JP7145253B2 - Chemical polishing liquid and chemical polishing method - Google Patents

Chemical polishing liquid and chemical polishing method Download PDF

Info

Publication number
JP7145253B2
JP7145253B2 JP2021024334A JP2021024334A JP7145253B2 JP 7145253 B2 JP7145253 B2 JP 7145253B2 JP 2021024334 A JP2021024334 A JP 2021024334A JP 2021024334 A JP2021024334 A JP 2021024334A JP 7145253 B2 JP7145253 B2 JP 7145253B2
Authority
JP
Japan
Prior art keywords
chemical polishing
mass
polishing liquid
surface roughness
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021024334A
Other languages
Japanese (ja)
Other versions
JP2022126319A (en
Inventor
正和 塩野入
Original Assignee
三愛オブリテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三愛オブリテック株式会社 filed Critical 三愛オブリテック株式会社
Priority to JP2021024334A priority Critical patent/JP7145253B2/en
Publication of JP2022126319A publication Critical patent/JP2022126319A/en
Application granted granted Critical
Publication of JP7145253B2 publication Critical patent/JP7145253B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • ing And Chemical Polishing (AREA)

Description

本発明は、金属の化学研磨に用いられる化学研磨液及び金属の化学研磨方法に関する。 TECHNICAL FIELD The present invention relates to a chemical polishing liquid used for chemical polishing of metals and a chemical polishing method of metals.

炭素鋼や合金鋼は、様々な産業分野で用いられている重要な鉄材である。そのなかでもSCM(クロムモリブデン鋼)、AISI-P20やP21相当のプラスチック金型鋼、低熱膨張率が特徴であるFe-Ni36%のインバー(登録商標)、初透磁率が大きいことが特徴であるパーマロイのなかでも鉄含有量が50質量%を超え真空装置でも使用されるパーマロイB及びD、核融合炉への用途が有望な低放射化フェライト鋼等の合金鋼は、用途によって表面の平滑性や清浄性が要求される。しかしながら、様々かつ複雑な形状に加工成型された部品等の全面を容易に平滑化することは困難であり、手作業で磨かれている場合も未だ多くコストや作業時間が非常に長いという問題が存在する。そのため、適切な表面処理の開発が要望されている。 Carbon steel and alloy steel are important iron materials used in various industrial fields. Among them, SCM (chromium molybdenum steel), plastic mold steel equivalent to AISI-P20 and P21, Fe-Ni 36% Invar (registered trademark) characterized by low coefficient of thermal expansion, permalloy characterized by high initial permeability Among them, alloy steels such as Permalloy B and D, which have an iron content of over 50% by mass and are also used in vacuum equipment, and low-activation ferritic steel, which is promising for use in nuclear fusion reactors, have surface smoothness and surface smoothness depending on the application. Cleanliness is required. However, it is difficult to easily smooth the entire surface of parts that have been processed and molded into various and complicated shapes, and there are still many cases where the polishing is done manually, resulting in problems of high cost and extremely long work hours. exist. Therefore, development of appropriate surface treatment is demanded.

上記のような課題に応えるため、複数の化学研磨液が開発されてきているが、毒物であるフッ化水素酸を含有するものが多いといった問題がある(特許文献1)。 A number of chemical polishing solutions have been developed in order to address the above problems, but there is a problem that many of them contain hydrofluoric acid, which is a poison (Patent Document 1).

また、毒物であるフッ化水素酸の代わりにフッ化水素アンモニウムと過酸化水素を含有させた化学研磨液が提案されているが(特許文献2)、構成成分を考慮すると弱酸であるため、鉄は溶解させうるが、合金鋼中の耐食性の高い添加成分(CrやMo等)を溶解させる効果は期待できなく、添加成分が偏析しているような場合、微視的な凹凸が発生してしまい、平滑化の達成に問題が生じる。 In addition, a chemical polishing liquid containing ammonium hydrogen fluoride and hydrogen peroxide instead of the poisonous hydrofluoric acid has been proposed (Patent Document 2). However, the effect of dissolving highly corrosion-resistant additive components (Cr, Mo, etc.) in alloy steel cannot be expected. This causes problems in achieving smoothing.

特許第3105975号Patent No. 3105975 特許第3144280号Patent No. 3144280

本発明の課題は、金属の表面を平滑化できる化学研磨液及び化学研磨方法を提供することにある。また、本発明の課題は、金属の表面を平滑化及び光沢化できる化学研磨液及び化学研磨方法を提供することにある。 An object of the present invention is to provide a chemical polishing liquid and a chemical polishing method capable of smoothing the surface of metal. Another object of the present invention is to provide a chemical polishing liquid and a chemical polishing method capable of smoothing and glossing the surface of metal.

本発明者は、金属を化学研磨するための化学研磨液の開発を目指して検討を開始した。化学研磨液の組成を鋭意検討したところ、過酸化水素及びフッ化水素アンモニウムに加え、ジエチレングリコールモノフェニルエーテル等のフェニルグリコールエーテル類と塩化物イオンを配合することにより、フッ化水素酸を用いなくても極めて優れた化学研磨特性を発揮することを見いだした。この組成からなる化学研磨液は、金属の表面を平滑化や光沢化することに優れ、特に合金鋼の表面を平滑化し光沢化することに優れるものであった。 The inventor of the present invention has started studies with the aim of developing a chemical polishing liquid for chemically polishing metals. As a result of intensive investigation of the composition of the chemical polishing liquid, it was found that hydrogen peroxide and ammonium hydrogen fluoride, as well as phenyl glycol ethers such as diethylene glycol monophenyl ether, and chloride ions were blended to eliminate the need for hydrofluoric acid. It has also been found that the compound exhibits extremely excellent chemical polishing properties. The chemical polishing liquid having this composition was excellent in smoothing and brightening the surface of metals, and particularly excellent in smoothing and brightening the surface of alloy steel.

すなわち、本発明は以下に示す事項により特定されるものである。
(1)過酸化水素、フッ化水素アンモニウム、フェニルグリコールエーテル類及び塩化物イオンを含有する化学研磨液。
(2)モリブデン、クロム及びニッケルから選ばれる少なくとも1種を含有する合金鋼の化学研磨に用いるための上記(1)記載の化学研磨液。
(3)過酸化水素の含有量が5~20質量%であることを特徴とする上記(1)又は(2)記載の化学研磨液。
(4)フッ化水素アンモニウムの含有量が0.5~10質量%であることを特徴とする上記(1)~(3)のいずれか記載の化学研磨液。
(5)フェニルグリコールエーテル類の含有量が0.1~5質量%であることを特徴とする上記(1)~(4)のいずれか記載の化学研磨液。
(6)塩化物イオンの含有量が0.001~5質量%であることを特徴とする上記(1)~(5)のいずれか記載の化学研磨液。
(7)金属表面の化学研磨方法であって、上記(1)~(6)のいずれか記載の化学研磨液を前記金属表面に接触させることを特徴とする化学研磨方法。
That is, the present invention is specified by the matters shown below.
(1) A chemical polishing liquid containing hydrogen peroxide, ammonium hydrogen fluoride, phenyl glycol ethers and chloride ions.
(2) The chemical polishing liquid according to (1) above, which is used for chemical polishing of alloy steel containing at least one selected from molybdenum, chromium and nickel.
(3) The chemical polishing liquid according to (1) or (2) above, wherein the content of hydrogen peroxide is 5 to 20% by mass.
(4) The chemical polishing liquid according to any one of (1) to (3) above, wherein the content of ammonium hydrogen fluoride is 0.5 to 10% by mass.
(5) The chemical polishing liquid according to any one of (1) to (4) above, wherein the content of the phenyl glycol ether is 0.1 to 5% by mass.
(6) The chemical polishing liquid according to any one of (1) to (5) above, wherein the content of chloride ions is 0.001 to 5% by mass.
(7) A chemical polishing method for a metal surface, which comprises bringing the chemical polishing liquid according to any one of (1) to (6) into contact with the metal surface.

本発明の化学研磨液を用いて化学研磨処理を行うと、効率的に金属表面を平滑化できる。また、本発明の化学研磨液を用いて化学研磨処理を行うと、金属表面を平滑化に加えて光沢化できる。 A chemical polishing treatment using the chemical polishing liquid of the present invention can efficiently smoothen a metal surface. Further, when chemical polishing treatment is performed using the chemical polishing liquid of the present invention, the metal surface can be made glossy in addition to being smoothed.

図1(a)は、本発明の実施例3でのフライス切削加工されたSCM440板の化学研磨面の走査電子顕微鏡像であり、(c)は化学研磨前のフライス切削面の走査電子顕微鏡像であり、(b)は化学研磨後の表面粗度曲線であり、(d)は化学研磨前の表面粗度曲線である。FIG. 1(a) is a scanning electron microscope image of the chemically polished surface of the SCM440 plate milled in Example 3 of the present invention, and (c) is a scanning electron microscope image of the milled surface before chemical polishing. where (b) is the surface roughness curve after chemical polishing, and (d) is the surface roughness curve before chemical polishing. 図2(a)は、本発明の実施例27でのフライス切削加工された低放射化フェライト鋼(F82H)板の化学研磨面の走査電子顕微鏡像であり、(c)は化学研磨前のフライス切削面のF82Hの走査電子顕微鏡像であり、(b)は化学研磨後の表面粗度曲線であり、(d)は化学研磨前の表面粗度曲線である。FIG. 2(a) is a scanning electron microscope image of the chemically polished surface of a low-activation ferritic steel (F82H) plate milled in Example 27 of the present invention, and (c) is a milling before chemical polishing. It is a scanning electron microscope image of F82H of the cut surface, (b) is the surface roughness curve after chemical polishing, and (d) is the surface roughness curve before chemical polishing. 図3(a)、本発明の実施例28でのフライス切削加工されたプラスチック金型鋼HPM1(登録商標)板の化学研磨面の走査電子顕微鏡像であり、(c)は化学研磨前のフライス加工面のHPM1の走査電子顕微鏡像であり、(b)は化学研磨後の表面粗度曲線であり、(d)は化学研磨前の表面粗度曲線である。FIG. 3(a) is a scanning electron microscope image of the chemically polished surface of the milled plastic mold steel HPM1® plate in Example 28 of the present invention, and (c) is milling before chemical polishing. It is a scanning electron microscope image of HPM1 of the surface, (b) is the surface roughness curve after chemical polishing, and (d) is the surface roughness curve before chemical polishing. 図4(a)は、本発明実施例29でのフライス切削加工されたプラスチック金型鋼CENA1(登録商標)の化学研磨面の走査電子顕微鏡像であり、(c)は化学研磨前のフライス切削面のCENA1の走査電子顕微鏡像であり、(b)は化学研磨後の表面粗度曲線であり、(d)は化学研磨前の表面粗度曲線である。FIG. 4(a) is a scanning electron microscope image of the chemically polished surface of plastic mold steel CENA1 (registered trademark) milled in Example 29 of the present invention, and (c) is the milled surface before chemical polishing. (b) is a surface roughness curve after chemical polishing, and (d) is a surface roughness curve before chemical polishing. 図5(a)は、本発明実施例30でのフライス切削加工されたプラスチック金型鋼NAK55(登録商標)の化学研磨面の走査電子顕微鏡像であり、(c)は化学研磨前のフライス切削面のNAK55の走査電子顕微鏡像であり、(b)は化学研磨後の表面粗度曲線であり、(d)は化学研磨前の表面粗度曲線である。FIG. 5(a) is a scanning electron microscope image of the chemically polished surface of plastic mold steel NAK55 (registered trademark) milled in Example 30 of the present invention, and (c) is the milled surface before chemical polishing. (b) is a surface roughness curve after chemical polishing, and (d) is a surface roughness curve before chemical polishing. 図6(a)は、本発明の実施例31でのフライス切削加工されたインバー(登録商標)の化学研磨面の走査電子顕微鏡像であり、(c)は化学研磨前のフライス切削面のインバーの走査電子顕微鏡像であり、(b)は化学研磨後の表面粗度曲線であり、(d)は化学研磨前の表面粗度曲線である。FIG. 6(a) is a scanning electron microscope image of the chemically polished surface of Invar (registered trademark) milled in Example 31 of the present invention, and (c) is the Invar of the milled surface before chemical polishing. (b) is a surface roughness curve after chemical polishing, and (d) is a surface roughness curve before chemical polishing. 図7(a)は、本発明の実施例32でのフライス切削加工されたパーマロイB板の化学研磨面の走査電子顕微鏡像であり、(c)は化学研磨前のフライス切削面のパーマロイBの走査電子顕微鏡像であり、(b)は化学研磨後の表面粗度曲線であり、(d)は化学研磨前の表面粗度曲線である。FIG. 7(a) is a scanning electron microscope image of the chemically polished surface of the milled permalloy B plate in Example 32 of the present invention, and (c) is the permalloy B of the milled surface before chemical polishing. It is a scanning electron microscope image, (b) is the surface roughness curve after chemical polishing, and (d) is the surface roughness curve before chemical polishing. 図8(a)は、本発明の比較例1でのフライス切削加工されたSCM440板の化学研磨面の走査電子顕微鏡像であり、(c)は化学研磨前のフライス切削面の走査電子顕微鏡像であり、(b)は化学研磨後の表面粗度曲線であり、(d)は化学研磨前の表面粗度曲線である。FIG. 8(a) is a scanning electron microscope image of the chemically polished surface of the SCM440 plate milled in Comparative Example 1 of the present invention, and (c) is a scanning electron microscope image of the milled surface before chemical polishing. where (b) is the surface roughness curve after chemical polishing, and (d) is the surface roughness curve before chemical polishing. 図9(a)は、本発明の比較例2でのフライス切削加工されたSCM440板の化学研磨面の走査電子顕微鏡像であり、(c)は化学研磨前のフライス切削面の走査電子顕微鏡像であり、(b)は化学研磨後の表面粗度曲線であり、(d)は化学研磨前の表面粗度曲線である。FIG. 9(a) is a scanning electron microscope image of the chemically polished surface of the milled SCM440 plate in Comparative Example 2 of the present invention, and (c) is a scanning electron microscope image of the milled surface before chemical polishing. where (b) is the surface roughness curve after chemical polishing, and (d) is the surface roughness curve before chemical polishing. 図10(a)は、本発明の比較例3でのフライス切削加工されたSCM440板の化学研磨面の走査電子顕微鏡像であり、(c)は化学研磨前のフライス切削面の走査電子顕微鏡像であり、(b)は化学研磨後の表面粗度曲線であり、(d)は化学研磨前の表面粗度曲線である。FIG. 10(a) is a scanning electron microscope image of the chemically polished surface of the milled SCM440 plate in Comparative Example 3 of the present invention, and (c) is a scanning electron microscope image of the milled surface before chemical polishing. where (b) is the surface roughness curve after chemical polishing, and (d) is the surface roughness curve before chemical polishing. 図11(a)は、本発明の比較例5でのフライス切削加工されたSCM440板の化学研磨面の走査電子顕微鏡像であり、(c)は化学研磨前のフライス切削面の走査電子顕微鏡像であり、(b)は化学研磨後の表面粗度曲線であり、(d)は化学研磨前の表面粗度曲線である。FIG. 11(a) is a scanning electron microscope image of the chemically polished surface of the milled SCM440 plate in Comparative Example 5 of the present invention, and (c) is a scanning electron microscope image of the milled surface before chemical polishing. where (b) is the surface roughness curve after chemical polishing, and (d) is the surface roughness curve before chemical polishing. 図12(a)は、本発明の比較例6でのフライス切削加工されたHPM1板の化学研磨面の走査電子顕微鏡像であり、(c)は化学研磨前のフライス切削面の走査電子顕微鏡像であり、(b)は化学研磨後の表面粗度曲線であり、(d)は化学研磨前の表面粗度曲線である。FIG. 12(a) is a scanning electron microscope image of the chemically polished surface of the HPM1 plate milled in Comparative Example 6 of the present invention, and (c) is a scanning electron microscope image of the milled surface before chemical polishing. where (b) is the surface roughness curve after chemical polishing, and (d) is the surface roughness curve before chemical polishing.

本発明の化学研磨液は、過酸化水素、フッ化水素アンモニウム、フェニルグリコールエーテル類及び塩化物イオンを含有することが特徴である。本発明におけるフェニルグリコールエーテル類としては、特に限定されないが、例えば、エチレングルコールモノフェニルエーテル、ジエチレングリコールモノフェニルエーテル、トリエチレングリコールモノフェニルエーテル、テトラエチレングリコールモノフェニルエーテル、ペンタエチレングリコールモノフェニルエーテル、プロピレングリコール2-モノフェニルエーテル等を挙げることができる。これらを単独で用いてもよいし、2種以上を混合して用いてもよい。なかでも、化学研磨特性の向上、入手の容易さ及び価格の適切さの観点からエチレングリコールモノフェニルエーテル及びジエチレングリコールモノフェニルエーテルから選ばれる少なくとも1種が好ましい。フェニルグリコールエーテル類はその強いキレート作用によって、化学研磨液中に研磨対象の金属から溶解した遷移金属イオンを捕獲し、遷移金属イオンの触媒作用による過酸化水素の分解を抑制させる効果がある。しかしながら、研究の結果それだけでなく、金属の化学研磨面の光沢性を向上させる効果が見いだされた。 The chemical polishing liquid of the present invention is characterized by containing hydrogen peroxide, ammonium hydrogen fluoride, phenyl glycol ethers and chloride ions. Phenyl glycol ethers in the present invention are not particularly limited, but examples include ethylene glycol monophenyl ether, diethylene glycol monophenyl ether, triethylene glycol monophenyl ether, tetraethylene glycol monophenyl ether, pentaethylene glycol monophenyl ether, Propylene glycol 2-monophenyl ether and the like can be mentioned. These may be used alone or in combination of two or more. Among them, at least one selected from ethylene glycol monophenyl ether and diethylene glycol monophenyl ether is preferable from the viewpoints of improvement in chemical polishing properties, availability and appropriateness of price. Due to their strong chelating action, phenyl glycol ethers have the effect of capturing transition metal ions dissolved from the metal to be polished in the chemical polishing liquid and suppressing the decomposition of hydrogen peroxide due to the catalytic action of the transition metal ions. However, as a result of research, not only that, but also the effect of improving the glossiness of the chemically polished surface of metal was found.

本発明における塩化物イオンの供給源としては、特に限定されないが、塩酸、塩化鉄(II)、塩化鉄(III)、その他塩素の金属塩等の無機塩化物などを挙げることができる。金属へのエッチング力及び化学研磨液のpHの低減(酸性度の維持)を考慮すると塩酸、塩化鉄(II)及び塩化鉄(III)から選ばれる少なくとも1種が好ましい。本発明における他の成分に加えて塩化物イオンを含むことにより、本発明の化学研磨液は、モリブデン、クロム、ニッケル等の耐食性の高い成分を含む合金鋼に適用した場合であっても、化学研磨液で溶解されずに偏析しやすいこれらの成分の偏析部を溶解させることができるので、化学研磨処理により微視的にも平滑となり優れた光沢が得られる。例えばHPM1などMoが偏析しているような合金を化学研磨した場合、塩化物イオンが存在していないと、Mo偏析部を溶解させることができずに、顕著な凸部を発生させてしまうが、少量の塩化物イオンが存在することにより、Mo部を溶解させることができる。さらに、溶解したMoイオンがイオン化傾向に従って鉄部に析出することにより、化学研磨液による鉄部の溶解を抑制させるという、謂わば「自己腐食抑制剤」ともいうべき機能が発揮される。本発明の化学研磨液における過酸化水素の含有量は、金属表面をより平滑化する観点から、化学研磨液全体に対して4~25質量%が好ましい。また、金属表面をむらなく平滑化及び光沢化する観点と、金属表面との反応を制御しやすくする観点から、化学研磨液全体に対して5~20質量%がより好ましい。本発明の化学研磨液におけるフッ化水素アンモニウムの含有量は、金属表面と適度な反応速度を有するようにする観点と、フッ化水素アンモニウムを溶解させる観点から、化学研磨液全体に対して0.5~10質量%が好ましく、1~5質量%がより好ましい。フッ化水素アンモニウムの含有量が0.5質量%未満であると、金属の化学研磨液への溶解反応が遅くなるおそれがあり、10質量%を超えると、フッ化水素アンモニウムが化学研磨液中に完全に溶解しないおそれがある。本発明の化学研磨液におけるフェニルグリコールエーテル類の含有量は、金属表面をより光沢化させる観点と、金属表面と適度な反応速度を有するようにする観点から、化学研磨液全体に対して0.1~5質量%が好ましく、1~5質量%がより好ましい。フェニルグリコールエーテル類の含有量が0.1質量%未満であると、光沢化しにくくなるおそれがあり、5質量%を超えると、金属の化学研磨液への溶解反応が遅くなるおそれがある。本発明の化学研磨液における塩化物イオンの含有量は、金型鋼により適する観点と、孔食の発生を防止する観点から、化学研磨液全体に対して0.001~5質量%が好ましく、0.1~2.5質量%がより好ましい。塩化物イオンの含有量が0.001質量%未満であると、光沢化の効果が低くなるおそれがあり、5質量%を超えると、孔食が発生するおそれがある。本発明の化学研磨液は、モリブデン、クロム及びニッケルから選ばれる少なくとも1種を含有する合金鋼の化学研磨に特に好適に使用できる。これらの合金鋼としては特に制限されるものではないが、例えば、SCM(クロムモリブデン鋼)、SNCM(ニッケルクロムモリブデン鋼)、HPM1、CENA1、NAK55等のAISI-P20やP21相当のプラスチック金型鋼、合金工具鋼であるSKD61、インバー、パーマロイB及びD、F82H等の低放射化フェライト鋼等を挙げることができる。また、本発明の化学研磨液は、金型用の合金鋼の化学研磨に好適に使用できる。金型としては、例えばプラスチック用金型、プレス用金型、ダイカスト用金型、鋳造用金型、粉末冶金用金型等を挙げることができる。合金鋼に含まれるモリブデン、クロム及びニッケルの含有量は、各種合金鋼に通常含まれる量であれば特に制限されない。クロムの含有量が多い場合、平滑化及び光沢化の効果が低下するおそれがあるので、クロムの含有量が10質量%未満、又は7質量%未満の合金鋼が好ましい。また、平滑化及び光沢化の観点から、炭素含有量が0.5質量%未満の合金鋼が好ましい。 The source of chloride ions in the present invention is not particularly limited, but examples include hydrochloric acid, iron chloride (II), iron chloride (III), inorganic chlorides such as metal salts of chlorine, and the like. At least one selected from hydrochloric acid, iron (II) chloride and iron (III) chloride is preferable in consideration of the ability to etch metal and the pH reduction (maintenance of acidity) of the chemical polishing liquid. By containing chloride ions in addition to other components in the present invention, the chemical polishing liquid of the present invention can be chemically Since the segregated portions of these components, which are not dissolved by the polishing liquid and tend to segregate, can be dissolved, the chemical polishing treatment can make the surface microscopically smooth and provide excellent gloss. For example, when an alloy such as HPM1 in which Mo is segregated is chemically polished, if chloride ions are not present, the Mo segregation cannot be dissolved, and a remarkable convex portion is generated. , the presence of a small amount of chloride ions allows the Mo portion to dissolve. Furthermore, the dissolved Mo ions are deposited on the iron part according to the ionization tendency, so that the dissolution of the iron part by the chemical polishing liquid is suppressed, so to speak, the function of a "self-corrosion inhibitor" is exhibited. The content of hydrogen peroxide in the chemical polishing liquid of the present invention is preferably 4 to 25% by mass based on the entire chemical polishing liquid from the viewpoint of smoothing the metal surface. Further, from the viewpoint of evenly smoothing and glossing the metal surface and from the viewpoint of facilitating control of the reaction with the metal surface, the content is more preferably 5 to 20% by mass based on the entire chemical polishing liquid. The content of ammonium hydrogen fluoride in the chemical polishing liquid of the present invention is 0.00% relative to the entire chemical polishing liquid, from the viewpoints of having an appropriate reaction rate with the metal surface and from the viewpoint of dissolving the ammonium hydrogen fluoride. 5 to 10% by mass is preferable, and 1 to 5% by mass is more preferable. If the content of ammonium hydrogen fluoride is less than 0.5% by mass, the dissolution reaction of the metal in the chemical polishing liquid may be slowed. may not dissolve completely in The content of the phenylglycol ether in the chemical polishing liquid of the present invention is 0.00% relative to the entire chemical polishing liquid, from the viewpoint of making the metal surface more glossy and from the viewpoint of having an appropriate reaction rate with the metal surface. 1 to 5% by mass is preferred, and 1 to 5% by mass is more preferred. If the content of phenyl glycol ethers is less than 0.1% by mass, glossiness may become difficult, and if it exceeds 5% by mass, the dissolution reaction of the metal in the chemical polishing liquid may become slow. The content of chloride ions in the chemical polishing liquid of the present invention is preferably 0.001 to 5% by mass relative to the entire chemical polishing liquid from the viewpoint of being more suitable for mold steel and from the viewpoint of preventing pitting corrosion. .1 to 2.5% by mass is more preferable. If the chloride ion content is less than 0.001% by mass, the glossing effect may be reduced, and if it exceeds 5% by mass, pitting corrosion may occur. The chemical polishing liquid of the present invention is particularly suitable for chemical polishing of alloy steel containing at least one selected from molybdenum, chromium and nickel. Although these alloy steels are not particularly limited, for example, SCM (chromium molybdenum steel), SNCM (nickel chromium molybdenum steel), HPM1, CENA1, NAK55 and other AISI-P20 and P21 plastic mold steels, SKD61, which is an alloy tool steel, Invar, Permalloy B and D, low-activation ferritic steel such as F82H, and the like can be mentioned. Also, the chemical polishing liquid of the present invention can be suitably used for chemical polishing of alloy steel for molds. Examples of molds include plastic molds, press molds, die casting molds, casting molds, powder metallurgy molds, and the like. The contents of molybdenum, chromium and nickel contained in the alloy steel are not particularly limited as long as they are the amounts normally contained in various alloy steels. If the chromium content is high, the smoothing and brightening effects may be reduced, so an alloy steel with a chromium content of less than 10% by mass or less than 7% by mass is preferred. Also, from the viewpoint of smoothing and glossing, an alloy steel having a carbon content of less than 0.5% by mass is preferable.

本発明の化学研磨液の調製方法は、特に限定されるものではないが、例えば水等の溶媒に、過酸化水素水、フェニルグリコールエーテル類、フッ化水素アンモニウム粉末及び塩酸、塩化鉄(II)、塩化鉄(III)等の塩化物イオン源を加えて、適宜撹拌等を行うことにより調製することができる。本発明の化学研磨方法は、本発明の化学研磨液に被処理金属の表面を接触させることにより、被処理金属の表面を化学研磨する。化学研磨液と被処理面(被処理金属の表面)を接触させた状態で、必要に応じて化学研磨液又は被処理面を適宜揺動させてもよい。例えば、化学研磨液に被処理面を浸漬させ適宜揺動させてもよい。その他にも例えばパイプ状の被処理物の内面のみを化学研磨したい場合は、ポンプ等で化学研磨液を送液して処理することも可能である。また本発明の化学研磨方法による化学研磨液の温度は特に加熱しなくても研磨可能であるが、好ましくは、10℃~50℃、より好ましくは25℃~40℃に保つことが好ましい。化学研磨液温度が10℃を下回ると反応性が遅くなり、研磨効果が得られるまでの処理時間が長くなることで作業性が低下してしまう。また化学研磨液温度が50℃を上回ってしまうと、成分である過酸化水素の分解反応が促進されてしまい、化学研磨液の劣化を不必要に招いてしまう。本発明の化学研磨液と被処理面を接触させる時間は、研磨状況をみながら適宜選択できるが、例えば、1分~1時間を挙げることができる。本発明の化学研磨方法は、処理対象は金属であれば特に限定されるものではないが、モリブデン、クロム及びニッケルから選ばれる少なくとも1種を含有する合金鋼の化学研磨に特に好適に使用できる。これらの合金鋼としては特に制限されるものではないが、例えば、SCM(クロムモリブデン鋼)、SNCM(ニッケルクロムモリブデン鋼)、HPM1、CENA1、NAK55等のAISI-P20やP21相当のプラスチック金型鋼、合金工具鋼であるSKD61、インバー、パーマロイB及びD、F82H等の低放射化フェライト鋼等を挙げることができる。 The method for preparing the chemical polishing liquid of the present invention is not particularly limited. can be prepared by adding a chloride ion source such as iron (III) chloride and stirring appropriately. The chemical polishing method of the present invention chemically polishes the surface of the metal to be treated by bringing the surface of the metal to be treated into contact with the chemical polishing liquid of the present invention. While the chemical polishing liquid and the surface to be treated (the surface of the metal to be treated) are in contact with each other, the chemical polishing liquid or the surface to be treated may be oscillated as needed. For example, the surface to be treated may be immersed in a chemical polishing liquid and oscillated as appropriate. In addition, for example, when it is desired to chemically polish only the inner surface of a pipe-shaped object to be processed, it is also possible to carry out processing by feeding a chemical polishing liquid using a pump or the like. The temperature of the chemical polishing solution according to the chemical polishing method of the present invention can be polished without any particular heating, but it is preferably kept at 10°C to 50°C, more preferably 25°C to 40°C. If the temperature of the chemical polishing solution is lower than 10° C., the reactivity becomes slow, and the processing time required for obtaining a polishing effect becomes long, resulting in a decrease in workability. On the other hand, if the temperature of the chemical polishing liquid exceeds 50° C., the decomposition reaction of hydrogen peroxide, which is a component of the chemical polishing liquid, is accelerated, resulting in unnecessary deterioration of the chemical polishing liquid. The time for which the chemical polishing liquid of the present invention is brought into contact with the surface to be treated can be appropriately selected depending on the polishing conditions, and can be, for example, 1 minute to 1 hour. The chemical polishing method of the present invention is not particularly limited as long as the object to be treated is a metal, but it is particularly suitable for chemical polishing of alloy steel containing at least one selected from molybdenum, chromium and nickel. Although these alloy steels are not particularly limited, for example, SCM (chromium molybdenum steel), SNCM (nickel chromium molybdenum steel), HPM1, CENA1, NAK55 and other AISI-P20 and P21 plastic mold steels, SKD61, which is an alloy tool steel, Invar, Permalloy B and D, low-activation ferritic steel such as F82H, and the like can be mentioned.

以下、本発明を実施例に基づき更に説明する。但し、本発明は実施例に示す態様に限定されるものではない。 The present invention will be further described below based on examples. However, the present invention is not limited to the embodiments shown in the examples.

[評価方法]
(表面観察)
表面の評価は走査型電子顕微鏡SU3500(日立ハイテクノロジーズ社製)で観察した。
(平滑化)
表面粗さ計SURFCOM NEX001SD-12(東京精密社製)にて任意の5箇所を測定し平均値を算出して、表面粗度[Ra]を求めた。平滑化の評価は、下記式(1)で定義した表面粗度低減率が、+10%以上の場合を評価〇とし、+10%未満の場合を×とした。下記式(1)中、Ra1は化学研磨前の表面粗度を表し、Ra2は化学研磨後の表面粗度を表す。

Figure 0007145253000001
(光沢)
光沢に関しては目視にて金属光沢を有するか否かで評価し、金属光沢を有する場合を評価〇とし、金属光沢を有さない場合を評価×とした。
(化学研磨効果)
表面粗度[Ra]が化学研磨前に比べ改善し、かつ金属光沢が得られたものを化学研磨効果〇とし、化学研磨により表面粗度[Ra]の改善又は金属光沢が得られたものを△とし、表面粗度[Ra]の改善及び金属光沢どちらも達成できなかったものを化学研磨効果×とした。 [Evaluation method]
(Surface observation)
The evaluation of the surface was observed with a scanning electron microscope SU3500 (manufactured by Hitachi High-Technologies Corporation).
(smoothing)
Surface roughness [Ra] was obtained by measuring five arbitrary points with a surface roughness meter SURFCOM NEX001SD-12 (manufactured by Tokyo Seimitsu Co., Ltd.) and calculating the average value. In the evaluation of smoothing, the surface roughness reduction rate defined by the following formula (1) was evaluated as ◯ when it was +10% or more, and was evaluated as x when it was less than +10%. In the following formula (1), Ra1 represents the surface roughness before chemical polishing, and Ra2 represents the surface roughness after chemical polishing.
Figure 0007145253000001
(gloss)
The luster was evaluated visually based on whether or not it had a metallic luster. The case with a metallic luster was evaluated as ◯, and the case with no metallic luster was evaluated as x.
(Chemical polishing effect)
The chemical polishing effect is ◯ when the surface roughness [Ra] is improved compared to before chemical polishing and metallic luster is obtained, and the surface roughness [Ra] is improved or metallic luster is obtained by chemical polishing. The chemical polishing effect was evaluated as Δ, and when neither improvement in surface roughness [Ra] nor metallic luster could be achieved, the chemical polishing effect was evaluated as x.

[実施例1~6]
(過酸化水素濃度の変更)
水に過酸化水素、フッ化水素アンモニウム、ジエチレングリコールモノフェニルエーテル及び塩酸を溶解させ、溶液中のフッ化水素アンモニウム濃度を2.5質量%、ジエチレングリコールモノフェニルエーテル濃度を3質量%、塩化物イオン濃度を0.5質量%とし、過酸化水素濃度を[表1]のとおりに変化させて実施例1~6における化学研磨液を調製した。調製した各化学研磨液約400mLをポリプロピレン製の容器に満たし、フライス加工されたSCM440板(5cm×5cm、厚さ5mm)を浸漬させて化学研磨を行った。化学研磨液の液温は30±5℃に保ち、浸漬時間を1分とした。実施例1~6の結果を[表1]に示す。
[Examples 1 to 6]
(Change in hydrogen peroxide concentration)
Hydrogen peroxide, ammonium hydrogen fluoride, diethylene glycol monophenyl ether, and hydrochloric acid are dissolved in water, and the concentration of ammonium hydrogen fluoride in the solution is 2.5% by mass, the concentration of diethylene glycol monophenyl ether is 3% by mass, and the chloride ion concentration is was set to 0.5% by mass, and the hydrogen peroxide concentration was changed as shown in [Table 1] to prepare chemical polishing solutions in Examples 1 to 6. About 400 mL of each prepared chemical polishing solution was filled in a polypropylene container, and a milled SCM440 plate (5 cm×5 cm, thickness 5 mm) was immersed in it for chemical polishing. The liquid temperature of the chemical polishing liquid was kept at 30±5° C., and the immersion time was 1 minute. The results of Examples 1 to 6 are shown in [Table 1].

Figure 0007145253000002
Figure 0007145253000002

[実施例7~9]
(フッ化水素アンモニウム濃度の変更)
水に過酸化水素、フッ化水素アンモニウム、ジエチレングリコールモノフェニルエーテル及び塩酸を溶解させ、溶液中の過酸化水素濃度を10質量%、ジエチレングリコールモノフェニルエーテル濃度を3質量%、塩化物イオン濃度を0.5質量%とし、フッ化水素アンモニウム濃度を[表2]のとおりに変化させて実施例7~9における化学研磨液を調製した。調製した各化学研磨液約400mLをポリプロピレン製の容器に満たし、フライス加工されたSCM440板(5cm×5cm、厚さ5mm)を浸漬させて化学研磨を行った。化学研磨液の液温は30±5℃に保ち、浸漬時間を1分とした。実施例7~9の結果を[表2]に示す。
[Examples 7-9]
(Change in ammonium hydrogen fluoride concentration)
Hydrogen peroxide, ammonium hydrogen fluoride, diethylene glycol monophenyl ether, and hydrochloric acid were dissolved in water, and the concentration of hydrogen peroxide in the solution was 10% by mass, the concentration of diethylene glycol monophenyl ether was 3% by mass, and the concentration of chloride ions was 0.5% by mass. Chemical polishing liquids in Examples 7 to 9 were prepared by changing the concentration of ammonium hydrogen fluoride to 5% by mass and changing the concentration as shown in [Table 2]. About 400 mL of each prepared chemical polishing solution was filled in a polypropylene container, and a milled SCM440 plate (5 cm×5 cm, thickness 5 mm) was immersed in it for chemical polishing. The liquid temperature of the chemical polishing liquid was kept at 30±5° C., and the immersion time was 1 minute. The results of Examples 7 to 9 are shown in [Table 2].

Figure 0007145253000003
Figure 0007145253000003

[実施例10~12]
(フェニルグリコールエーテル濃度の変更)
水に過酸化水素、フッ化水素アンモニウム、ジエチレングリコールモノフェニルエーテル及び塩酸を溶解させ、溶液中の過酸化水素濃度を10質量%、フッ化水素アンモニウム濃度を2.5質量%、塩化物イオン濃度を0.5質量%とし、ジエチレングリコールモノフェニルエーテル濃度を[表3]のとおりに変化させて実施例10~12における化学研磨液を調製した。調製した各化学研磨液約400mLをポリプロピレン製の容器に満たし、フライス加工されたSCM440板(5cm×5cm、厚さ5mm)を浸漬させて化学研磨を行った。化学研磨液の液温は30±5℃に保ち、浸漬時間を1分とした。実施例10~12の結果を[表3]に示す。
[Examples 10-12]
(Change in phenyl glycol ether concentration)
Hydrogen peroxide, ammonium hydrogen fluoride, diethylene glycol monophenyl ether and hydrochloric acid are dissolved in water, and the hydrogen peroxide concentration in the solution is 10% by mass, the ammonium hydrogen fluoride concentration is 2.5% by mass, and the chloride ion concentration is Chemical polishing liquids in Examples 10 to 12 were prepared by changing the concentration of diethylene glycol monophenyl ether as shown in [Table 3] with a concentration of 0.5% by mass. About 400 mL of each prepared chemical polishing solution was filled in a polypropylene container, and a milled SCM440 plate (5 cm×5 cm, thickness 5 mm) was immersed in it for chemical polishing. The liquid temperature of the chemical polishing liquid was kept at 30±5° C., and the immersion time was 1 minute. The results of Examples 10-12 are shown in [Table 3].

Figure 0007145253000004
Figure 0007145253000004

[実施例13~15]
(フェニルグリコールエーテル種の変更)
水に過酸化水素、フッ化水素アンモニウム、フェニルグリコールエーテル及び塩酸を溶解させ、溶液中の過酸化水素濃度を10質量%、フッ化水素アンモニウム濃度を2.5質量%、塩化物イオン濃度を0.5質量%にしてフェニルグリコールエーテル濃度を3質量%になるように配合して[表4]のとおりにフェニルグリコールエーテルの種類を変えて実施例13~15における化学研磨液を調製した。調製した各化学研磨液約400mLをポリプロピレン製の容器に満たし、フライス加工されたSCM440板(5cm×5cm、厚さ5mm)を浸漬させて化学研磨を行った。化学研磨液の液温は30±5℃に保ち、浸漬時間を1分とした。実施例13~15の結果を[表4]に示す。
[Examples 13 to 15]
(Change of Phenyl Glycol Ether Species)
Hydrogen peroxide, ammonium hydrogen fluoride, phenyl glycol ether and hydrochloric acid are dissolved in water, and the hydrogen peroxide concentration in the solution is 10% by mass, the ammonium hydrogen fluoride concentration is 2.5% by mass, and the chloride ion concentration is 0. Chemical polishing liquids in Examples 13 to 15 were prepared by changing the type of phenylglycol ether as shown in [Table 4] and blending the phenylglycol ether concentration to 3% by mass. About 400 mL of each prepared chemical polishing solution was filled in a polypropylene container, and a milled SCM440 plate (5 cm×5 cm, thickness 5 mm) was immersed in it for chemical polishing. The liquid temperature of the chemical polishing liquid was kept at 30±5° C., and the immersion time was 1 minute. The results of Examples 13-15 are shown in [Table 4].

Figure 0007145253000005
Figure 0007145253000005

[実施例16~23、比較例1~5]
(塩化物イオン濃度の変更及びその他の無機酸への変更)
水に過酸化水素、フッ化水素アンモニウム及びジエチレングリコールモノフェニルエーテル並びに塩酸、塩化鉄(III)、硫酸、硝酸又は燐酸を溶解させ、溶液中の過酸化水素濃度を10質量%、フッ化水素アンモニウム濃度を2.5質量%、ジエチレングリコールモノフェニルエーテル濃度を3質量%とし、塩化物イオン濃度を[表5]のとおりに変化させて実施例16~23及び比較例1~3における化学研磨液を調製した。比較例1~3では、それぞれ硫酸イオン、硝酸イオン、燐酸イオンの濃度が1質量%になるようにし、比較例4及び5では、酸を添加しなかった。調製した各化学研磨液約400mLをポリプロピレン製の容器に満たし、比較例1~4ではフライス加工されたSCM440板(5cm×5cm、厚さ5mm)を浸漬させて化学研磨を行い、比較例5ではHPM1の圧延薄板(5cm×5cm、厚さ5mm)を浸漬させて化学研磨を行った。化学研磨液の液温は30±5℃に保ち、浸漬時間を1分とした。実施例16~23及び比較例1~5の結果を[表5]に示す。塩酸を使用しなかった例では、硫酸、硝酸又は燐酸を使用しても平滑化も光沢化もできなかった。
[Examples 16 to 23, Comparative Examples 1 to 5]
(Change in chloride ion concentration and change to other inorganic acids)
Hydrogen peroxide, ammonium hydrogen fluoride, diethylene glycol monophenyl ether, and hydrochloric acid, iron (III) chloride, sulfuric acid, nitric acid, or phosphoric acid are dissolved in water, and the concentration of hydrogen peroxide in the solution is 10% by mass, and the concentration of ammonium hydrogen fluoride is is 2.5% by mass, the diethylene glycol monophenyl ether concentration is 3% by mass, and the chloride ion concentration is changed as shown in [Table 5] to prepare chemical polishing liquids in Examples 16 to 23 and Comparative Examples 1 to 3. did. In Comparative Examples 1 to 3, the concentrations of sulfate ions, nitrate ions, and phosphate ions were adjusted to 1 mass %, respectively, and in Comparative Examples 4 and 5, no acid was added. About 400 mL of each prepared chemical polishing solution was filled in a polypropylene container, and in Comparative Examples 1 to 4, a milled SCM440 plate (5 cm × 5 cm, thickness 5 mm) was immersed to perform chemical polishing. A rolled sheet of HPM1 (5 cm x 5 cm, thickness 5 mm) was immersed and chemically polished. The liquid temperature of the chemical polishing liquid was kept at 30±5° C., and the immersion time was 1 minute. The results of Examples 16-23 and Comparative Examples 1-5 are shown in [Table 5]. Examples without hydrochloric acid could not be smoothed or brightened with sulfuric acid, nitric acid or phosphoric acid.

Figure 0007145253000006
Figure 0007145253000006

[実施例3、24~34]
(適用鋼種)
水に過酸化水素、フッ化水素アンモニウム、ジエチレングリコールモノフェニルエーテル及び塩酸を溶解させ、溶液中の過酸化水素濃度を10質量%、フッ化水素アンモニウム濃度を2.5質量%、ジエチレングリコールモノフェニルエーテル濃度を3質量%とし、塩化物イオン濃度を0.5質量%に調整した化学研磨液で[表6]のとおりの鋼種に対して化学研磨した際の研磨効果(実施例3、24~34)を[表6]に示す。化学研磨液の液温は35±5℃に保った。図1は実施例3の処理前と処理後の金属試料表面の電子顕微鏡による観察結果及び表面粗度測定結果であり、図2は実施例27の処理前と処理後の金属試料表面の電子顕微鏡による観察結果及び表面粗度測定結果であり、図3は実施例28の処理前と処理後の金属試料表面の電子顕微鏡による観察結果及び表面粗度測定結果であり、図4は実施例29の処理前と処理後の金属試料表面の電子顕微鏡による観察結果及び表面粗度測定結果であり、図5は実施例30の処理前と処理後の金属試料表面の電子顕微鏡による観察結果及び表面粗度測定結果であり、図6は実施例31の処理前と処理後の金属試料表面の電子顕微鏡による観察結果及び表面粗度測定結果であり、図7は実施例32の処理前と処理後の金属試料表面の電子顕微鏡による観察結果及び表面粗度測定結果である。実施例24及び25は熱処理した黒皮の存在する丸棒(断面の直径5cm、厚さ1cm)を試料とし、実施例26は熱処理した黒皮の存在する丸棒(断面の直径3cm、厚さ1cm)を試料とした。実施例27~30は圧延薄板(5cm×5cm、厚さ5mm)を試料とし、実施例31~33はフライス加工された板(10cm×10cm、厚さ1cm)を試料とした。実施例34は熱処理した黒皮の存在する丸棒(断面の直径5cm、厚さ1cm)を試料とした。実施例の結果から本発明の化学研磨液を使用すると、耐食成分の偏析部が残らず微視的にも平滑化及び光沢化が達成できる。
[Examples 3, 24 to 34]
(Applicable steel type)
Hydrogen peroxide, ammonium hydrogen fluoride, diethylene glycol monophenyl ether, and hydrochloric acid are dissolved in water, and the concentration of hydrogen peroxide in the solution is 10% by mass, the concentration of ammonium hydrogen fluoride is 2.5% by mass, and the concentration of diethylene glycol monophenyl ether is is 3% by mass, and the chemical polishing liquid with the chloride ion concentration adjusted to 0.5% by mass is used to chemically polish the steel grades as shown in [Table 6] (Examples 3, 24 to 34) is shown in [Table 6]. The liquid temperature of the chemical polishing liquid was kept at 35±5°C. FIG. 1 shows the results of electron microscope observation and surface roughness measurement of the surface of the metal sample before and after the treatment in Example 3, and FIG. 2 is the electron microscope of the surface of the metal sample before and after the treatment in Example 27. 3 shows the observation results and surface roughness measurement results of the metal sample surface before and after the treatment of Example 28 with an electron microscope, and FIG. 5 shows the results of electron microscope observation and surface roughness measurement results of the metal sample surface before and after treatment, and FIG. FIG. 6 shows the results of electron microscope observation and surface roughness measurement of the metal sample surface before and after the treatment of Example 31, and FIG. It is the observation result by an electron microscope of a sample surface, and a surface-roughness measurement result. In Examples 24 and 25, a heat-treated round bar with black scale (cross-sectional diameter 5 cm, thickness 1 cm) was used as a sample, and Example 26 was a heat-treated round bar with black scale (cross-sectional diameter 3 cm, thickness 1 cm). 1 cm) was used as a sample. Examples 27-30 were samples of rolled sheet (5 cm x 5 cm, 5 mm thick), and Examples 31-33 were samples of milled plate (10 cm x 10 cm, 1 cm thick). In Example 34, a heat-treated round bar with black scale (cross-sectional diameter: 5 cm, thickness: 1 cm) was used as a sample. From the results of the examples, the use of the chemical polishing liquid of the present invention makes it possible to achieve microscopic smoothing and gloss without leaving any segregation of corrosion-resistant components.

Figure 0007145253000007
Figure 0007145253000007

また、表7に実施例1~34及び比較例1~5の化学研磨前後の表面粗度[Ra]、表面粗度低減率及び化学研磨効果についてまとめたものを示す。実施例1~34では、+20%以上の表面粗度低減率となり、平滑化の評価が〇となる表面粗度低減率+10%以上をいずれも上回っていた。 Table 7 summarizes the surface roughness [Ra] before and after chemical polishing, surface roughness reduction rate, and chemical polishing effect of Examples 1 to 34 and Comparative Examples 1 to 5. In Examples 1 to 34, the surface roughness reduction rate was +20% or more, which exceeded the surface roughness reduction rate +10% or more at which the smoothing evaluation was ◯.

Figure 0007145253000008
Figure 0007145253000008

また表8に各鋼材の主要成分と化学研磨の効果についてまとめたものを示す。 Table 8 summarizes the main components of each steel material and the effects of chemical polishing.

Figure 0007145253000009
Figure 0007145253000009

本発明の化学研磨液及び化学研磨方法は、限定されるものではないが、炭素含有量が0.5質量%未満鉄鋼、SCM、AISI-P20やP21相当のプラスチック金型鋼、インバー、パーマロイB及びD、合金鋼や低放射化フェライト鋼を効率よく化学研磨でき、これらの金属表面を平滑化、光沢化できるので、例えば、流体輸送用の羽根車表面を平滑化することによる輸送効率の向上、様々な接合方法による接合力の向上が期待できる。また、有機ELパネル製造装置内で蒸着マスクに用いられるインバーの清浄性向上やバリ除去、パーマロイ製磁気シールドチャンバー、部品の清浄性や真空性能向上といった様々な産業分野での表面処理に好適に用いることができる。
The chemical polishing liquid and chemical polishing method of the present invention are not limited, but include steel with a carbon content of less than 0.5% by mass, SCM, plastic mold steel equivalent to AISI-P20 or P21, Invar, Permalloy B and D, alloy steel and low-activation ferritic steel can be efficiently chemically polished, and the metal surfaces of these can be smoothed and polished, so for example, improvement of transportation efficiency by smoothing the surface of an impeller for fluid transportation, Improvement in bonding strength can be expected by various bonding methods. It is also suitable for surface treatment in various industrial fields, such as improving the cleanliness and removing burrs of Invar used for vapor deposition masks in organic EL panel manufacturing equipment, permalloy magnetic shield chambers, and improving the cleanliness and vacuum performance of parts. be able to.

Claims (6)

過酸化水素、フッ化水素アンモニウム、フェニルグリコールエーテル類及び塩化物イオンを含む、モリブデン、クロム及びニッケルから選ばれる少なくとも1種を含有する合金鋼の化学研磨に用いるための化学研磨液。 A chemical polishing liquid for chemical polishing of alloy steel containing at least one selected from molybdenum, chromium and nickel containing hydrogen peroxide, ammonium hydrogen fluoride, phenyl glycol ethers and chloride ions. 過酸化水素の含有量が4~25質量%であることを特徴とする請求項1記載の化学研磨液。 2. The chemical polishing liquid according to claim 1 , wherein the content of hydrogen peroxide is 4 to 25 mass %. フッ化水素アンモニウムの含有量が0.5~10質量%であることを特徴とする請求項1又は2記載の化学研磨液。 3. The chemical polishing liquid according to claim 1, wherein the content of ammonium hydrogen fluoride is 0.5 to 10 mass %. フェニルグリコールエーテル類の含有量が0.1~5質量%であることを特徴とする請求項1~のいずれか記載の化学研磨液。 4. The chemical polishing liquid according to any one of claims 1 to 3 , wherein the content of phenyl glycol ether is 0.1 to 5% by mass. 塩化物イオンの含有量が0.001~5質量%であることを特徴とする請求項1~のいずれか記載の化学研磨液。 5. The chemical polishing liquid according to any one of claims 1 to 4 , wherein the content of chloride ions is 0.001 to 5% by mass. モリブデン、クロム及びニッケルから選ばれる少なくとも1種を含有する合金鋼表面の化学研磨方法であって、請求項1~のいずれか記載の化学研磨液を前記合金鋼表面に接触させることを特徴とする化学研磨方法。 A chemical polishing method for the surface of an alloy steel containing at least one selected from molybdenum, chromium and nickel , characterized in that the chemical polishing liquid according to any one of claims 1 to 5 is brought into contact with the surface of the alloy steel . chemical polishing method.
JP2021024334A 2021-02-18 2021-02-18 Chemical polishing liquid and chemical polishing method Active JP7145253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021024334A JP7145253B2 (en) 2021-02-18 2021-02-18 Chemical polishing liquid and chemical polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021024334A JP7145253B2 (en) 2021-02-18 2021-02-18 Chemical polishing liquid and chemical polishing method

Publications (2)

Publication Number Publication Date
JP2022126319A JP2022126319A (en) 2022-08-30
JP7145253B2 true JP7145253B2 (en) 2022-09-30

Family

ID=83059004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021024334A Active JP7145253B2 (en) 2021-02-18 2021-02-18 Chemical polishing liquid and chemical polishing method

Country Status (1)

Country Link
JP (1) JP7145253B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127140A (en) 2009-12-15 2011-06-30 Mitsubishi Gas Chemical Co Inc Surface treatment method for chromium-molybdenum steel
WO2020050204A1 (en) 2018-09-03 2020-03-12 三菱瓦斯化学株式会社 Chemical polishing liquid and surface treatment method using same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS526691B2 (en) * 1971-10-19 1977-02-24
JPS4892230A (en) * 1972-03-08 1973-11-30
JPS5037159B2 (en) * 1973-02-21 1975-12-01
US5810938A (en) * 1996-05-24 1998-09-22 Henkel Corporation Metal brightening composition and process that do not damage glass

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011127140A (en) 2009-12-15 2011-06-30 Mitsubishi Gas Chemical Co Inc Surface treatment method for chromium-molybdenum steel
WO2020050204A1 (en) 2018-09-03 2020-03-12 三菱瓦斯化学株式会社 Chemical polishing liquid and surface treatment method using same

Also Published As

Publication number Publication date
JP2022126319A (en) 2022-08-30

Similar Documents

Publication Publication Date Title
CN108611643B (en) Chemical polishing solution and polishing method for manufacturing special-shaped titanium alloy through laser additive manufacturing
Harvey Cerium-based conversion coatings on aluminium alloys: a process review
CN102383132A (en) Polishing solution for processing surfaces of copper and copper alloy by replacing copper pickling process
Li et al. Regulating the passive film of NiCoCrMo alloy in hydrofluoric acid solution by small addition of Cu
CN107299348B (en) A kind of environment-friendly type brightening solution for stainless steel and preparation method thereof and polishing process
JP7145253B2 (en) Chemical polishing liquid and chemical polishing method
US3836410A (en) Method of treating titanium-containing structures
KR102379904B1 (en) Austenitic stainless steel and manufacturing method thereof
CN109440177A (en) A kind of environment-friendly type electrolysis without EDTA is except film and preparation method thereof
CN112585299B (en) Chemical polishing liquid and surface treatment method using same
US2620265A (en) Composition for treating aluminum and aluminum alloys
Maanonen Steel pickling in challenging conditions
JP7399080B2 (en) pH stable trivalent chromium coating liquid
KR102295937B1 (en) Ambient temperature decontamination of nuclear power plant component surfaces containing radionuclides in a metal oxide
CN114525510B (en) Corrosive liquid, preparation method of corrosive liquid and corrosion process of Inconel625 nickel alloy
JP2008248329A (en) Method for pickling ferritic stainless steel sheet
US2593448A (en) Method and composition for treating aluminum and aluminum alloys
CN101501914A (en) Stainless steel member for fuel cell
JP3322771B2 (en) Chemical polishing liquid for metal and chemical polishing method
EP1242651B1 (en) Brightening/passivating metal surfaces without hazard from emissions of oxides of nitrogen
KR101709303B1 (en) Solution to accelerate the detergency of acid
JP4508602B2 (en) Chemical polishing agent for iron-based alloy and surface treatment method for iron-based alloy using the same
US7887638B2 (en) Removal of niobium second phase particle deposits from pickled zirconium-niobium alloys
CN112126919A (en) Passivation method of aluminum hexavalent chromium passivator
JP2019135322A (en) Acid cleaning agent and acid cleaning method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220322

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220916

R150 Certificate of patent or registration of utility model

Ref document number: 7145253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150