JP7148795B2 - Expandable acrylic resin particles, expanded acrylic resin particles, expanded acrylic resin particles - Google Patents
Expandable acrylic resin particles, expanded acrylic resin particles, expanded acrylic resin particles Download PDFInfo
- Publication number
- JP7148795B2 JP7148795B2 JP2018220591A JP2018220591A JP7148795B2 JP 7148795 B2 JP7148795 B2 JP 7148795B2 JP 2018220591 A JP2018220591 A JP 2018220591A JP 2018220591 A JP2018220591 A JP 2018220591A JP 7148795 B2 JP7148795 B2 JP 7148795B2
- Authority
- JP
- Japan
- Prior art keywords
- acrylic resin
- expanded
- expandable
- resin particles
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Molding Of Porous Articles (AREA)
Description
本発明は、物理発泡剤が含浸された発泡性アクリル系樹脂粒子、この発泡性粒子を発泡させてなるアクリル系樹脂発泡粒子及びこの発泡粒子を型内成形してなるアクリル系樹脂発泡粒子成形体に関する。 The present invention provides expandable acrylic resin particles impregnated with a physical blowing agent, expanded acrylic resin particles obtained by expanding the expandable particles, and expanded acrylic resin particles formed by molding the expanded particles in a mold. Regarding.
従来より、鋳造用の消失模型として発泡樹脂成形体が用いられている。具体的には、発泡樹脂成形体は、次のような鋳造法に用いられる。まず、所望形状の発泡樹脂成形体が鋳型となる砂中に埋設される。次いで、砂中の発泡樹脂成形体に溶融金属が流し込まれる。このとき、発泡樹脂成形体が熱分解して溶融金属に置き換わる。その後、溶融金属を冷却して凝固させることにより、発泡樹脂成形体の形状と同様の形状を有する金属の鋳物を得ることができる。 Conventionally, foamed resin moldings have been used as disappearance patterns for casting. Specifically, the foamed resin molded article is used in the following casting method. First, a foamed resin molded article having a desired shape is embedded in sand that serves as a mold. Molten metal is then poured into the foamed resin molding in the sand. At this time, the foamed resin molding is thermally decomposed and replaced with molten metal. After that, by cooling and solidifying the molten metal, a metal casting having the same shape as the foamed resin molding can be obtained.
消失模型用の発泡樹脂成形体としては、ポリスチレン系樹脂からなる発泡粒子成形体等が用いられてきた。しかしながら、ポリスチレン系樹脂からなる発泡粒子成形体を用いた場合には、成形体の熱分解時に多量のススが発生するという問題があった。このススは、鋳肌を汚し、鋳物の内部にピンホールを発生させる原因にもなる。ススの発生原因は、ポリスチレン系樹脂が芳香族環を有するためと考えられる。 As a foamed resin molded body for a disappearing model, a foamed particle molded body made of a polystyrene-based resin has been used. However, in the case of using an expanded particle molded article made of a polystyrene resin, there is a problem that a large amount of soot is generated when the molded article is thermally decomposed. This soot stains the casting surface and causes pinholes inside the casting. It is considered that the soot is generated because the polystyrene resin has an aromatic ring.
ススの発生量を低減するため、特許文献1には、芳香族環を有していない(メタ)アクリル酸エステルの重合体からなる発泡成形体を消失模型として用いる技術が開示されている。しかし、特許文献1に記載された重合体は、熱分解速度が比較的高い。そのため、特許文献1の発泡成形体を用いて鋳造する場合、溶融金属を鋳型内に流し込む際に、発泡成形体から生じる熱分解ガスの発生速度が、鋳型内から外部への熱分解ガスの放散速度よりも高くなり、鋳型内の圧力の上昇を招くおそれがある。そして、鋳型内の圧力が過度に上昇すると、溶融金属が鋳型内部に十分に行き渡り難くなるおそれや、溶融金属が鋳型の外へ吹き出すおそれがある。 In order to reduce the amount of soot generated, Patent Document 1 discloses a technique of using, as a disappearance pattern, a foam molded article made of a (meth)acrylic acid ester polymer having no aromatic ring. However, the polymer described in Patent Document 1 has a relatively high thermal decomposition rate. Therefore, when casting using the foam molded article of Patent Document 1, when the molten metal is poured into the mold, the generation rate of the pyrolysis gas generated from the foam molded article is less than the diffusion of the pyrolysis gas from the inside of the mold to the outside. velocity and can lead to pressure build-up in the mold. If the pressure inside the mold rises excessively, there is a risk that the molten metal will not be able to sufficiently spread inside the mold, or that the molten metal will blow out of the mold.
そこで、ススの発生量を低減しつつ、鋳型内の圧力上昇による鋳造性の悪化を回避するため、発泡成形体の基材樹脂として、多環式飽和炭化水素基を有する(メタ)アクリル酸エステル成分を含むアクリル系樹脂を使用する技術が提案されている。 Therefore, in order to reduce the amount of soot generated and to avoid the deterioration of castability due to the pressure increase in the mold, a (meth)acrylic acid ester having a polycyclic saturated hydrocarbon group was used as the base resin for the foam molded product. Techniques using acrylic resins containing components have been proposed.
例えば特許文献2には、メタクリル酸エステル成分とアクリル酸エステル成分とを含有し、その少なくとも一方は、多環式飽和炭化水素基を有する成分を含有するアクリル系樹脂発泡粒子及びこのアクリル系樹脂発泡粒子を型内成形してなるアクリル系樹脂発泡粒子成形体が開示されている。特許文献2の発泡粒子成形体は、特許文献1の発泡成形体に比べて熱分解ガスの発生速度が低いため、鋳型内の圧力上昇による鋳造性の悪化を回避することができる。 For example, Patent Document 2 describes expanded acrylic resin particles containing a methacrylic ester component and an acrylic ester component, at least one of which contains a component having a polycyclic saturated hydrocarbon group, and the expanded acrylic resin particles. An acrylic resin foamed particle molded product obtained by molding particles in a mold is disclosed. Since the foamed bead molded article of Patent Document 2 generates thermal decomposition gas at a lower rate than the foamed molded article of Patent Document 1, it is possible to avoid deterioration of castability due to pressure increase in the mold.
消失模型を用いた鋳造において平滑な鋳肌を有する鋳物を得るためには、表面の平滑性の高い発泡粒子成形体を消失模型として用いることが好ましい。しかし、特許文献2のアクリル系樹脂発泡粒子をスチーム等の加熱媒体により型内成形する際、複雑なキャビティ形状を有する金型を用いる場合等においては、キャビティの部位により発泡粒子の加熱のされ方が異なる場合がある。そのため、成形スチーム圧(以下、単に成形圧力ともいう。)を低くすると、発泡粒子同士が十分に融着していない部分が生じるおそれや、発泡粒子同士の間に隙間が形成され、発泡粒子成形体の平滑性が低下するおそれがあった。 In order to obtain a casting having a smooth casting surface in casting using a disappearance pattern, it is preferable to use an expanded particle molded product with a highly smooth surface as the disappearance pattern. However, in the case of using a mold having a complicated cavity shape when the acrylic resin foamed particles of Patent Document 2 are molded in a mold with a heating medium such as steam, the heating of the foamed particles depends on the part of the cavity. may differ. Therefore, if the molding steam pressure (hereinafter also simply referred to as molding pressure) is lowered, there is a risk that there will be areas where the expanded particles are not sufficiently fused together, or that gaps will be formed between the expanded particles, resulting in poor foaming. There was a risk that the smoothness of the body would decrease.
このように、特許文献2のアクリル系樹脂発泡粒子は、発泡粒子同士を十分に融着させると共に、成形体の平滑性を高めるために型内成形時の成形スチーム圧を比較的高くする必要があり、型内成形における成形性及び成形条件の広さの観点から、未だ改善の余地がある。 As described above, the acrylic resin foamed particles of Patent Document 2 require relatively high molding steam pressure during in-mold molding in order to sufficiently fuse the foamed particles together and to improve the smoothness of the molded product. However, there is still room for improvement from the viewpoint of moldability in in-mold molding and a wide range of molding conditions.
本発明は、かかる背景に鑑みてなされたものであり、熱分解時にススの発生が少なく、熱分解ガスの発生速度を低減することができ、良好な成形体を成形可能な成形圧力の範囲が広く、幅広い成形条件において、成形性に優れたアクリル系樹脂発泡粒子を得ることができる発泡性アクリル系樹脂粒子及びこの発泡粒子を型内成形してなるアクリル系樹脂発泡粒子成形体を提供しようとするものである。 The present invention has been made in view of the above background, and the range of molding pressure that can reduce the generation rate of pyrolysis gas, can reduce the generation rate of pyrolysis gas, and can form a good molded article. An object of the present invention is to provide expandable acrylic resin particles capable of obtaining expanded acrylic resin particles having excellent moldability under a wide range of molding conditions, and to provide an acrylic resin expanded particle molded product obtained by molding the expanded particles in a mold. It is something to do.
本発明の一態様は、アクリル系樹脂と物理発泡剤とを含む発泡性アクリル系樹脂粒子であって、
前記アクリル系樹脂は、
メタクリル酸エステルとアクリル酸エステルとの共重合体であり、
前記アクリル系樹脂中の、メタクリル酸エステル成分(A)とアクリル酸エステル成分(B)との合計100モル%に対する前記メタクリル酸エステル成分(A)のモル比が85~99モル%であり、
前記メタクリル酸エステル成分(A)及び前記アクリル酸エステル成分(B)のうち少なくとも一方が多環式飽和炭化水素基を有する成分を含有し、
前記アクリル系樹脂のガラス転移温度は112~125℃であり、
前記アクリル系樹脂の重量平均分子量は5~11万であり、
前記物理発泡剤は、
炭素数3~6の鎖式飽和炭化水素と炭素数5~7の脂環式飽和炭化水素とを含有し、
前記発泡性アクリル系樹脂粒子中の前記物理発泡剤の含有量が6~10質量%であり、
前記発泡性アクリル系樹脂粒子中の前記脂環式飽和炭化水素の含有量が0.5~1.6質量%である、発泡性アクリル系樹脂粒子にある。
One aspect of the present invention is expandable acrylic resin particles containing an acrylic resin and a physical blowing agent,
The acrylic resin is
It is a copolymer of methacrylic acid ester and acrylic acid ester,
The molar ratio of the methacrylic acid ester component (A) to the total 100 mol% of the methacrylic acid ester component (A) and the acrylic acid ester component (B) in the acrylic resin is 85 to 99 mol%,
At least one of the methacrylic acid ester component (A) and the acrylic acid ester component (B) contains a component having a polycyclic saturated hydrocarbon group,
The acrylic resin has a glass transition temperature of 112 to 125° C.,
The acrylic resin has a weight average molecular weight of 50,000 to 110,000,
The physical foaming agent is
Containing a chain saturated hydrocarbon having 3 to 6 carbon atoms and an alicyclic saturated hydrocarbon having 5 to 7 carbon atoms,
The content of the physical foaming agent in the expandable acrylic resin particles is 6 to 10% by mass,
In the expandable acrylic resin particles, the content of the alicyclic saturated hydrocarbon in the expandable acrylic resin particles is 0.5 to 1.6 % by mass.
本発明の他の態様は、前記の態様の発泡性アクリル系樹脂粒子を発泡させてなるアクリル系樹脂発泡粒子にある。 Another aspect of the present invention resides in expanded acrylic resin particles obtained by expanding the expandable acrylic resin particles of the above aspect.
本発明のさらに他の態様は、前記の態様のアクリル系樹脂発泡粒子を型内成形してなるアクリル系樹脂発泡粒子成形体にある。 According to still another aspect of the present invention, there is provided an acrylic resin foamed particle molded product obtained by in-mold molding the acrylic resin foamed particles of the above aspect.
前記発泡性アクリル系樹脂粒子(以下、適宜「発泡性粒子」という)には、前記特定の組成を有するアクリル系樹脂と、物理発泡剤とが含まれている。これにより、熱分解時にススの発生が少なく、熱分解ガスの発生速度を低減することができるアクリル系樹脂発泡粒子(以下、適宜「発泡粒子」という)を得ることができる。 The expandable acrylic resin particles (hereinafter referred to as "expandable particles" as appropriate) contain the acrylic resin having the specific composition and a physical blowing agent. As a result, it is possible to obtain expanded acrylic resin beads (hereinafter referred to as “expanded beads” as appropriate) that generate less soot during thermal decomposition and can reduce the generation rate of thermal decomposition gas.
また、前記アクリル系樹脂の重量平均分子量は前記特定の範囲内であり、かつ、前記発泡性粒子中の前記脂環式飽和炭化水素の含有量は前記特定の範囲内である。かかる発泡性粒子を発泡させて得られる発泡粒子は、型内成形時の成形スチーム圧を低くした場合にも優れた融着性を有する。それ故、前記発泡粒子は、幅広い成形条件において優れた成形性を有している。 Moreover, the weight average molecular weight of the acrylic resin is within the specific range, and the content of the alicyclic saturated hydrocarbon in the expandable particles is within the specific range. The expanded particles obtained by expanding such expandable particles have excellent fusion bondability even when the molding steam pressure during in-mold molding is reduced. Therefore, the expanded beads have excellent moldability under a wide range of molding conditions.
そして、前記発泡粒子を型内成形して得られるアクリル系樹脂発泡粒子成形体(以下、適宜「発泡粒子成形体」という)は、燃焼や鋳造時のススの発生量を低減するとともに、熱分解ガスの発生速度を遅くすることができる。これらの結果、鋳造性を向上させることができる。また、前記発泡粒子によれば、複雑な形状の発泡粒子成形体を容易に作製することができる。更に、前記発泡粒子によれば、寸法安定性に優れるとともに、発泡粒子成形体表面における間隙や溶融が少なく、平滑性に優れた発泡粒子成形体を得ることができる。それ故、前記発泡粒子成形体は、特に鋳造用の消失模型に好適である。 The acrylic resin foamed bead molded article obtained by in-mold molding of the foamed particles (hereinafter referred to as "expanded bead molded article" as appropriate) reduces the amount of soot generated during combustion and casting, and reduces the amount of soot generated during combustion and casting. Gas generation speed can be slowed down. As a result, castability can be improved. Further, according to the expanded beads, it is possible to easily produce an expanded bead molded article having a complicated shape. Further, the expanded beads can provide an expanded bead molded article having excellent dimensional stability, less voids and less melting on the surface of the expanded bead molded article, and excellent smoothness. Therefore, the foamed particle molded article is particularly suitable for a disappearing model for casting.
次に、前記発泡性粒子、前記発泡粒子及び前記発泡粒子成形体の好ましい実施形態について説明する。なお、本明細書において、「~」を用いてその前後に数値又は物性値を挟んで表現する場合、その前後の値を含むものとして用いることとする。 Next, preferred embodiments of the expandable particles, the expanded particles, and the expanded particle molded product will be described. In this specification, when a numerical value or a physical property value is sandwiched before and after the "~", it is used to include the values before and after it.
発泡性粒子中には、少なくとも、アクリル系樹脂と物理発泡剤とが含まれている。アクリル系樹脂は、メタクリル酸エステルと、アクリル酸エステルとの共重合体である。アクリル系樹脂中には、メタクリル酸エステル成分(A)とアクリル酸エステル成分(B)とが含まれている。 The expandable particles contain at least an acrylic resin and a physical blowing agent. Acrylic resin is a copolymer of methacrylic acid ester and acrylic acid ester. The acrylic resin contains a methacrylate component (A) and an acrylate component (B).
成分(A)としては、例えばメタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル等のメタクリル酸アルキルエステルを使用することができる。成分(A)としては、メタクリル酸エステルのうち1種を単独で使用してもよく、2種以上を併用してもよい。成分(A)としては、これらのメタクリル酸エステルの中でも、メタクリル酸メチルを使用することが好ましい。 As component (A), methacrylic acid alkyl esters such as methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate and 2-ethylhexyl methacrylate can be used. As the component (A), one type of methacrylic acid ester may be used alone, or two or more types may be used in combination. Among these methacrylates, methyl methacrylate is preferably used as component (A).
成分(B)としては、例えばアクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸2-エチルヘキシル等のアクリル酸アルキルエステルを採用することができる。成分(B)としては、アクリル酸エステルのうち1種を単独で使用してもよく、2種以上を併用してもよい。成分(B)としては、これらのアクリル酸エステルの中でも、アクリル酸メチルを使用することが好ましい。 As component (B), alkyl acrylates such as methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate and 2-ethylhexyl acrylate can be used. As the component (B), one type of acrylic acid ester may be used alone, or two or more types may be used in combination. Among these acrylates, it is preferable to use methyl acrylate as the component (B).
前記アクリル系樹脂において、成分(A)と成分(B)との合計100モル%に対する成分(A)のモル比は、上述のごとく85~99モル%である。成分(A)のモル比を前記特定の範囲とすることにより、熱分解ガスの発生速度を低減するとともに、発泡性粒子の発泡性および型内成形時の成形性を向上させることができる。 In the acrylic resin, the molar ratio of component (A) to the total 100 mol % of component (A) and component (B) is 85 to 99 mol % as described above. By setting the molar ratio of the component (A) within the above specific range, it is possible to reduce the generation rate of pyrolysis gas and improve the expandability of the expandable particles and the moldability during in-mold molding.
成分(A)のモル比は98モル%以下であることが好ましく、97モル%以下であることがより好ましい。この場合には、発泡性粒子の発泡性および型内成形時の成形性を向上させる効果を得つつ、熱分解ガスの発生速度をより低減し、鋳造性をより向上させることができる。また、成分(A)のモル比は90モル%以上であることが好ましく、92モル%以上であることがより好ましい。この場合には、熱分解ガスの発生速度をより低減する効果を得つつ、発泡性粒子の発泡性および型内成形時の成形性を向上させることができる。 The molar ratio of component (A) is preferably 98 mol % or less, more preferably 97 mol % or less. In this case, the effect of improving the expandability of the expandable particles and the moldability at the time of in-mold molding can be obtained, and the generation rate of the pyrolysis gas can be further reduced, and the castability can be further improved. Also, the molar ratio of component (A) is preferably 90 mol % or more, more preferably 92 mol % or more. In this case, it is possible to improve the expandability of the expandable particles and the moldability during in-mold molding while obtaining the effect of further reducing the generation rate of pyrolysis gas.
成分(A)のモル比が高すぎる場合には、アクリル系樹脂の分解時に、成分(A)の熱分解により多量の3級ラジカルが生じやすい。3級ラジカルは比較的安定であるため、3級ラジカルの量が多くなると、ジッパー反応と呼ばれる解重合が進行しやすい。そのため、この場合には、アクリル系樹脂の分解反応速度が速くなり、熱分解ガスの発生速度の上昇を招くおそれがある。 If the molar ratio of component (A) is too high, a large amount of tertiary radicals are likely to be generated due to thermal decomposition of component (A) during decomposition of the acrylic resin. Since tertiary radicals are relatively stable, when the amount of tertiary radicals increases, depolymerization called a zipper reaction tends to proceed. Therefore, in this case, the decomposition reaction rate of the acrylic resin increases, which may lead to an increase in the generation rate of thermal decomposition gas.
一方、成分(A)のモル比が低すぎる場合には、ジッパー反応を抑制して熱分解ガスの発生速度を低減することはできるものの、発泡性粒子の発泡性や型内成形時の成形性が低下してしまうおそれがある。 On the other hand, if the molar ratio of component (A) is too low, the zipper reaction can be suppressed and the generation rate of pyrolysis gas can be reduced, but the expandability of the expandable particles and the moldability during in-mold molding can be reduced. may decrease.
前記成分(A)及び前記成分(B)のうち少なくとも一方には、多環式飽和炭化水素基を有する成分が含まれている。即ち、多環式飽和炭化水素基を含有する成分は、メタクリル酸エステル成分(A)であってもよいし、アクリル酸エステル成分(B)であってもよい。また、メタクリル酸エステル成分(A)及びアクリル酸エステル成分(B)の両方に多環式飽和炭化水素基を有する成分が含まれていてもよい。 At least one of the component (A) and the component (B) contains a component having a polycyclic saturated hydrocarbon group. That is, the component containing a polycyclic saturated hydrocarbon group may be the methacrylic acid ester component (A) or the acrylic acid ester component (B). Moreover, both the methacrylate component (A) and the acrylate component (B) may contain a component having a polycyclic saturated hydrocarbon group.
また、成分(A)に多環式飽和炭化水素基を有する成分が含まれている場合には、成分(A)のうちの一部が多環式飽和炭化水素基を有する成分であってもよいし、全部が多環式飽和炭化水素基を有する成分であってもよい。同様に、成分(B)が多環式飽和炭化水素基を有する成分が含まれている場合には、成分(B)のうちの一部が多環式飽和炭化水素基を有する成分であってもよいし、全部が多環式飽和炭化水素基を有する成分であってもよい。 Further, when component (A) contains a component having a polycyclic saturated hydrocarbon group, even if a part of component (A) is a component having a polycyclic saturated hydrocarbon group, Alternatively, all of them may be components having a polycyclic saturated hydrocarbon group. Similarly, when component (B) contains a component having a polycyclic saturated hydrocarbon group, a part of component (B) is a component having a polycyclic saturated hydrocarbon group Alternatively, all of them may be components having a polycyclic saturated hydrocarbon group.
また、成分(A)及び/又は成分(B)において、多環式飽和炭化水素基は、(メタ)アクリル酸にエステル結合している。なお、(メタ)アクリル酸は、アクリル酸及び/又はメタクリル酸を含む概念である。多環式飽和炭化水素基は、成分(A)に含まれていることがより好ましい。 In component (A) and/or component (B), polycyclic saturated hydrocarbon groups are ester-bonded to (meth)acrylic acid. (Meth)acrylic acid is a concept including acrylic acid and/or methacrylic acid. More preferably, the polycyclic saturated hydrocarbon group is contained in component (A).
多環式飽和炭化水素基を有する成分は、アクリル系樹脂への発泡剤の含浸性を高めることができる。それ故、多環式飽和炭化水素基を有する成分を含むアクリル系樹脂は、発泡性粒子の発泡性を向上させることができる。さらに、多環式飽和炭化水素基が嵩高い置換基であることに起因して、アクリル系樹脂のガラス転移温度を上述の範囲に調整することが容易になる。したがって、型内成形時の成形性が向上するので、複雑な形状のキャビティを有する金型を用いて成形した場合であっても、平滑性に優れ、外観が良好な発泡粒子成形体を容易に得ることが可能になる。 A component having a polycyclic saturated hydrocarbon group can enhance impregnation of the blowing agent into the acrylic resin. Therefore, the acrylic resin containing a component having a polycyclic saturated hydrocarbon group can improve the expandability of the expandable particles. Furthermore, since the polycyclic saturated hydrocarbon group is a bulky substituent, it becomes easy to adjust the glass transition temperature of the acrylic resin within the above range. Therefore, since the moldability during in-mold molding is improved, even when molding is performed using a mold having a cavity with a complicated shape, an expanded bead molded article with excellent smoothness and good appearance can be easily obtained. becomes possible to obtain.
前記アクリル系樹脂中には、1種の多環式飽和炭化水素基が含まれていてもよいし、2種以上の多環式飽和炭化水素基が含まれていてもよい。多環式飽和炭化水素基は、ジシクロペンタニル基、アダマンチル基、ノルボルニル基、又はイソボルニル基であることが好ましく、ジシクロペンタニル基またはイソボルニル基であることがより好ましく、イソボルニル基であることがさらに好ましい。この場合には、前述した作用効果をより高めることができる。同様の観点から、前記アクリル系樹脂においては、成分(A)がメタクリル酸メチル及びメタクリル酸イソボルニルであり、成分(B)がアクリル酸メチルであることが特に好ましい。 The acrylic resin may contain one polycyclic saturated hydrocarbon group, or two or more polycyclic saturated hydrocarbon groups. The polycyclic saturated hydrocarbon group is preferably a dicyclopentanyl group, an adamantyl group, a norbornyl group, or an isobornyl group, more preferably a dicyclopentanyl group or an isobornyl group, and an isobornyl group. is more preferred. In this case, the effects described above can be further enhanced. From the same point of view, in the acrylic resin, it is particularly preferable that the component (A) is methyl methacrylate and isobornyl methacrylate, and the component (B) is methyl acrylate.
成分(A)と成分(B)との合計100モル%に対する多環式飽和炭化水素基を有する成分のモル比は、7モル%以下であることが好ましい。この範囲内であれば、ガラス転移温度を上述の範囲に調整することがより容易になり、型内成形時の成形性をより向上させることができる。同様の観点から、多環式飽和炭化水素基を含有する成分のモル比は、成分(A)と成分(B)との合計100モル%に対して6モル%以下であることがより好ましい。また、前述した作用効果をより確実に得る観点から、多環式飽和炭化水素基を含有する成分のモル比は、成分(A)と成分(B)との合計100モル%に対して1モル%以上であることがより好ましく、2モル%以上であることがさらに好ましい。 The molar ratio of the component having a polycyclic saturated hydrocarbon group to 100 mol % of the total of components (A) and (B) is preferably 7 mol % or less. Within this range, it becomes easier to adjust the glass transition temperature to the range described above, and the moldability during in-mold molding can be further improved. From the same point of view, the molar ratio of the component containing a polycyclic saturated hydrocarbon group is more preferably 6 mol % or less with respect to the total 100 mol % of component (A) and component (B). In addition, from the viewpoint of obtaining the above-mentioned effects more reliably, the molar ratio of the component containing the polycyclic saturated hydrocarbon group is 1 mol per 100 mol% of the total of the component (A) and the component (B). % or more, more preferably 2 mol % or more.
アクリル系樹脂の重量平均分子量は、5~11万である。重量平均分子量が小さすぎると、成形体表面における樹脂の溶融や、成形体の平滑性の低下、外観の悪化等の問題が生じやすくなるおそれがある。また、この場合には、得られる成形体の機械的物性が低下するおそれがある。一方、重量平均分子量が大きすぎると、成形スチーム圧を低くした際に、発泡粒子同士が融着しにくくなるおそれや、得られる成形体表面において発泡粒子同士の間に間隙が生じやすくなるおそれがある。これらの問題をより確実に回避する観点から、アクリル系樹脂の重量平均分子量は、6万~10万であることがより好ましい。 The acrylic resin has a weight average molecular weight of 50,000 to 110,000. If the weight-average molecular weight is too small, problems such as melting of the resin on the surface of the molded article, reduction in smoothness of the molded article, and deterioration in appearance may occur. Moreover, in this case, the mechanical properties of the resulting molded article may deteriorate. On the other hand, if the weight-average molecular weight is too large, the foamed particles may become difficult to fuse together when the molding steam pressure is lowered, or gaps may easily occur between the foamed particles on the surface of the resulting molded product. be. From the viewpoint of avoiding these problems more reliably, the weight average molecular weight of the acrylic resin is more preferably 60,000 to 100,000.
なお、アクリル系樹脂の重量平均分子量は、ポリスチレンを標準物質とするゲルパーミエーションクロマトグラフィ法により測定されたポリスチレン換算分子量である。アクリル系樹脂の重量平均分子量の測定方法は実施例にてより具体的に説明する。 The weight average molecular weight of the acrylic resin is a polystyrene equivalent molecular weight measured by gel permeation chromatography using polystyrene as a standard substance. A method for measuring the weight-average molecular weight of the acrylic resin will be described more specifically in Examples.
アクリル系樹脂のガラス転移温度は、上述のように112~125℃である。アクリル系樹脂のガラス転移温度は、例えば成分(A)と成分(B)との配合割合、多環式飽和炭化水素基の種類及び量によって調整することができる。アクリル系樹脂のガラス転移温度が低すぎる場合には、発泡粒子を型内成形した際に、発泡粒子成形体の表面が型内成形時のスチームの熱に耐えられず、表面の一部が溶融するおそれや、発泡粒子が過度に発泡して成形体の表面の平滑性が低下するおそれがある。一方、アクリル系樹脂のガラス転移温度が高すぎる場合には、発泡性ポリスチレン粒子等の発泡に用いられる一般的な発泡機を用いて発泡性粒子を発泡させることが困難となり、見掛け密度の低い発泡粒子が得られにくくなる。また、この場合には、成形スチーム圧が低い条件において、発泡粒子の型内成形性が低下するおそれがある。 The glass transition temperature of acrylic resin is 112 to 125° C. as described above. The glass transition temperature of the acrylic resin can be adjusted by, for example, the blending ratio of the component (A) and the component (B) and the type and amount of the polycyclic saturated hydrocarbon group. If the glass transition temperature of the acrylic resin is too low, when the expanded beads are molded in the mold, the surface of the expanded bead molded product cannot withstand the heat of the steam during the in-mold molding, and part of the surface melts. Otherwise, the foamed particles may be excessively expanded to reduce the smoothness of the surface of the molded product. On the other hand, when the glass transition temperature of the acrylic resin is too high, it becomes difficult to expand the expandable particles using a general expansion machine used for expanding expandable polystyrene particles, etc., resulting in foaming with a low apparent density. It becomes difficult to obtain particles. Further, in this case, the in-mold moldability of the expanded beads may be deteriorated under the condition that the molding steam pressure is low.
成形体表面における溶融や間隙の発生をより確実に回避する観点から、アクリル系樹脂のガラス転移温度は、114℃以上であることが好ましく、115℃以上であることがより好ましい。また、ガラス転移温度は、123℃以下であることが好ましく、122℃以下であることがより好ましく、121℃以下であることがさらに好ましい。この場合には、型内成形における発泡粒子の成形条件幅がより広くなり、複雑な形状の発泡粒子成形体をより容易に作製することができる。 The glass transition temperature of the acrylic resin is preferably 114.degree. Also, the glass transition temperature is preferably 123° C. or lower, more preferably 122° C. or lower, and even more preferably 121° C. or lower. In this case, the range of molding conditions for the foamed beads in the in-mold molding becomes wider, and it is possible to more easily produce foamed beads having a complicated shape.
アクリル系樹脂は、本発明の目的を阻害しない範囲内において、前記成分(A)と前記成分(B)の他に、他のモノマー成分を含有してもよい。即ち、アクリル系樹脂は、前記成分(A)と前記成分(B)と他のモノマー成分との共重合体であってもよい。但し、芳香族環を有するモノマー成分の含有量が過度に多くなると、鋳造時に発生するススの量の増加を招くおそれがある。ススの量の増加を回避する観点から、前記アクリル系樹脂中の芳香族環を備えた成分の含有量は、5質量%以下であることが好ましく、3質量%以下であることがより好ましく、0質量%、つまり、芳香族環を備えた成分を含まないことが最も好ましい。 The acrylic resin may contain other monomer components in addition to the component (A) and the component (B) as long as the object of the present invention is not impaired. That is, the acrylic resin may be a copolymer of the component (A), the component (B), and other monomer components. However, if the content of the monomer component having an aromatic ring is excessively high, the amount of soot generated during casting may increase. From the viewpoint of avoiding an increase in the amount of soot, the content of the component having an aromatic ring in the acrylic resin is preferably 5% by mass or less, more preferably 3% by mass or less, Most preferred is 0% by weight, ie no components with aromatic rings.
また、発泡性粒子には、本発明の目的を阻害しない範囲内において、他の樹脂や添加剤等を配合することができる。他の成分の含有量は、アクリル系樹脂100質量部に対して10質量部以下であることが好ましく、5質量部以下であることがより好ましく、3質量部以下であることがさらに好ましい。 Moreover, other resins, additives, and the like can be added to the expandable particles within a range that does not hinder the object of the present invention. The content of other components is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and even more preferably 3 parts by mass or less with respect to 100 parts by mass of the acrylic resin.
発泡性粒子には、物理発泡剤として、炭素数3~6の鎖式飽和炭化水素と炭素数5~7の脂環式飽和炭化水素とが含まれている。炭素数3~6の鎖式飽和炭化水素としては、例えば、プロパン、n-ブタン、イソブタン、n-ペンタン、イソペンタン、ネオペンタン、n-ヘキサン等を使用することができる。これらの鎖式飽和炭化水素は、単独で使用してもよく、2種以上を併用してもよい。鎖式飽和炭化水素としては、これらの中でも、ペンタンを用いることが好ましい。 The expandable particles contain a chain saturated hydrocarbon having 3 to 6 carbon atoms and an alicyclic saturated hydrocarbon having 5 to 7 carbon atoms as a physical foaming agent. Examples of chain saturated hydrocarbons having 3 to 6 carbon atoms include propane, n-butane, isobutane, n-pentane, isopentane, neopentane and n-hexane. These chain saturated hydrocarbons may be used alone or in combination of two or more. Among these, pentane is preferably used as the chain saturated hydrocarbon.
また、炭素数5~7の脂環式飽和炭化水素としては、例えば、シクロペンタン、シクロヘキサン、シクロヘプタン等を使用することができる。これらの脂環式飽和炭化水素は、単独で使用してもよく、2種以上を併用してもよい。なお、シクロペンタン、シクロヘキサン等の脂環式飽和炭化水素は、発泡剤の機能に加えて、可塑剤の機能を有している。 As the C5-C7 alicyclic saturated hydrocarbon, for example, cyclopentane, cyclohexane, cycloheptane and the like can be used. These alicyclic saturated hydrocarbons may be used alone or in combination of two or more. Alicyclic saturated hydrocarbons such as cyclopentane and cyclohexane have the function of a plasticizer in addition to the function of a foaming agent.
発泡性粒子中の物理発泡剤の含有量は、6~10質量%である。これにより、優れた発泡性を有する発泡性粒子を得ることができる。 The content of the physical foaming agent in the expandable particles is 6-10% by mass. Thereby, expandable particles having excellent expandability can be obtained.
また、発泡性粒子中の脂環式飽和炭化水素の含有量は、0.5~1.6質量%である。脂環式飽和炭化水素の含有量が少なすぎると、発泡粒子同士の融着が悪化するおそれや、得られる成形体表面において発泡粒子同士の間に間隙が生じるおそれがある。一方、脂環式飽和炭化水素の含有量が多すぎると、成形体表面において樹脂の溶融が生じ、成形体の平滑性が低下するおそれや外観が悪化するおそれがある。発泡性粒子中の脂環式飽和炭化水素の含有量を0.5~1.6質量%とすることにより、これらの問題を容易に回避することができる。 Also, the content of the alicyclic saturated hydrocarbon in the expandable particles is 0.5 to 1.6 % by mass. If the content of the alicyclic saturated hydrocarbon is too low, the fusion between the expanded particles may deteriorate, or gaps may occur between the expanded particles on the surface of the resulting molded product. On the other hand, if the content of the alicyclic saturated hydrocarbon is too high, the resin melts on the surface of the molded article, which may reduce the smoothness and appearance of the molded article. The content of alicyclic saturated hydrocarbons in the expandable particles was adjusted to 0.5 . These problems can be easily avoided by making it 5 to 1.6% by mass.
発泡粒子の型内成形時の成形性を高める観点からは、物理発泡剤中の脂環式飽和炭化水素の含有量は、20質量%以下であることが好ましく、18質量%以下であることがより好ましく、16質量%以下であることがさらに好ましい。 From the viewpoint of enhancing moldability during in-mold molding of expanded beads, the content of the alicyclic saturated hydrocarbon in the physical blowing agent is preferably 20% by mass or less, more preferably 18% by mass or less. More preferably, it is 16% by mass or less.
本発明においては、アクリル系樹脂の重量平均分子量及び発泡性粒子中の前記脂環式飽和炭化水素の含有量をそれぞれ前記特定の範囲内とすることにより、発泡粒子を型内成形する際に、低い成形スチーム圧でも発泡粒子同士を融着させることができると共に、発泡粒子同士の間の間隙が少なく、平滑性の高い成形体を得ることができる。そのため、幅広い成形条件において、良好な成形体を成形可能な発泡粒子を得ることができる。 In the present invention, the weight-average molecular weight of the acrylic resin and the content of the alicyclic saturated hydrocarbon in the expandable particles are each set within the above specific ranges, so that when the expanded beads are molded in the mold, The foamed particles can be fused to each other even at a low molding steam pressure, and a molded article with high smoothness can be obtained with few gaps between the expanded particles. Therefore, it is possible to obtain expanded beads that can form good molded articles under a wide range of molding conditions.
発泡性粒子における、脂環式飽和炭化水素の含有量CCH[質量%]とアクリル系樹脂の重量平均分子量Mwとは、下記式(1)の関係を満足していることが好ましい。
Mw≦(-10×CCH+25)×104 ・・・(1)
It is preferable that the content C CH [mass %] of the alicyclic saturated hydrocarbon in the expandable particles and the weight average molecular weight Mw of the acrylic resin satisfy the relationship of the following formula (1).
Mw≦(−10×C CH +25)×10 4 (1)
前記式(1)を満たす発泡性粒子によれば得られる発泡粒子成形体における発泡粒子同士の融着性をより向上させるとともに、機械的強度をより高めることができる。 The expandable particles that satisfy the above formula (1) can further improve the fusion between the expanded particles in the obtained expanded bead molded product, and can further increase the mechanical strength.
同様の観点から、脂環式飽和炭化水素の含有量CCH[質量%]とアクリル系樹脂の重量平均分子量Mwとは、下記式(2)の関係を満足していることが好ましい。
(-10×CCH+12)×104≦Mw ・・・(2)
From the same point of view, it is preferable that the content C CH [mass %] of the alicyclic saturated hydrocarbon and the weight average molecular weight Mw of the acrylic resin satisfy the relationship of the following formula (2).
(−10×C CH +12)×10 4 ≦Mw (2)
また、発泡性粒子における、脂環式飽和炭化水素の含有量CCH[質量%]とアクリル系樹脂の重量平均分子量Mwとは、下記式(3)の関係を満足していることがより好ましい。
Mw<(-10×CCH+23)×104 ・・・(3)
Further, it is more preferable that the content C CH [mass %] of the alicyclic saturated hydrocarbon in the expandable particles and the weight average molecular weight Mw of the acrylic resin satisfy the relationship of the following formula (3). .
Mw<(−10×C CH +23)×10 4 (3)
前記式(3)を満たす発泡性粒子は、前記式(1)を満たすことによる作用効果に加えて、得られる発泡粒子の融着性を向上させ、低い成形スチーム圧でも発泡粒子同士を融着させることができる。更に、この場合には、得られる成形体における発泡粒子同士の間の間隙を小さくするとともに、表面の平滑性をより向上させることができる。 The expandable particles satisfying the above formula (3), in addition to the effect of satisfying the above formula (1), improve the fusion bondability of the obtained expanded beads, and fuse the expanded beads together even at a low molding steam pressure. can be made Furthermore, in this case, it is possible to reduce the gaps between the expanded particles in the resulting molded article and further improve the smoothness of the surface.
同様の観点から、脂環式飽和炭化水素の含有量CCH[質量%]とアクリル系樹脂の重量平均分子量Mwとは、下記式(4)の関係を満足していることが好ましい。
(-10×CCH+14)×104≦Mw ・・・(4)
From the same point of view, it is preferable that the content C CH [mass %] of the alicyclic saturated hydrocarbon and the weight average molecular weight Mw of the acrylic resin satisfy the relationship of the following formula (4).
(−10×C CH +14)×10 4 ≦Mw (4)
発泡性粒子における揮発成分の含有割合は、10質量%以下であることが好ましく、9質量%以下であることがより好ましい。揮発成分の含有割合がこの範囲内であれば、型内成形時の成形性がより向上し、発泡粒子中の気泡構成がより良好になる。その結果、発泡粒子成形体の強度をより向上させることができる。なお、発泡性粒子における揮発成分の含有割合は、概ね5質量%以上である。 The content of volatile components in the expandable particles is preferably 10% by mass or less, more preferably 9% by mass or less. If the content of the volatile component is within this range, moldability during in-mold molding is further improved, and the foamed bead has a better cell structure. As a result, the strength of the expanded bead molded article can be further improved. In addition, the content ratio of the volatile component in the expandable particles is generally 5% by mass or more.
発泡性粒子の平均粒子径は、0.3~1.5mmであることが好ましい。平均粒子径がこの範囲内にあれば、発泡性粒子を発泡させることで得られる発泡粒子の金型への充填性がより向上するため、例えば消失模型のような複雑な形状の成形体をより容易に得ることが可能となるとともに、発泡粒子成形体の外観がより向上する。同様の観点から、発泡性粒子の平均粒子径は、0.4~1.0mmであることがより好ましい。 The average particle size of the expandable particles is preferably 0.3 to 1.5 mm. If the average particle diameter is within this range, the fillability of the expanded particles obtained by expanding the expandable particles into a mold is further improved, so that a molded article having a complicated shape such as a disappearance model can be produced more easily. It becomes possible to obtain easily, and the appearance of the expanded bead molded article is further improved. From the same point of view, the average particle size of the expandable particles is more preferably 0.4 to 1.0 mm.
発泡性粒子の製造方法は特に限定されることはなく、例えば懸濁重合等の、従来公知の方法により製造することができる。発泡性粒子を懸濁重合により製造する場合には、まず、撹拌装置の付いた密閉容器内で、適当な懸濁剤や懸濁助剤を分散させた水性媒体中に、前述したメタクリル酸エステルやアクリル酸エステルを、可塑剤、重合開始剤、連鎖移動剤等と共に添加し、メタクリル酸エステル等を水性媒体中に分散させる。次に、メタクリル酸エステルとアクリル酸エステルとの重合反応を開始する。そして、重合途中あるいは重合完了後に物理発泡剤を密閉容器内に添加し、前記重合反応によって生じたアクリル系樹脂に含浸させる。このようにして、発泡性粒子を得ることができる。 The method for producing the expandable particles is not particularly limited, and they can be produced by a conventionally known method such as suspension polymerization. When producing expandable particles by suspension polymerization, first, the methacrylic acid ester described above is added to an aqueous medium in which a suitable suspending agent or suspension aid is dispersed in a closed vessel equipped with a stirrer. or an acrylic acid ester is added together with a plasticizer, a polymerization initiator, a chain transfer agent and the like, and the methacrylic acid ester and the like are dispersed in the aqueous medium. Next, the polymerization reaction between the methacrylic acid ester and the acrylic acid ester is started. A physical foaming agent is added into the sealed container during or after the polymerization, and the acrylic resin produced by the polymerization reaction is impregnated with the physical foaming agent. In this way, expandable particles can be obtained.
なお、アクリル系樹脂の重量平均分子量は、重合時における連鎖移動剤の添加量等により調整することができる。連鎖移動剤の添加量は、(メタ)アクリル酸エステル系100質量部に対して、概ね0.20~0.60質量部であることが好ましく、0.25~0.50質量部であることがより好ましい。連鎖移動剤の添加量を前記特定の範囲とすることにより、アクリル系樹脂の重量平均分子量を前記特定の範囲に調整しやすくすることができる。 The weight average molecular weight of the acrylic resin can be adjusted by adjusting the amount of chain transfer agent added during polymerization. The amount of the chain transfer agent to be added is preferably approximately 0.20 to 0.60 parts by mass, more preferably 0.25 to 0.50 parts by mass, with respect to 100 parts by mass of the (meth)acrylic acid ester. is more preferred. By setting the addition amount of the chain transfer agent within the specific range, it is possible to easily adjust the weight average molecular weight of the acrylic resin to the specific range.
連鎖移動剤としては、n-オクチルメルカプタンや、αメチルスチレンダイマー等、従来公知の連鎖移動剤を用いることができるが、n-オクチルメルカプタンを用いることがより好ましい。 As the chain transfer agent, conventionally known chain transfer agents such as n-octylmercaptan and α-methylstyrene dimer can be used, but n-octylmercaptan is more preferably used.
発泡粒子は、発泡性粒子を、例えば従来公知の方法により発泡させることにより得られる。発泡は、例えば発泡性粒子にスチーム等の加熱媒体を供給し、発泡性粒子を加熱することにより行うことができる。具体的には、例えば撹拌装置の付いた円筒形の発泡機を用いて、スチーム等により発泡性粒子を加熱して発泡させる方法がある。 Expanded beads are obtained by expanding expandable particles by, for example, a conventionally known method. Foaming can be performed, for example, by supplying a heating medium such as steam to the expandable particles to heat the expandable particles. Specifically, for example, a cylindrical foaming machine equipped with a stirrer is used to heat the expandable particles with steam or the like to foam them.
発泡粒子の見掛け密度は、10~100kg/m3であることが好ましい。この場合には、強度などの物性と軽量性とを両立した発泡粒子成形体を得ることができる。物性と軽量性とのバランスにより優れた発泡粒子成形体を得られる観点から、発泡粒子の見掛け密度は、12~80kg/m3であることがより好ましく、15~60kg/m3であることがさらに好ましい。 The apparent density of the expanded particles is preferably 10-100 kg/m 3 . In this case, it is possible to obtain an expanded bead molding having both physical properties such as strength and lightness. The apparent density of the expanded beads is more preferably 12 to 80 kg/m 3 , and more preferably 15 to 60 kg/m 3 from the viewpoint of obtaining an expanded bead molded article having an excellent balance between physical properties and lightness. More preferred.
後述の方法により算出する、発泡粒子の二次発泡率は1.0~1.5であることが好ましい。二次発泡率がこの範囲にあれば、型内成形時にスチームが成形体内部まで効率良く到達し、内部融着の良好な成形体が得られやすくなる。かかる観点から、二次発泡率は1.0~1.3であることがより好ましく、1.0~1.2であることがより好ましい。 The secondary expansion ratio of the expanded beads, which is calculated by the method described later, is preferably 1.0 to 1.5. When the secondary foaming rate is within this range, steam efficiently reaches the interior of the molded article during in-mold molding, making it easier to obtain a molded article with good internal fusion. From this point of view, the secondary foaming ratio is more preferably 1.0 to 1.3, more preferably 1.0 to 1.2.
発泡粒子成形体は、例えば次のようにして製造される。まず、所望する成形体の形状に対応したキャビティを有する金型内に発泡粒子を充填し、蒸気などの加熱媒体により金型内で多数の発泡粒子を加熱する。キャビティ内の発泡粒子は、加熱によってさらに発泡すると共に、相互に融着する。これにより、多数の発泡粒子が一体化し、キャビティの形状に応じた発泡粒子成形体が得られる。 The expanded bead molded article is produced, for example, as follows. First, a mold having a cavity corresponding to the shape of a desired molded article is filled with expanded particles, and a large number of expanded particles are heated in the mold with a heating medium such as steam. The expanded particles in the cavity are further expanded by heating and fused together. As a result, a large number of expanded beads are integrated to obtain an expanded bead molded article that conforms to the shape of the cavity.
発泡粒子成形体の見掛け密度は、10~100kg/m3であることが好ましい。この場合には、強度などの機械的物性と軽量性とを両立することができる。発泡粒子の見掛け密度は、12~80kg/m3であることがより好ましく、15~60kg/m3であることがさらに好ましい。この場合には、機械的物性と軽量性とのバランスにより優れた発泡粒子成形体を得ることができる。 The apparent density of the expanded bead molded product is preferably 10 to 100 kg/m 3 . In this case, both mechanical properties such as strength and light weight can be achieved. The apparent density of the expanded particles is more preferably 12-80 kg/m 3 , still more preferably 15-60 kg/m 3 . In this case, it is possible to obtain an expanded bead molded article having an excellent balance between mechanical properties and lightness.
前記発泡粒子成形体は、燃焼時にススの発生が少なく、熱分解ガスの発生速度が低く、表面の平滑性に優れるという、鋳造用の消失模型として好適な特性を有している。それ故、前記発泡粒子成形体は、鋳造用の消失模型として好適である。 The foamed particle molded product has properties suitable as a disappearance model for casting, such as less soot generation during combustion, a low generation rate of pyrolysis gas, and excellent surface smoothness. Therefore, the expanded bead molded article is suitable as a disappearance pattern for casting.
発泡粒子成形体中の水の含有量は、1.0質量%以下であることが好ましい。水分量がこの範囲内であれば、鋳造時の欠陥がより発生しにくくなる。なお、発泡性粒子における水の含有割合の下限は、概ね0.3質量%である。 The content of water in the expanded bead molded article is preferably 1.0% by mass or less. If the water content is within this range, defects during casting are less likely to occur. The lower limit of the content of water in the expandable particles is approximately 0.3% by mass.
以下に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの実施例によって限定されるものではなく、本発明の要旨を超えない限り、種々の変更が可能である。オートクレーブ内の温度は、水性媒体の温度を意味する。 EXAMPLES The present invention will be described in more detail below with reference to Examples, but the present invention is not limited to these Examples, and various modifications are possible as long as they do not exceed the gist of the present invention. The temperature in the autoclave means the temperature of the aqueous medium.
(実施例1)
まず、撹拌装置の付いた内容積が3Lのオートクレーブ内に、脱イオン水700g、懸濁剤6.0g、界面活性剤4.2g、電解質としての酢酸ナトリウム1.1g、懸濁助剤2.5gを投入した。なお、懸濁剤は、具体的には20.5質量%の第三リン酸カルシウムを含むスラリー(太平化学産業株式会社製)である。また、界面活性剤は、具体的には濃度1質量%のドデシルジフェニルエーテルスルホン酸二ナトリウム水溶液(具体的には、花王株式会社製「ペレックス(登録商標)SSH」)である。また、懸濁助剤は、具体的には濃度0.01質量%の過硫酸カリウム水溶液である。
(Example 1)
First, 700 g of deionized water, 6.0 g of suspending agent, 4.2 g of surfactant, 1.1 g of sodium acetate as an electrolyte, 2.0 g of sodium acetate as an electrolyte, and 2.0 g of a suspending aid were placed in an autoclave having an internal volume of 3 L and equipped with a stirrer. 5 g was added. The suspending agent is specifically a slurry containing 20.5% by mass of tribasic calcium phosphate (manufactured by Taihei Kagaku Sangyo Co., Ltd.). Further, the surfactant is specifically a disodium dodecyldiphenyl ether sulfonate aqueous solution with a concentration of 1% by mass (specifically, "Pelex (registered trademark) SSH" manufactured by Kao Corporation). Further, the suspension aid is specifically an aqueous potassium persulfate solution having a concentration of 0.01% by mass.
モノマー成分としてメタクリル酸メチル425gと、メタクリル酸イソボルニル50gと、アクリル酸メチル25gの混合物を準備した。なお、本例における、メタクリル酸エステル成分とアクリル酸エステル成分の合計100モル%に対するメタクリル酸メチルの配合量は89モル%に相当し、メタクリル酸イソボルニルの配合量は5モル%に相当し、アクリル酸メチルの配合量は6モル%に相当する。 A mixture of 425 g of methyl methacrylate, 50 g of isobornyl methacrylate, and 25 g of methyl acrylate was prepared as a monomer component. In this example, the compounding amount of methyl methacrylate corresponds to 89 mol%, the compounding amount of isobornyl methacrylate corresponds to 5 mol%, and acrylic The compounding amount of methyl acid corresponds to 6 mol %.
この混合物に、重合開始剤としてのt-ブチルパーオキシ-2-エチルヘキサノエート(具体的には、日油株式会社製「パーブチル(登録商標)O」)0.66g及びt-ブチルパーオキシ-2-エチルヘキシルモノカーボネート(具体的には、日油株式会社製「パーブチルE」)0.66gと、物理発泡剤としてのシクロヘキサン10gと、連鎖移動剤としてのn-オクチルメルカプタン(東京化成工業株式会社製)1.40gと、を溶解させた。なお、シクロヘキサンは、前述したように、物理発泡剤としての機能に加えて可塑剤としての機能を有している。 To this mixture, 0.66 g of t-butylperoxy-2-ethylhexanoate (specifically, "Perbutyl (registered trademark) O" manufactured by NOF Corporation) as a polymerization initiator and t-butylperoxy -2-Ethylhexyl monocarbonate (specifically, "Perbutyl E" manufactured by NOF Corporation) 0.66 g, cyclohexane 10 g as a physical blowing agent, and n-octyl mercaptan as a chain transfer agent (Tokyo Chemical Industry Co., Ltd. Company) 1.40 g was dissolved. As described above, cyclohexane has a function as a plasticizer in addition to a function as a physical blowing agent.
オートクレーブ内を撹拌速度400rpmで撹拌しながら脱イオン水中に溶解物を投入した。オートクレーブ内の空気を窒素にて置換した後、オートクレーブ内を密閉した。 The melt was introduced into deionized water while stirring the inside of the autoclave at a stirring speed of 400 rpm. After the air inside the autoclave was replaced with nitrogen, the inside of the autoclave was sealed.
オートクレーブ内を引き続き攪拌しながら1時間15分かけてオートクレーブ内の温度を70℃まで昇温させ、70℃の温度を6時間保持して前段重合工程を行った。なお、前段重合工程においては、70℃に到達してから5時間経過した時点で、物理発泡剤としてのペンタン(具体的には、n-ペンタン80質量%とi-ペンタン20質量%の混合物)80gを1時間かけて添加した。そして、発泡剤の添加後に、撹拌速度を350rpmに下げた。 The temperature in the autoclave was raised to 70° C. over 1 hour and 15 minutes while the inside of the autoclave was continuously stirred, and the temperature in the autoclave was maintained at 70° C. for 6 hours to carry out the first stage polymerization step. In the first-stage polymerization step, pentane as a physical blowing agent (specifically, a mixture of 80% by mass of n-pentane and 20% by mass of i-pentane) was added 5 hours after reaching 70°C. 80 g was added over 1 hour. The stirring speed was then reduced to 350 rpm after addition of the blowing agent.
前段重合工程が完了した後、オートクレーブ内の温度を4時間かけて115℃まで昇温させ、115℃の温度を5時間保持して後段重合工程を行った。後段重合工程を完了した後、オートクレーブ内の温度を4時間かけて35℃まで冷却し、更に室温まで冷却した。 After the pre-stage polymerization process was completed, the temperature inside the autoclave was raised to 115° C. over 4 hours, and the post-stage polymerization process was performed while maintaining the temperature at 115° C. for 5 hours. After completing the post-polymerization step, the temperature inside the autoclave was cooled to 35° C. over 4 hours, and further cooled to room temperature.
冷却後、オートクレーブの内容物から発泡性粒子を取り出した。この発泡性粒子を硝酸で洗浄して表面に付着した第三リン酸カルシウムを溶解させた。その後、遠心分離機を用いて発泡性粒子の脱水及び洗浄を行い、さらに気流乾燥装置を用いて発泡性粒子の表面に付着した水分を除去した。 After cooling, the expandable particles were removed from the contents of the autoclave. The expandable particles were washed with nitric acid to dissolve tribasic calcium phosphate adhering to the surface. After that, the expandable particles were dehydrated and washed using a centrifuge, and water adhering to the surfaces of the expandable particles was removed using a flash dryer.
次に、発泡性粒子を篩にかけて、直径が0.30~0.54mmの粒子を取り出した。次いで、発泡性粒子100質量部に対して、液体状添加剤としてのジメチルシリコーン0.03質量部、帯電防止剤としてのN,N‐ビス(2‐ヒドロキシエチル)アルキルアミン0.04質量部を添加した。さらに、発泡性粒子100質量部に対して、ステアリン酸亜鉛0.20質量部と、ステアリン酸カルシウム0.30質量部と、グリセリンモノステアレート0.07質量部との混合物を添加し混合した。このようにして、各種添加剤で発泡性粒子を被覆した。 The expandable particles were then sieved to remove particles with a diameter of 0.30-0.54 mm. Next, 0.03 parts by weight of dimethyl silicone as a liquid additive and 0.04 parts by weight of N,N-bis(2-hydroxyethyl)alkylamine as an antistatic agent are added to 100 parts by weight of the expandable particles. added. Furthermore, a mixture of 0.20 parts by mass of zinc stearate, 0.30 parts by mass of calcium stearate, and 0.07 parts by mass of glycerin monostearate was added and mixed with 100 parts by mass of expandable particles. In this manner, the expandable particles were coated with various additives.
本例の仕込み組成等を後述する表1に示す。表中において、MMAはメタクリル酸メチル、IBOMAはメタクリル酸イソボルニル、MADMAはメタクリル酸アダマンチル、MAはアクリル酸メチルを示す。これらは単量体である。また、表中の「多環式飽和炭化水素基を有する成分のモル比」欄に示した値は、成分(A)と成分(B)との合計100モル%に対する多環式飽和炭化水素基を有する成分のモル比であり、「n-ペンタン」「i-ペンタン」「シクロヘキサン」欄に示した値は、発泡性粒子中に取り込まれた各物理発泡剤の含有量である。 Table 1, which will be described later, shows the charging composition and the like of this example. In the table, MMA is methyl methacrylate, IBOMA is isobornyl methacrylate, MADMA is adamantyl methacrylate, and MA is methyl acrylate. These are monomers. In addition, the value shown in the "molar ratio of component having a polycyclic saturated hydrocarbon group" column in the table is the polycyclic saturated hydrocarbon group with respect to the total 100 mol% of the component (A) and the component (B) and the values shown in the columns of "n-pentane", "i-pentane" and "cyclohexane" are the contents of each physical blowing agent incorporated in the expandable particles.
以上により得られた発泡性粒子を用い、後述する方法によりアクリル系樹脂の分子量、ガラス転移温度、揮発成分の含有量、水分量の測定及び発泡性の評価を行った。 Using the expandable particles obtained above, the molecular weight, glass transition temperature, content of volatile components, and water content of the acrylic resin were measured and foamability was evaluated by the methods described later.
次に、発泡性粒子200gを容積30Lの常圧予備発泡機内に投入した。次いで、発泡性粒子を撹拌しながら予備発泡機内にスチームを供給して発泡性粒子を発泡させることにより、見掛け密度23kg/m3の発泡粒子を得た。得られた発泡粒子を室温で1日間放置して熟成させた。 Next, 200 g of the expandable particles were put into a normal pressure pre-expanding machine with a volume of 30 L. Then, while stirring the expandable particles, steam was supplied into the pre-expanding machine to expand the expandable particles, thereby obtaining expanded particles having an apparent density of 23 kg/m 3 . The obtained expanded particles were allowed to stand at room temperature for 1 day to ripen.
その後、型物成形機(DABO社製のDSM-0705VS)の金型のキャビティ内に発泡粒子を充填した。次いで、キャビティ内に0.04MPa、0.06MPa、0.08MPaまたは0.10MPa(いずれもゲージ圧力)のいずれかの圧力を有するスチームを供給して発泡粒子を20秒間加熱した後、所定時間冷却した。その後、金型から発泡粒子成形体を取り出した。得られた発泡粒子成形体の見掛け密度は23kg/m3であった。なお、金型のキャビティは、縦300mm×横75mm×厚さ25mmの直方体形状である。得られた発泡粒子成形体を温度40℃で1日間乾燥させた後、後述する方法により成形性の評価を行った。 After that, the foamed particles were filled into the mold cavity of a molding machine (DSM-0705VS manufactured by DABO). Next, steam having a pressure of 0.04 MPa, 0.06 MPa, 0.08 MPa or 0.10 MPa (both gauge pressures) is supplied into the cavity to heat the expanded particles for 20 seconds, and then cooled for a predetermined time. did. After that, the expanded bead molding was taken out from the mold. The apparent density of the obtained expanded bead molded product was 23 kg/m 3 . The mold cavity has a rectangular parallelepiped shape of 300 mm long×75 mm wide×25 mm thick. After drying the obtained expanded bead molded article at a temperature of 40° C. for one day, the moldability was evaluated by the method described later.
(実施例2)
シクロヘキサンの添加量を7gに、連鎖移動剤の添加量を2.00gにそれぞれ変更した以外は、実施例1と同様にして、発泡性粒子、発泡粒子、発泡粒子成形体を作製した。本例の仕込み組成等を後述する表1に示す。
(Example 2)
Expandable beads, expanded beads, and expanded bead moldings were produced in the same manner as in Example 1, except that the amount of cyclohexane added was changed to 7 g and the amount of chain transfer agent added was changed to 2.00 g. Table 1, which will be described later, shows the charging composition and the like of this example.
(実施例3)
シクロヘキサンの添加量を4.50gに変更した以外は、実施例1と同様にして、発泡性粒子、発泡粒子、発泡粒子成形体を作製した。本例の仕込み組成等を後述する表1に示す。
(Example 3)
Expandable beads, expanded beads, and expanded bead moldings were produced in the same manner as in Example 1, except that the amount of cyclohexane added was changed to 4.50 g. Table 1, which will be described later, shows the charging composition and the like of this example.
(実施例4)
連鎖移動剤の添加量を1.60gに変更した以外は、実施例1と同様にして、発泡性粒子、発泡粒子、発泡粒子成形体を作製した。本例の仕込み組成等を後述する表1に示す。
(Example 4)
Expandable beads, expanded beads, and expanded bead moldings were produced in the same manner as in Example 1, except that the amount of the chain transfer agent added was changed to 1.60 g. Table 1, which will be described later, shows the charging composition and the like of this example.
(実施例5)
メタクリル酸エステル成分(A)としてのメタクリル酸イソボルニル50gをメタクリル酸メチルアダマンチル50gに変更した以外は、実施例1と同様にして、発泡性粒子、発泡粒子、発泡粒子成形体を作製した。本例の仕込み組成等を後述する表1に示す。
(Example 5)
Expandable beads, expanded beads, and expanded bead moldings were produced in the same manner as in Example 1, except that 50 g of isobornyl methacrylate as the methacrylate ester component (A) was changed to 50 g of methyladamantyl methacrylate. Table 1, which will be described later, shows the charging composition and the like of this example.
(参考例1)
シクロヘキサンの添加量を2.5gに、連鎖移動剤の添加量を2.5gにそれぞれ変更した以外は、実施例1と同様にして、発泡性粒子、発泡粒子、発泡粒子成形体を作製した。本例の仕込み組成等を後述する表1に示す。
( Reference example 1 )
Expandable beads, expanded beads, and expanded bead moldings were produced in the same manner as in Example 1, except that the amount of cyclohexane and the chain transfer agent were changed to 2.5 g and 2.5 g, respectively. Table 1, which will be described later, shows the charging composition and the like of this example.
(参考例2)
シクロヘキサンの添加量を18.5gに変更した以外は、実施例1と同様にして、発泡性粒子、発泡粒子、発泡粒子成形体を作製した。本例の仕込み組成等を後述する表2に示す。
( Reference example 2 )
Expandable beads, expanded beads, and expanded bead moldings were produced in the same manner as in Example 1, except that the amount of cyclohexane added was changed to 18.5 g. Table 2, which will be described later, shows the charging composition and the like of this example.
(実施例6)
シクロヘキサンの添加量を14.0gに変更した以外は、実施例1と同様にして、発泡性粒子、発泡粒子、発泡粒子成形体を作製した。本例の仕込み組成等を後述する表2に示す。
(Example 6 )
Expandable beads, expanded beads, and expanded bead moldings were produced in the same manner as in Example 1, except that the amount of cyclohexane added was changed to 14.0 g. Table 2, which will be described later, shows the charging composition and the like of this example.
(参考例3)
シクロヘキサンの添加量を14gに、連鎖移動剤の添加量を1.6gにそれぞれ変更した以外は、実施例1と同様にして、発泡性粒子、発泡粒子、発泡粒子成形体を作製した。本例の仕込み組成等を後述する表2に示す。
( Reference example 3 )
Expandable beads, expanded beads, and expanded bead moldings were produced in the same manner as in Example 1, except that the amount of cyclohexane added was changed to 14 g, and the amount of chain transfer agent added was changed to 1.6 g. Table 2, which will be described later, shows the charging composition and the like of this example.
(参考例4)
シクロヘキサンの添加量を12gに、連鎖移動剤の添加量を1.9gにそれぞれ変更した以外は、実施例1と同様にして、発泡性粒子、発泡粒子、発泡粒子成形体を作製した。本例の仕込み組成等を後述する表2に示す。
( Reference example 4 )
Expandable beads, expanded beads, and expanded bead moldings were produced in the same manner as in Example 1, except that the amount of cyclohexane added was changed to 12 g, and the amount of chain transfer agent added was changed to 1.9 g. Table 2, which will be described later, shows the charging composition and the like of this example.
(実施例7)
メタクリル酸メチルの添加量を465gに、メタクリル酸イソボルニルの添加量を10gにそれぞれ変更した以外は、実施例1と同様にして、発泡性粒子、発泡粒子、発泡粒子成形体を作製した。本例の仕込み組成等を後述する表2に示す。
(Example 7 )
Expandable beads, expanded beads, and expanded bead moldings were produced in the same manner as in Example 1, except that the amount of methyl methacrylate added was changed to 465 g and the amount of isobornyl methacrylate added was changed to 10 g. Table 2, which will be described later, shows the charging composition and the like of this example.
(実施例8)
メタクリル酸メチルの添加量を415gに、メタクリル酸イソボルニルの添加量を60gにそれぞれ変更した以外は、実施例1と同様にして、発泡性粒子、発泡粒子、発泡粒子成形体を作製した。本例の仕込み組成等を後述する表2に示す。
(Example 8 )
Expandable beads, expanded beads, and expanded bead moldings were produced in the same manner as in Example 1, except that the amount of methyl methacrylate added was changed to 415 g and the amount of isobornyl methacrylate added was changed to 60 g. Table 2, which will be described later, shows the charging composition and the like of this example.
(比較例1)
シクロヘキサンの添加量を30gに、連鎖移動剤の添加量を0.85gに、70℃での保持時間を8時間に、70℃から115℃の昇温時間を2時間に、ペンタン添加の時期を70℃に到達してから6時間後に、ペンタンの添加に要する時間を30分にそれぞれ変更した以外は、実施例1と同様にして、発泡性粒子、発泡粒子、発泡粒子成形体を作製した。本例の仕込み組成等を後述する表3に示す。
(Comparative example 1)
The amount of cyclohexane added was 30 g, the amount of chain transfer agent added was 0.85 g, the holding time at 70 ° C. was 8 hours, the temperature rising time from 70 ° C. to 115 ° C. was 2 hours, and the timing of pentane addition was changed. Expandable beads, expanded beads, and expanded bead moldings were produced in the same manner as in Example 1, except that the time required for adding pentane was changed to 30 minutes after 6 hours from reaching 70°C. Table 3, which will be described later, shows the charging composition and the like of this example.
(比較例2)
メタクリル酸イソボルニル50gをメタクリル酸メチルアダマンチル50gに変更した以外は、比較例1と同様にして、発泡性粒子、発泡粒子、発泡粒子成形体を作製した。本例の仕込み組成等を後述する表3に示す。
(Comparative example 2)
Expandable beads, expanded beads, and expanded bead moldings were produced in the same manner as in Comparative Example 1, except that 50 g of isobornyl methacrylate was changed to 50 g of methyladamantyl methacrylate. Table 3, which will be described later, shows the charging composition and the like of this example.
(比較例3)
シクロヘキサンの添加量を3.5gに、連鎖移動剤の添加量を0.85gにそれぞれ変更した以外は、実施例1と同様にして、発泡性粒子、発泡粒子、発泡粒子成形体を作製した。本例の仕込み組成等を後述する表3に示す。
(Comparative Example 3)
Expandable beads, expanded beads, and expanded bead moldings were produced in the same manner as in Example 1, except that the amount of cyclohexane added was changed to 3.5 g, and the amount of chain transfer agent added was changed to 0.85 g. Table 3, which will be described later, shows the charging composition and the like of this example.
(比較例4)
連鎖移動剤の添加量を3.50gに変更した以外は、実施例1と同様にして、発泡性粒子、発泡粒子、発泡粒子成形体を作製した。本例の仕込み組成等を後述する表3に示す。
(Comparative Example 4)
Expandable beads, expanded beads, and expanded bead moldings were produced in the same manner as in Example 1, except that the amount of the chain transfer agent added was changed to 3.50 g. Table 3, which will be described later, shows the charging composition and the like of this example.
(比較例5)
連鎖移動剤の添加量を0.85gに変更した以外は、実施例1と同様にして、発泡性粒子、発泡粒子、発泡粒子成形体を作製した。本例の仕込み組成等を後述する表3に示す。
(Comparative Example 5)
Expandable beads, expanded beads, and expanded bead moldings were produced in the same manner as in Example 1, except that the amount of the chain transfer agent added was changed to 0.85 g. Table 3, which will be described later, shows the charging composition and the like of this example.
(比較例6)
シクロヘキサンの添加量を30gに変更した以外は、実施例1と同様にして、発泡性粒子、発泡粒子、発泡粒子成形体を作製した。本例の仕込み組成等を後述する表3に示す。
(Comparative Example 6)
Expandable beads, expanded beads, and expanded bead moldings were produced in the same manner as in Example 1, except that the amount of cyclohexane added was changed to 30 g. Table 3, which will be described later, shows the charging composition and the like of this example.
(比較例7)
シクロヘキサンの添加量を1gに変更した以外は、実施例1と同様にして、発泡性粒子、発泡粒子、発泡粒子成形体を作製した。本例の仕込み組成等を後述する表3に示す。
(Comparative Example 7)
Expandable beads, expanded beads, and expanded bead moldings were produced in the same manner as in Example 1, except that the amount of cyclohexane added was changed to 1 g. Table 3, which will be described later, shows the charging composition and the like of this example.
(比較例8)
連鎖移動剤の添加量を1gに変更した以外は、実施例1と同様にして、発泡性粒子、発泡粒子、発泡粒子成形体を作製した。本例の仕込み組成等を後述する表4に示す。
(Comparative Example 8)
Expandable beads, expanded beads, and expanded bead moldings were produced in the same manner as in Example 1, except that the amount of the chain transfer agent added was changed to 1 g. Table 4, which will be described later, shows the charging composition and the like of this example.
(比較例9)
シクロヘキサンを無添加に、連鎖移動剤の添加量を1.2gにそれぞれ変更した以外は、実施例1と同様にして、発泡性粒子、発泡粒子、発泡粒子成形体を作製した。本例の仕込み組成等を後述する表4に示す。
(Comparative Example 9)
Expandable beads, expanded beads, and expanded bead moldings were produced in the same manner as in Example 1, except that cyclohexane was not added and the added amount of the chain transfer agent was changed to 1.2 g. Table 4, which will be described later, shows the charging composition and the like of this example.
(比較例10)
シクロヘキサンの添加量を20.0gに、連鎖移動剤の添加量を2.5gにそれぞれ変更した以外は、実施例1と同様にして、発泡性粒子、発泡粒子、発泡粒子成形体を作製した。本例の仕込み組成等を後述する表4に示す。
(Comparative Example 10)
Expandable beads, expanded beads, and expanded bead moldings were produced in the same manner as in Example 1, except that the amount of cyclohexane added was changed to 20.0 g and the amount of chain transfer agent added was changed to 2.5 g. Table 4, which will be described later, shows the charging composition and the like of this example.
(比較例11)
連鎖移動剤の添加量を3.5gに変更した以外は、実施例1と同様にして、発泡性粒子、発泡粒子、発泡粒子成形体を作製した。本例の仕込み組成等を後述する表4に示す。
(Comparative Example 11)
Expandable beads, expanded beads, and expanded bead moldings were produced in the same manner as in Example 1, except that the amount of the chain transfer agent added was changed to 3.5 g. Table 4, which will be described later, shows the charging composition and the like of this example.
(比較例12)
シクロヘキサンの添加量を4gに、連鎖移動剤の添加量を1.1gにそれぞれ変更した以外は、実施例1と同様にして、発泡性粒子、発泡粒子、発泡粒子成形体を作製した。本例の仕込み組成等を後述する表4に示す。
(Comparative Example 12)
Expandable beads, expanded beads, and expanded bead moldings were produced in the same manner as in Example 1, except that the amount of cyclohexane added was changed to 4 g and the amount of chain transfer agent added was changed to 1.1 g. Table 4, which will be described later, shows the charging composition and the like of this example.
(比較例13)
連鎖移動剤の添加量を1.1gに変更した以外は、実施例1と同様にして、発泡性粒子、発泡粒子、発泡粒子成形体を作製した。本例の仕込み組成等を後述する表4に示す。
(Comparative Example 13)
Expandable beads, expanded beads, and expanded bead moldings were produced in the same manner as in Example 1, except that the amount of the chain transfer agent added was changed to 1.1 g. Table 4, which will be described later, shows the charging composition and the like of this example.
発泡性粒子を用いた、アクリル系樹脂の分子量、ガラス転移温度、揮発成分の含有量、水分量の測定方法及び発泡性の評価方法を以下に説明する。 A method for measuring the molecular weight, glass transition temperature, content of volatile components, and water content of the acrylic resin using expandable particles, and a method for evaluating expandability will be described below.
「分子量の測定」
ポリスチレンを標準物質としたゲルパーミエーションクロマトグラフィ(GPC)法によりアクリル系樹脂のクロマトグラムを取得した。そして、得られたクロマトグラムに基づき、アクリル系樹脂の数平均分子量Mn、重量平均分子量Mw及びz平均分子量Mzを算出した。
"Molecular weight measurement"
A chromatogram of the acrylic resin was obtained by a gel permeation chromatography (GPC) method using polystyrene as a standard substance. Then, based on the obtained chromatogram, the number average molecular weight Mn, weight average molecular weight Mw and z average molecular weight Mz of the acrylic resin were calculated.
クロマトグラムの取得には東ソー(株)製のHLC-8320GPC EcoSECを使用した。測定試料としての発泡性粒子をテトラヒドロフラン(THF)に溶解させて濃度0.1wt%の試料溶液を調製した後、TSKguardcolumn SuperH-H×1本、TSK-GEL SuperHM-H×2本を直列に接続したカラムを用い、溶離液:テトラヒドロフラン(THF)、THF流量:0.6ml/分という分離条件で、ゲルパーミエーションクロマトグラフィ(GPC)により測定試料を分子量の違いによって分離し、クロマトグラムを得た。なお、測定試料としては、発泡性粒子に替えて発泡粒子を用いてもよいし、発泡粒子成形体を用いてもよい。 HLC-8320GPC EcoSEC manufactured by Tosoh Corporation was used to obtain the chromatogram. After dissolving expandable particles as a measurement sample in tetrahydrofuran (THF) to prepare a sample solution with a concentration of 0.1 wt%, TSKguardcolumn SuperH-H x 1 and TSK-GEL SuperHM-H x 2 are connected in series. Using a column with eluent, tetrahydrofuran (THF), flow rate of THF: 0.6 ml/min, gel permeation chromatography (GPC) was performed to separate the measurement samples according to the difference in molecular weight to obtain a chromatogram. As a measurement sample, expanded particles may be used instead of expandable particles, or an expanded particle molding may be used.
そして、標準ポリスチレンを用いて作成した較正曲線によって得られたクロマトグラムにおける保持時間を分子量に換算し、微分分子量分布曲線を得た。この微分分子量分布曲線からアクリル系樹脂の数平均分子量Mn、重量平均分子量Mw及びz平均分子量Mzを算出した。これらの値は表1~表4に示す通りであった。 Then, the retention time in the chromatogram obtained by the calibration curve created using standard polystyrene was converted into molecular weight to obtain a differential molecular weight distribution curve. From this differential molecular weight distribution curve, the number average molecular weight Mn, weight average molecular weight Mw and z average molecular weight Mz of the acrylic resin were calculated. These values were as shown in Tables 1-4.
「ガラス転移温度の測定」
メタノールを用いた再沈殿精製により、発泡性粒子からアクリル系樹脂を抽出した。具体的には、発泡性粒子1gをメチルエチルケトン10mLに溶解させた。次いで、500mLのメタノールを入れた容器を準備し、容器内のメタノールを攪拌しながら、メタノールにメチルエチルケトン溶液を滴下した。この滴下により、樹脂を沈殿させた。沈殿物をろ取し、室温で恒量になるまで真空乾燥させた。このようにして得られた沈殿物がアクリル系樹脂である。なお、発泡性粒子に替えて、発泡粒子、発泡粒子成形体を用いて再沈殿精製を行っても、アクリル系樹脂を抽出することが可能である。
"Measurement of glass transition temperature"
The acrylic resin was extracted from the expandable particles by reprecipitation purification using methanol. Specifically, 1 g of expandable particles was dissolved in 10 mL of methyl ethyl ketone. Next, a container containing 500 mL of methanol was prepared, and the methyl ethyl ketone solution was added dropwise to the methanol while stirring the methanol in the container. This dropwise addition precipitated the resin. The precipitate was collected by filtration and vacuum dried at room temperature to constant weight. The precipitate thus obtained is the acrylic resin. The acrylic resin can also be extracted by performing reprecipitation purification using expanded particles or an expanded particle molded product instead of the expandable particles.
発泡性粒子から抽出されたアクリル系樹脂2mgを秤量し、簡易密閉パンに充填し、ガラス転移温度の測定に用いた。ガラス転移温度の測定には示差走査熱量計(ティ・エイ・インスツルメンツ社製「Q1000」)を用い、JIS K 7121(1987年)に準拠して測定を行った。なお、DSC曲線の中間点温度をガラス転移温度とした。アクリル系樹脂のガラス転移温度は、表1~表4に示す通りであった。 2 mg of the acrylic resin extracted from the expandable particles was weighed, filled into a simple closed pan, and used for measuring the glass transition temperature. The glass transition temperature was measured using a differential scanning calorimeter (“Q1000” manufactured by T.A. Instruments) in accordance with JIS K 7121 (1987). The midpoint temperature of the DSC curve was taken as the glass transition temperature. The glass transition temperatures of the acrylic resins were as shown in Tables 1 to 4.
「水分量の測定」
まず、約0.28gの発泡性粒子を秤量した。加熱水分気化装置を用いて発泡性粒子を温度160℃まで加熱することにより、発泡性粒子の内部の水分を気化させた。この水分を加熱水分気化装置に接続されたカールフィッシャー水分測定装置(平沼産業株式会社製「AQ-6」)へ導き、水分量を測定した。発泡性粒子中の水分量は表1~表4に示す通りであった。
"Measurement of moisture content"
First, approximately 0.28 g of expandable particles were weighed. By heating the expandable particles to a temperature of 160° C. using a heating moisture vaporizer, the moisture inside the expandable particles was vaporized. This water content was introduced to a Karl Fischer moisture measuring device (“AQ-6” manufactured by Hiranuma Sangyo Co., Ltd.) connected to a heating and moisture vaporizer, and the water content was measured. The water content in the expandable particles was as shown in Tables 1 to 4.
「揮発成分の含有量の測定」
小数点以下4桁まで正確に秤量した約1gの発泡性粒子を温度120℃に設定した熱風乾燥機内で4時間乾燥させた。乾燥後の発泡性粒子を室温まで冷却した後、発泡性粒子を秤量した。加熱前後の質量変化から総揮発分量を求め、総揮発分量から水分量を減じることにより揮発成分の含有量を求めた。計算式はそれぞれ以下のとおりである。発泡性粒子中の揮発成分の含有量は表1~表4に示す通りであった。
総揮発分(質量%)={加熱前質量(g)-加熱後質量(g)}÷加熱前質量(g)×100
揮発成分の含有量(質量%)=総揮発分(質量%)-水分(質量%)
"Measurement of content of volatile components"
About 1 g of expandable particles accurately weighed to four decimal places were dried for 4 hours in a hot air dryer set at a temperature of 120°C. After cooling the dried expandable particles to room temperature, the expandable particles were weighed. The total volatile content was determined from the change in mass before and after heating, and the content of volatile components was determined by subtracting the water content from the total volatile content. The calculation formulas are as follows. Contents of volatile components in the expandable particles were as shown in Tables 1 to 4.
Total volatile content (mass%) = {mass before heating (g) - mass after heating (g)} ÷ mass before heating (g) × 100
Volatile component content (mass%) = total volatile content (mass%) - moisture (mass%)
「発泡性粒子中の物理発泡剤(シクロヘキサン、ペンタン)の含有量の測定」
精秤した発泡性粒子1gをN,N-ジメチルホルムアミド(DMF)25mlに溶解させ、ガスクロマトグラフィー(GC)による測定を行い、発泡性粒子中の物理発泡剤(シクロヘキサン、ペンタン)の含有量を定量した。なお、ガスクロマトグラフィーの測定条件は次の通りである。
測定装置:株式会社島津製作所製ガスクロマトグラフGC-9A
カラム材質:内径3mm、長さ3000mmのガラスカラム
カラム充填剤:
〔液相名〕PEG-20M
〔液相含浸率〕25質量%
〔担体粒度〕60/80メッシュ
〔担体処理方法〕AW-DMCS(水洗、焼成、酸処理、シラン処理)
キャリアガス:N2
検出器:FID(水素炎イオン化検出器)
定量方法:内部標準法
"Measurement of content of physical blowing agents (cyclohexane, pentane) in expandable particles"
1 g of precisely weighed expandable particles was dissolved in 25 ml of N,N-dimethylformamide (DMF), and measurement was performed by gas chromatography (GC) to determine the content of the physical blowing agent (cyclohexane, pentane) in the expandable particles. quantified. The measurement conditions for gas chromatography are as follows.
Measuring device: Gas chromatograph GC-9A manufactured by Shimadzu Corporation
Column material: glass column with an inner diameter of 3 mm and a length of 3000 mm Column packing:
[Liquid phase name] PEG-20M
[Liquid phase impregnation rate] 25% by mass
[Carrier particle size] 60/80 mesh [Carrier treatment method] AW-DMCS (water washing, baking, acid treatment, silane treatment)
Carrier gas: N2
Detector: FID (flame ionization detector)
Quantification method: internal standard method
「平均粒子径の測定」
JIS Z8801の規定に適合する試験用篩を用いて発泡性粒子をふるい分けし、発泡性粒子を粒径範囲に基づいて分級した。篩上に残った発泡性粒子の質量を測定することにより、各粒径範囲の発泡粒子の質量分率を算出した。これらの質量分率からロジン・ラムラー分布式を用いて粒径分布を決定した後、得られた粒径分布に基づいて、積算ふるい下百分率、つまり、小粒子側から積算した質量分率の累積値が63質量%となる粒径を算出した。この値を発泡性粒子の平均粒子径とした。発泡性粒子の平均粒子径は表1~表4に示す通りであった。
"Measurement of average particle size"
The expandable particles were sieved using a test sieve meeting the specifications of JIS Z8801, and the expandable particles were classified based on the particle size range. By measuring the mass of the expandable particles remaining on the sieve, the mass fraction of the expandable particles in each particle size range was calculated. After determining the particle size distribution from these mass fractions using the Rosin-Rammler distribution formula, based on the obtained particle size distribution, the cumulative under-sieve percentage, that is, the cumulative mass fraction integrated from the small particle side The particle size with a value of 63% by mass was calculated. This value was taken as the average particle size of the expandable particles. The average particle size of the expandable particles was as shown in Tables 1-4.
「発泡性の評価」
発泡性の評価は、棚式発泡機を用いて発泡性粒子を発泡させ、得られた発泡粒子の見掛け密度を測定することにより行った。具体的には、まず、棚式発泡機内の発泡性粒子に3kPa(ゲージ圧力)のスチームを270秒間供給することにより、発泡性粒子を発泡させて発泡粒子を得た。得られた発泡粒子を室温で1日間風乾させた。その後、発泡粒子を1Lのメスシリンダーに充填し、この体積1Lあたりの発泡粒子の質量(g)を計量した。次いで、体積1L当たりの質量を単位換算することにより、見掛け密度(kg/m3)を算出した。なお、該見掛け密度が低いほど、発泡性が高いことを示している。発泡性の評価結果は表1~表4に示す通りであった。
"Evaluation of foamability"
The evaluation of expandability was carried out by expanding the expandable beads using a tray type foaming machine and measuring the apparent density of the obtained expanded beads. Specifically, first, the expandable beads were expanded by supplying steam of 3 kPa (gauge pressure) to the expandable beads in the shelf foaming machine for 270 seconds to obtain expanded beads. The resulting expanded beads were allowed to air dry at room temperature for 1 day. After that, the expanded beads were filled in a 1 L measuring cylinder, and the mass (g) of the expanded beads per 1 L volume was measured. Then, the apparent density (kg/m 3 ) was calculated by converting the mass per liter of volume into units. In addition, it has shown that foaming property is so high that this apparent density is low. The foamability evaluation results were as shown in Tables 1 to 4.
次に、発泡粒子を用いた二次発泡性の評価方法を以下に説明する。 Next, a method for evaluating secondary foamability using expanded particles will be described below.
「二次発泡性の評価」
二次発泡性の評価は、見掛け密度20kg/m3の発泡粒子をさらに発泡(二次発泡)させた際の発泡倍率である二次発泡率に基づいて行った。具体的には、まず、棚式発泡機を用いて発泡性粒子を発泡させ、見掛け密度20kg/m3の発泡粒子を準備した。この発泡粒子を棚式発泡機内に配置し、棚式発泡機内に3kPa(ゲージ圧力)のスチームを60秒間供給することにより、発泡粒子を二次発泡させて二次発泡粒子を得た。得られた二次発泡粒子を室温で1日間風乾させた。その後、二次発泡粒子を1Lのメスシリンダーに充填し、体積1Lあたりの二次発泡粒子の質量を(g)を計量した。次いで、体積1L当たりの二次発泡粒子の質量を単位換算することにより、二次発泡後の見掛け密度(kg/m3)を算出した。
"Evaluation of secondary foamability"
The secondary foamability was evaluated based on the secondary foaming ratio, which is the foaming ratio when the foamed beads having an apparent density of 20 kg/m 3 are further foamed (secondary foaming). Specifically, first, expandable particles were expanded using a tray type expansion machine to prepare expanded particles having an apparent density of 20 kg/m 3 . The expanded beads were placed in a tray type expansion machine, and steam was supplied to the tray type expansion machine at 3 kPa (gauge pressure) for 60 seconds to secondary expand the expanded beads to obtain secondary expanded beads. The obtained secondary expanded particles were air-dried at room temperature for 1 day. After that, the secondary expanded particles were filled in a 1 L graduated cylinder, and the mass (g) of the secondary expanded particles per 1 L volume was measured. Then, the apparent density (kg/m 3 ) after the secondary expansion was calculated by converting the mass of the secondary expanded particles per liter of volume.
二次発泡率は、二次発泡後の見掛け密度(つまり、二次発泡粒子の見掛け密度)を二次発泡前の見掛け密度(20kg/m3)で除することにより算出される値である。各実施例、参考例及び比較例の二次発泡率は表1~表4に示す通りであった。 The secondary expansion rate is a value calculated by dividing the apparent density after secondary expansion (that is, the apparent density of secondary expanded particles) by the apparent density before secondary expansion (20 kg/m 3 ). The secondary foaming rate of each example , reference example and comparative example was as shown in Tables 1 to 4.
次に、発泡粒子成形体を用いた成形性、鋳造性、燃焼性及び強度の評価方法を以下に説明する。 Next, evaluation methods for moldability, castability, combustibility and strength using the expanded bead molded article will be described below.
「成形性」
型内成形時の成形性は、型内成形時のスチーム圧を変更して作製した発泡粒子成形体のそれぞれにおける発泡粒子同士の融着率及び表面性状(間隙及び表面溶融)に基づいて評価することができる。
"formability"
The moldability during in-mold molding is evaluated based on the fusion rate and surface properties (gap and surface fusion) of the expanded particles in each of the expanded bead molded articles produced by changing the steam pressure during in-mold molding. be able to.
・融着率
発泡粒子成形体を長さ方向に略等分となるように折り曲げて成形体を破断させた。その後、試験片の破断面を観察し、目視により成形体内部で破断(材料破壊)した発泡粒子数と発泡粒子界面で剥離した発泡粒子数をそれぞれ計測した。次いで、成形体内部で破断した発泡粒子数と界面で剥離した発泡粒子数との合計に対する成形体内部で破断した発泡粒子数の割合を算出し、これを百分率で表して融着率(%)とした。発泡粒子成形体における発泡粒子同士の融着率は表1~表4に示す通りであった。融着率の評価においては、融着率が60%以上の場合を合格と判定し、融着率が60%未満の場合を不合格と判定した。
-Fusion rate The foamed bead molded body was bent in the longitudinal direction so as to be divided into approximately equal parts, and the molded body was broken. After that, the fracture surface of the test piece was observed, and the number of expanded particles broken (material failure) inside the molded article and the number of expanded particles peeled off at the interface of the expanded particles were visually counted. Next, the ratio of the number of foamed particles broken inside the molded body to the sum of the number of foamed particles broken inside the molded body and the number of foamed particles peeled off at the interface was calculated, and expressed as a percentage, fusion rate (%) and Tables 1 to 4 show the fusion rate between the expanded particles in the expanded particle molded article. In the evaluation of the fusion rate, the case where the fusion rate was 60% or more was determined as acceptable, and the case where the fusion rate was less than 60% was determined as unacceptable.
・表面性状(間隙、表面溶融)
発泡粒子成形体の表面を目視観察し、表面に露出した発泡粒子同士の間に隙間が存在しているか否か、及び、発泡粒子成形体の表面に溶融痕が存在しているか否かを評価した。
・Surface properties (gap, surface melting)
The surface of the expanded bead molded article was visually observed to evaluate whether or not there were gaps between the expanded particles exposed on the surface and whether or not there were melt marks on the surface of the expanded bead molded article. did.
表1~表4の「間隙」欄には、発泡粒子成形体の表面に発泡粒子間の隙間がほとんど確認されず、表面全体が平滑である場合に記号「A」、発泡粒子成形体の表面に発泡粒子間の隙間が散見される場合に記号「B」、発泡粒子成形体の表面に発泡粒子間の隙間が多く確認される場合に記号「C」を記載した。間隙の評価においては、記号「A」及び記号「B」の場合を、表面性状が良好であるため合格と判定し、記号「C」の場合を、表面性状が悪いため不合格と判定した。 In the "Gap" column of Tables 1 to 4, almost no gaps between the expanded particles were observed on the surface of the expanded bead molded article, and the symbol "A" was given when the entire surface was smooth. The symbol "B" is given when interstices between the expanded particles are found here and there. In the evaluation of the gap, the cases of symbol "A" and symbol "B" were judged to be acceptable because the surface properties were good, and the case of symbol "C" was judged to be unacceptable because the surface properties were poor.
また、表1~表4の「表面溶融」欄には、発泡粒子成形体の表面に溶融痕がほとんど確認されない場合に記号「A」、発泡粒子成形体の表面に溶融痕が散見される場合に記号「B」、発泡粒子成形体の表面の至る所に溶融痕が確認される場合に記号「C」を記載した。表面溶融の評価においては、記号「A」及び記号「B」の場合を、表面性状が良好であるため合格と判定し、記号「C」の場合を、表面性状が悪いため不合格と判定した。 In addition, in the "surface melting" column of Tables 1 to 4, the symbol "A" is given when almost no melting traces are observed on the surface of the expanded bead molding, and when there are scattered traces of melting on the surface of the expanded bead molding. , and the symbol "C" is indicated when melt traces are observed everywhere on the surface of the expanded bead molded article. In the evaluation of surface melting, the cases of symbol "A" and symbol "B" were judged to be acceptable because the surface properties were good, and the case of symbol "C" was judged to be unacceptable because the surface properties were poor. .
成形性の評価は、以上のようにして0.04MPa、0.06MPa及び0.08MPaの成形スチーム圧で作製した発泡粒子成形体の融着率、間隙及び表面溶融の評価結果と、後述する曲げ強度とに基づいて行った。表1~表4の「成形性」欄には、0.04~0.08MPaの成形スチーム圧で作製した成形体のいずれにおいても、間隙及び表面溶融が「A」であり、融着率が60%以上である場合に記号「A」を記載した。また、0.04~0.08MPaの成形スチーム圧で作製した成形体のいずれにおいても間隙及び表面溶融が「B」以上(但し、少なくとも1つの「B」を含む)であり、融着率が60%以上であり、曲げ強度が270kPa以上である場合には同欄に記号「B」を記載した。 The moldability was evaluated by evaluating the fusion rate, gaps, and surface melting of the foamed particle molded bodies produced at molding steam pressures of 0.04 MPa, 0.06 MPa, and 0.08 MPa as described above, and the results of bending, which will be described later. Based on strength and. In the "Moldability" column of Tables 1 to 4, the gap and surface fusion are "A" and the fusion rate is A symbol "A" is given when the ratio is 60% or more. In addition, in any of the molded bodies produced at a molding steam pressure of 0.04 to 0.08 MPa, the gap and surface fusion are "B" or more (including at least one "B"), and the fusion rate is When it is 60% or more and the bending strength is 270 kPa or more, the symbol "B" is written in the same column.
また、0.04~0.08MPaの成形スチーム圧で作製した成形体のいずれにおいても間隙及び表面溶融が「B」以上(但し、少なくとも1つの「B」を含む)であり、融着率が60%以上であり、曲げ強度が270kPa未満である場合には同欄に記号「C」を記載した。そして、0.04~0.08MPaの成形スチーム圧で作製した発泡粒子成形体のうち少なくとも1つの成形体における間隙または表面溶融が「C」である場合、または、融着率が60%未満である場合には同欄に記号「D」を記載した。 In addition, in any of the molded bodies produced at a molding steam pressure of 0.04 to 0.08 MPa, the gap and surface fusion are "B" or more (including at least one "B"), and the fusion rate is When it is 60% or more and the bending strength is less than 270 kPa, the symbol "C" is entered in the same column. Then, if the gap or surface melting in at least one of the expanded bead molded articles produced at a molding steam pressure of 0.04 to 0.08 MPa is "C", or the fusion rate is less than 60% In some cases, the symbol "D" was entered in the same column.
成形性の評価においては、前述した記号「A」、「B」、「C」の場合を成形性が良好であるため合格と判定し、記号「D」の場合を成形性に劣るため不合格と判定した。 In the evaluation of moldability, the above-mentioned symbols "A", "B", and "C" were judged to be acceptable because the moldability was good, and the symbol "D" was rejected because the moldability was poor. I judged.
「発泡粒子成形体の水分量の測定」
まず、約0.3gの発泡粒子成形体を秤取した。この発泡粒子成形体を加熱水分気化装置に配置し、温度160℃まで加熱することにより、成形体内部の水分を気化させた。気化させた水分を加熱水分気化装置に接続されたカールフィッシャー水分測定装置(平沼産業株式会社製「AQ-6」)へ導き、成形体中の水分量を測定した。成形体中の水分量は表1~表4に示す通りであった。
"Measurement of Moisture Content of Expanded Beads"
First, about 0.3 g of expanded bead molding was weighed. This foamed bead molded article was placed in a heating and moisture vaporizer and heated to a temperature of 160° C. to vaporize the moisture inside the molded article. The vaporized moisture was led to a Karl Fischer moisture measuring device (“AQ-6” manufactured by Hiranuma Sangyo Co., Ltd.) connected to a heating moisture vaporizer, and the moisture content in the compact was measured. The water content in the molded body was as shown in Tables 1 to 4.
更に、以下の方法により、鋳造性、燃焼性及び強度の評価を行った。 Furthermore, castability, combustibility and strength were evaluated by the following methods.
「鋳造性」
鋳造性は、鋳造物の鋳肌及び鋳造時の様子により評価した。まず、発泡性粒子を発泡させて見掛け密度約30kg/m3の発泡粒子を作製した。次に、この発泡粒子を型内成形して、30kg/m3の見掛け密度を有し、横75mm×縦150mm×厚み40mmの直方体状を呈する発泡粒子成形体を作製した。
"Castability"
Castability was evaluated by the casting surface of the casting and the appearance during casting. First, expandable particles were expanded to produce expanded particles having an apparent density of about 30 kg/m 3 . Next, the expanded beads were molded in a mold to produce an expanded bead molded body having an apparent density of 30 kg/m 3 and exhibiting a rectangular parallelepiped shape of 75 mm wide×150 mm long×40 mm thick.
この発泡粒子成形体を消失模型として用い、フルモールド鋳造法により金属の鋳造を行った。具体的には、まず、ジルコン系塗型剤を塗布した発泡粒子成形体を、湯道及び堰とともに鋳枠内に配置した。そして、鋳枠内に鋳型となる砂を充填した。砂としては、アルカリフェノールガス硬化バインダー樹脂(花王株式会社製 カオーステップ(登録商標)C-800)を使用した。 A metal was cast by a full mold casting method using this foamed particle molded product as a disappearance model. Specifically, first, an expanded bead molded article coated with a zircon-based mold wash was placed in a flask together with runners and weirs. Then, the flask was filled with sand as a mold. As the sand, an alkali phenol gas curing binder resin (Kaostep (registered trademark) C-800 manufactured by Kao Corporation) was used.
次に、二酸化炭素ガスを鋳枠全体に行き渡るように充填し、砂を硬化させた。湯口と逃がし口を取り付けた後、溶融金属を湯口より流し込み、鋳込みを行った。なお、溶融金属としては、球状黒鉛鋳鉄(つまり、FCD)を使用した。鋳込み時の溶融金属の温度は約1400℃であった。鋳込みが完了した後、鋳枠内で金属が凝固することにより、発泡粒子成形体に対応した形状の鋳物が形成された。鋳枠内で鋳物の温度を十分に低下させた後、鋳物を鋳枠から取り出し、ショットブラスト処理を行った。 Next, carbon dioxide gas was filled throughout the flask to harden the sand. After attaching the sprue and the escape port, the molten metal was poured from the sprue and casting was performed. As the molten metal, spheroidal graphite cast iron (that is, FCD) was used. The temperature of the molten metal during casting was about 1400°C. After casting was completed, the metal solidified in the flask to form a casting with a shape corresponding to the expanded bead compact. After sufficiently lowering the temperature of the casting in the flask, the casting was removed from the flask and subjected to shot blasting.
・鋳肌の評価
鋳物を目視観察してスス欠陥の有無を評価した。なお、スス欠陥とは、鋳造時に発泡粒子成形体(すなわち、消失模型)の熱分解物がうまく排出されずに砂型内に残ることによって引き起こされる、鋳肌や鋳物の内部に生じた空洞やへこみのことである。スス欠陥がない場合や少ない場合は燃焼時にススの発生がほとんどないか少ないことを意味する。
・Evaluation of casting surface Castings were visually observed to evaluate the presence or absence of soot defects. Soot defects are cavities and dents that occur on the casting surface and inside the casting caused by the thermal decomposition products of the foamed particle compact (that is, the disappearance model) not being discharged well during casting and remaining in the sand mold. It's about. If there are no or few soot defects, it means that little or no soot is generated during combustion.
表1~表4の「鋳肌」欄には、鋳物がスス欠陥を有しない場合には記号「A」、鋳物にスス欠陥がわずかに見られる場合には記号「B」、鋳物にスス欠陥が多く見られる場合には記号「C」を記載した。 In the "casting surface" column of Tables 1 to 4, the symbol "A" indicates that the casting has no soot defects, the symbol "B" indicates that the casting has slight soot defects, and the symbol "B" indicates that the casting has soot defects. The symbol "C" is indicated when many are found.
・注湯時の様子
上記のようにして溶融金属を湯口に流し込んだ際の溶融金属の吹き返し、つまり、発泡粒子成形体から生じた熱分解ガスによって湯口から溶融金属が吹き出す現象の有無を目視で判断した。表1~表4の「注湯時の様子」欄には、吹き返しがない場合には記号「A」、わずかに吹き返しがある場合には記号「B」、吹き返しが激しい場合には記号「C」を記載した。
・When pouring the molten metal into the sprue as described above, it is possible to visually check for the phenomenon that the molten metal blows back from the sprue, that is, the phenomenon that the molten metal blows out from the sprue due to the pyrolysis gas generated from the expanded bead compact. It was judged. In Tables 1 to 4, the column "state of molten metal pouring" shows the symbol "A" when there is no blowback, the symbol "B" when there is a slight blowback, and the symbol "C" when there is severe blowback. ” was described.
「ススの発生量」
見掛け密度20kg/m3の発泡粒子成形体から、縦75mm×横25mm×厚さ25mmの寸法の試験片を切り出した。この試験片をクランプに水平に取り付け、試験片に炎を接触させた。このとき、発生したススの量を目視にて観察し、下記の基準で判定した。表1~表4の「スス量」欄には、ススの発生がほとんどない場合に記号「A」、ススの発生が少ない場合に記号「B」、ススの発生が多い場合に「C」を記載した。
"Amount of generated soot"
A test piece having dimensions of 75 mm long×25 mm wide×25 mm thick was cut out from an expanded bead molded product having an apparent density of 20 kg/m 3 . The specimen was mounted horizontally in a clamp and the flame was brought into contact with the specimen. At this time, the amount of generated soot was visually observed and evaluated according to the following criteria. In the "soot amount" column of Tables 1 to 4, the symbol "A" indicates little soot generation, the symbol "B" indicates little soot generation, and the symbol "C" indicates large soot generation. Described.
「曲げ強度」
0.08MPaの成形スチーム圧で発泡粒子の型内成形を行うことにより、22kg/m3の見掛け密度を有し、縦300mm×横75mm×厚さ25mmの板状を呈する発泡粒子成形体を作製した。この成形体を試験片とし、JIS K7221-2(1999年)の附属書1に記載された大形試験片による曲げ試験方法に準拠して3点曲げ試験を行い、応力-歪曲線を取得した。この応力-歪曲線に基づいて算出した最大荷重における曲げ応力を発泡粒子成形体の曲げ強度とした。なお、3点曲げ試験には万能試験機(株式会社島津製作所製「オートグラフ(登録商標)」)を使用し、下部支点間距離200mm、試験速度10mm/分の条件で試験を行った。発泡粒子成形体の曲げ強度は、表1~表4に示す通りであった。
"Bending strength"
By performing in-mold molding of the expanded particles at a molding steam pressure of 0.08 MPa, an expanded particle molded article having an apparent density of 22 kg/m 3 and exhibiting a plate shape of 300 mm long × 75 mm wide × 25 mm thick was produced. did. Using this molded body as a test piece, a three-point bending test was performed in accordance with the bending test method using a large test piece described in Annex 1 of JIS K7221-2 (1999) to obtain a stress-strain curve. . The bending stress at the maximum load calculated based on this stress-strain curve was defined as the bending strength of the expanded bead molded article. For the three-point bending test, a universal testing machine ("Autograph (registered trademark)" manufactured by Shimadzu Corporation) was used, and the test was performed under the conditions of a distance between lower fulcrums of 200 mm and a test speed of 10 mm/min. The flexural strengths of the expanded bead moldings were as shown in Tables 1 to 4.
「圧縮強度」
0.08MPaの成形スチーム圧で発泡粒子の型内成形を行うことにより作製した見掛け密度22kg/m3の発泡粒子成形体の中央部分から縦50mm、横50mm、厚み25mmの直方体状の試験片を採取した。この試験片を用いて、JIS K6767(1999年)に準拠して3点曲げ試験を行い、ひずみ10%における圧縮荷重を測定した。そして、ひずみ10%における圧縮荷重を試験片の受圧面積で除した値を圧縮応力(10%圧縮応力)とした。なお、3点曲げ試験には万能試験機(株式会社島津製作所製「オートグラフ(登録商標)」)を使用し、下部支点間距離200mm、試験速度10mm/分の条件で試験を行った。発泡粒子成形体の10%圧縮応力は、表1~表4に示す通りであった。
"compressive strength"
A rectangular parallelepiped specimen having a length of 50 mm, a width of 50 mm and a thickness of 25 mm was cut from the central portion of an expanded bead molded product having an apparent density of 22 kg/m 3 produced by in-mold molding of the expanded beads at a molding steam pressure of 0.08 MPa. Taken. Using this test piece, a three-point bending test was performed according to JIS K6767 (1999), and the compressive load at a strain of 10% was measured. The compressive stress (10% compressive stress) was obtained by dividing the compressive load at a strain of 10% by the pressure-receiving area of the test piece. For the three-point bending test, a universal testing machine ("Autograph (registered trademark)" manufactured by Shimadzu Corporation) was used, and the test was performed under the conditions of a distance between lower fulcrums of 200 mm and a test speed of 10 mm/min. The 10% compressive stress of the expanded bead molding was as shown in Tables 1-4.
なお、表3及び表4に示す比較例3~13については、成形スチーム圧0.04~0.10MPaの範囲内では良好な発泡粒子成形体が得られなかったため、鋳造性、燃焼性及び強度の評価を行わなかった。 In Comparative Examples 3 to 13 shown in Tables 3 and 4, good expanded bead moldings could not be obtained at molding steam pressures in the range of 0.04 to 0.10 MPa. was not evaluated.
また、図1に、実施例1~8、参考例1~4及び比較例1~13の発泡性粒子における、重量平均分子量Mw(C)の値を縦軸に、脂環式飽和炭化水素の含有量(D)の値を横軸にとったプロットを示す。なお、図1中に示した丸形のマーカーは実施例1~8及び参考例1~4を示し、ひし形のマーカーは比較例1~13を示す。また、図1中には、重量平均分子量Mw(C)が50000である直線L1、重量平均分子量Mw(C)が110000である直線L2、脂環式飽和炭化水素の含有量(D)が0.2質量%である直線L3、脂環式飽和炭化水素の含有量(D)が2.5質量%である直線L4を示した。 In FIG. 1, the weight average molecular weight Mw (C) of the expandable particles of Examples 1 to 8, Reference Examples 1 to 4, and Comparative Examples 1 to 13 is plotted on the vertical axis, and the weight average molecular weight Mw (C) of the saturated alicyclic hydrocarbon is plotted. A plot with content (D) values on the horizontal axis is shown. 1 indicate Examples 1-8 and Reference Examples 1-4 , and diamond-shaped markers indicate Comparative Examples 1-13. In addition, in FIG. 1, a straight line L1 with a weight average molecular weight Mw (C) of 50000, a straight line L2 with a weight average molecular weight Mw (C) of 110000, and an alicyclic saturated hydrocarbon content (D) of 0 A straight line L3 with a content of .2% by mass and a straight line L4 with a saturated alicyclic hydrocarbon content (D) of 2.5% by mass are shown.
表1及び表2に示すように、実施例1~8の発泡性粒子には、前記特定の組成を有するアクリル系樹脂と、物理発泡剤とが含まれている。そのため、これらの発泡性粒子から得られた発泡粒子成形体は、熱分解時のススの発生量を低減するとともに、熱分解ガスの発生速度を低減し、鋳造時の吹き返しの発生を抑制することができる。 As shown in Tables 1 and 2, the expandable particles of Examples 1 to 8 contain the acrylic resin having the specific composition and the physical blowing agent. Therefore, the expanded particle molded article obtained from these expandable particles reduces the amount of soot generated during thermal decomposition, reduces the generation rate of thermal decomposition gas, and suppresses the occurrence of blowback during casting. can be done.
更に、実施例1~8の発泡性粒子におけるアクリル系樹脂の重量平均分子量Mw(C)は前記特定の範囲内であり、かつ、発泡性粒子中の脂環式飽和炭化水素の含有量(D)が前記特定の範囲内である。これにより、例えば成形スチーム圧が0.04MPaや0.06MPaの場合など、型内成形時の成形スチーム圧を低くした場合にも、優れた融着性を有すると共に、間隙が少なく平滑性に優れる発泡粒子成形体を得ることができる。それ故、実施例1~8の発泡性粒子から得られた発泡粒子は、幅広い成形条件において、優れた型内成形性を有している。 Furthermore, the weight average molecular weight Mw (C) of the acrylic resin in the expandable particles of Examples 1 to 8 was within the above-mentioned specific range, and the content of alicyclic saturated hydrocarbons in the expandable particles (D ) is within the specified range. As a result, even when the molding steam pressure during molding in the mold is low, for example, when the molding steam pressure is 0.04 MPa or 0.06 MPa, it has excellent fusion bondability and excellent smoothness with few gaps. An expanded bead molded article can be obtained. Therefore, the expanded beads obtained from the expandable beads of Examples 1 to 8 have excellent in-mold moldability under a wide range of molding conditions.
一方、表3及び表4に示す比較例1~13の発泡性粒子は、アクリル系樹脂の重量平均分子量Mw(C)及び脂環式飽和炭化水素の含有量(D)のうち少なくとも一方が前記特定の範囲を満たしていない。そのため、比較例1~13の発泡性粒子を発泡させてなる発泡粒子は、例えば成形スチーム圧が0.04MPaや0.06MPaの場合など、低い成形スチーム圧での成形性が実施例1~8の発泡性粒子から得られた発泡粒子に比べて劣り、成形条件の範囲が狭かった。
On the other hand, in the expandable particles of Comparative Examples 1 to 13 shown in Tables 3 and 4, at least one of the weight average molecular weight Mw (C) of the acrylic resin and the content (D) of the alicyclic saturated hydrocarbon is does not meet a certain range. Therefore, the expanded beads obtained by expanding the expandable beads of Comparative Examples 1 to 13 have moldability at a low molding steam pressure, such as when the molding steam pressure is 0.04 MPa or 0.06 MPa, compared to Examples 1 to 8 . was inferior to the expanded beads obtained from the expandable beads of No. 1, and the range of molding conditions was narrow.
Claims (9)
前記アクリル系樹脂は、
メタクリル酸エステルとアクリル酸エステルとの共重合体であり、
前記アクリル系樹脂中の、メタクリル酸エステル成分(A)とアクリル酸エステル成分(B)との合計100モル%に対する前記メタクリル酸エステル成分(A)のモル比が85~99モル%であり、
前記メタクリル酸エステル成分(A)及び前記アクリル酸エステル成分(B)のうち少なくとも一方が多環式飽和炭化水素基を有する成分を含有し、
前記アクリル系樹脂のガラス転移温度は112~125℃であり、
前記アクリル系樹脂の重量平均分子量は5~11万であり、
前記物理発泡剤は、
炭素数3~6の鎖式飽和炭化水素と炭素数5~7の脂環式飽和炭化水素とを含有し、
前記発泡性アクリル系樹脂粒子中の前記物理発泡剤の含有量が6~10質量%であり、
前記発泡性アクリル系樹脂粒子中の前記脂環式飽和炭化水素の含有量が0.5~1.6質量%である、発泡性アクリル系樹脂粒子。 Expandable acrylic resin particles containing an acrylic resin and a physical blowing agent,
The acrylic resin is
It is a copolymer of methacrylic acid ester and acrylic acid ester,
The molar ratio of the methacrylic acid ester component (A) to the total 100 mol% of the methacrylic acid ester component (A) and the acrylic acid ester component (B) in the acrylic resin is 85 to 99 mol%,
At least one of the methacrylic acid ester component (A) and the acrylic acid ester component (B) contains a component having a polycyclic saturated hydrocarbon group,
The acrylic resin has a glass transition temperature of 112 to 125° C.,
The acrylic resin has a weight average molecular weight of 50,000 to 110,000,
The physical foaming agent is
Containing a chain saturated hydrocarbon having 3 to 6 carbon atoms and an alicyclic saturated hydrocarbon having 5 to 7 carbon atoms,
The content of the physical foaming agent in the expandable acrylic resin particles is 6 to 10% by mass,
The expandable acrylic resin particles, wherein the content of the alicyclic saturated hydrocarbon in the expandable acrylic resin particles is 0.5 to 1.6 % by mass.
Mw≦(-10×CCH+25)×104 ・・・(1) 2. The expandable acrylic resin particles according to claim 1, wherein the alicyclic saturated hydrocarbon content C CH [mass %] and the weight average molecular weight Mw satisfy the following formula (1).
Mw≦(−10×C CH +25)×10 4 (1)
(-10×CCH+12)×104≦Mw ・・・(2) 3. The expandable acrylic resin particles according to claim 1, wherein the alicyclic saturated hydrocarbon content C CH [mass %] and the weight average molecular weight Mw satisfy the following formula (2).
(−10×C CH +12)×10 4 ≦Mw (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018220591A JP7148795B2 (en) | 2018-11-26 | 2018-11-26 | Expandable acrylic resin particles, expanded acrylic resin particles, expanded acrylic resin particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018220591A JP7148795B2 (en) | 2018-11-26 | 2018-11-26 | Expandable acrylic resin particles, expanded acrylic resin particles, expanded acrylic resin particles |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020084040A JP2020084040A (en) | 2020-06-04 |
JP7148795B2 true JP7148795B2 (en) | 2022-10-06 |
Family
ID=70906513
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018220591A Active JP7148795B2 (en) | 2018-11-26 | 2018-11-26 | Expandable acrylic resin particles, expanded acrylic resin particles, expanded acrylic resin particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7148795B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021199878A1 (en) * | 2020-03-30 | 2021-10-07 | 株式会社カネカ | Expandable methyl-methacrylate-based resin particles, methyl-methacrylate-based expanded particles, methyl-methacrylate-based molded foam, and evaporative pattern |
CN118525047A (en) * | 2022-03-29 | 2024-08-20 | 株式会社钟化 | Expandable methyl methacrylate resin particles, and process for producing the same methyl methacrylate resin foam molded article and lost foam |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007314774A (en) | 2006-04-26 | 2007-12-06 | Jsp Corp | Acrylic resin expanded particle, manufacturing method of expandable acrylic resin particle and molded article of expanded acrylic resin particle |
JP2014189769A (en) | 2013-03-28 | 2014-10-06 | Sekisui Plastics Co Ltd | Modified polystyrenic foamable resin particles, method for manufacturing the same, foam particles, and foam molding |
JP2015183111A (en) | 2014-03-25 | 2015-10-22 | 株式会社ジェイエスピー | Expandable acrylic resin particle, acrylic resin expanded particle, and acrylic resin expanded particle molding |
-
2018
- 2018-11-26 JP JP2018220591A patent/JP7148795B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007314774A (en) | 2006-04-26 | 2007-12-06 | Jsp Corp | Acrylic resin expanded particle, manufacturing method of expandable acrylic resin particle and molded article of expanded acrylic resin particle |
JP2014189769A (en) | 2013-03-28 | 2014-10-06 | Sekisui Plastics Co Ltd | Modified polystyrenic foamable resin particles, method for manufacturing the same, foam particles, and foam molding |
JP2015183111A (en) | 2014-03-25 | 2015-10-22 | 株式会社ジェイエスピー | Expandable acrylic resin particle, acrylic resin expanded particle, and acrylic resin expanded particle molding |
Also Published As
Publication number | Publication date |
---|---|
JP2020084040A (en) | 2020-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6225781B2 (en) | Foamable acrylic resin particles, acrylic resin foam particles, acrylic resin foam particles | |
JP6670245B2 (en) | Expandable methyl methacrylate resin particles, pre-expanded particles, expanded molded article, and disappearance model | |
JP7148795B2 (en) | Expandable acrylic resin particles, expanded acrylic resin particles, expanded acrylic resin particles | |
US20100209689A1 (en) | Expanded styrene resin beads and molded article formed from expanded styrene resin beads | |
US10377873B2 (en) | Expandable acrylic resin bead, expanded acrylic resin bead, and expanded acrylic resin beads molded article | |
JP2017179212A (en) | Composite resin foam particle and composite resin foam particle molded body | |
TWI816030B (en) | Method for producing expandable methyl methacrylate resin particles, methyl methacrylate resin pre-expanded particles, methyl methacrylate expanded molded articles, and expandable methyl methacrylate resin particles | |
JP7323788B2 (en) | Expandable acrylic resin particles, expanded acrylic resin particles, and expanded acrylic resin particles | |
JP2016044199A (en) | Expandable composite resin particle | |
JP2018135408A (en) | Method for producing expandable methyl methacrylate resin particles | |
JP7549234B2 (en) | Expandable acrylic resin particles, expanded acrylic resin particles, and method for producing the same | |
WO2022004692A1 (en) | Expandable particles of methyl-methacrylate-based resin, expanded particles of methyl-methacrylate-based resin, molded foam of methyl-methacrylate-based resin, and evaporative pattern | |
JP6816656B2 (en) | Composite resin particles, composite resin foam particles, composite resin foam particle molded products | |
CN115380064A (en) | Expandable methyl methacrylate resin particles, methyl methacrylate expanded molded article, and lost foam | |
WO2023189759A1 (en) | Expandable particles of methyl-methacrylate-based resin, expanded particles of methyl-methacrylate-based resin, molded foam of methyl-methacrylate-based resin, and evaporative pattern | |
JP2018039923A (en) | Composite resin particle, composite resin foamed particle, and composite resin particle molding | |
JP3637785B2 (en) | Method for producing expandable methyl methacrylate resin particles | |
JP7323794B2 (en) | Expandable acrylic resin particles, expanded acrylic resin particles, expanded acrylic resin particles | |
JP2024030432A (en) | Foamable acrylic resin particle | |
JPH05112665A (en) | Foamable resin composition and production of foamed thermoplastic model and cast metal using the composition | |
KR920002233B1 (en) | Expandable and expanded plastics material compounds and methods for casting metal castings empolying such expanded compositions in molded form | |
JP2019081821A (en) | Foamable resin particle | |
JP7121279B2 (en) | Expandable styrene resin particles | |
JP2020033446A (en) | Foamable composite resin particle | |
JP2024146783A (en) | Expandable methyl methacrylate resin particles, methyl methacrylate resin foam particles, methyl methacrylate foamed molded body, and lost model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210608 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220524 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220531 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220721 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220823 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220905 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7148795 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |