Company, Limited Loran-C signal receiving apparatus
US4814771A (en) 1987-09-28 1989-03-21 Bahr Technologies, Inc. Apparatus and method for receiving and proessing Loran signals
US5099249A (en) * 1987-10-13 1992-03-24 Seavey Engineering Associates, Inc. Microstrip antenna for vehicular satellite communications
US4888594A (en) * 1989-04-03 1989-12-19 Allied-Signal Inc. Loran-C receiver module
US5032845A (en) 1990-02-08 1991-07-16 D.G.R., Inc. Vehicle locating system with Loran-C
US4999638A (en) 1990-03-06 1991-03-12 Locus, Inc. Apparatus and method for synchronizing the signal averaging clock of a Loran C. receiver to the clock of a Loran C. transmitter
US5220333A (en) 1992-07-02 1993-06-15 Austron Inc. Method and apparatus for determining universal coordinated time from Loran-C transmissions
US6873300B2 (en) 2003-04-04 2005-03-29 Harris Corporation Antenna system utilizing elevated, resonant, radial wires
US7788979B2 (en) 2006-06-30 2010-09-07 University Of Maine System Board Of Trustees Monolithic antenna excited acoustic transduction device
US8026860B2 (en) * 2007-09-18 2011-09-27 The Board Of Trustees Of The University Of Illinois Electrically small antenna devices, systems, apparatus, and methods
US20090152364A1 (en) 2007-12-12 2009-06-18 Spivey Technologies, Llc Rfid card with piezoelectric element
CN101971493A (zh) 2007-12-20 2011-02-09 D·辛哈 微天线设备
US8164529B2 (en) 2008-10-20 2012-04-24 Harris Corporation Loop antenna including impedance tuning gap and associated methods
US8659480B2 (en) 2010-05-05 2014-02-25 The Boeing Company Apparatus and associated method for providing a frequency configurable antenna employing a photonic crystal
TWI461789B (zh) 2011-05-05 2014-11-21 Young Lighting Technology Corp 筆記型電腦及液晶顯示模組
US8724214B2 (en) 2012-09-07 2014-05-13 Voxtel, Inc. Broadband optical upconversion by energy transfer from dye antenna to upconverting crystal
US9520638B2 (en) 2013-01-15 2016-12-13 Fitbit, Inc. Hybrid radio frequency / inductive loop antenna
US9196964B2 (en) 2014-03-05 2015-11-24 Fitbit, Inc. Hybrid piezoelectric device / radio frequency antenna
US9553364B2 (en) 2015-06-15 2017-01-24 The Boeing Company Liquid crystal filled antenna assembly, system, and method
US20170160370A1 (en) * 2015-12-02 2017-06-08 Honeywell International Inc. Low frequency/medium frequency (lf/mf) multi mode antenna/receiver
US20170192102A1 (en) * 2016-01-04 2017-07-06 Qualcomm Incorporated eLORAN POSITIONING VIA CROWDSOURCING

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070286028A1 (en) 2006-06-08 2007-12-13 David Meltzer Radio Watch
US20160191014A1 (en) 2014-12-24 2016-06-30 Rf Micro Devices, Inc. Simplified acoustic rf resonator parallel capacitance compensation
US20180198211A1 (en) 2016-06-30 2018-07-12 Hrl Laboratories, Llc Antenna Loaded with Electromechanical Resonators
US20180226720A1 (en) 2016-06-30 2018-08-09 Hrl Laboratories, Llc Antenna dynamically matched with electromechanical resonators

Also Published As

Publication number Publication date
CA3077670A1 (en) 2020-10-03
EP3719527B1 (en) 2022-07-13
US11327141B2 (en) 2022-05-10
EP3719527A1 (en) 2020-10-07
US20200319286A1 (en) 2020-10-08
CA3077670C (en) 2022-09-13
KR102460357B1 (ko) 2022-10-27
KR20200118378A (ko) 2020-10-15
JP2020171012A (ja) 2020-10-15

Similar Documents

Publication Publication Date Title
KR101569979B1 (ko) 사이드­바이­사이드 수동 루프 안테나를 포함하는 무선 통신 디바이스 및 관련된 방법
US10483631B2 (en) Decoupled concentric helix antenna
US10424836B2 (en) Horizon nulling helix antenna
US20060290581A1 (en) Rotational polarization antenna and associated methods
Baker et al. Low-profile multifrequency HF antenna design for coastal radar applications
JP7149307B2 (ja) 電気的に短いアンテナおよび結晶共振器を有するloran装置および関連方法
US11417962B2 (en) Tower based antenna including multiple sets of elongate antenna elements and related methods
JP7432440B2 (ja) 強磁性体および巻線を備えるeloran受信機およびアンテナ、ならびに関連方法
US10823812B2 (en) eLORAN receiver with ferromagnetic body and related antennas and methods
Siwiak et al. Tuning electrically short antennas for field operation
Rohner Antenna basics
US11626670B2 (en) eLORAN receiver with tuned antenna and related methods
Sharma et al. Design of Quadrifilar Helical Antenna For S-Band Applications
Choi et al. A Miniature High-Gain Low-VHF Antenna
Al Saraereh et al. Monopole Antenna
Adebanjo Dept. of Electrical Engineering, Nnamdi Azikiwe University, Awka ca. adelokun@ unizik. edu. ng
Handbook et al. A WORLD HISTORY OF ELECTRICALLY SMALL ANTENNAS

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220613

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220613

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220926

R150 Certificate of patent or registration of utility model

Ref document number: 7149307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150